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This paper proposes a general framework for state estimation of systems modeled as hybrid dynamical systems with jumps occurring at (approximately) known times. A candidate observer is a hybrid dynamical system with jumps triggered when the system jumps. With some information about the time elapsed between successive jumps, a Lyapunov-based analysis allows us to derive sufficient conditions for observer design. In particular, a high-gain flow-based observer, with innovation during flow only, can be designed for systems with an average dwell-time when the flow dynamics are strongly differentially observable. On the other hand, when the jumps are persistent, a jump-based observer, with innovation at jumps only, should be designed based on an equivalent discrete-time system corresponding to the hybrid system discretized at jump times. In the context of linear maps, this reasoning leads us to a hybrid Kalman filter. These designs apply to a large class of hybrid systems, including cases where the time between successive jumps is unbounded or tends to zero -namely, Zeno behavior-, and cases where detectability only holds during flows, at jumps, or neither. We also study the robustness of this approach when the jumps of the observer are delayed with respect to those of the system. Under some regularity and dwell-time conditions, we show that the estimation error is semiglobally practically asymptotically stable over time intervals after such delays. The results are illustrated in examples and applications, including mechanical systems with impacts, spiking neurons, and switched systems.

Introduction

Context

In many applications, estimating the state of a system is crucial, whether it be for control, supervision, or fault diagnosis purposes. Unfortunately, the problem of designing observers for hybrid systems of the form [START_REF] Goebel | Hybrid Dynamical Systems : Modeling, Stability and Robustness[END_REF] ẋ ∈ f (x) x ∈ C , x + ∈ g(x) x ∈ D (1) presenting both a continuous-time behavior in C and a discrete-time behavior in D, is still largely unsolved, even when the flow/jump maps f and g are linear. A major difficulty lies in the fact that the system's jump times, that is, the times at which discrete events occur in the system's solution, generally depend on its initial condition, which is unknown in the context of observer design. From there, one may distinguish two scenarios: when the jump times of the system are detected by sensors (or known a priori), and when these jump times are truly unknown.

In the second scenario, the jumps of the observer cannot be triggered when the jumps of the system occur. It follows that the domain of definition of the solutions to the system and observer are different and a standard error system approach for observer design does not apply. This mismatch of time domains makes the formulation of observability/detectability and, in turn, observer design very challenging [START_REF] Bernard | On notions of detectability and observers for hybrid systems[END_REF]). Very few global observer designs for systems of the form (1) exist apart from particular settings as in [START_REF] Forni | Follow the bouncing ball : global results on tracking and state estimation with impacts[END_REF], which requires the composition g • g to be the identity map, and in [START_REF] Kim | State estimation and tracking control for hybrid systems by gluing the domains[END_REF], thanks to a change of coordinates transforming the jump map g into the identity map, in this way, removing the jumps. A local observer design based on high-gain estimation during flow and output "disconnection" around the jump times was also proposed in [START_REF] Bernard | A local hybrid observer for a class of hybrid dynamical systems with linear maps and unknown jump times[END_REF] for systems (1) exhibiting a dwell-time and with linear maps and observable flow dynamics. Note that in the particular context of switched systems, this mismatch issue translates into the problem of estimating the switching signal. The observability properties of such a signal have been studied in [START_REF] Vidal | Observability of linear hybrid systems[END_REF]; [START_REF] Küsters | Switch observability for switched linear systems[END_REF]. Observer designs based on the so-called mode location observers, capable of detecting and identifying properties of the switching signal appeared in [START_REF] Barhoumi | Observer design for some classes of uniformly observable nonlinear hybrid systems[END_REF]; [START_REF] Balluchi | The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem[END_REF]; [START_REF] Lee | On-line switching signal estimation of switched linear systems with measurement noise[END_REF]; [START_REF] Battistelli | On stabilization of switching linear systems[END_REF]; [START_REF] Gómez-Gutiérrez | On the observer design problem for continuous time switched linear systems with unknown switchings[END_REF]; [START_REF] Ping | Robust estimation algorithm for both switching signal and state of switched linear systems[END_REF]; [START_REF] Zammali | Switching signal estimation based on interval observer for a class of switched linear systems[END_REF], to list a few, which include the broad literature of fault tolerant control.

On the other hand, in the first scenario where the jump times of the system are known/detected, the observer jumps can be triggered at the same time as those of system (up to small detection delays). The difficulties due to a possible mismatch of time domains thus disappear, and observability analysis also reduces to comparing solutions giving the same output on the same time domain.

A first class of systems falling into this first scenario is the so-called impulsive systems. It consists of continuoustime dynamical systems (possibly switching among different flow dynamics) with state jumps (or switch) that occur at pre-specified times, which are usually assumed to be separated by nonzero periods of flow -in particular, to avoid Zeno behavior. The impulsive systems literature is rich and includes a variety of models of impulsive systems. In particular, models of impulsive systems in which the state includes a logic variable that selects the right-hand side of the differential equation governing the dynamics in between impulses are referred to as switched impulsive systems, or also as switched systems with known jump times. In that setting, observability/determinability have been extensively studied in [START_REF] Guan | On controllability and observability for a class of impulsive systems[END_REF]; [START_REF] Xie | Necessary and sufficient conditions for controllability and observability of switched impulsive control systems[END_REF]; [START_REF] Medina | Reachability and observability of linear impulsive systems[END_REF]; [START_REF] Zhao | Controllability and observability for a class of time-varying impulsive systems[END_REF]; [START_REF] Tanwani | Comments on "observability of switched linear systems: Characterization and observer design[END_REF]. As for observer design, results first appeared assuming observability of each flow dynamics [START_REF] Alessandri | Switching observers for continuous-time and discrete-time linear systems[END_REF], and then more generally in [START_REF] Medina | State estimation for linear impulsive systems[END_REF] (resp. in Tanwani et al. (2015)), for impulsive systems (resp. switched impulsive systems) that are observable (resp. determinable) for any impulse time sequence containing more than a known finite number N of jumps. In other words, the information available during a single flow interval is not sufficient to reconstruct the full state, but it becomes sufficient after N jumps. In [START_REF] Medina | State estimation for linear impulsive systems[END_REF], the observer consists of an impulsive system synchronized with the system, with innovation terms at jumps only. Those innovations are linear in the error, with a time-varying gain that is related to a weighted observability Grammian over the past N jumps. In [START_REF] Tanwani | Comments on "observability of switched linear systems: Characterization and observer design[END_REF], the authors develop an observation procedure based on the continuous-time estimation of the observable states of each of the past N modes: after some time, putting together the information given by each mode enables to reconstruct the whole state.

Another important class of hybrid systems falling into the first scenario is when the system itself has continuous-time dynamics, but the measurements are sampled and available intermittently at specific time instances. For such a class of systems with sporadic events, observers have been designed under specific assumptions on the time elapsed between successive events or, in the case of periodic events, the sampling period. From [START_REF] Sur | Observers for linear systems with quantized output[END_REF]; [START_REF] Deza | High gain estimation for nonlinear systems[END_REF], convergence of an impulsive observer with innovation terms triggered by the measurement events can be guaranteed when the sampling period is sufficiently small. Designs were then developed in [START_REF] Raff | Observers with impulsive dynamical behavior for linear and nonlinear continuous-time systems[END_REF]; [START_REF] Dinh | Continuous-discrete time observer design for Lipschitz systems with sampled measurements[END_REF] for any constant sampling period provided that appropriate matrix inequalities are satisfied, and further extended in [START_REF] Raff | Observer with sample-and-hold updating for Lipschitz nonlinear systems with nonuniformly sampled measurements[END_REF]; [START_REF] Ahmed-Ali | A sampled-data observer with time-varying gain for a class of nonlinear systems with sampled-measurements[END_REF]; [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF]; [START_REF] Etienne | Observer synthesis under time-varying sampling for Lipschitz nonlinear systems[END_REF]; [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF] to the case of sporadic measurements, i.e., when the time elapsed between sampling events varies in a known interval.

In this paper, we propose to address the problem of state estimation for general hybrid systems (1), in the context of the first scenario, namely when the jump times of the system are (approximately) known, and in an attempt to unify most of the previously cited approaches. Preliminary results in this direction were given in [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF]; [START_REF] Ríos | State estimation for linear hybrid systems with periodic jumps and unknown inputs[END_REF], in the particular case where f and g are linear, and when at least either the flow dynamics or the jump dynamics are detectable. We extend those results here to nonlinear dynamics, also when neither the continuous nor the discrete dynamics of the system are detectable, but, the hybrid system as a whole is.

