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The bi-material interface arc crack has been the focus of interest in the composite community, where it is usually referred to as the fiber-matrix interface crack. In this work, we investigate the convergence properties of the Virtual Crack Closure Technique (VCCT) when applied to the evaluation of the Mode I, Mode II and total Energy Release Rate of the fiber-matrix interface crack in the context of the Finite Element Method (FEM). We first propose a synthetic vectorial formulation of the VCCT. Thanks to this formulation, we study the convergence properties of the method, both analytically and numerically. It is found that Mode I and Mode II Energy Release Rate (ERR) possess a logarithmic dependency with respect to the size of the elements in the crack tip neighborhood, while the total ERR is independent of element size.

Introduction

Bi-material interfaces represent the basic load transfer mechanism at the heart of Fiber Reinforced Polymer Composite (FRPC) materials. They are present at the macroscale, in the form of adhesive joints; at the mesoscale, as interfaces between layers with different orientations; at the microscale, as fiber-D R A F T matrix interfaces. Bi-material interfaces have for long attracted the attention of researchers in Fracture Mechanics [START_REF] Comninou | An overview of interface cracks[END_REF][START_REF] Hills | Interface cracks[END_REF], due to their hidden complexity.

The problem was first addressed in the 1950's by Williams [START_REF] Williams | The stresses around a fault or crack in dissimilar media[END_REF], who derived through a linear elastic asymptotic analysis the stress distribution around an open crack (i.e. with crack faces nowhere in contact for any size of the crack) between two infinite half-planes of dissimilar materials. He found the existence of a strong oscillatory behavior in the stress singularity at the crack tip of the form

r -1 2 sin (ε log r) with ε = 1 2π log 1 -β 1 + β , (1) 
in both Mode I and Mode II. In Eq. 1, β is one of the two parameters introduced by Dundurs [START_REF] Dundurs | Discussion: "edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading[END_REF] to characterize bi-material interfaces:

β = µ 2 (κ 1 -1) -µ 1 (κ 2 -1) µ 2 (κ 1 + 1) + µ 1 (κ 2 + 1) (2) 
where κ = 3 -4ν in plane strain and κ = 3-4ν 1+ν in plane stress, µ is the shear modulus, ν Poisson's coefficient, and indexes 1, 2 refer to the two bulk materials joined at the interface. Defining a as the length of the crack, it was found that the size of the oscillatory region is in the order of 10 -6 a [START_REF] Erdogan | Stress distribution in a nonhomogeneous elastic plane with cracks[END_REF]. Given the oscillatory behaviour of the crack tip singularity of Eq. 1, the definition of Stress Intensity Factor (SIF) lim r→0 √ 2πrσ diverges and ceases to be valid [START_REF] Comninou | An overview of interface cracks[END_REF].

It implies that the Mode mixity problem at the crack tip is ill-posed.

It was furthermore observed, always in the context of Linear Elastic Fracture Mechanics (LEFM), that an interpenetration zone exists close to the crack tip [START_REF] England | A crack between dissimilar media[END_REF][START_REF] Malyshev | The strength of adhesive joints using the theory of cracks[END_REF] with a length in the order of 10 -4 a [START_REF] England | A crack between dissimilar media[END_REF]. Following conclusions firstly proposed in [START_REF] Malyshev | The strength of adhesive joints using the theory of cracks[END_REF], the presence of a contact zone in the crack tip neighborhood, of a length to be determined from the solution of the elastic problem, was introduced in [START_REF] Comninou | The interface crack[END_REF] and shown to provide a physically consistent solution to the straight bi-material interface crack problem.

The curved bi-material interface crack, more often refered to as the fiber-matrix interface crack (or debond) due to its relevance in FRPCs, was first treated by D R A F T

England [START_REF] England | An arc crack around a circular elastic inclusion[END_REF] and by Perlman and Sih [START_REF] Perlman | Elastostatic problems of curvilinear cracks in bonded dissimilar materials[END_REF], who provided the analytical solution of stress and displacement fields for a circular inclusion with respectively a single debond and an arbitrary number of debonds. Building on their work, Toya [START_REF] Toya | A crack along the interface of a circular inclusion embedded in an infinite solid[END_REF] particularized the solution and provided the expression of the Energy Release Rate (ERR) at the crack tip. The same problems exposed previously for the open straight bi-material crack were shown to exist also for the open fiber-matrix interface crack: the presence of strong oscillations in the crack tip singularity and onset of crack face interpenetration at a critical flaw size. 1In order to treat cases more complex than the single partially debonded fiber in an infinite matrix of [START_REF] England | An arc crack around a circular elastic inclusion[END_REF][START_REF] Perlman | Elastostatic problems of curvilinear cracks in bonded dissimilar materials[END_REF][START_REF] Toya | A crack along the interface of a circular inclusion embedded in an infinite solid[END_REF], numerical studies followed. In the 1990's, París and collaborators [START_REF] París | The fiber-matrix interface crack -a numerical analysis using boundary elements[END_REF] developed a Boundary Element Method (BEM)

