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Abstract

Background: Reads assignment to taxonomic units is a key step in microbiome analysis pipelines. To date, accurate
taxonomy annotation of 16S reads, particularly at species rank, is still challenging due to the short size of read
sequences and differently curated classification databases. The close phylogenetic relationship between species
encountered in dairy products, however, makes it crucial to annotate species accurately to achieve sufficient
phylogenetic resolution for further downstream ecological studies or for food diagnostics. Curated databases
dedicated to the environment of interest are expected to improve the accuracy and resolution of taxonomy
annotation.

Results: We provide a manually curated database composed of 10’290 full-length 16S rRNA gene sequences from
prokaryotes tailored for dairy products analysis (https://github.com/marcomeola/DAIRYdb).
The performance of the DAIRYdb was compared with the universal databases Silva, LTP, RDP and Greengenes. The
DAIRYdb significantly outperformed all other databases independently of the classification algorithm by enabling
higher accurate taxonomy annotation down to the species rank. The DAIRYdb accurately annotates over 90% of the
sequences of either single or paired hypervariable regions automatically.
The manually curated DAIRYdb strongly improves taxonomic annotation accuracy for microbiome studies in dairy
environments. The DAIRYdb is a practical solution that enables automatization of this key step, thus facilitating the
routine application of NGS microbiome analyses for microbial ecology studies and diagnostics in dairy products.

Keywords: Microbiome, Taxonomy annotation, OTU classification, 16S, Database, Accuracy, Dairy, Cheese, Milk,
Whey, Teat, Starter

Background
The exploration of microbial communities has experi-
enced a boost during the last decade with the advent of
next-generation sequencing (NGS) technologies [1]. Pre-
viously undetectable micro-organisms in soils [2], water
[3, 4], airborne [5, 6], snow [7], ice [8], food [9], human
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gut [10–12] etc. could be unravelled at an unprece-
dented depth and resolution. Numerous studies have been
published describing microbial community structures in
various environments, often correlating their dynamic
changes over time or space by means of the 16S rRNA
gene (16S) [13–15].
First microbiome studies using the 16S were based on

fingerprinting techniques, such as Denaturing Gradient
Gel Electrophoresis (DGGE), Terminal Restriction Frag-
ment Length Polymorphism (T-RFLP) or Length Hetero-
geneity Polymerase Chain Reaction (LH-PCR) sometimes
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in combination with Sanger sequencing of the 16S to
identify populations of interest. While Sanger sequenc-
ing delivered almost the complete 16S at good quality, the
throughput was low due to the high workload, preventing
researchers to unravel the full array of microbial diversity
within a sample [16].
NGS has increased the sequencing depth, uncover-

ing also low abundant micro-organisms, thus overcom-
ing the limitations of Sanger sequencing. The higher
sequencing depth of NGS, however, was obtained at the
expense of read length, therefore limiting the sequencing
to only few hyper variable regions (HVR). The short size
of the resulting reads strongly reduces their resolution,
while increasing the risk of taxonomic miss-annotation or
ambiguous taxonomic classification. The need for trust-
worthy classification of very short 16S sequences covering
only one to three HVR remains a crucial step to obtain
robust and accurate taxonomic classification in modern
microbiology [17].
Microbiome studies in dairy products are particularly

affected by limitation in taxonomic annotation. Dairy
environments are highly selective and thus often char-
acterized by only few abundant genera belonging to the
lactic acid bacteria (LAB). Therefore, complete microbial
biodiversity in dairy products is only visible at species
or even strain level, which makes taxonomic annotation
at species level crucial for any diagnostics or microbial
ecology study. Moreover, short fragment strategies, on
single HVRs or HVR pairs, often fail to reliably assign
the correct taxonomy at the species level. It is there-
fore of paramount importance to select the right HVRs
to maximize taxonomy resolution in a given environ-
ment, especially when differences are visible at species
level only.
In recent years, numerous classification algorithms

have been developed and optimized to accurately anno-
tate operational taxonomic units (OTUs) or ampli-
con sequence variants (ASVs) from short reads. Those
classification tools have been developed for 16S and
other genes based on different mathematical models,
such as e.g., k-mer, Bayesian, Hidden Markov-Monte-
Carlo model (HMM) etc. The Basic Local Alignment
Search Tool (Blast) has long been the gold standard
for sequence comparison and annotation [18]. More
16S specific taxonomy predictors have been developed,
including RDP Naive Bayesian Classifier (NBC) [19],
a naive Bayesian Classifier based on k-mers, GAST
[20], MEGAN [21], Metaxa2 [22], riboFrama [23],
SPINGO [24], PROTAX [25], SINTAX [26], DynamiC
[27], Humidor [28], MAPseq [29], microclass [30], q2-
feature-classifier [31], IDTAXA [32] and other tools
implemented in the most current 16S pipelines like
mothur [33], Qiime v1 [34], Qiime v2 [35] and
FROGS [36].

Although classification prediction algorithms have
strongly improved, manually curated databases contain-
ing only authoritative full-length 16S sequences from type
strains and cultivated reference strains can potentially
compensate the limitations of short read sequences
annotations by means of sophisticated algorithms. To
date, three main independent universal repositories ded-
icated to universal 16S sequences from prokaryotes are
widely used: Silva, The Ribosomal Database Project
(RDP), and Greengenes (GG) [37].
Silva is the universal 16S repository with the high-

est number of sequences. The latest release of Silva
SSU/LSU 132 (www.arb-silva.de) contained 6’073’181
16S sequences of at least 300 bp, with 2’090’668 good
quality sequences with at least 900 bp length [38–40].
Taxonomic rank information of Silva and Living Tree
Project (LTP) are based on the Bergey’s Taxonomic Out-
lines and the List of Prokaryotic Names with Stand-
ing Nomenclature (LPSN) [41]. Minimal training sets,
such as the SSU Ref NR 99 or the LTP [42], offer
a reduced number of sequences for faster classifica-
tion but still covering the broadest currently known
biodiversity.
The second biggest repository, the Ribosomal Database