Content and Contributions

First, under the assumption that the jumps of the system are instantaneously detected, a candidate observer is defined as a hybrid system that jumps at the same time as the system does, and is fed with the measured output in either the flow map, the jump map, or both (Section 2). Assuming the system has an average dwelltime or a reverse average dwell-time, or simply that the time between its successive jumps belongs to a known (possibly unbounded) closed set, we derive Lyapunovbased sufficient conditions so as to ensure uniform pre-asymptotic stability of the zero estimation error set (Section 3). Then, we provide additional design conditions for special cases of the general observer problem and proposed hybrid observer. In Section 4, we consider the case when measurements are only used during flow, for which we propose a hybrid observer, which we call flow-based hybrid observer. Similarly, but for the situation when output measurements are used only at jumps, Section 5 introduces a jump-based hybrid observer and associated design conditions. Motivated by the fact that, in practice, the jumps of the system cannot always be instantaneously detected, we study the robustness of the observer when the jumps of the observer are slightly delayed relative to those of the system (Section 6). Finally, we demonstrate how those results can be used in several examples and applications, including mechanical systems with impacts, spiking neurons, and switched systems (Section 7). Our main contributions compared to the literature are as follows:

1. General hybrid systems (1) are considered in a unified framework, only assuming knowledge about the time between successive jumps, which allows any type of solutions, from Zeno and eventually discrete, to eventually continuous trajectories; 2. When the system has an average dwell-time and its continuous dynamics are strongly differentially observable, we prove that a hybrid observer can be obtained by copying the discrete dynamics of the system and designing a high-gain observer for its continuous dynamics, as long as the gain is taken sufficiently large compared to the average dwell-time and the Lipschitz constants of the flow and jump maps; 3. When the output measurements are only injected in the observer at jumps, we highlight that the innovation term in the observer, which only plays a role at jumps, should be designed based on an equivalent discrete-time system that models the hybrid system sampled at jumps. In the context of linear maps, this reasoning leads us to a constructive hybrid Kalman filter; 4. A robustness analysis with respect to delays in the triggering of the jumps of the observer jumps is provided: under some regularity and dwell-time conditions, we show that the estimation error remains bounded and semi-global practical stability holds outside the delay intervals between the jumps of the system and of the observer; 5. The generality of the framework enables us to recover and unify a significant part of the literature. In particular, the results apply well to switched systems with state-triggered switches: we show in the report version of this paper [START_REF] Bernard | Observer design for hybrid dynamical systems with approximately known jump times, long version[END_REF] how a high-gain observer can be designed for switched systems with observable modes and average dwell-time, or how the output at the switching instants can be used when each mode is not observable on its own but the combination of them is.

Notation and Preliminaries

The set R (resp. N) denotes the set of real numbers (resp. integers), R ≥0 = [0, +∞), R >0 = (0, +∞), and N >0 = N \ {0}. For P ∈ R n×n , eig(P ) denotes the set of its eigenvalues, and λ(P ) (resp. λ(P )) stands for its smallest (resp. largest) eigenvalue. The symbol in a matrix denotes the symmetric blocks. B stands for a closed Euclidian ball of appropriate dimension, of radius 1 and centered at 0. A map α : R ≥0 → R ≥0 is a class-K map if α(0) = 0 and α is continuous and increasing, and a class-K ∞ map if it is also unbounded.

A map β : R ≥0 × R ≥0 → R ≥0 is a class-KL map if for all t ∈ R ≥0 , β(•, t
) is class-K and for all r ∈ R ≥0 , β(r, •) is non-increasing with lim t→∞ β(r, t) = 0. For a set valued map S : R dx ⇒ R, a C 1 map V : R dx → R, and a scalar c, writing S(x) ≤ c (resp. ∇V (x), S(x) ≤ c) for some

x ∈ R dx means that s ≤ c (resp. ∇V (x), s ≤ c) for all s ∈ S(x). A C 1 map T : S ⊂ R dx → R dz with d z ≥ d x is an immersion on S if dT dx (x) is full-rank for all x in S.
We consider hybrid dynamical systems of the form (1) where f (resp. g) is the flow (resp. jump) map, and C (resp. D) is the flow (resp. jump) set. Solutions to such systems are defined on hybrid time domains.

A sub- set E of R ≥0 × N is a compact hybrid time domain if E = J-1 j=0 ([t j , t j+1 ], j)
for some finite sequence of times 0 = t 0 ≤ t 1 ≤ . . . ≤ t J , and it is a hybrid time domain if for any (T, J) ∈ E, E ∩[0, T ]×{0, 1, . . . , J} is a compact hybrid time domain. For a solution (t, j) → x(t, j) (see (Goebel et al., 2012, Definition 2.6)), we denote dom x its domain, dom t x (resp.dom j x) its projection on the time (resp. jump) component, and for j ∈ N, t j (x) the only time defined by (t j , j) ∈ dom x and (t j , j -1) ∈ dom x. Also, N (t, s) denotes the number of jumps occurring between times t and s. We say that x is complete if dom x is unbounded and Zeno if it is complete and sup dom t x < +∞.

Synchronized Hybrid Observer

Mathematical Modeling

We consider a hybrid system of the form

H ẋ ∈ f (x) , y c = h c (x) , x ∈ C x + ∈ g(x) , y d = h d (x) , x ∈ D (2) with state x ∈ R dx , output y = (y c , y d ) ∈ R dy c × R dy d ,
with y c available during flow and y d during jumps. We are interested in estimating the state of (or part of the state of) H when its solutions are initialized in a given subset X 0 ⊆ C ∪ D. We denote by S H (X 0 ) the set of maximal solutions of H with initial condition in X 0 .

Definition 2.1 For a closed subset I of R ≥0 and a positive scalar τ , we will say that

• solutions have flow length within I if, for any x ∈ S H (X 0 ), -0 ≤ t -t j (x) ≤ sup I ∀(t, j) ∈ dom x -t j+1 (x) -t j (x) ∈ I holds ∀j ∈ N >0 if sup dom j x = +∞, ∀j ∈ {1, .
. . , sup dom j x -1} otherwise. For simplicity, we say that C X0 [I] holds;

• solutions have an average dwell-time (ADT) τ if there exists N 0 ∈ N >0 such that for any x ∈ S H (X 0 ),

N (t, s) ≤ (t -s) τ + N 0 ∀t ≥ s ≥ 0 .
For simplicity, we say that C av X0 [τ ] holds; • solutions have a reverse average dwell-time (rADT) τ if there exists N 0 ∈ N >0 such that for any x ∈ S H (X 0 ),

N (t, s) ≥ (t -s) τ -N 0 ∀t ≥ s ≥ 0 .
For simplicity, we say that C rav X0 [τ ] holds.

In the definition of C X0 [I], the set I describes the possible lengths of the flow intervals between successive jumps. The role of the first item is to bound the length of the intervals of flow which are not covered by the second item, namely possibly the first one, which is [0, t 1 ], and the last one, which is dom t x ∩ [t J , +∞) (when defined). Properties C av X0 [τ ] and C rav X0 [τ ] correspond to the standard notions of average dwell-time and reverse average dwell-time respectively [START_REF] Goebel | Hybrid Dynamical Systems : Modeling, Stability and Robustness[END_REF]; [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]). They enforce that the solutions jump, on average, at most (resp. at least) once per time interval of length τ . A particular case of C av X0 [τ ] is when all the intervals of flow last at least τ , namely they have a dwell-time, which can also be modeled by

C X0 [I] with I = [τ , +∞).
We are now ready to state the observer problem of interest. Our goal is to design an observer assuming we know: 1) when the jumps of the system occur, 2) the outputs y c during flows and/or y d at jumps, 3) some information about the flow time between successive jumps of the type

C X0 [I], C av X0 [τ ], or C rav X0 [τ ]. Note that C X0 [R ≥0
] always holds, but as we will see later, it is convenient to have as precise information about the duration of flow between successive jumps as possible.

Example 2.2 A Lagrangian mechanical system with impacts is typically modeled as H with state x = (θ, ω) ∈ R d × R d capturing its (generalized) position and velocity, flow of the form f (x) = (ω, α(x)), jump map g translating the velocity discontinuity at the impact, D characterizing the impact condition and C = cl(R d \ D). A complete model is given in Section 7.1. If there is loss of energy at impacts, we typically know that for a bounded set of initial conditions X 0 , the time between impacts is bounded, so that C X0 [I] holds with I of the form I = [0, τ max ], with τ max > 0. This case does not exclude Zeno behavior close to the jump set D. On the other hand, we may know that solutions have a dwell-time, for instance if at least τ min > 0 amount of time is needed to flow from g(D) to D. Then, C X0 [I] holds with I of the form I = [τ min , +∞) or I = [τ min , τ max ]. In the particular case of a bouncing ball with gravity coefficient g > 0 and restitution coefficient λ > 0, modeled as H with

f (x) = (x 2 , -g) , g(x) = (-x 1 , -λx 2 ) (3) C = R ≥0 × R , D = {(x 1 , x 2 ) ∈ R 2 : x 1 = 0 , x 2 ≤ 0}
If λ < 1, any maximal solution x is Zeno, i.e., such that sup dom t x < +∞ and sup dom j x = +∞. The time between two successive jumps t j+1 (x)-t j (x) tends to zero when j tends to +∞, and its upper bound increases with |x(0, 0)|. So, if X 0 is bounded, C X0 [I] holds with I of the form I = [0, τ max ], with τ max < +∞ depending on X 0 .

If now λ > 1, any maximal solution initialized in R 2 \ {(0, 0)} is such that sup dom t x = +∞, sup dom j x = +∞. The time between two successive jumps t j+1 -t j (x) tends to +∞ when j tends to +∞, and its lower bound decreases with |x(0, 0)|. Therefore, if there exists δ > 0 such that X 0 ⊂ R n \ δB, C X0 [I] holds with I of the form I = [τ min , +∞), with τ min > 0 depending on X 0 .