with the use of discontinuous singular elements at the crack tip and the Virtual Crack Closure Integral (VCCI) [START_REF] Irwin | Fracture, in: Elasticity and Plasticity / Elastizität und Plastizität[END_REF] for the evaluation of the Energy Release Rate (ERR). They validated their results [START_REF] París | The fiber-matrix interface crack -a numerical analysis using boundary elements[END_REF] with respect to Toya's analytical solution [START_REF] Toya | A crack along the interface of a circular inclusion embedded in an infinite solid[END_REF] and analyzed the effect of BEM interface discretization on the stress field in the neighborhood of the crack tip [START_REF] Caño | On stress singularities induced by the discretization in curved receding contact surfaces: a bem analysis[END_REF]. Following Comninou's work on the straight crack [START_REF] Comninou | The interface crack[END_REF], they furthermore recognized the importance of contact to retrieve a physical solution avoiding interpenetration [START_REF] París | The fiber-matrix interface crack -a numerical analysis using boundary elements[END_REF] and studied the effect of the contact zone on debond ERR [START_REF] Varna | The effect of crack-face contact on fiber/matrix debonding in transverse tensile loading[END_REF]. Their algorithm was then applied to investigate the fiber-matrix interface crack under different geometrical configurations and mechanical loadings [START_REF] París | Kinking of transversal interface cracks between fiber and matrix[END_REF][START_REF] Correa | Effects of the presence of compression in transverse cyclic loading on fibre-matrix debonding in unidirectional composite plies[END_REF][START_REF] Correa | Effect of thermal residual stresses on matrix failure under transverse tension at micromechanical level: A numerical and experimental analysis[END_REF][START_REF] Correa | Effect of the presence of a secondary transverse load on the inter-fibre failure under tension[END_REF][START_REF] Correa | Effect of a secondary transverse load on the inter-fibre failure under compression[END_REF][START_REF] Sandino | Numerical analysis of the influence of a nearby fibre on the interface crack growth in composites under transverse tensile load[END_REF][START_REF] Sandino | Interface crack growth under transverse compression: nearby fibre effect[END_REF].

Recently the Finite Element Method (FEM) was also applied to the solution of the fiber-matrix interface crack problem [START_REF] Zhuang | Effects of inter-fiber spacing on fiber-matrix debond crack growth in unidirectional composites under transverse loading[END_REF][START_REF] Varna | Growth and interaction of debonds in local clusters of fibers in unidirectional composites during transverse loading[END_REF][START_REF] Zhuang | Transverse crack formation in unidirectional composites by linking of fibre/matrix debond cracks[END_REF], in conjunction with the Virtual Crack Closure Technique (VCCT) [START_REF] Rybicki | A finite element calculation of stress intensity D R A F T factors by a modified crack closure integral[END_REF][START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF] for the evaluation of the ERR at the crack tip. In [START_REF] Zhuang | Effects of inter-fiber spacing on fiber-matrix debond crack growth in unidirectional composites under transverse loading[END_REF], the authors validated their model with respect to the BEM results of [START_REF] París | The fiber-matrix interface crack -a numerical analysis using boundary elements[END_REF], but no analysis of the effect of the discretization in the crack tip neighborhood comparable to [START_REF] Caño | On stress singularities induced by the discretization in curved receding contact surfaces: a bem analysis[END_REF] was proposed. 

FEM formulation of the fiber-matrix interface crack problem

In order to investigate the fiber-matrix interface crack problem, a 2-dimensional model of a single fiber inserted in a rectangular matrix element is considered (see Figure 1). Total element length and height are respectively 2L and L, where L is determined by the fiber radius R f and the fiber volume fraction V f by

L = R f 2 π V f . (3) 
The fiber radius R f is assumed to be equal to 1 µm. This choice is not dictated by physical considerations but for simplicity. It is thus useful to remark that, in a linear elastic solution as the one considered in the present work, the ERR is proportional to the geometrical dimensions of the model and, consequently, recalculation of the ERR for fibers of any size requires a simple multiplication.

As shown in Fig. 1, the debond is placed symmetrically with respect to the x axis and its size is characterized by the angle ∆θ (which makes the full debond size equal to 2∆θ and the full crack length equal to R f 2∆θ). A region ∆Φ of unknown size appears at the crack tip for large debond sizes (at least ≥ 60 • -80 • ), in which the crack faces are in contact with each other and free to slide. Frictionless contact is thus considered between the two crack faces to allow free sliding and avoid interpenetration. Symmetry with respect to the x axis is applied on the lower boundary while the upper surface is left free. Kinematic 90 coupling on the x-displacement is applied along the left and right sides of the model in the form of a constant x-displacement ±ε x L, which corresponds to transverse strain εx equal to 1% in the results here presented. 