Project (RDP Release 11, Update 5; http://rdp.cme.msu.
edu) [43], contained at the time of writing 3’356’809 16S
sequences from the International Nucleotide Sequence
Database Collaboration (INSDC) [44]. The nomenclature
is based on the Bacterial Nomenclature Up-to-Date and
the taxonomic rank information on the Bergey’s Manual.
Greengenes v13_5 [45] contains 1’800’000 quality fil-

tered 16S sequences. Classification nomenclature is based
on automatic de novo tree construction and rankmapping
with the NCBI Taxonomy database [46]. Although fre-
quently used in community studies together with Qiime
[34], the last update dates back to 2013 with no indication
for an imminent update.
Taxonomic classification of the 16S is not trivial and

requires both familiarity with prokaryotic phylogeny and
often manual intervention due to poor annotation of the
OTUs or by the available 16S databases [47]. Fast and
accurate, thus automatized classification of the OTUs
is not yet possible at the biologically most significant
species rank due to the short sequence fragments and
the absence of food-dedicated, thoroughly curated 16S
databases. Manually curated databases are of paramount
importance to improve reproducibility, speed during the
bioinformatics process of microbiome studies, and com-
munication between researchers [48]. Previous studies
have highlighted the importance of high-quality data
for improving the classification of the obtained OTUs
[17, 49, 50]. Although universal 16S databases cover
vast prokaryotic biodiversity, they often fail to guarantee
accurate classification to the species rank for sequences

www.arb-silva.de
http://rdp.cme.msu.edu
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obtained from a highly studied environment, such as
dairy products. In fact, annotation accuracy at lower
taxonomic ranks increases with a standard training set
encompassing only full-length and good quality represen-
tative sequences innate to the investigated environment
[17, 48, 50–52].
Here we present a comprehensive reference database,

DAIRYdb (Database, Agroscope, Inra, Ribosomal, accu-
racY), for 16S OTUs classification of next generation
sequencing (NGS) reads from dairy products. The main
goal was to develop a dedicated database that allows
researchers to accurately and automatically annotate short
reads of 16S down to the species level. The performance of
the DAIRYdb was compared with the universal databases
Silva, RDP, Greengenes and LTP using three predic-
tors based on different algorithms and programming
languages [53], such as Blast+ [54], Metaxa2, [22, 55],
and SINTAX [26]. Manual curation of the database
and its restriction to the biodiversity expected in
dairy products strongly improves accuracy and repro-
ducibility of phylogenetic classification at all taxonomic
ranks.
DAIRYdb is publicly available at https://github.com/

marcomeola/DAIRYdb and can be integrated in any

classification prediction tool that allows adaptation of cus-
tomized databases, such as Blast+, Metaxa2, SINTAX,
IDTAXA and FROGS.

Results and discussion
Construction
The 16S sequence database of dairy products DAIRYdb
was constructed using a set of over 390’000 sequences
associated to the selected keywords (cheese, milk, teat,
dairy, starter, whey) deposited in NCBI GenBank and
ENA/EMBL, as well as sequences with 97% average
nucleotide identity (ANI) from Silva, RDP and Green-
genes (Fig. 1). About 10’000 best quality reference
sequences were retained after filtering based on sequence
length (>1300 bp), quality (pintail >75) and potential
chimeras. Finally, 16S sequences of important species
from cheese and dairy environments [56, 57] lost during
the clustering were added subsequently. The final number
of 16S sequences consequently reached 10’290.
The observed distribution among the different key

words might reflect the unequal distribution of micro-
biome studies predominantly performed on cheese, dairy
and milk samples, as compared to teats and whey. About
1933 sequences of the DAIRYdb were shared among all

Fig. 1 Development of the DAIRYdb consisted in three main steps: construction, curation and validation. For construction, dairy products specific
16S sequences were retrieved from Silva, RDP and Greengenes using Genbank NCBI, EMBL, Agroscope and INRA sequences. Curation was
performed based on the cross-validation results from the leave-one-out test of SATIVA and highly iterated RAxML tree, followed by manual curation
of taxonomic assignment and consistency throughout all taxonomic ranks, with a particular focus on singleton taxons with no reference sequence.
Validation was performed comparing taxonomy annotation accuracy of single and HVR pairs by the five databases (Greengenes 13.8, LTP version,
Silva 128 NR99, RDP version and DAIRYdb)

https://github.com/marcomeola/DAIRYdb
https://github.com/marcomeola/DAIRYdb
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Fig. 2 Origin of sequences in the DAIRYdb. a Five-factors Venn diagram comparing the origins of the sequences (9’948) retrieved from the public
repositories Genbank NCBI and EMBL associated to the keywords “cheese”, “dairy”, “milk”, “teat” and “whey/starter”. About 12.7% (1’263) sequences
were only detected in cheese and 15.1% (1’507) were detected in all three cheese, milk and dairy environments. b Total number of sequences
associated to a particular keyword. c Number of sequences shared by 1 to 5 keywords. About 19.4% (1’933) sequences were detected in all 5
keywords, while 17.1% (1’700) sequences were unique to one keyword

keywords (Fig. 2a) and 1778 were shared among the key-
words dairy, cheese and milk. In fact, the majority of the
sequences composing the DAIRYdb were linked to those
three keywords (Fig. 2b). Altogether, 1’700 sequences
were associated to just one keyword, with most of the
sequences shared by four keywords (Fig. 2c).