Example 2.3 The important class of switched systems also falls in the framework of this paper with

x = x p q , f (x) = f q (x p ) 0 , g(x) = g q (x p ) Q C = q∈Q C q × {q} , D = q∈Q D q × {q} (4) 
where Q = {1, 2, . . . , q max } and the discrete signal q indicates the mode in which the system evolves. When x p is in D q and a jump occurs, the mode either stays the same or is "switched" to a new value in Q. The system then evolves according to the flow map f q and jump map g q , until q is switched to another value. Note that a way of forcing the mode to change at each jump is to take

g(x) = g q (x p ) Q \ {q}
. The switches are triggered by the state being in a certain region D q : it is a state-dependent switching. The switches can also be triggered by an external signal called switching signal, in which case the switches are said time-dependent. This case could also be modeled by (2) by making some assumptions about the time between successive switches, which can take the form of [START_REF] Liberzon | Switching in systems and control. Systems and Control: Foundations and Applications[END_REF]; [START_REF] Goebel | Hybrid Dynamical Systems : Modeling, Stability and Robustness[END_REF] for more detail. In this paper, we assume the switching times are known or detected. The output map is defined depending on the available information: known/unknown mode q, measurements of x p , etc. See Section 7.3.

C av X0 [τ ], C rav X0 [τ ], or C X0 [I]. See

Example 2.4

The proposed framework applies also to continuous-time systems

ẋp = f p (x p ) , y = h p (x p )
whose output y is only available at discrete times t j (hence h c (x) = ∅ in (5)), which do not necessarily occur periodically. Assuming we know bounds on the time elapsed between two successive sampling events, or more generally that it belongs to a closed bounded set I, namely C X0 [I] holds, such a system can be modeled by H with state x = (x p , τ ),

f (x) = (f p (x p ), 1) , g(x) = (x p , 0) (5) C = R dx p × [0, max I] , D = R dx p × I h c (x) = ∅ , h d (x) = (h p (x p ), τ )
where τ models the (known) time elapsed since the previous jump. For instance, I is a singleton in the case of periodic sampling [START_REF] Raff | Observers with impulsive dynamical behavior for linear and nonlinear continuous-time systems[END_REF] 

Problem Statement and Proposed Hybrid Observer

Since the jump times of the system are assumed to be known, it is natural to use an observer for (2) of the form

Ĥ ż ∈ F (z, y c ) when H flows z + ∈ G(z, y d ) when H jumps (6)
that is synchronized with the system, for some maps F : R dz × R dy c → R dz and G : R dz × R dy d → R dz to be designed such that z asymptotically enables to reconstruct the system state x, or part of it, as formalized next. Since the system and the observer jump simultaneously, the observer analysis and design can be carried out on the cascade system

H - Ĥ        ẋ ∈ f (x) ż ∈ F (z, h c (x)) (x, z) ∈ C × R dz x + ∈ g(x) z + ∈ G(z, h d (x)) (x, z) ∈ D × R dz (7) 
whose flow and jump map we denote

F(x, z) = (f (x), F (z, h c (x)) (8a) G(x, z) = (g(x), G(z, h d (x))) (8b)
The observer problem can then be reformulated as a stabilization problem of a set A ⊆ R dx × R dz , which depends on the observation goal. For instance, if we want to estimate the full state x, we can first try to take d z = d x and stabilize the zero estimation error set given by

A = (x, z) ∈ R dx × R dz : x = z , (9a) 
which is nothing but the diagonal. In that case, z directly provides an asymptotic estimate of x. But sometimes, as for continuous-time systems, we need to change coordinates, or add some degrees of freedom to design an observer, thus leading to d z ≥ d x and

A = (x, z) ∈ R dx × R dz : z = T (x) , (9b) 
for some map T : R dx → R dz . In that case, an estimate for x may be recovered from z by left-inversion of T if T is injective. We may also be interested in estimating only a part x p of the state x, in the context of switched systems for instance, or include in the observer state z extra states that are not directly functions of x, such as varying gains. This can be translated into an appropriate choice of A, i.e., more generally

A = (x, z) ∈ R dx × R dz : T (x, z) = 0 , (9c) 
for some map T : R dx × R dz → R p . The goal of this paper is finally to solve the following problem.

Problem (O) : Given a set of initial conditions X 0 ⊆ R dx , a closed subset A of R dx ×R dz as in ( 9), and assuming one of the conditions of Definition 2.1 holds, design maps F : R dz × R dy c → R dz and G : R dz × R dy d → R dz such that there exist a class-KL function β and a subset Z 0 of R dz such that for every φ = (x, z) ∈ S H-Ĥ(X 0 × Z 0 ), φ(t, j) A ≤ β φ(0, 0) A , t + j (10) for all (t, j) ∈ dom φ, namely A is uniformly preasymptotically stable (UpAS) for H -Ĥ with basin of attraction including X 0 × Z 0 .

Note that the set A should also ensure that x bounded and (x, z) A bounded =⇒ z bounded to guarantee from (10) that z cannot escape in finite time before x does. In other words, the observer solution is indeed defined as long as the system solution is. This is verified for A defined in (9a) or (9b) if T is continuous.

Remark 2.5 The implementation of the observer Ĥ requires a perfect jump synchronization with the system H. Unfortunately, the practical detection of the system jumps often involves measurements and transmission of information which might entail some delays in the triggering of the observer jumps. The robustness of the UpAS property of A given by Problem (O) with respect to delays is thus analyzed in Section 6.

Remark 2.6 We have restricted Problem (O) to sets A of the forms (9) in order to remain in the observation context, even though some results presented in this paper, such as Theorem 3.1 below, guarantee (10) for any choice of A. On the other hand, some of the results are restricted to specific forms of A defined in (9a) or (9b).

A General Sufficient Condition

The following theorem gives a first Lyapunov-based sufficient condition to solve Problem (O).

Theorem 3.1 Assume there exist scalars a c , a d ∈ R, class-K ∞ maps α, α, and a

C 1 map V : R dx × R dz → R verifying α (|(x, z)| A ) ≤ V (x, z) ∀(x, z) ∈ (C ∪ D ∪ g(D)) × R dz V (x, z) ≤ α (|(x, z)| A ) ∀(x, z) ∈ X 0 × Z 0 (11a) ∇V (x, z), F(x, z) ≤ a c V (x, z) ∀(x, z) ∈ C × R dz (11b) V (G(x, z)) ≤ e a d V (x, z) ∀(x, z) ∈ D × R dz (11c)
with F and G defined in (8). Then, Problem (O) is solved if any of the following conditions holds, referred to as conditions (C):

(C1a) a c < 0 and C X0 [I] holds with min I > a d |ac| . (C1b) a c < 0 and C av X0 [τ ] holds with τ > a d |ac| . (C2a) a d < 0 and C X0 [I] holds with a c sup I < |a d |. (C2b) a d < 0 and C rav X0 [τ ] holds with a c τ < |a d |.
PROOF. Let us assume either (C1a) or (C2a). Then C X0 [I] holds and the jumps occur according to a timer following the dynamics

τ = 1 τ ∈ [0, sup I] τ + = 0 τ ∈ I
For a ∈ R, the map V (x, z, τ ) := e aτ V (x, z) then verifies conditions of the type (11) with both a c = a c +a < 0 and C2a). It follows from (Goebel et al., 2012, Theorem 3.18) that Problem (O) is solved (See Remark 3.2 below).

a d < 0 if: 0 < a < |a c | is chosen such that a d = a d -a min I < 0 under (C1a); or a < 0 is chosen such that a c = a c + a < 0 and a d = a d -a sup I < 0 un- der ( 
Similarly, in case of a (reverse) average dwell-time with either (C1b) or (C2b), (Liberzon et al., 2014, Propositions IV.1 and IV.4) show how to modify V to obtain a Lyapunov function V which decreases both during flow and jumps. Under (C1b), denoting δ = 1 τ the jumps can be modeled by a timer

τ ∈ [0, δ ] τ ∈ [0, N 0 ] τ + = τ -1 τ ∈ [1, N 0 ] so that V (x, z, τ ) = e aτ V (x, z) with a ∈ (a d , |a c |τ ) is a strict Lyapunov function.
On the other hand, under (C2b), the jumps can be modeled by a timer

τ = 1 τ ∈ [0, N 0 δ ] τ + = max {0, τ -δ } τ ∈ [0, N 0 δ ] so that V (x, z, τ ) = e -aτ V (x, z) with a ∈ (a c , |a d |τ ) is a strict Lyapunov function.
Remark 3.2 In (Goebel et al., 2012, Theorem 3.18), Condition (11a) is strengthened into

α (|(x, z)| A ) ≤ V (x, z) ≤ α (|(x, z)| A ) ∀(x, z) ∈ (C ∪ D ∪ g(D)) × R dz (12)
for easiness of presentation but the upper inequality is only needed on the initial conditions in the proof. It turns out to be useful to relax it to (11a) in what follows.

Conditions (C) imply that in the case of a reverse average dwell-time or if 0 ∈ I, the innovation term in the discrete dynamics of the observer makes the error contract at jumps (a d < 0), due to possible Zeno solutions. Similarly in the case of average dwell-time or if sup I = +∞, then the innovation term in the continuous dynamics makes the error contract during flow (a c < 0). Finally, note that Theorem 3.1 allows the flow and jump maps of the system and of the observer to be set valued, and hence, is suitable for the design of observers for systems modeled by differential inclusions or by difference inclusions, for which not many tools are available in the literature.