D R A F T x z ∆θ L L L ūx = εx L ūx = -ε x L Ω f Ω m R f O ∆Φ
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tip neighborhood represents the main parameter of the numerical analysis. The crack faces are modeled as element-based surfaces and a small-sliding contact pair interaction with no friction is imposed between them. The Mode I, Mode II and total Energy Release Rates (ERRs) (respectively referred to as G I , G II and G T OT ) are evaluated using the VCCT [START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF], implemented in a in-house Python routine. A glass fiber-epoxy system is considered in the present work, and it is assumed that their response lies always in the linear elastic domain. The elastic properties of glass fiber and epoxy are reported in Table 1.

Vectorial formulation of the Virtual Crack Closure Technique (VCCT)

In order to express the VCCT formulation of the ERR in terms of FEM variables, we need to introduce a few rotation matrices in order to represent the discretized representation (FE mesh) of a crack along a circular interface. The position of the crack tip is characterized by the angular size of the crack (see Sec. 2 and Fig. 1 for reference) and the rotation corresponding to the crack tip reference frame is represented by the matrix R ∆θ defined as

R ∆θ =   cos (∆θ) sin (∆θ) -sin (∆θ) cos (∆θ)   . (4) 
Nodes belonging to the elements sharing the crack tip are involved in the VCCT estimation of the ERR and it is assumed that, given a sufficiently fine discretization, they are aligned with the crack propagation direction defined at the crack tip. However, irrespectively of how small the elements in the crack tip neighborhood are, a misalignment always exists with respect to the assumed crack propagation direction (in the crack tip reference frame). This is measured by the matrices P δ (p), defined as

P δ (p) =   cos 1 + 1-p m δ sin 1 + 1-p m δ -sin 1 + 1-p m δ cos 1 + 1-p m δ   (5) D R A F T and Q δ (q), equal to Q δ (q) =   cos q-1 m δ sin q-1 m δ -sin q-1 m δ cos q-1 m δ   , (6) 
respectively for the free and bonded nodes involved in the VCCT estimation.

In Eqs. 5 and 6, δ is the angular size of an element in the crack tip neighborhood (see Sec. 2 and Fig. 1), m is the order of the element shape functions and p, q are indices referring to the nodes belonging respectively to free and bonded elements sharing the crack tip. Introducing the permutation matrix

P π =   0 1 -1 0   , (7) 
it is possible to express the derivatives of rotation matrices R ∆θ , P δ and Q δ with respect to their argument:

∂R ∆θ ∂∆θ = D • R ∆θ , ∂P δ ∂δ = 1 + 1 -p m D • P δ , ∂Q δ ∂δ = q -1 m D • Q δ . (8) 
By means of Eqs. 

F rθ = Q δ R ∆θ F xy u rθ = P δ R ∆θ u xy (9) 
where

F rθ =   F r F θ   and u rθ =   u r u θ   .
The crack tip forces can be expressed as a function of the crack opening displacement as

F xy = K xy u xy + F xy , (10) 
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where K xy is in general a full matrix of the form

K xy =   K xx K xy K yx K yy   and F xy
represents the effect of the rest of the FE solution through the remaining nodes of the elements attached to the crack tip. As such, the term F xy can be expressed as a linear combination of the solution vector u N of nodal displacements of the form K N u N . Equation 10 thus become

F xy = K xy u xy + K N u N . (11) 
An exemplifying derivation of the relationships expressed in Equations 10 and 11 can be found in Appendix A. It is worthwhile to observe that another author [START_REF] Valvo | A revised virtual crack closure technique for physically consistent fracture mode partitioning[END_REF] proposed a relationship of the form F xy = K xy u xy . However, in [START_REF] Valvo | A revised virtual crack closure technique for physically consistent fracture mode partitioning[END_REF],

this relationship is assumed a priori and manipulated to propose a revised version of the VCCT, based on the assumption that the matrix K xy should be diagonal to provide physically-consistent fracture mode partitioning. On the other hand, in the present work we derive the relationships of Eqs. 10 and 11 from the formulation of the Finite Element Method. According to our derivation, it seems correct that the matrix K xy should not in general be diagonal in order to take into account Poisson's effect. In fact, a positive crack opening displacement would cause a transverse displacement in the neighborhood of the crack tip. Given that material properties are different on the two sides of a bi-material interface, a net shear would be applied to the crack tip which would correspond to a net contribution to the crack tip force related to crack shear displacement. The analytical derivations presented in Appendix A confirm these physical considerations.

Based upon the work of Raju [START_REF] Raju | Calculation of strain-energy release rates with higher order and singular finite elements[END_REF], we introduce the matrix T pq to represent the weights needed in the VCCT to account for the use of singular elements. As already done previously, indices p and q refer to nodes placed respectively on the free (crack face) and bonded side of the crack tip. Nodes are enumerated so that the crack tip has always index 1, i.e. the higher the index the further the node is from the crack tip. with i, j = 1, . . . , d represents the weight to be assigned to the product of component i of the displacement extracted at node p with component j of the force extracted at node q. The expression of T pq for quadrilateral elements with or without singularity is reported in Appendix B. Notice that, given m is the order of the element shape functions, the element side has m + 1 nodes and this represents the upper limit of indices p and q.