Curation
During the first step of data curation, the sequences
were taxonomically annotated with Silva by means of
SINA [58]. The resulted annotation at all taxonomic
ranks underwent a first manual check and cleaning
for taxonomic inconsistencies through cross-comparison
with the other members of the same taxonomic rank

in a phylogenetic tree. No taxonomic overlaps compa-
rable to other databases are present in the DAIRYdb,
where different species of the same genus fall under dif-
ferent taxonomic lineages [48]. A maximum of three
closest neighbour type strains (CN) with authoritative
taxonomy from Silva sharing 99% global sequence sim-
ilarity to each sequence in the DAIRYdb were added
to the 10’290 sequences in the DAIRYdb as reference
during the curation process and removed at the end
of the curation process. The maximal number of low-
est common ancestors (LCA) with an authoritative tax-
onomy strongly improved the curation process with
the Semi-Automatic Taxonomy Improvement and Val-
idation Algorithm (SATIVA) increasing robustness of
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the proposed changes of miss-annotated environmental
sequences within the DAIRYdb [59].
By using only near full-length and curated 16S from

type strains as reference sequences, we were able to val-
idate and correct the taxonomy annotation where neces-
sary. The SATIVA results were inspected and taxonomy
manually curated using a highly iterated phylogenetic tree.
The approach used during the manual curation broadly
follows the rationale described in detail in a recently
published study [48]. Taxonomy annotations from author-
itative type strain sequences were used as reference for the
environmental sequences in the tree. For ranks at which
no taxonomic annotation was possible with certainty
due to the lack of authoritative type strains within the
same clade (i.e., commonly labelled “unknown”, “uncul-
tured” etc. in universal databases), the lowest common
rank (LCR) [52] was used down to the species rank with
the addition of the unclassified rank. As an example, a
sequence assigned to the LCR, the genus Sporichthya,

was named at species rank Sporichthya_Species. This
approach avoids the merging of abundance values from
different unknown species to biologically uninforma-
tive groups, thus improving communication among
scientists [60].
DAIRYdb version 1.1 contains 2 kingdoms (Bacteria and

Archaea), 47 phyla, 136 classes, 249 orders, 463 families,
1’757 genera and 4’030 unique species-like groups/species
complexes (Fig. 3, Additional files 1 and 2). The Firmicutes
is the predominant phylum with 37% of all sequences, fol-
lowed by the Proteobacteria (22%), Bacteroidetes (14%),
Actinobacteria (9%), Chloroflexi (2%), Acidobacteria (2%),
Archaea (1%) and 34 other minor phyla. The 1% of
Archaea is subdivided into Euryarchaeota (74%), Crenar-
chaetoa (13%), Thaumarchaeota (9%), Woesearchaeota
(3%) and others (1%). Altogether, the DAIRYdb was able
to capture the diversity of known taxa expected to occur
in dairy products. Increasing number of whole genome
sequences (WGS) will most likely lead to a replacement of

Fig. 3 Complete microbial diversity present in the DAIRYdb. Prokaryotic biodiversity in the DAIRYdb is represented by 2 kingdoms, 47 phyla, 136
classes, 249 orders, 463 families, 1’757 genera and 4’030 unique species-like groups. The most represented phylum is Firmicutes (37% of all
sequences), followed by the Proteobacteria (22%), Bacteroidetes (14%), Actinobacteria (9%), Chloroflexi (2%), Acidobacteria (2%), Archaea (1%) and
34 other minor phyla
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incomplete 16S sequences in the DAIRYdb by full-length
sequences that cover all HVRs.
The cheese microbiome is often dominated by few phy-

logenetically closely related species of LAB belonging to
a few genera (e.g., Lactobacillus, Lactococcus, Leuconos-
toc and Streptococcus) [9]. Therefore, special attention was
put into the manual curation of the DAIRYdb sequences
at species rank. Despite the genotypic and phenotypic
characteristics of the most common LAB in cheese are
extensively studied and described, several controversies
regarding the nomenclature of some keystone species still
remain unsolved, such as for the species Lactococcus lactis
subsp. lactis and Lactococcus lactis subsp. cremoris [61].
It still is unresolved whether Streptococcus thermophilus
is a species on its own or a subspecies of Streptococ-
cus salivarius [62–64]. The DAIRYdb is composed of
sequences retrieved from the Silva database along with
their respective taxonomy, which was manually inspected
for nomenclature hierarchy conflicts based on the phy-
logenetic position within the tree. However, some con-
flicting annotations of the same sequence were detected
between the Silva taxonomy and the Bacterial Diversity
Metadatabase, such as the species assignment of the type
strain sequence Accession AB008205, which is labelled as
L. casei in Silva and L. paracasei in Bacterial Diversity
Metadatabase (BacDive) [65]. For the reference sequences
of the most crucial species, bacterial names listed in the
actual “List of prokaryotic names” according to BacDive
were used. However, further disagreements between Silva
and BacDive cannot be completely excluded. Moreover,
some crucial genera in dairy products may undergo a rad-
ical genome-based relabelling in the future to create more
homogeneous clusters [64].
Different approaches were applied on impure taxa, i.e.

taxa that overlap in the tree despite being assigned to dif-
ferent nomenclature [48] in the universal databases. For
instance, for the genera Escherichia and Shigella, Silva,
LTP and RDP use the combined genus name Escherichia–
Shigella but retain well-established species names, such
as Escherichia coli. Differently, Greengenes leaves their
sequences unclassified at ranks below the family Enter-
obacteriaceae [48]. The different taxonomic nomenclature
references used by the three databases have an impact on
revisions to resolve conflicts with sequence-based phylo-
genies and the labelling of new candidate groups iden-
tified in environmental sequences. However, discussion
on the taxonomic inconsistencies and limitations of the
universal databases (Silva, LTP, RDP and Greengenes),
which the DAIRYdb was compared with, goes beyond
the scope of this study and was extensively discussed
elsewhere [48, 52].
The DAIRYdb will undergo regular updates in accor-

dance to update on bacterial nomenclature [64], integrat-
ing the novelties or correcting the changes. Finally, the

inclusion of full-length and high-quality 16S sequences
from reference type strains leads to a more robust and
confident taxonomic classification [49].