Example 3.3 The case of linear flow/jump/output maps, where [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF]. We consider A defined in (9a) and

f (x) = A c x, g(x) = A d x, h c (x) = H c x, h d (x) = H d x, has been studied in
F (z, y c ) = A c z + L c (y c -H c z) (13a) G(z, y d ) = A d z + L d (y d -H d z) (13b) with L c ∈ R dx×dy c and L d ∈ R dx×dy d . Then, the con- ditions in (11) hold for a quadratic Lyapunov function V (x, z) = (x -z) P (x -z)
if there exist scalars a c and a d , and a positive definite symmetric matrix P ∈ R dx×dx such that

(A c -L c H c ) P + P (A c -L c H c ) ≤ a c P (14a) (A d -L d H d ) P (A d -L d H d ) ≤ e a d P (14b)
The problem of finding common quadratic Lyapunov functions for continuous-time (resp. discrete-time) systems has been studied in the context of switched systems and quadratic stabilization (see e.g. [START_REF] Liberzon | Common Lyapunov functions and gradient algorithms[END_REF]). But we are not aware of any result concerning the existence of a common quadratic Lyapunov function 

(A d -L d H d ) exp (Ac -LcHc)τ for A c = ( 0 1 0 0 ), A d = 5Ac, Hc = H d = (1, 0), with Lc (resp. L d ) chosen such that Ac -LcHc (resp. A d -L d H d ) is Hurwitz (resp. Schur).
for both continuous and discrete dynamics as in ( 14). 

A c P + P A c -( Lc H c + H c L c ) < 0 P (P A d -Ld H d ) P > 0 (15)
in (P, Lc , Ld ) and take L c = P -1 Lc and L d = P -1 Ld . This has been done in (Bernard and Sanfelice, 2018, Example 3.3) for a bouncing ball with a restitution coefficient λ < 1, and position measured at all (hybrid) times.

Remark 3.4 In the favorable case where both the flow and jump dynamics of H are detectable, it is not sufficient to choose independently a map F as a continuoustime observer of the flow and a map G as a discretetime observer of the jumps. Indeed, jumps could destroy what has been achieved during flow, or vice versa. For instance, with linear flow/jump/output maps, it is not

enough to choose L c , L d such that A c -L c H c is Hurwitz and A d -L d H d is Schur.
Actually, a necessary condition for convergence of the observer is that the error sampled at each jump converges to zero: this implies that the origin of the discrete system

ε k+1 = (A d -L d H d ) exp (A c -L c H c )τ k ε k has to be asymptotically stable for k → τ k ∈ I. If τ k = τ * ∈ I is constant, this is not verified for every choice of A d -L d H d Schur and A c -L c H c Hurwitz, as illustrated in Figure 1: (A d -L d H d ) exp (A c -L c H c )τ is Schur only if τ * / ∈ [0.1, 2].
To avoid this phenomenon, (11b) and (11c) should hold with the same Lyapunov function V .

A drawback of Theorem 3.1 is that design conditions on the observer flow and jump maps are coupled through a c and a d in conditions (C) and it is not clear how they can be solved in the general nonlinear context. Even in the linear case as in Example 3.3, the conditions are nonlinear, unless both a c and a d can be taken negative and ( 15) can be solved. In Sections 4 and 5, we show how this loop can be broken by using innovation only in flow or only at jumps, through high-gain in flows and by considering an equivalent discrete-time system at jumps.

Another drawback is that Theorem 3.1 requires at least a c or a d to be negative. Therefore, either the continuous or the discrete dynamics of H has to admit an observer and thus be detectable. But it could happen that neither the continuous nor the discrete dynamics is observable, and yet the system as a whole is indeed observable. An application featuring a hybrid system with such a property is given in Section 7.2. Another example is

       ẋ1 = x 2 ẋ2 = 0 ẋ3 = 0 ,        x + 1 = x 1 x + 2 = x 2 x + 3 = x 1 (16)
with some arbitrary, but nonempty flow and jump sets. Suppose

h c (x) = h d (x) = x 1 .
Neither the continuous nor the discrete dynamics is detectable, so Theorem 3.1 cannot apply. Nevertheless, this hybrid system as a whole is determinable if there is at least one interval of flow (providing x 2 ) and one jump (providing x 3 ). Actually, Section 5 will show that we should rather study an equivalent discrete-time system, containing both the continuous and discrete dynamics and providing insight for observer design.

Flow-based Hybrid Observer

When the continuous dynamics of H are detectable and persistent in the sense of an average dwell-time, it is tempting to use a continuous-time observer

ż = F (z, h c (x)) , x = Θ(z) (17)
during flow, and simply copy the discrete dynamics of H in the jump map of the observer. Indeed, intuitively, if the estimation error decreases more during flow than it increases at jumps, namely, if the continuous-time observer ( 17) is sufficiently fast, the error is expected to converge to zero asymptotically. We thus need persistence of flow, namely a dwell-time condition of the type C X0 [I] with min I > 0, or more generally an average dwell-time condition C av X0 [τ ]. In this section, we give conditions under which such a design works.

Sufficiently Large Average Dwell-time

The first thing to notice is that if the map F given by the continuous-time observer ( 17) verifies (11a)-(11b) with a c < 0 and if G is chosen such that (11c) holds for some a d ∈ R, then Problem (O) is solved if the average dwell time (ADT) is sufficiently large to satisfy (C1b). This result is standard in the literature of switched systems as reviewed in Section 7.3. Of course, if V does not increase at jumps, namely

V (G(x, z)) ≤ V (x, z) ∀(x, z) ∈ D × R dz ,
(11c) holds with a d = 0. This is related to the notion of non-expansiveness of V for g in [START_REF] Hespanha | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]. Actually, if (11a) is strengthened into (12) and if the observer jump map G is such that

|G(x, z)| A ≤ κ (|(x, z)| A ) ∀(x, z) ∈ D × R dz (18a) α • κ • α -1 ≤ c Id (18b)
for some positive scalar c and some class-K ∞ map κ, then (11c) automatically holds with a d = ln(c). For instance, in the case where d z = d x and A is simply the diagonal set (9a), a map G satisfying (18a) is a simple copy of the system jump map g, namely,

G(z, y d ) = g(z) , (19) 
if g is single-valued and κ-continuous, namely,

|g(x) -g(x)| ≤ κ(|x -x|) ∀(x, x) ∈ D × R dx . ( 20 
)
In particular, if g is Lipschitz with Lipschitz constant k G and V is quadratic with α = λ(•) 2 and α = λ(•) 2 , then Problem (O) is solved if the ADT is larger than

1 |ac| ln λ(P ) λ(P ) k 2 G .
Such a lower-bound for the ADT can also be found in the literature of switched systems (see Section 7.3 for a complete review). Note that if g is only locally Lipschitz and any system solution x ∈ S H (X 0 ) remains in a compact set X , it is enough to guarantee (20) on (D ∩ X ) × R dx by taking

G(z, y d ) = sat(g(z)) ( 21 
)
where sat is a saturation map active outside of g(X ).

However, apart from switched systems where the switching signal may be a controlled input, the ADT property cannot be imposed or controlled for a general hybrid system due to the state-dependence of the jumps. Therefore, the ADT (if it exists) is a property of the system and cannot be made "sufficiently fast." When the flow/jump/output maps are linear, this problem is overcome in [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF]; [START_REF] Ríos | State estimation for linear hybrid systems with periodic jumps and unknown inputs[END_REF] by using ( 13) with L d = 0 and L c such that there exists P = P > 0 solution to

(A c -L c H c ) P + P (A c -L c H c ) ≤ a c P (22a) A d P A d ≤ e a d P (22b) a c τ + a d < 0 (22c)
with a c < 0. However existence of a solution to ( 22) is a priori not guaranteed, and more importantly, this method is not viable for general nonlinear systems.

Arbitrary Average Dwell-time

Another way to satisfy (C1a) or ( C1b) is to choose a sufficiently fast continuous-time observer (17); i.e., satisfying (11a)-( 11b) with |a c | sufficiently large. This tunability property requires the continuous dynamics to be instantaneously observable [START_REF] Andrieu | Observability necessary conditions for the existence of observers[END_REF]. However, increasing a c may require to change V , which in turns, modifies a d . The following corollary shows that this compromise can be achieved for "high-gain observers."

Corollary 4.1 Assume X 0 is compact and the average dwell-time condition C av X0 [τ ] holds for some τ > 0. Suppose also there exist λ > 0, 0 > 0, rational functions c and c, a continuous map T : R dx → R dz , and for all > 0 , a map

F : R dz × R dy → R dz and a C 1 map V : R dx × R dz → R such that c( )|z -T (x)| 2 ≤ V (x, z) ≤ c( )|z -T (x)| 2 ∀(x, z) ∈ (C ∪ D ∪ g(D)) × R dz (23a) ∇V (x, z), F (x, z) ≤ -λ V (x, z) ∀(x, z) ∈ C × R dz (23b) with F (x, z) = (f (x), F (z, h c (x)).
Then, for any compact set Z 0 ⊂ R dz , there exists * ≥ 0 such that for all > * , Problem (O) is solved with A defined in (9b), F := F , and any map G : R dz × R dy d → R dz , Lipschitz with respect to z (uniformly in

y d ∈ h d (D)), verifying G (T (x), h d (x)) = T • g(x) ∀x ∈ D . (23c) 
Note that the subscript highlights the dependency of V and F with respect to the gain describing the decay rate in (23b), which can be chosen as large as necessary.