By using matrix T pq , it is possible to express the total ERR G evaluated with the VCCT as

G T OT = 1 2R f δ m+1 p=1 m+1 q=1 T r u T rθ,p T T pq F rθ,q . (12) 
Introducing the vector

G =   G I G II   of fracture mode ERRs, Mode I and
Mode II ERR evaluated with the VCCT can be expressed as

G = 1 2R f δ m+1 p=1 m+1 q=1 Diag F rθ,q u T rθ,p T T pq , (13) 
where Diag () is the function that extracts the main diagonal of the input matrix as a column vector. Substituting Equations 9 and 11 in Equations 12

and 13, we can express the Mode I, Mode II and total Energy Release Rate as a function of the crack displacements and the FE solution (more details in Appendix A) as

G T OT = 1 2R f δ m+1 p=1 m+1 q=1 T r Q δ R ∆θ K xy,q u xy,q u T xy,p R T ∆θ P T δ T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 T r Q δ R ∆θ F xy,q u T xy,p R T ∆θ P T δ T T pq ( 14 
) D R A F T and G =   G I G II   = 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy,q u xy,q u T xy,p R T ∆θ P T δ T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N,q u N u T xy,p R T ∆θ P T δ T T pq (15) 

Rotational invariance of G T OT 180

Recalling Equation 14and observing that matrix T pq is always equal to the identity matrix pre-multiplied by a suitable real constant (see Eq. B.1 in Appendix B), the total Energy Release Rate can be rewritten as

G T OT = 1 2R f δ m+1 p=1 m+1 q=1 T r Q δ R ∆θ K xy,q u xy,q + F xy,q u T xy,p T T pq R T ∆θ P T δ = = 1 2R f δ m+1 p=1 m+1 q=1 T r Q δ R ∆θ F xy,q u T xy,p T T pq R T ∆θ P T δ , (16) 
where F xy and u xy are the vectors of respectively the crack tip forces and crack displacements in the global (xy) reference frame. Given that Q δ , P δ 185 and R ∆θ all represent a linear transformation (a rigid rotation in particular), the invariance of the trace to linear transformations ensures that

G T OT = 1 2R f δ m+1 p=1 m+1 q=1 T r Q δ R ∆θ F xy,q u T xy,p T T pq R T ∆θ P T δ = = 1 2R f δ m+1 p=1 m+1 q=1 T r F xy,q u T xy,p T T pq . (17) 
As G T OT was defined according to Equation 12 and given that T r

(AB) = D R A F T T r (BA), it holds that G T OT = 1 2R f δ m+1 p=1 m+1 q=1 u T rθ,p T T pq F rθ,q = 1 2R f δ m+1 p=1 m+1 q=1 T r F rθ,q u T rθ,p T T pq = = 1 2R f δ m+1 p=1 m+1 q=1 T r F xy,q u T xy,p T T pq = 1 2R f δ m+1 p=1 m+1 q=1 u T xy,p T T pq F xy,q (18) 
which shows that the total Energy Release Rate is invariant to rigid rotations and can be calculated equivalently with forces and displacements expressed in the local crack tip reference frame or the global reference frame. The analytical result is confirmed by the numerical solution of the fiber-matrix interface crack with different element orders and model fiber volume fractions, as shown in Figure 2.

The result of Equation 18has also physical implications:

-given that stress and displacement fields at the crack tip are the same, two cracks with different crack paths are energetically equivalent with respect to the total Energy Release Rate;

-given that laws of the type

G T OT ≥ G c govern crack propagation, if G c
do not depend on mode ratio, crack orientation will not affect its growth. 

∂G ∂δ = - 1 2R f δ 2 m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy u xy u T xy R T ∆θ P T δ T T pq - 1 2R f δ 2 m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N u N u T xy R T ∆θ P T δ T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy u xy u T xy R T ∆θ P T δ D T T T pq + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N u N u T xy R T ∆θ P T δ D T T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag DQ δ R ∆θ K xy u xy u T xy R T ∆θ P T δ T T pq + 1 2R f δ m+1 p=1 m+1 q=1 Diag DQ δ R ∆θ K N u N u T xy R T ∆θ P T δ T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy ∂u xy ∂δ u T xy R T ∆θ P T δ T T pq + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N ∂u N ∂δ u T xy R T ∆θ P T δ T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy u xy ∂u T xy ∂δ R T ∆θ P T δ T T pq + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N u N ∂u T xy ∂δ R T ∆θ P T δ T T pq ; (19) 
which, after refactoring, provides