Validation
At present, only short read sequences can be obtained
from the most common amplicon NGS sequencers with
at least 99% read quality and up to 600 bp in read
length (Illumina MiSeq, Ion Torrent S5). Although long
reads sequencing technology, such as PacBio and Oxford
Nanopore, are steadily improving read quality, they are
not yet routinely used for amplicon metabarcoding stud-
ies. Therefore, performance of the DAIRYdb was evalu-
ated on short read sequences spanning over either a single
HVR or HVR pairs.
The single HVRs and HVR pairs were extracted from

randomly subsampled sequences of the DAIRYdb using
two methods: V-Xtractor [66] or in silico PCR with
mothur [33] (Fig. 4a, c). While V-Xtractor extracted
all present HVRs, the in silico PCR also evaluated the
theoretical extraction efficiency of the different primer
pairs (Table 1). Almost 100% of the sequences in the
DAIRYdb span from V2 to V8. The HVR V1 (89%) and
V9 (68%) are the regions with the lowest coverage in
the DAIRYdb. This is due to the commonly used uni-
versal primers 8F and 1492R for the full-length 16S
PCR leading to the entire or partial loss of V1 and V9
(Fig. 4a, Table 1). The primer pairs targeting V1 (25%),
V2 (58%) and V9 (55%) were less efficient as compared
to the primer pairs targeting V3 (84%) to V8 (77%).
The primer pair for V4 performed best with 92% cov-
erage, followed by V7 (88%), V5 and V6 (86%). The
same hold true for the HVR pairs, where the HVR pairs
V1V2 (38%), V2V3 (55%) and V8V9 (51%) performed
worse as compared to the central HVR pairs (79–89%)
(Fig. 4c).
The ratio between the number of detected HVRs with

V-Xtractor and HVRs extracted by in silico PCR deter-
mined the biodiversity coverage of the different HVRs
achieved with the different primer pairs, which can bias
further downstream analyses depending on the HVR tar-
geted (Fig. 4b, d). The net in silico performance of each
primer pair is presented as normalized to the total num-
ber of sequences detected by V-Xtractor for each HVR
(Fig. 4b, d).
The results of microbiome studies are more strongly

influenced by the selection of the primer pairs and thereof
of the HVR amplified, than by the sequencing technology
used for the study [78–80]. The OTU-picking algorithm is
mainly dependent on the sequencing technology (cluster-
ing vs. denoising) or ASVs instead [81]. Therefore, classi-
fication predictors are of secondary importance, although
their impact on the outcome is not negligible [82]. The
selection of the primer pairs should be made after careful



Meola et al. BMC Genomics          (2019) 20:560 Page 7 of 16

A B

C D

Fig. 4 Presence and extraction efficiency of all HVR in the sequences of the DAIRYdb. Single HVR (a) and (b) and HVR pairs (c) and (d) HVRs were
extracted using in silio PCR with mothur (b) and (d) and HVR extraction with V-Xtractor (a) and (b) from sequences present in DAIRYdb v1.1 to test
completeness of the sequences therein. While almost 100% of the 10’290 sequences span over V2 to V8 only 89% contain V1 and 68% contain V9 (a)
and (c). The in silico PCR highlights the theoretical amplification efficiency of the most common universal primers with 0 mismatches normalized to
the total number of detected HVR (b) and (d)

Table 1 Primers used in the in silico PCR extraction of the HVRs

Label Name - ARB primers HVR Location* bp Primer sequence GC% Reference Original reference primer

8F_v1f S-D-Bact-0008-d-S-20 v1F 8-27 20 AGAGTTTGATCMTGGCTCAG 50 [67]

120R_v1r S-D-Bact-0120-e-A-20 v1R 101-120 20 TTACTCACCCGTNCGCCRCT 55 mod. rev-compl. after [68]

101F_v2f S-D-Bact-0101-a-S-20 v2F 101-120 20 AGYGGCGNACGGGTGAGTAA 55 mod. after [68]

355R_v2r S-D-Bact-0355-a-A-18 v2R 338-355 18 GCWGCCTCCCGTAGGAGT 66 mod. after [69]

338F_v3f S-D-Bact-0338-a-S-20 v3F 337-354 20 ACWCCTACGGGWGGCAGCAG 65 mod. after [70]

534R_v3r S-D-Bact-0518-b-A-17 v3R 518-534 17 ATTACCGCGGCTGCTGG 65 [71]

515F_v4f S-*-Univ-0515-b-S-19 v4F 515-533 19 GTGNCAGCMGCCGCGGTAA 63 mod. after [72]

806R_v4r S-D-Bact-0756-a-A-20 v4R 787-806 20 GGACTACHVGGGTWTCTAAT 40 mod. after [72]

784F_v5f S-*-Univ-0779-a-S-15 v5F 784-798 15 RGGATTAGATACCCY 40 mod. after [73]

926R_v5r S-D-Bact-0907-b-A-20 v5R 907-926 20 CCGTCAATTYYTTTRAGTTT 25 mod. after [74]

907F_v6f S-D-Bact-0907-a-S-20 v6F 907-926 20 AAACTYAAARRAATTGACGG 25 [75]

1114R_v6r S-D-Bact-1114-b-A-16 v6R 1099-1114 16 GGGTYKCGCTCGTTRY 50 mod. after [73] S-D-Bact-1114-a-A-16

1099F_v7f S-*-Univ-1099-a-S-16 v7F 1099-1114 16 RYAACGAGCGMRACCC 50 new primer S-*-Univ-1100-a-S-15

1200R_v7r S-D-Bact-1200-a-A-16 v7R 1185-1200 16 GAYTTGACRTCVTCCM 38 new primer

1185F_v8f S-D-Bact-1185-a-S-16 v8F 1185-1200 16 KGGABCACCGCYCGYC 63 new primer

1407R_v8r S-D-Bact-1407-a-A-16 v8R 1391-1407 16 GRCGRGCGGTGWGTRC 63 mod. after [76] S-D-Bact-1391-a-A-17