PROOF. Consider a compact set Z 0 ⊂ R dz . First, by definition of A in (9b), |(x, z)| A ≤ |z -T (x)| for all (x, z) ∈ R dx ×R dz , and by (uniform) continuity of T , be- cause X 0 × Z 0 is compact, there exists a class-K ∞ map α such that |z -T (x)| ≤ α(|(x, z)| A ) on X 0 × Z 0 .
Therefore, (23a) implies (11a) for all > 0 . In addition, (23b) implies (11b) with a c = -λ. Then, from the definition of G in (8b) and from (23a),(23c), for all (x, z) ∈ D×R dz ,

V (G(x, z)) ≤ c( ) |G(z, h d (x)) -T (g(x))| 2 ≤ c( ) |G(z, h d (x)) -G(T (x), h d (x))| 2 ≤ c( )k 2 G |z -T (x)| 2 ≤ c( ) c( ) k 2 G V (x, z)
where k G is the Lipschitz constant of G with respect to z. Therefore, (11c) holds for all > 0 with In other words, if we know a high-gain continuous-time observer for the continuous dynamics of H, verifying (23a)-( 23b), then a possible hybrid observer is made of this continuous-time observer and a copy of the jump dynamics (written in the high-gain coordinates z = T (x), i.e. verifying (23c)), with a gain sufficiently large compared to the average dwell-time and the Lipschitz constant of the jump dynamics. Compared to [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF]; [START_REF] Ríos | State estimation for linear hybrid systems with periodic jumps and unknown inputs[END_REF], this result guarantees the existence of a solution to (22) in the context of linear maps and provides a constructive way to compute it as detailed in Example 4.2, which also extends to nonlinear jump maps. More importantly, the result applies to general nonlinear flow/jump/output maps with strongly differentially observable flow dynamics as detailed in Example 4.3.

a d = ln k 2 G c( ) c 
Example 4.2 Assume f (x) = A c x and h c (x) = H c x with the pair (A c , H c ) observable. The eigenvalues of the observer can then be assigned arbitrarily fast. For that, we define V ∈ R dx×dx a change of coordinates transforming (A c , H c ) into a block-diagonal observable form, namely such that

VA c V -1 = A + DH , H c V -1 = H with A := blkdiag(A 1 , . . . , A dy c ) , D := blkdiag(D 1 , . . . , D dy c ) H := blkdiag(H 1 , . . . , H dy c ) , D i ∈ R di×1 , A i ∈ R di×di , H i ∈ R 1×di of shape A i =     0 0 . . . . . . 0 1 0 0 . . . . . . . . . . . . 0 1 0 0 0 . . . 0 1 0     , H i = (0 . . . 0 1) ,
and d i integers such that d i = d x . Consider vectors K i such that A i -K i H i is Hurwitz, and for a positive scalar , define L i ( ) := diag( di-1 , . . . , , 1). Then, let us take F defined by (13a) with

L c = V -1 (D + L( )K) (24) 
K := blkdiag(K 1 , . . . , K dy c ), L := blkdiag(L 1 , . . . , L dy c ).

We thus have

eig(A c -L c H c ) = eig(A -KH) .
Consider a positive definite matrix P ∈ R dx×dx such that

(A -KH) P + P (A -KH) ≤ -λP
for some λ > 0. Then, (23a)-( 23b) hold with T = Id,

V (x, z) = (x -z) V L( ) -1 P L( ) -1 V (x -z) , c( ) = λ(V P V) 2(d-1)
, c( ) = λ(V P V) 

where d = max d i .
T (x) = (h c (x), L f h c (x), ..., L dz-1 f h c (x)) ( 25 
)
is C 1 and an injective immersion on C ∪ D. Assume also there exists a Lipschitz map Φ : R dz → R verifying

Φ(T (x)) = L dz f h(x) ∀x ∈ C ∪ D .
This is guaranteed, in particular, if any x ∈ S H (X 0 ) evolves in a compact set X ⊆ C ∪ D, since there exists a Lipschitz map Θ : R dz → R dx such that

Θ(T (x)) = x ∀x ∈ X ,
and Φ can simply be chosen as Φ = sat •L dz f • Θ where sat saturates outside of L dz f (X ). Then, following Khalil and Praly (2013), a high-gain observer can be built for the flow dynamics, defined by

F (z, y c ) = A z + BΦ(z) + L( )K(y c -z 1 ) , A =       0 1 . . . 0 0 0 1 . . . . . . . . . . . . . . . 0 1 0 . . . . . . 0 0       ∈ R dz , B =    0 . . . 0 1    ∈ R dz , L( ) = diag(1, , 2 , .
. . , dz-1 ), and K such that A-KH is Hurwitz with H = (1, 0, . . . , 0). Classical high-gain computations show that conditions (23a) and (23b) then hold for the Lyapunov function

V (x, z) = (T (x) -z) L( ) -1 P L( ) -1 (T (x) -z) ,
with P a positive definite matrix such that (A -KH) P + P (A -KH) ≤ -λ 0 P for some λ 0 > 0, c( ) = λ(P ) 2(dz -1) , c( ) = λ(P ), λ > 0 depending on λ 0 and on the Lipschitz constant of Φ, and larger than a threshold 0 also depending on that Lipschitz constant. Selecting G Lipschitz verifying (23c), finally provides an observer relative to A defined in (9b), if the gain is sufficiently large according to Corollary 4.1. In particular, if any x ∈ S H (X 0 ) evolves in a compact set

X , we can choose G(z, y d ) = sat •T • g • Θ(z)
where sat saturates outside of T • g(D), and an estimate of x is obtained by x = Θ(z). This design is illustrated in Sections 7.1 and 7.2. Note that the same tools can be used for other (multi-output) triangular normal forms, as long as the nonlinearities are Lipschitz (see for instance [START_REF] Hammouri | High gain observer for structured multi-output nonlinear systems[END_REF]).

Jump-based Hybrid Observer

We now consider the case where the output is used to create contraction of the Lyapunov function at jump times, namely we exploit y d instead of y c . Without natural contraction in the continuous dynamics of H, we thus need the jumps to be persistent and sufficiently frequent to inject sufficient information in the observer, i.e., a reverse dwell-time condition C rav X0 [τ ] or bounded flow length modeled by C X0 [I] with I bounded.

Sufficiently Small Reverse Dwell-time

Similarly to the previous section, we can start by noting that when the discrete dynamics of H admit a discretetime observer verifying (11a) and (11c) with a d < 0, we may choose F such that (11b) holds for some a c ∈ R and Problem (O) will then be solved if a d is sufficiently negative with respect to a c and to the maximal amount of flow; or equivalently, if the jumps are sufficiently frequent, i.e. either if max I is sufficiently small to satisfy (C2a), or the rADT is sufficiently small to satisfy (C2b). When f is single valued and A defined as in (9a), one may choose F single-valued so that

|f (x) -F (z, h c (x))| ≤ c |x -z| ∀(x, z) ∈ C × R dz
for some scalar c. For instance, if x ∈ S H (X 0 ) evolves in a compact set X and f is locally Lipschitz, one may simply take F (z, y c ) = sat(f (z)), where sat saturates outside of f (X ). In other words, F is simply a flow predictor.

However, again, this method has an interest only when the jumps are naturally sufficiently frequent (Zeno solutions) or can be made so (switching systems). Otherwise, we need to take explicitly into account the potential increase of V during flow, to ensure the conditions ( 11) and (C2b) hold simultaneously. When the flow/jump/output maps are linear, one may choose F and G as in ( 13) with L c = 0 and L d such that there exists P positive definite solution to

A c P + P A c ≤ a c P (26a) (A d -L d H d ) P (A d -L d H d ) ≤ e a d P (26b) a c τ + a d < 0 (26c)
for some a c ∈ R and a d < 0 as in [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF]; [START_REF] Ríos | State estimation for linear hybrid systems with periodic jumps and unknown inputs[END_REF], where τ denotes the rADT or the maximal length of flow. In particular, (Bernard and Sanfelice, 2018, Example 4.2) shows that it can be done analytically for a bouncing ball exhibiting Zeno trajectories, and with the position only measured at jumps. In this case, τ represents a known bound on the length of the flow intervals, which depends on the compact set of initial conditions. The presence of Zeno solutions is therefore not problematic to the observer design as long as it is properly taken into account through a rADT or with 0 ∈ I.

As noticed in [START_REF] Etienne | Observer synthesis under time-varying sampling for Lipschitz nonlinear systems[END_REF] in the context of sampled systems (A d = I), this design is extendable to particular classes of nonlinear continuous dynamics for which f is included in the convex hull of a finite number of linear maps. The LMI (26a) must then hold for each of those maps. Furthermore, [START_REF] Etienne | Observer synthesis under time-varying sampling for Lipschitz nonlinear systems[END_REF] shows that (26) might be relaxed by allowing P and L d to depend on the length τ of the flow intervals in a way that ensures contraction during both flows and jumps. But this requires the feasibility of some LMIs that are not clearly related to observability.

In any case, the methods mentioned in this section require the detectability of the discrete dynamics of H and a sufficient contraction of the error at jumps. When either the discrete dynamics are not detectable, or the coupling between flows and jumps makes the matrix inequalities not feasible, we show in the next section that we should rather analyze an equivalent discrete-time system made of the system sampled at the jump times, which naturally contains the information of both flows and jumps.

Arbitrary Reverse Dwell-Time

We now assume the jumps are persistent, i.e. C X0 [I] holds with I compact, but without any constraint on the upper bound of I. We also suppose that maximal solutions of ẋ ∈ f (x) are defined on R ≥0 and we denote Ψ f the flow operator alongside f , i.e, Ψ f (x 0 , τ ) denotes the set of points that can be reached at time τ by solutions to ẋ ∈ f (x) initialized at x 0 at τ = 0.