∂G ∂δ = 1 δ G + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy u xy + K N u N u T xy R T ∆θ P T δ D T T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag DQ δ R ∆θ K xy u xy + K N u N u T xy R T ∆θ P T δ T T pq + + 1 R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K xy ∂u xy ∂δ u T xy R T ∆θ P T δ T T pq + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N ∂u N ∂δ u T xy R T ∆θ P T δ T T pq + + 1 2R f δ m+1 p=1 m+1 q=1 Diag Q δ R ∆θ K N u N ∂u T xy ∂δ R T ∆θ P T δ T T pq . ( 20 
)
Following the asymptotic analysis of [START_REF] Williams | The stresses around a fault or crack in dissimilar media[END_REF][START_REF] Comninou | An overview of interface cracks[END_REF], in the case of an open crack the displacement in the crack tip neighborhood will have a functional form of the type

210 u (δ) ∼ √ δ (sin, cos) ( log δ) with = 1 2π log 1 -β 1 + β ( 21 
)
and β is Dundurs' parameter introduced in Section 1. Application of Equation 21 to the terms on the right hand side of Eq. 20 provides:

u xy , u N ∼ u (δ) ∼ √ δ (sin, cos) ( log δ) δ→0 ---→ 0; ( 22 
)
u xy u T xy , u N u T xy ∼ u 2 (δ) ∼ δ sin 2 , cos 2 , sin • cos ( log δ) δ→0 ---→ 0; ( 23 
) D R A F T ∂u xy ∂δ u T xy , ∂u N ∂δ u T xy ∼ - 1 2 sin 2 , cos 2 , sin • cos ( log δ)+ -sin 2 , cos 2 , ± sin • cos ( log δ) δ→0 ---→ f inite; (24) 
G ∼ 1 δ u xy u T xy ∼ 1 δ u 2 (δ) ∼ sin 2 , cos 2 , sin • cos ( log δ) δ→0 ---→ f inite. (25) 
In Equations 22-25, the multiplication by a trigonometric function of the type sin, cos, sin 2 , cos 2 , sin • cos prevents the divergence of the asymptote. Recalling

Eqs. 5 and 6, in the limit of δ → 0 the rotation matrices become equal to the identity matrix:

P δ , Q δ δ→0 ---→   1 0 0 1   . (26) 
Applying the results of Equations 22-26 to Eq. 20, it can be shown that the derivative of G can be split in a factor that goes to 0 in the limit of δ → 0 and in a factor independent of δ:

lim δ→0 ∂G ∂δ ∼ 1 δ ¨¨B 0 F (δ) + C . (27) 
Thus, asymptotically, the Mode I and Mode II Energy Release Rate behave like the logarithm of the angular size δ of the elements in the crack tip neighborhood:

lim δ→0 ∂G ∂δ ∼ 1 δ dδ ---→ lim δ→0 G ∼ A log(δ) + B. (28) 

Numerical results

Evaluations of the Mode I, Mode II and total Energy Release Rate using the VCCT applied to the FE solution of the fiber-matrix interface crack in the single fiber model of Sec. 2 are reported respectively in Fig. 3, Fig. 4 and Fig. 5.

Results for Mode I ERR in Fig. 3 and at ∆θ = 60 • with δ < 0.2 • for both 1 st and 2 nd order elements and both V f = 0.1% and V f = 40%. Analysis of the total ERR in Figure 5 

G I   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (a) V f = 0.1%,
G I   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (b) V f = 0.1%,
G I   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (c) V f = 40%,
G I   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (d) V f = 40%, 2 nd order elements.
G II   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (a) V f = 0.1%, 1 st order elements.
G II   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (b) V f = 0.1%, 2 nd order elements.
G II   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (d) V f = 40%, 2 nd order elements.
G T OT   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (a) V f = 0.1%, 1 st order elements.
G T OT   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (b) V f = 0.1%, 2 nd order elements.
1.2 1.3 ∆θ • G T OT   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (c) V f = 40%, 1 st order elements.
1.2 1.3 ∆θ • G T OT   J/m 2   1.0 • 0.5 • 0.25 • 0.2 • 0.125 • 0.1 • 0.0625 • 0.05 • (d) V f = 40%, 2 nd order elements.
V f [%] Order ∆θ [ • ] A J m 2 B J m 2 r [-] r 2 [-] p(A) [-] p(B) [-] 0.
G (•) = A (∆θ) ln δ + B (∆θ) , (29) 
where A (∆θ) and B (∆θ) are parameters dependent on ∆θ estimated through linear regression (with x = ln δ) of the numerical results. As shown in Fig. 6, Fig. 7, Fig. 
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V f [%] Order ∆θ [ • ] A J m 2 B J m 2 r [-] r 2 [-] p(A) [-] p(B) [-] 0.
V f = 40%.
r 2 ratio (of explained to total variance) are always greater than 0.95 and the p-values of the coefficients A and B are at least < 1E -6 and often < 1E -11 (see Table 2 for G I and Table 3 for G II ). The results of the linear regression confirm the analytical derivations of the previous section, which showed the logarithmic behavior of Mode I and Mode II ERR. Similar conclusions were reached in [START_REF] Sun | On strain energy release rates for interfacial cracks in bimaterial media[END_REF][START_REF] Manoharan | Strain energy release rates of an interfacial crack between two anisotropic solids under uniform axial strain[END_REF] for a straight bi-material crack with respect to the parameter ∆a /a; however, no functional expression of G (•) was proposed. proposed and its usefulness exemplified in the analysis of the mesh dependency.