1391F_v9f S-D-Bact-1391-a-S-16 v9F 1391-1407 16 GYACWCACCGCYCGYC 63 new primer

1510R_v9r S-*-Univ-1510-b-A-19 v9R 1492-1510 19 GGNTACCTTGTTACGACTT 42 mod. after [77] S-*-Univ-1492-a-A-21

*E. coli position as a reference
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consideration of their coverage in diversity with respect to
the studied environment [82]. Although researchers tend
to use primers as universal as possible to catch the entire
diversity present in the samples, it might be a pragmatic
approach to lose some universality while increasing speci-
ficity for the studied environment. For dairy products,
the DAIRYdb achieves both, covering all the biodiversity
expected in these environments, while achieving speci-
ficity in taxonomic annotation.
Annotation accuracy of the DAIRYdb was compared

with other universal databases, such as Silva128, RDP
trainset v16, LTP and Greengenes analysing fragments of
single HVRs or HVR pairs extracted from the sequences
in the DAIRYdb with V-Xtractor and in silico PCR. About
1000 subsamples, each composed of synthetic HVRs
extracted from 100 randomly selected sequences from the
DAIRYdb, by either V-Xtractor or in silico PCR, were
assigned to all taxonomic ranks by the means of three
different classification predictors (Blast+, Metaxa2 and
SINTAX) and the aforementioned databases.
Single HVRs extracted with V-Xtractor and annotated

with the DAIRYdb using SINTAX achieved annotation
accuracy above 75% at all taxonomic ranks (Fig. 5a). Accu-
racy was highest for the even HVRs (V2, V4, V6 and V8)
as compared to the odd HVRs (V1, V3, V5, V7 and V9).
The region V2 presented the highest taxonomy annota-
tion accuracy, which is in line with other findings showing
that the regions V1 and V2 resulted in a more accu-
rate OTU clustering at 97%, 98% and 99% [27]. Overall,

the universal databases were less accurate with decreas-
ing taxonomic rank (Fig. 5b-e). Only the RDP trainset
v16 achieved about 25% of correct species annotations,
while the other databases only classified to genus rank.
Although the RDP trainset v16 performed best among
all universal databases, annotation accuracy was below
the accuracy values assessed in previous studies [48].
Universal databases achieved highest annotation accu-
racy with V4, with exception to Silva, which performed
best on V2 (Fig. 5). Generally, the difference in annota-
tion accuracy was stable through all HVRs with excep-
tion to the Silva database, where bigger oscillations were
observed between the HVRs showing a clear drop for V6
and V7 (Fig. 5e). All HVRs taken together, the DAIRYdb
achieved a significantly better taxonomy annotation accu-
racy (adjusted p-value <0.001) of average 88.9% ± 5.5 as
compared to the universal databases tested at any tax-
onomic rank, but particularly at order to species ranks
(Fig. 5f; Additional file 4: Tables S1 and S2). Results
with Blast+ and Metaxa2 on single HVRs are available in
Additional file 3.
The results with the HVR pairs was similar to the single

HVRs (Fig. 6a). Annotation accuracy between HVR pairs
was less variable between different HVR pairs and within
the bootstrapping values of the same HVR pair as com-
pared to the single HVRs, indication for a more robust
classification with increasing number of HVRs. The HVR
pair V1V2 achieved the highest annotation accuracy at
species rank in the DAIRYdb, as well as with RDP and Silva

A B C

D E F

Fig. 5 Taxonomy annotation accuracy of the DAIRYdb on reads extracted with V-Xtractor. Single HVR V1-V9 were re-annotated using three different
classification algorithms, Blast+, Metaxa2 or SINTAX, respectively. This figure shows the results with SINTAX (Analyses with Metaxa2 and Blast+ are
shown in Additional file 2). Taxonomy annotation was bootstrapped 1000 times with a subset of 100 randomly selected sequences from the
DAIRYdb and annotated with DAIRYdb (DDB) (a), Greengenes (b), LTP (c), RDP (d) and Silva (e). Average performance of all HVR for each database (f)
(accuracy = correctly annotated/total)
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A B C

D E F

Fig. 6 Taxonomy annotation accuracy of the DAIRYdb on reads extracted with V-Xtractor. The HVR pairs V1-V2, V2-V3, V3-V4, V4-V5, V5-V6, V6-V7,
V7-V8, V8-V9 were re-annotated using three different classification algorithms, Blast+, Metaxa2 or SINTAX, respectively. This figure shows the results
with SINTAX (Analyses with Metaxa2 and Blast+ are shown in Additional file 2). Taxonomy annotation was bootstrapped 1000 times with a subset of
100 randomly selected sequences from the DAIRYdb and annotated with DAIRYdb (DDB) (a), Greengenes (b), LTP (c), RDP (d) and Silva (e). Average
performance of all HVR for each database (f) (accuracy = correctly annotated/total)