Consider a system solution x ∈ S H (X 0 ) and notice that x k := x(t k , k) sampled after each jump and the output y k := h d (x(t k , k -1)) obtained before each jump verify

x k+1 ∈ g(Ψ f (x k , τ k )) , y k ∈ h d (Ψ f (x k , τ k )) (27)
where τ k = t k+1 -t k denotes the length of the kth flow interval, k ∈ N >0 . It follows that with the discrete output y d obtained right before each jump, we are actually observing the discrete-time system (27). It is therefore the observability/determinability of ( 27) that counts, and we must look for F and G making A of Problem (O) UpAS for the reduced discrete-time system

x k+1 ∈ g(Ψ f (x k , τ k )) z k+1 ∈ G(Ψ F (z k , τ k ), h d (Ψ f (x k , τ k )))
or equivalently

(x k+1 , z k+1 ) ∈ G • Ψ F ((x k , z k ), τ k ) , (28) 
with F and G defined in (8). Indeed, the following theorem shows that it is sufficient to prove UpAS of A for (28) with sequences (τ k ) ∈ I N to solve Problem (O) (see (30) below). But because the first interval of flow t 1 ∈ [0, max I] is not necessarily in I, the system ( 28) with (τ k ) ∈ I N only captures the behavior of solutions after hybrid time (t 1 , 1). Hence, we need to consider (28) initialized in a superset

X 0 × Z 0 of X 0 × Z 0 such that G • Ψ F (X 0 × Z 0 , τ 0 ) ⊆ X 0 × Z 0 ∀τ 0 ∈ [0, max I] .
In addition, because (28) only describes solutions at discrete times (t k , k), we need a regularity property of solutions during flow (see (31) below).

Theorem 5.1 Assume that C X0 [I] holds with I compact and maximal solutions to ( ẋ, ż) ∈ F(x, z) are defined on R ≥0 . Suppose the following properties hold.

1. There exists a class-K function ρ 0 such that for all

(x 0 , z 0 , τ 0 ) ∈ X 0 × Z 0 × [0, max I], |G • Ψ F ((x 0 , z 0 ), τ 0 )| A ≤ ρ 0 (|(x 0 , z 0 )| A ) . ( 29 
)
2. There exist a class-KL function β and a superset X × Z of X 0 × Z 0 such that any solution (x, z) to (28) initialized to (x 1 , z 1 ) ∈ X 0 × Z 0 and with input k → τ k ∈ I, remains in X × Z and verifies

(x k , z k ) A ≤ β (x 1 , z 1 ) A , k ∀k ∈ N >0 . ( 30 
)
3. There exists a class-K function ρ such that for all (x 0 , z 0 ) ∈ X × Z and for all τ ∈ [0, max I],

|Ψ F ((x 0 , z 0 ), τ )| A ≤ ρ (|(x 0 , z 0 )| A ) . (31) 
Then, Problem (O) is solved.

PROOF. Consider φ = (x, z) ∈ S H-Ĥ(X 0 × Z 0 ). Denote J := sup dom j φ and τ max := max I. The discrete trajectory φ = (x, z) : dom j φ → R dx × R dz defined by φk = φ(t k , k) verifies ( 28) with input τ defined by τ k = t k+1 -t k , for all k ∈ dom j φ \ {J}. It follows from C X0 [I] that τ 0 ≤ τ max , and τ k ∈ I for all k ∈ N >0 if J = +∞ and for all k ∈ {1, . . . , J -1} otherwise. Therefore, φ1 ∈ X 0 × Z 0 , φk ∈ X × Z for all k from item 2., and according to ( 29),( 30), for all k ∈ dom j φ ≥ 1,

|φ(t k , k)| A ≤ β(|φ(t 1 , 1)| A , k) ≤ β ρ 0 (|φ(0, 0)| A ), k .
This latter inequality still holds for k = 0, by redefining β so that β(ρ 0 (s), 0) ≥ s. Then, by C X0 [I], for all (t, j) ∈ dom φ, t -t j ∈ [0, τ max ] and from (31),

|φ(t, j)| A ≤ ρ (|φ(t j , j)| A ) ≤ ρ β ρ 0 (|φ(0, 0)| A ), j .
Besides, for all (t, j) ∈ dom φ, t -t j ≤ τ max and t jt j-1 ≤ τ max for j ≥ 1, so that t j ≤ τ max j and t ≤ τ max (j + 1). Thus, The condition (31) guarantees that the distance of (x, z) to A during flow is continuous on the compact interval [0, max I] with respect to the initial distance to A. If A is defined by (9a) and f = F is locally Lipschitz, this regularity property is always satisfied when X and Z are compact.

|φ
It is important to note that Ψ f and Ψ F need not be computed for the implementation of the observer (6) : they are only used in the analysis in order to design the maps F and G to be used in (6). Although the reduced system (28) may not be handier to use for design than (7), it helps to understand the observability conditions that are at stake here. In addition, when f is linear, i.e.

f (x) = A c x, we can choose F (z) = A c z, so that Ψ f (x k , τ k ) = exp(A c τ k )x k , Ψ F (z k , τ k ) = exp(A c τ k )z k
and (31) immediately holds for A defined in (9a).

When both g and f are linear, we obtain a constructive sufficient condition that is weaker than (26).

Corollary 5.2 Assume that C X0 [I] holds with I compact and f, g, h d are linear defined by f (x) = A c x, g(x) = A d x and h d (x) = H d x. Assume there exist a positive definite matrix P ∈ R dx×dx and a gain vector

L d ∈ R dx×dy d such that (exp(A c τ )) (A d -L d H d ) P (A d -L d H d ) exp(A c τ ) < P ∀τ ∈ I . (32)
Then, F and G defined in (13) with L c = 0, solve Problem (O) with A defined in (9a).

PROOF. Follows from Theorem 5.1 using the Lyapunov function V (x, z) = (x-z) P (x-z) since e = z-x in ( 28) verifies

e k+1 = (A d -L d H d ) exp(A c τ k )e k .
Remark 5.3 We say that (32) is weaker than (26) because (26) implies (32). Indeed, denoting It follows that for all τ ≥ 0, f ε (τ ) ≤ e acτ f ε (0) and since this is valid for all e in R n , we get (exp(A c τ )) P exp(A c τ ) ≤ e acτ P and f (τ ) ≤ e acτ +a d P < P with (26c).

f (τ ) = (exp(A c τ )) (A d -L d H d ) P (A d -L d H d ) exp(A c τ ), (26b) implies that f (τ ) ≤ e a d (exp(A c τ )) P exp(A c τ ). Define the function f ε : R → R by f ε (τ ) = ε (exp(A c τ )) P exp(A c τ )ε With ( 
The existence of the matrix P verifying (32) for a given τ is equivalent to (A d -L d H d ) exp(A c τ ) being Schur for some gain L d , which in turn is equivalent to the detectability of the discrete-time system

x k+1 = A d exp(A c τ )x k , y k = H d exp(A c τ )x k . (33)
Thus, having (32) for any τ ∈ I requires detectability of (33) for any τ ∈ I. It is not sufficient, however, because (32) must be verified with the same L d and P for all τ ∈ I. So (32) requires in fact the detectability of the LTV or LPV discrete-time system

x k+1 = A d exp(A c τ k )x k , y k = H d exp(A c τ k )x k (34)
with input τ k in the compact set I, which is exactly (27). Actually, ( 32) is stronger because it requires a quadratic Lyapunov function with a matrix P , that is independent from the sequence k → τ k . This property is sometimes called "quadratic detectability" (see [START_REF] Wu | Control of linear parameter varying systems[END_REF]; [START_REF] Halimi | Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics[END_REF]; [START_REF] Bernussou | Quadratic stabilizability and decentralized control[END_REF]).

Remark 

P M i (P A d -Ld H d ) P > 0 ∀i ∈ {1, 2, . . . , ν} (36 
) with common P and Ld . An example is given in Section 7.1. In a simpler case where A c is nilpotent of order N , we have exp( , and H d = ( 1 0 0 ). Neither the continuous pair (A c , H c ) nor the discrete pair (A d , H d ) is detectable, so Theorem 3.1 cannot be used. However, the pair A(τ

A c τ ) = N -1 k=0 τ k k! A k c so that for all τ in a compact subset I of R ≥0 , exp(A c τ ) is in the convex hull of the ν = 2 N -1 matrices I + N -1 k=1 τ k k k! A k
) := A d exp(A c τ ) = 1 τ 0 0 1 0 1 τ 0 , H(τ ) := H d exp(A c τ ) = ( 1 τ 0
) is detectable for any nonzero τ . Since A c is nilpotent of order 2, according to Remark 5.4, for any I compact subset of R >0 , it is enough to solve the two LMIs given by

P (I + τ A c ) (P A d -LC) P > 0 ( 37 
)
for τ = τ min := min I > 0 and τ = τ max := max I. If they are solvable (with a common P ), then by Corollary 5.2, we obtain an observer. For instance, when choosing τ min = 2 and τ max = 5 and solving the LMIs via Yalmip for P and Ld , we get L d = P Ld = (1, 0.2259, 1) .