By both analytical considerations and numerical simulations, it has been shown that:

• the total ERR is invariant to rotations of the reference frame (and more in general to linear transformations), which implies that rotation of crack tip forces and displacement is actually not required in the use of the VCCT for the calculation of G T OT ;

• the total ERR does not depend on the size δ of the elements at the crack tip, at least for reasonably small elements (δ ≤ 1.0 • ) ;

• as a consequence, Mode II ERR for the closed interface crack does not depend on δ, as G II = G T OT after the onset of the contact zone;

• for the open interface crack, Mode I and Mode II ERR depend on the element size δ through a logarithmic law of the type A (∆θ) ln δ + B (∆θ);

• the sign of the logarithm is always positive for G I , i.e. it decreases when δ decreases, and negative for G II , i.e. it increases when δ decreases.

The conclusion is significant: as the behavior of Mode I and Mode II is logarithmic with respect to mesh size, there exists no asymptotic limit and thus no convergence of the values. A convergence analysis based on the reduction of the error between successive iterations would not provide a reliable assessment of the accuracy of the FE solution of Mode I and Mode II Energy Release Rate of the fiber-matrix interface crack. A validation is thus required with respect to data obtained through a different method, be it analytical, numerical or experimental. Moreover, it has been shown that: first, the same behavior appears when D R A F T using 1 st as well as 2 nd order elements; second, no improvement is expected with the use of singular elements, as the logarithmic dependency of G I and G II is governed by the definition of ERR itself together with the asymptotic behavior of the displacement field at the crack tip. These two conclusions run contrary to the suggestions provided in the manuals of many commercial FEM packages, such as Abaqus [START_REF] Simulia | ABAQUS/Standard User's Manual[END_REF] which suggests that (Section 11.4.2 of the Abaqus Analysis User's Guide): "Sharp cracks (where the crack faces lie on top of one another in the undeformed configuration) are usually modeled using small-strain assumptions. Focused meshes, [...], should normally be used for small-strain fracture mechanics evaluations. However, for a sharp crack the strain field becomes singular at the crack tip. [...] In most cases the singularity at the crack tip should be considered in small-strain analysis (when geometric nonlinearities are ignored).

Including the singularity often improves the accuracy of the J-integral, the stress intensity factors, and the stress and strain calculations because the stresses and strains in the region close to the crack tip are more accurate.". We have shown that, in the context of the fiber/matrix interface crack, the convergence of the Energy Release Rate is determined by the asymptotic behavior of the elastic solution and only marginally by the choice of element order and type, thus contradicting the statements in [START_REF] Simulia | ABAQUS/Standard User's Manual[END_REF]. 
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The xy reference frame is the global reference frame, while the rθ reference frame is such that the θ direction coincides with the crack propagation 495 direction at the crack tip and r the in-plane normal to the propagation direction.

For an arc-crack as the present one, the r-direction coincides with the radial direction of the inclusion. Solving for u y,F CT and u y,M CT the third and fourth relations in Eq. A.17

D R A F T

Substituting Eq. A.17 in Eq. A.18, Eq. A.19 and Eq. A.20 and solving, we obtain an expression of the form where I is the identity matrix.
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 1 Figure 1: Schematic of the model with its main parameters.

5 and 6 ,

 6 we can express the crack tip forces F xy = in the crack tip reference frame (where the tangential direction θ correspond to the direction of crack propagation) while taking into account the misalignment to the finite discretization as

  Matrix T pq has always a size of d × d, where D R A F T d = 2 for a 2D problem and d = 3 for a 3D problem. An element T pq (i, j)

  (a) V f = 0.1%, 1 st order elements, δ = 0.05 • . (b) V f = 0.1%, 2 nd order elements, δ = 0.05 • . VCCT, rotated VCCT, unrotated (c) V f = 40%, 1 st order elements, δ = 0.05 • . VCCT, rotated VCCT, unrotated (d) V f = 40%, 2 nd order elements, δ = 0.05 • .

Figure 2 :

 2 Figure 2: Numerical invariance of the total Energy Release Rate: G T OT computed with the VCCT with rotated forces and displacements (label rotated), with the VCCT with forces and displacements in the global reference frame (label unrotated) and with J-integral method (label J-integral).

  show clearly the transition from the open crack regime, where Mode I ERR is different from zero, to the closed crack

  1 st order elements.

  2 nd order elements.

1

 1 st order elements.

Figure 3 :

 3 Figure 3: Effect of the size δ of an element at the crack tip on Mode I ERR.

  V f = 40%, 1 st order elements.