(Fig. 6d-e). These results are in agreement with previous
studies, where V1 and V2 have been shown to have the
highest average classification accuracy and average con-
fidence estimate up to the genus rank [19]. Greengenes
species annotation accuracy was similar for all HVRs,
while LTP showed very low performance at species rank
(Fig. 6b-c). The average accuracy value for correct species
annotation of all HVR pairs with the DAIRYdb was over
94% ± 2.8 (Fig. 6f ). Only species annotation with the
RDP trainset v16 achieved 25% of correct annotations.
The BLAST16S database was shown to obtain genus accu-
racy values ∼50% for V4, which improved with increasing
length to ∼60% with V3–V5 and ∼70% with full-length
16S [52]. As expected, the increasing number of HVR
increases the confidence in taxonomy annotation. Results
with Blast+ and Metaxa2 on HVR pairs are available in
Additional file 3.
Different taxonomy predictors using the DAIRYdb

showed similar performances and only little difference
between single HVRs (Additional file 3: Figures S11)
or HVR pairs (Additional file 3: Figure S12). Annota-
tion accuracy performance varied more between different
databases than between different classification predictors.
The results confirm that OTUs annotation is primarily
influenced by the selection of the database, by the HVR,
and only at last by the taxonomy predictor (Additional
file 3: Figures S1-S10). A comparison of the three clas-
sification predictors, Blast+, Metaxa2 and SINTAX with
the DAIRYdb confirmed that HVR pairs could be more

accurately assigned to the correct species than single HVR
(Fig. 7). Among all tools, Blast+ and SINTAXwere slightly
better than Metaxa2. Since Metaxa2 uses more stringent
parameters, as it only assigns the taxa if in agreement with
Blast+, the lower performance of Metaxa2 with respect
to Blast+ alone is therefore not surprising. Moreover,
Metaxa2 performance is strongly dependent on the ANI
thresholds used, which were set according to previ-
ous studies [83]. On the other hand, the more strin-
gent parameters of Metaxa2 reduced the number of
over-classified sequences. Generally, taxonomy annota-
tion results are most robust whilst using different clas-
sification predictors with the DAIRYdb. We therefore
recommend to use both, Metaxa2 with integrated Blast+
and SINTAX to obtain taxonomy annotations closest to
the ground truth. Although a lower SINTAX cutoff of 0.6
increases the risk of over-classification, it is justified by the
better quality of the DAIRYdb and the comparison with
Metaxa2 for definitive taxonomy annotation (more details
on the recommended usage on real samples are described
on https://github.com/marcomeola/DAIRYdb).
The main scope of the DAIRYdb is to improve accu-

rate species classification in dairy products. Beyond this,
it covers a considerable diversity in agreement with the
diversity detected in dairy products so far. However, the
DAIRYdb does not necessarily perform better than uni-
versal databases on a set of sequences from environments
other than dairy, such as the human gut. Annotation accu-
racy performed on sequences from type strains included

https://github.com/marcomeola/DAIRYdb
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A B

Fig. 7 Comparison of the overall annotation accuracy of the three algorithms, Blast+, Metaxa2 and SINTAX for all single HVR (a) and HVR pairs (b).
Although Blast+ presented a slightly better performance over SINTAX and Metaxa2, it was not statistically significant. All three classification tools
assigned more than 75% of the sequences using the DAIRYdb as a reference for all HVR pairs

Fig. 8 Taxonomy annotation accuracy test on sequences from the
HITdb. Comparison of the taxonomy annotation accuracy at species
rank between the DAIRYdb, RDP, Silva and Greengenes on type strain
sequences present in the HITdb [50]. On sequences from origin other
than dairy products, the DAIRYdb performs better than Silva and
Greengenes, but not better than the RPD trainset v16

in the Human Intestinal Tract database (HITdb) showed
that the DAIRYdb performed comparably well to the
RDP trainset v16 and better than Silva and Greengenes
(Fig. 8) [50].
The study of every particular environment calls upon

peculiar requirements. Dairy products are no exception,
as their bacterial communities are usually dominated by
few phylogenetically highly related species, which are
often difficult to discern, such as L. casei, L. paracasei and
L. rhamnosus or S. thermophilus and S. salivarius. Partic-
ularly for S. thermophilus, which is a very important rep-
resentative bacterium in dairy products, the official name
still is S. salivarius subsp. thermophilus [84]. Although a
separate full species status was proposed [85], persistent
contention prevented a full ratification by the taxonomic
committees [84]. The advances of genomics in microbi-
ology has led to a reassessment of the phylogeny, which
still remains a moving target particularly for microbial
taxonomy [48, 60].
The correct description of a bacterial community struc-

ture remains a challenge in microbiome studies. Any
parameter, from wet-lab (i.e., DNA extraction, primer and
HVR selection, amplification, sequencing) to the bioin-
formatic pipeline, can influence the outcome. Although
the achievement of over 90% accurate species annota-
tion of short 16S fragments can be considered a dramatic
improvement, quality of dairy products is often influenced
by different strains of the same species [86]. The resolu-
tion at strain or subspecies rank, however, based on full
16S is highly unlikely to be achieved independently from
advancing sequencing technology. While on the one hand
the definition of strains and subspecies is evenmore prob-
lematic than higher ranks such as species [87], on the
other hand, the intraspecies variability of the 16S lacks
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sufficient resolution to clearly discern between strains and
subspecies within the same species [88]. Nevertheless,
recent powerful bioinformatics tools, such as Oligotyp-
ing [89], Minimal Entropy Decomposition (MED) [90],
Dada2 [91] and DiTaxa [92], can be applied to distinguish
between ecologically relevant ASVs. The resulting oligo-
types or haplotypes within a species might be linked to
different metabolic pathways or associated to identified
physico-chemical characteristics of cheese or dairy prod-
ucts. Hereof, the DAIRYdb is a powerful improvement
as it accurately identifies the sequences belonging to the
same species, which can further be decomposed to olig-
otypes. Finally, links between oligotypes and 16S from
WGS could improve the link between phylogeny and eco-
types for a better ecological understanding of the system
[81, 87, 93].
Yet, the way and ability to recognize the basic unit

for taxonomy of prokaryotes depends on the resolu-
tion power of the observational methods available [94].
Increasing sequence read lengths will make it possible
to cover three HVRs or even the full 16S, thus further
improving taxonomic annotation accuracy at species rank
by using a manually curated databases like the DAIRYdb.