What makes the approach of Remark 5.4 work is the fact that the flow operator of the error e = x -x is contained in the convex hull of a finite number of linear maps. In the context of sampled nonlinear systems, [START_REF] Andrieu | Observer design for Lipschitz systems with discrete-time measurements[END_REF]; [START_REF] Dinh | Continuous-discrete time observer design for Lipschitz systems with sampled measurements[END_REF] noticed that by copying the continuous dynamics in the observer, namely taking F = f , the error components evolve during flow according to

ėi = f i (x) -f i (x) = df i dx (v(t))e
for some v depending on x and x, thanks to the mean value theorem. For certain classes of maps f Dinh et al. ( 2015), the error reachable set within a time τ ∈ I may then be included in the convex hull of a finite number of linear maps {e → M i e} i=1,..ν if the Jacobian components of f are bounded. If g is linear, the discrete error system in Corollary 5.2 is then replaced by

e k+1 = ν i=1 β i,k (A d -L d H d )M i e k
with ν i=1 β i,k = 1, and following the same steps as in [START_REF] Andrieu | Observer design for Lipschitz systems with discrete-time measurements[END_REF] with the Lyapunov function of Corollary 5.2, it is enough to ensure (32) with exp(A c τ ) replaced by M i , for each i ∈ {1, 2, . . . ν}, namely solve the LMIs (36).

The advantage of using a constant gain L d is that it is sufficient to compute only once the vertices M i of the polytopic decomposition of the flow operator for τ ∈ I and solve offline the finite number of LMIs (36). However, as mentioned above, those LMIs might not be solvable since they require a stronger property than detectability of (34). In that case, we may allow L d to be timevarying, by adapting L d to τ k , as done in the particular case of sampled-data observers in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF]. Indeed, observe that the observer jump map G in ( 28) is applied after flowing τ k units of time with F . Therefore, at the moment where G is used, τ k represents the time elapsed since the previous jump and is known to the observer. This can be modeled in our framework with a timer τ added to the observer state, where τ flows according to τ = 1 and jumps according to τ + = 0. It follows that at each jump, the gain L d in the jump map G defined in Corollary 5.2 can be adapted to the length of the previous interval of flow, in a way that makes

xk+1 = A(τ k )x k + L d,k (y k -H(τ k )x k ) ( 38 
)
an observer for (34), where

A(τ k ) = A d exp(A c τ k ) , H(τ k ) = H d exp(A c τ k ) . ( 39 
)
Since H is not constant, we cannot directly use the results obtained for LPV systems [START_REF] Halimi | Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics[END_REF]). However, an even simpler approach is to consider (34) as a LTV system and design L d,k as the gain of a discrete Kalman filter. More precisely, we use an observer with state z = (x, τ, K, P ), flow dynamics

F (z) = (A c x , 1 , 0 , 0) and jump dynamics G(z, y d ) =    A d x + A(τ )K(y d -H d x) 0 χ(P, τ ) I -χ(P, τ )H(τ ) p(P, τ )    (40)
where the maps p and χ are defined by

p(P, τ ) = A(τ )P A(τ ) + Q χ(P, τ ) = p(P, τ )H(τ ) H(τ )p(P, τ )H(τ ) + R -1
for some positive definite matrices Q and R and with A(τ ), H(τ ) defined in (39). It is important to note that the innovation of xk+1 in (38) must use y k , instead of y k+1 as in a standard Kalman filter. That is why we use in ( 40) a Kalman filter with prediction after innovation, where the gain writes L d = A(τ )K with K the Kalman gain computed at the previous jump.

In the same spirit, one may note that if ( 34) is known to be observable after N jumps, [START_REF] Medina | State estimation for linear impulsive systems[END_REF] proposed to compute L d,k based on the weighted observability Grammian over the past N jumps.

Robustness with Respect to Delays in Jumps

We now study how the observer convergence is impacted if the jumps of the observer are delayed with respect to those of the system, thus leading to a mismatch between the observer jump times and those of the system. For this, we start from the following assumption.

Assumption 6.1 C X0 [I] holds with I compact, min I > 0 (dwell-time), and Problem (O) has been solved, namely the set A is UpAS for H -Ĥ with basin of attraction including X 0 × Z 0 .

We choose to study the particular case where the value of the innovation term, implemented in the observer at the delayed jump is the one that would have been computed at the actual jump time of the system if there had been no delay. This covers the situations where the measurement and computation of the innovation G(z, y d ) are instantaneous, but the implementation of the jump in the observer is delayed; or the measurement takes a known amount of time δ ≥ 0 to arrive to the observer, and the update of z is chosen as G(z(t -δ, j), y d ), thanks to a buffer in z or by backward integration of z. Inspired from [START_REF] Altin | Hybrid systems with delayed jumps: Asymptotic stability via robustness and Lyapunov conditions[END_REF], for any delay ∆ ∈ [0, min I), this situation can be modeled as

Ĥ(∆)                                    ẋ ∈ f (x) ż ∈ F (z, h c (x)) μ = 0 τδ = -min{τ δ + 1 , 1}      x ∈ Ĉ(∆) x + ∈ g(x) z + = z µ + ∈ G(z, h d (x)) τ + δ ∈ [0, ∆]     
x ∈ D-1 (∆)

x + = x, µ + = 0 , z + = µ, τ + δ = -1, x ∈ D0 (∆) (41) 
with state x = (x, z, µ, τ δ ), flow set

Ĉ(∆) = Ĉ × {0} × {-1} ∪ Ĉ × R dz × [0, ∆] , jump set D-1 (∆) ∪ D0 (∆) with D-1 (∆) = D×{0}×{-1} , D0 (∆) = ( Ĉ∪ D)×R dz ×{0} Ĉ := C × R dz , D := D × R dz .
System Ĥ(∆) contains two new states µ and τ δ evolving in R dz and [0, ∆] ∪ {-1} respectively. The state τ δ is a timer modeling the delay between the jumps of the system and of the observer. The role of µ is to store the update to be implemented in the observer at the end of the delay interval, when it actually jumps. More precisely, when τ δ = -1 and x does not jump, Ĥ(∆) flows, with (x, z) flowing according to F as in H -Ĥ, while µ and τ δ remain equal to 0 and -1 respectively. When the system state x jumps, then the update in G(z, h d (x)) that should have been instantaneously implemented in the observer state z is stored in the memory state µ, and τ δ is set to a number in [0, ∆] thus starting a delay period: Ĥ(∆) then flows and the time τ δ decreases, until it reaches 0. At this point, a delay interval of length smaller than or equal to ∆ has elapsed, and the observer state z is updated with the content of µ, while µ is reset to 0 and τ δ switched back to -1.

Note that the system state x is not allowed to jump again before the delay expressed by τ δ has expired. That is why this model only works in the case where ∆ < min I, i.e., the maximal delay is smaller than the smallest possible time between successive jumps of the system.

In order to study the robustness of this property in presence of delay, we need to resort to compact attractors and some regularity properties of H -Ĥ.

Assumption 6.2 There exists a compact subset X of C ∪ D, such that any solution x ∈ S H (X 0 ) remains in X . In addition,

A X := A ∩ (X × R dz ) is compact.
Assumption 6.3 The interconnection H -Ĥ defined in (7) satisfies the hybrid basic conditions defined in (Goebel et al., 2012, Assumption 6.5) It follows that the system solutions from X 0 are also solution to (2) with flow set C ∩ X and jump set D ∩ X , which are compact. The assumption that A X is compact is satisfied for A defined in (9b) if T is continuous, namely in all the examples considered above.

Let us define the sets

A := A X × {0} × {-1} ∪ G × {0} G := (η x , z, η z ) : η x ∈ g(x) , η z ∈ G(z, h d (x))
x ∈ D , (x, z) ∈ A X .

Theorem 6.4 Suppose Assumptions 6.1, 6.2 and 6.3 hold. Then, A is UpAS for Ĥ(0) with basin of attraction containing X 0 × Z 0 × {0} × {-1}. In addition, there exist a class-KL map β, scalars t ≥ 0 and j ∈ N, and for any > 0, there exists ∆ * > 0, such that any solution

φ = (x, z, µ, τ δ ) to Ĥ(∆) with ∆ < ∆ * and initialized in X 0 × Z 0 × {0} × {-1} verifies |φ(t, j)| A ≤ β(|φ(0, 0)| A , t + j) + , (42) 
and (x, z)(t, j) A ≤ 2 for all (t, j) ≥ (t , j ) such that τ δ (t, j) = -1.

PROOF. Take a solution φ δ = (x, z, µ, τ δ ) to Ĥ(∆) for some ∆ ∈ [0, min I) with (x, z)(0, 0) ∈ X 0 × Z 0 . Observe that the component x is not impacted by the delay mechanism, therefore, from Assumption 6.2, x(t, j) ∈ X for all (t, j) ∈ dom x. It follows that φ δ is solution to a hybrid system ĤX (∆) which has the same dynamics as Ĥ(∆) but with flow set ĈX (∆) := Ĉ(∆) ∩ (X × R 2dz+1 ) and jump set DX (∆) := D(∆) ∩ (X × R 2dz+1 ). In the framework of [START_REF] Altin | Hybrid systems with delayed jumps: Asymptotic stability via robustness and Lyapunov conditions[END_REF], ĤX (∆) is then the delayed version of the nominal observer H -Ĥ with flow set ĈX = (C ∩ X ) × R dz , and jump set DX = (D ∩ X ) × R dz . By Assumption 6.1 (and by containment (Goebel et al., 2012, Theorem 3.32)), the set A X (that is compact according to Assumption 6.2) is still UpAS for this modified system. With the hybrid basic conditions in Assumption 6.3, we conclude from (Altin and Sanfelice, 2020, Proposition 4.3, Remark 4.4) that the set A is UpAS for ĤX (0) with basin of attraction containing X 0 × Z 0 × {0} × {-1}. G is compact by outersemicontinuity and local boundedness of g and G. A is therefore compact. Still from the hybrid basic conditions, A is thus semi-globally practically robustly KL asymptotically stable for ĤX (0) according to (Goebel et al., 2012, Lemma 7.20). This means that there exists a KL function β such that for any > 0, there exists ρ > 0 such that any solution φ to a ρ-perturbation of ĤX (0) initialized in X 0 × Z 0 × {0} × {-1}, verifies (42).