Figure 4 :

 4 Figure 4: Effect of the size δ of an element at the crack tip on Mode II ERR.

Figure 5 :

 5 Figure 5: Effect of the size δ of an element at the crack tip on total ERR.

  leads to an observation that was D R A F T not predicted by the considerations of the previous section: G T OT is effectively independent of the element size δ in both the open and the closed crack regimes, 265 at least for reasonably small elements (δ ≤ 1.0 • ). Given that G II = G T OT for the closed crack, it explains the independency of G II from δ after the onset of the contact zone. Analysis of Fig. 3, Fig. 4 and Fig. 5 has shown the dependency of Mode I and Mode II ERR on the element size δ. Following the derivations of the previous section, we model the dependency of G I and G II with respect to δ as
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 2 ln δ + 0.2113 0.0183 ln δ + 0.3331 0.028 ln δ + 0.3392 0.0304 ln δ + 0.2524 0.0235 ln δ + 0.1278 0.0094 ln δ + 0.0284 ln δ + 0.2113 0.0183 ln δ + 0.3331 0.028 ln δ + 0.3392 0.0304 ln δ + 0.2524 0.0235 ln δ + 0.1278 0.0094 ln δ + 0.0284 ln δ [-] ln δ + 0.2103 0.0187 ln δ + 0.3277 0.028 ln δ + 0.3296 0.0298 ln δ + 0.2408 0.0225 ln δ + 0.1177 0.0081 ln δ + 0.0228 ln δ + 0.2103 0.0187 ln δ + 0.3277 0.028 ln δ + 0.3296 0.0298 ln δ + 0.2408 0.0225 ln δ + 0.1177 0.0081 ln δ + 0.0228 ln δ [-] nd order elements.
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 6 Figure 6: Logarithmic dependence on δ of Mode I ERR: interpolation of numerical results for V f = 0.1%.
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 2 8 and Fig. 9 both in linear and logarithmic scales of δ, the result is remarkable: both the correlation coefficient r and the 275 ln δ + 0.9196 0.0501 ln δ + 0.8882 0.0510 ln δ + 0.6374 0.0419 ln δ + 0.3760 0.0279 ln δ + 0.1713 0.0108 ln δ + 0.0391 ln δ + 0.9196 0.0501 ln δ + 0.8882 0.0510 ln δ + 0.6374 0.0419 ln δ + 0.3760 0.0279 ln δ + 0.1713 0.0108 ln δ + 0.0391 ln δ [-] ln δ + 0.9148 0.0504 ln δ + 0.8719 0.0506 ln δ + 0.6191 0.0414 ln δ + 0.3608 0.0269 ln δ + 0.1593 0.0097 ln δ + 0.0329 ln δ + 0.9148 0.0504 ln δ + 0.8719 0.0506 ln δ + 0.6191 0.0414 ln δ + 0.3608 0.0269 ln δ + 0.1593 0.0097 ln δ + 0.0329 ln δ [-] nd order elements.
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 7 Figure 7: Logarithmic dependence on δ of Mode I ERR: interpolation of numerical results for

  0076 ln δ + 0.0228 -0.0194 ln δ + 0.1211 -0.0290 ln δ + 0.3007 -0.0311 ln δ + 0.5270 -0.0240 ln δ + 0.7375 -0.0095 ln δ + 0.8685 0076 ln δ + 0.0228 -0.0194 ln δ + 0.1211 -0.0290 ln δ + 0.3007 -0.0311 ln δ + 0.5270 -0.0240 ln δ + 0.7375 -0.0095 ln δ + 0.8685 ln δ [-] 0078 ln δ + 0.0249 -0.0195 ln δ + 0.1272 -0.0288 ln δ + 0.3108 -0.0305 ln δ + 0.5387 -0.0229 ln δ + 0.7478 -0.0082 ln δ + 0.8744 0078 ln δ + 0.0249 -0.0195 ln δ + 0.1272 -0.0288 ln δ + 0.3108 -0.0305 ln δ + 0.5387 -0.0229 ln δ + 0.7478 -0.0082 ln δ + 0.8744 ln δ [-] 2 nd order elements.

Figure 8 :

 8 Figure 8: Logarithmic dependence on δ of Mode II ERR: interpolation of numerical results for V f = 0.1%.

Figure 9 :

 9 Figure 9: Logarithmic dependence on δ of Mode II ERR: interpolation of numerical results for V f = 40%.
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 3 Appendix A. Derivation of the relationship between crack tip forces and displacements for first order quadrilateral elements Appendix A.1. Foundational relationsIn the isoparametric formulation of the Finite Element Method, the element Jacobian J and its inverse J -1 can be expressed in general asJ = e ξ |e η = {e ξ , e η }and {e x , e y } are respectively the covariant and contravariant basis vectors of the mapping between global {x, y} and local element {ξ, η} coordinates: Denoting by d the number of geometrical dimensions of the problem (d = 2 in the present work) and by p the d × 1 position vector in global coordinates, we can formally introduce the 3 (d -1)×d matrix operator of partial differentiation B such that ε p = B • u p , (A.4) where u and ε are respectively the d×1 displacement vector and the 3 (d -1)× 1 strain vector in Voigt notation. Denoting by n the number of nodes of a generic element (n = s × m where s represents the number of sides of the element and m the order of the shape functions), we can furthermore introduce the d × d • n matrix N of shape functions such that u = N • u N , (A.5) D R A F T metric (in the case of linear elasticity) matrix of the form