Conclusions
Accurate prediction of taxonomy based on the marker
gene 16S is a fundamental step in microbial diagnostics
and microbial ecology studies. Dairy products, particu-
larly cheeses, are enriched by a few dominant species
often belonging to the same genera, such as Lactobacillus
spp., Lactococcus spp., Streptococcus spp. An automatic
and reliable taxonomic annotation to the correct species
is pivotal to further routine microbial diagnostics.
Different to available universal databases, DAIRYdb

achieved correct taxonomy annotation for ∼90% of
species names on single HVRs and HVR pairs with 16S
sequences present in dairy samples [52]. The better per-
formance of the DAIRYdb over universal databases can
be explained by the overall reduced number of sequences,
only 10’290, with no conflicting taxonomy at all taxo-
nomic ranks. Our results are in disagreement to the rec-
ommendation to use the largest andmost diverse database
possible for 16S classification [95]. On the opposite, man-
ually curated 16S databases with authoritative full-length
16S sequences dedicated to the studied environment enor-
mously improve classification confidence to the species
rank [48–50]. Reducing the number of representative
sequences to a minimal number in the training set further
diminishes the risk of highly similar sequences with con-
flicting taxonomy, thus lowering the performance of the
database used for classification [48, 49].
We therefore propose the manually curated DAIRYdb as

a reference database for 16Smicrobiome studies on cheese
and dairy products. The implementation of a curated

database may lead to wider consensus and standardiza-
tion processes reducing conflicts in literature due to the
use of different universal databases integrated in different
classification tools [82, 96].

Methods
DAIRYdb construction
To retrieve a comprehensive set of near full-length 16S
sequences originating from cheese and dairy products,
a search was performed against the NCBI Genebank
nucleotide database using the command “CHEESE[All
Fields] OR MILK[All Fields] OR TEAT[All Fields]
OR STARTER[All Fields] OR WHEY[All Fields] OR
DAIRY[All Fields] AND “16S ribosomal RNA”[All
Fields] AND (“bacteria”[porgn] OR “archaea”[porgn])
AND 1000:2000[SLEN] NOT shotgun”, and the EMBL
databases using the command “16S ribosomal RNA
cheese, 16S ribosomal RNA milk, 16S ribosomal RNA
starter, 16S ribosomal RNA teat, 16S ribosomal RNA
dairy, 16S ribosomal RNA whey”. About 12’930 16S
sequences were retrieved from NCBI and 51’175 from
EMBL.
Mostly unpublished 16S sequences from INRA

(171’282), as well as some recently published [97]
(NCBI Bioproject PRJNA421256), and Agroscope
(1’559) were also included after clustering at 99%
(see below for details). The resulting set of 236’946
sequences constituted the starting pool for building
up DAIRYdb. The extracted sequences of the start-
ing pool were matched against the Greengenes v13_5,
SSURef_NR99_123.1_tax_silva_trunc (Silva123) and RDP
current_bacteria, RDP trainset v16_022016 16S databases
using the usearch_global command of vsearch (v1.11.1)
with parameters -id 0.8 and -mid 97. About 34’515
sequences were extracted from Greengenes, 29’181 from
Silva123 and 52’686 from RDP, representing all possible
full-length 16S sequences associated to the studied envi-
ronment from the universal repositories prior to OTU
clustering.
Altogether, the keywords associated sequences

(236’946) and their representative database sequences
(116’382) amounted to a total of 391’672 16S sequences of
different length and quality. The extracted sequences were
first dereplicated with priority to full-length sequences
(279’737) and minimal length of 300 bp (268’613) if no
full-length was present using the derep_fulllength and
derep_prefix of usearch (v6.0.307_i86osx32), respectively.
The remaining 268’613 sequences were divided into
“good” sequences, i.e., >1300 bp (50’309), and “bad”
sequences, i.e., <1300 bp (218’304), using Prinseq
(v0.20.4). The “bad” sequences were matched against
all databases (Greengenes, Silva and RDP) to obtain
reference sequences of better quality and length using
the usearch_global command of vsearch (v1.11.1) with
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parameters -id 0.5 and –maxhits 1. The 146’355 hit
sequences were dereplicated using the derep_fulllength
and derep_prefix of usearch6.0.307_i86osx32 resulting
in 92’722 unique 16S sequences that were merged with
the initial 50’309 “good” sequences. To remove redun-
dancy, the 143’031 16S sequences were dereplicated
again, reducing the total amount to 98’590 sequences
and subsequently divided based on the length threshold
of 1300 bp using Prinseq (v0.20.4) for clustering pur-
poses. The sequences were first subjected to chimeric
sequence removal using the 16S reference database
available at www.drive5.com/uchime/rdp_gold.fa with
usearch (v6.0.307_i86osx32) and subsequently clustered
to OTUs separately to a similarity threshold of 97% in
steps of 0.5% using the cluster_otus command in usearch
(v6.0.307_i86osx32). The resulting 18’457 OTUs were
matched against a database composed of full-length
16S sequences of type strains from Silva126 using the
parameters –id 0.5 –mid 97 -maxhits 1. The sequences
with no match were matched again, however, using
less stringent parameter –id 0.5 -maxhits 1. Finally,
the resulting 14’468 sequences were dereplicated, clus-
tered at 97% and cleaned by removing eukaryotic,
chloroplastic and mitochondrial sequences, Pintail
value <75 and <1200 bp. The intermediate version
of the DAIRYdb contained 9’739 representative 16S
sequences.
Species whose sequences were present before the clus-

tering at 97% and absent after clustering have been
reintroduced if identical sequence with synonymous
taxonomic identity was absent in the DAIRYdb (see
List of Prokaryotic Names validly published of the
Deutsche Sammlung von Mikroorganismen und Zellkul-
turen (DSMZ)). Moreover, 142 missing species listed in
[56] and [57] were added to the DAIRYdb.