Figure A. 10 : 6 i=5 3 i=2 k F 3 i=2 k F

 1063k3k Figure A.10: Schematic representation of the discretized crack tip geometry for 1 st order quadrilateral elements.
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 48811212421721622813322232 x,CT = K xx u x + K xy u y + + K F C,x|i u N,F C|i + 8 i=1,i =(3,4,5,6) K F B,x|i u N,F B|i + + K F C,x|i u N,M C|i + 8 i=7 K M B,x|i u N,F B|i F y,CT = K yx u x + K yy u y + + 4 i=1 K F C,y|i u N,F C|i + 8 i=1,i =(3,4,5,6) K F B,y|i u N,F B|i + + 8 i=5 K F C,y|i u N,M C|i + 8 i=7 K M B,y|i u N,F B|i , (A.21)which can be reformulated synthetically as520 x,CT = K xx u x + K xy u y + F x F y,CT = K yx u x + K yy u y + F y , (A.22)where F x and F y represent the influence of the FE solution through the nodes of the elements sharing the crack tip that do not belong to any of the phase interfaces, i.e. the nodes of the elements sharing the crack tip that belong to the bulk of each phase.D R A F TAppendix B. Expression of T pq for quadrilateral elements with or 525 without singularityThe expression of T pq for quadrilateral elements with or without singularity is nd order quarter-point quadrilateral elements =
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  exist in the literature on the effect of mesh discretization on Mode I and Mode II ERR of the bi-material interface crack when evaluated with the VCCT in the context of the FEM[START_REF] Sun | On strain energy release rates for interfacial cracks in bimaterial media[END_REF][START_REF] Manoharan | Strain energy release rates of an interfacial crack between two anisotropic solids under uniform axial strain[END_REF][START_REF] Sun | The use of finite extension strain energy release rates in fracture of interfacial cracks[END_REF]. However, no comparable analysis can be found in the literature on mode separation and convergence analysis of the VCCT when applied to the fiber-matrix interface crack (circular bi-material interface crack) problem in the context of a linear elastic FEM solution. In the present article, we first present the FEM formulation of the problem, together with the main geometrical characteristics, material properties, boundary conditions and

	D R A F T
	Thanks to the
	interest in evaluating the ERR of interlaminar delamination, different studies

loading. We then propose a vectorial formulation of the VCCT and express Mode I and Mode II ERR in terms of FEM natural variables. With this tool, we derive an analytical estimate of the ERR convergence and compare it with numerical results.

Table 1 :

 1 Summary of the mechanical properties of fiber and matrix. E stands for Young's modulus, µ for shear modulus and ν for Poisson's ratio.

		Glass fiber	70.0	29.2	0.2
		Epoxy	3.5	1.25	0.4
		The model problem is solved with the Finite Element Method (FEM) within
	95	the Abaqus environment, a commercial FEM software [31]. The model is meshed
		with second order, 2D, plane strain triangular (CPE6) and rectangular (CPE8)
		elements. A regular mesh of rectangular elements with almost unitary aspect

Material E [GP a] µ [GP a] ν [-]

ratio is used at the crack tip. The angular size δ of an element in the crack

Table 2 :

 2 Summary of linear regression results and main statistical tests for Mode I ERR

Table 3 :

 3 Summary of linear regression results and main statistical tests for Mode II ERR
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For the fiber-matrix interface crack, flaw size is measured in terms of the angle ∆θ subtended by half of the arc-crack, i.e. a

= 2∆θ.

and for δ > 0.5 • for 2 nd order elements, while it is shifted to ∆θ = 60 • for
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where g = det J T J and V e is the element volume. Given that isoparametric elements are always defined between -1 and 1 in each dimension, Equation A.8 can simplified to

which is amenable to numerical integration by means of a Gaussian quadrature of the form

where (ξ i , . . . , η j ) are the coordinates of the N Gaussian quadrature points.

The element stiffness matrix as evaluated in Eq. A.10 is in general a full sym- 

D R A F T

where u x and u y are defined as

and 2∆θ is total angular size of the debond. The corresponding forces at the crack tip are

At the crack tip, the FE mesh possesses two coincident points, labeled F CT and M CT . Continuity of the displacements at the crack tip must be ensured.

505

Furthermore, in order to measure the force at the crack tip, a fully-constraint dummy node needs to be created and formally linked to the two nodes at the crack tip by the conditions

which can be simplified to

Making use of Eq. A.11, four equations can be written in the four displace-

and substituting in the first two expressions of Eq. A.17, we get

Solving the system of two equations and observing that u x,F , u y,F ∼ 0 for a stiffer inclusion as a fiber in a polymeric composite, we can express u x,M CT as 515 D R A F T a function of u x and u y (see Eq. A.13) as

while the reaction forces at the crack tip can be expressed as