DAIRYdb curation
The taxonomy of the 9’963 16S sequences assigned by
Silva126 was checkedmanually upon consistency between
the six top taxonomic ranks (Kingdom to Genus). The
taxonomy annotations of these sequences were mostly
obtained from authoritatively named type strains. While
there could be some errors in the taxonomy annotations
in Silva, or discordance to DSMZ, taxonomy annotations
from authoritative type strains were considered as truth
standards for the SATIVA test and manual curation. After
a first manual curation, three closest type strain sequences
with an authoritative taxonomy [48] were retrieved for all
representative sequences in the DAIRYdb from Silva126
at 0.99 ANI and RDP (SequenceMatch: “typestrains”, “iso-
lates”, “good quality”, >1200 bp). The 7’244 closest neigh-
bours (CN) were dereplicated and the resulting 4’545 CN
type strain sequences were added to the DAIRYdb. The
CN were used as references in the curation process with

the Semi-Automatic Taxonomy Improvement and Valida-
tion Algorithm (SATIVA [59]) called with the command
“sativa.py -s input.phyl -t input_taxonomy.txt -x BAC -
T 36 -N 20 -S” using the authoritative CN type strain
sequences as reference after alignment with SINA (v1.2.11
[58]).
Manual curation of the taxonomy was performed based

on both, SATIVA results and RAxML tree with the
sequences in the DAIRYdb and the authoritative CN [98]
using the command “raxmplHPC-PTHREADS-AVX2 -T
36 -f a -k -x 237 -m GTRGAMMA -p 1481544944 -N
autoMRE -s input.phyl -n output.tre -O -w”. Using the
algorithms Metaxa2 and SINTAX, an additional training
set of Silva126 type strains was used to obtain a taxonomic
proposition for sequences with unclear taxonomy. This
step was iterated several times until all possible sequences
could be assigned to a species group. The sequences with
no unequivocal annotation where identified with LPT fol-
lowed by an underscore and respective taxonomic rank
(e.g., XXX_Family, Lactobacillus_Species).
At least one type strain for each bacterial species

present in the DAIRYdb was added if available in the
DSMZ database bacdive.dsmz.de/ (https://bacdive.dsmz.
de/). After manual curation the 4’545 CN reference
sequences with authoritative taxonomy were removed.
The final DAIRYdb.v1.1 contains a total of 10’290 16S
sequences.

DAIRYdb validation and statistical analyses
Single HVR and pairs of HVR were extracted in silico
from the 10’290 16S sequences of the DAIRYdb using
primers listed in Table 1 with the pcr.seqs function from
mothur with 0 missmatches. All present single and pairs
of HVRs in the 16S sequences were extracted with V-
Xtractor, which is based on a HMM algorithm for the
HVR detection and where extraction occurs based on the
presence of the HVR with no primer biases.
Taxonomy annotation accuracy was assessed with 1000

subsamples of each 100 randomly selected sequences
fromwithin the DAIRYdb. Annotation accuracy is defined
as the fraction of sequences that are correctly predicted
and classified at each rank [52]. The sequences were tax-
onomically assigned at all taxonomic ranks by means
of three classification tools (Blast+, Metaxa2 and, SIN-
TAX). Annotation accuracy was assessed using 4 uni-
versal databases: Greengenes v13.5 (1’262’986 sequences)
[45], SILVA v128 SSURef Nr99 (645’151 sequences)
[40], LTP v123 SSU (11’939 sequences) [42], RDP train-
ing set v16 (13’212 sequences) [43] and the DAIRYdb
(10’290 sequences). Correct annotation at all taxonomic
ranks was assessed comparing the resulting assignment
with the reference DAIRYdb. Pairwise comparisons using
Wilcoxon rank sum test were used to highlight significant
differences between database assignment accuracy. The

http://www.drive5.com/uchime/rdp_gold.fa
http://bacdive.dsmz.de/
https://bacdive.dsmz.de/
https://bacdive.dsmz.de/
http://drive5.com/usearch/manual10/sintax_downloads.html
https://www.arb-silva.de/no_cache/download/archive/release_128/Exports/
https://www.arb-silva.de/no_cache/download/archive/living_tree/LTP_release_123/
http://drive5.com/usearch/manual10/sintax_downloads.html
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p-values obtained were adjusted using Bonferroni correc-
tion. For more details on the statistical evaluation process
see Additional file 4.

Visualizations
Krona
A Krona chart was generated using KronaTools [99]. The
total sum of each unique taxonomy of the DAIRYdb was
assessed and used as input in the ktImportText command.

Venn diagram
A Venn diagram to determine the potential origin of
each sequence composing the DAIRYdb was generated
with the web app Jvenn [100]. The global alignment -
usearch_global module of vsearch to per a global align-
ment between the 10’290 sequences of the DAIRYdb
and each raw database corresponding to keywords: dairy,
cheese, starter, whey, milk. These raw databases were
previously dereplicated. We used the parameter -strand
both -id 0.9 -maxaccepts 100 -maxrejects 100. For each
keywords, the matching sequence identifiers were used as
input in Jvenn to generate the Venn diagram.

Additional files

Additional file 1: Species list. The additional file 1 is a text file with all
species included in the DAIRYdb in alphabetical order. Can be opened with
any text editor or spreadsheet software. (TXT 100 kb)

Additional file 2: Krona diagram. Additional file 2 is an html file with a
Krona diagram showing the complete diversity present in the DAIRYdb can
be interactively inspected in a webbrowser. (HTML 872 kb)

Additional file 3: Supplementary Information. Additional file 3 contains
supplementary figures described in the main manuscript. It is a portable
document file (pdf) that can be read with Acrobat Reader. (PDF 3925 kb)

Additional file 4: RMarkdown for reproducibility. The additional file 4
includes the different scripts used to test all HVR primers (for single HVR
and HVR pairs), scripts used to customize the different database in order to
use them in the different assignation tools, and scripts used for DAIRYdb
validation. We mainly used bash and R scripts [101, 102]. The file is in html
format and was generated starting from a Rmarkdown file. (HTML 1012 kb)
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