Since ĤX (∆) can be included in any outer-perturbation of ĤX (0) by taking ∆ sufficiently small, (42) holds along solutions of ĤX (∆) for ∆ sufficiently small. Now for sufficiently small and for sufficiently large (t, j) (depending only on β and the compact set of initial conditions), |φ(t, j)| A = |φ(t, j)| A -1 when τ δ = -1, and thus

|(x, z)(t, j)| A ≤ |φ(t, j)| A ≤ 2 .
In other words, we achieve semi-global practical stability of A except possibly on the delay intervals. More precisely, for any > 0, there exists a maximal delay ∆ * between the jumps of the system and of the observer, such that the distance of (x, z) to A is asymptotically smaller than 2 , except possibly during the delay intervals in-between those jumps, of length smaller than ∆ * . This is illustrated in Section 7.2.

In fact, if A is the diagonal set (9a), the mismatch during the delay intervals cannot be prevented if the jump map is not the identity. Indeed, after one jump of either x or z, one is close to x -while the other is in g(x -), no matter how short the delay is. This well-known phenomenon, called peaking, was reported in the context of observation in [START_REF] Forni | Follow the bouncing ball : global results on tracking and state estimation with impacts[END_REF], but also more generally output-feedback and tracking in [START_REF] Biemond | Tracking control for hybrid systems with state-triggered jumps[END_REF]. This suggests that the Euclidian distance to evaluate the observer error is not appropriate and more general distances could be designed (see [START_REF] Biemond | Distance function design and Lyapunov techniques for the stability of hybrid trajectories[END_REF]). In particular, the expression of A shows that semi-global practical stability is ensured for the peaking free set

à = A∪ (x, z) ∈ R dx ×R dz : x ∈ g(x -) , (x -, z) ∈ A .
Note that in the limit case where min I = 0, namely Zeno solutions could exist, then an arbitrarily small delay in the observer jumps could lead to several jumps of delay, namely, one would need to consider

à = A∪ (x, z) ∈ R dx ×R dz : x ∈ g k * (x -) , (x -, z) ∈ A g k (x -) ∩ D = ∅ ∀k ∈ {1, • • • , k * -1} .
With an average dwell-time, k * would be limited by N 0 .

Applications

The results in the previous sections are exercised in applications. Section 7.1 introduces a model that covers a class of mechanical systems with impacts, including juggling systems and walking robots; see [START_REF] Sanfelice | A hybrid systems approach to trajectory tracking control for juggling systems[END_REF] and [START_REF] Short | A hybrid predictive control approach to trajectory tracking for a fully actuated biped[END_REF], and the references therein. Section 7.2 presents a second application that pertains to a parameterized model capturing the dynamics exhibited by a wide range of cortical neurons. This model, introduced in Izhikevich ( 2003), has been widely used by the neuroscience community due to its capabilities of reproducing a variety of spiking and bursting behaviors by properly choosing its parameters. Finally, in Section 7.3, the results are applied to the design of observers for the general class of switched systems defined in Example 2.3.

Mechanical system with impacts

Consider a system evolving according to

θ = ω ω = α(θ, ω) (θ, ω) ∈ C , θ + = g θ (θ, ω) ω + = g ω (θ, ω) (θ, ω) ∈ D with x = (θ, ω) ∈ R d × R d the (bounded)
positions and velocities, α, g θ and g ω locally Lipschitz functions, the position y = θ measured and jumps occurring at the impacts of θ on a surface W, typically modeled by a jump set of the form

D = {(θ, w) ∈ R d × R d , θ ∈ W , ω, ∇ W ≤ 0}
where the second condition ensures the velocity is pointing inwards W. The flow dynamics are clearly strongly differentially observable of order d z = 2, since (y, ẏ) = x defines an injective immersion (with T simply the identity map). Therefore, if the impacts are detected (for instance through force sensors) and are known to have an average dwell-time, then an observer is simply given by

   θ = ω -( θ -y) ω = sat α( θ, ω) -2 ( θ -y)    θ+ = sat g θ ( θ, ω) ω+ = sat g ω ( θ, ω)
for sufficiently large, sat saturation functions saturating outside the bounds within which x is known to evolve, and jumps triggered at the detected impacts.

On the other hand, if the mechanical system possibly exhibits Zeno behavior (i.e. with sup dom t x < +∞ and sup dom j x = +∞), for instance due to gravity, a jumpbased observer should be used instead. For instance, consider a vertical bouncing ball with

f (θ, ω) = (ω, -ω -g) , g(θ, ω) = (-θ, -λω) (43) C = R ≥0 × R , D = {(θ, ω) ∈ R 2 : θ = 0 , ω ≤ 0}
with g the gravity constant, the friction coefficient, and λ < 1 the impact restitution coefficient. Assume the measurement y d = θ is only available at jumps, namely only impact sensors are used. We know that any maximal solution x is Zeno. More precisely, the time between two successive jumps t j+1 (x) -t j (x) tends to zero when j tends to +∞, and its upper bound increases with |x(0, 0)|. Hence, for any bounded set of initial conditions X 0 , C X0 [I] holds with I of the form I = [0, τ max ], with τ max < +∞ depending on X 0 . Since the system has linear maps, we implement an observer with maps of the form (13), with L c = 0 and L d chosen such that (32) holds, where A c = 01 0 -, A d = -1 0 0 -λ and H d = (1, 0). As in Remark 5.4, we compute a polytopic decomposition of exp (A c τ ) based on the residues of A c . Because one eigenvalue of A c equals zero and τ min = 0, we obtain that exp (A c τ ) is in the convex hull of only two matrices M 1 = I and M 2 = ( 1 3.9347 0 0.6065 ) for τ min = 0, τ max = 5, λ = 0.8, and ρ = 0.1. Solving (36) with Yalmip then gives L d = (-1, -0.1085) . The result of a simulation 1 with initial condition x 0 = (5, 0), x0 = (10, 2) is shown on Figure 2. Note that one could also use the hybrid Kalman filter (40) with a varying gain L d .

Spiking Neurons

The parameterized model of a spiking neuron in [START_REF] Izhikevich | Simple model of spiking neurons[END_REF] results in a hybrid system H as in (2) with state (x 1 , x 2 ) ∈ R2 and data given by

f (x) = 0.04x 2 1 + 5x 1 + 140 -x 2 + I ext , a(bx 1 -x 2 ) g(x) = (c, x 2 + d) , h c (x) = h d (x) = x 1 C = {(x 1 , x 2 ) ∈ R 2 : x 1 ≤ v m } (44) D = {(x 1 , x 2 ) ∈ R 2 : x 1 = v m }
where x 1 is the membrane potential, x 2 is the recovery variable, and I ext represents the (constant) synaptic current or injected DC current. The value of the input I ext and the model parameters a, b, c, and d, as well as the threshold voltage v m characterize the neuron type and its firing pattern [START_REF] Izhikevich | Simple model of spiking neurons[END_REF]. The solutions are known to have an average dwell-time (actually a dwelltime), and the jump times can be detected from the discontinuities of the output y = x 1 . According to [START_REF] Izhikevich | Simple model of spiking neurons[END_REF], this hybrid system model combines the biological plausibility of Hodgkin-Huxley-type dynamics and the computational efficiency of integrate-and-fire neurons, making it versatile for the study of the dynamics of a wide class of neurons. We consider two scenarios 2 for estimation of state variables and parameters. Let us now consider the case where a, b are known but d is not. Neither the continuous dynamics nor the discrete dynamics are observable for (x 1 , x 2 , d) with output x 1 , so a flow-based observer cannot be used. However, x 2 is observable from the flow and d impacts x 2 at jumps, so the system as a whole could be observable thanks to the jumps. Actually, we observe that the model is linear in the unknowns x 2 and d, namely the dynamics of (x 1 , x 2 , d) are characterized by the matrices A c = 0 -1 0 0 -a 0 0 0 0 , A d = 0 0 0 0 1 1 0 0 1 , H d = (1, 0, 0), modulo output injection. One can check that the equivalent discretetime model given by (33), namely the pair A(τ ) :=

A d exp(A c τ ) = 0 0 0 0 1-aτ 1 0 0 1 , H(τ ) := H d exp(A c τ ) =
( 1 -τ 0 ) is observable for any nonzero τ . Let's say that from the measurements, the flow intervals in-between firing times are known to be within a compact set I = [τ min , τ max ] with τ min > 0. Since A c is nilpotent of order 2, from Remark 5.4, it is enough to solve the two LMIs given by

P (I + τ A c ) (P A d -Ld H d ) P > 0 ( 45 
)
for τ = τ min and τ = τ max . If they are solvable (with common P and Ld ), then with Corollary 5.2, we obtain an observer with state z = (x 1 , x2 , d) by taking

F (x 1 , x2 , d, y c ) = (f (y c , x2 ), 0) G(x 1 , x2 , d, y d ) = (c, x2 + d, d) + L d (y d -x1 ) .
For instance, for τ min = 30 and τ max = 50, solving the LMIs via Yalmip for P and Ld , we get L d = (0, 0.0028, -0.0063) . The results of a simulation are provided on the top and bottom left of Figure 4. Of course, because information from the output is injected at the jumps only, the estimation error takes a longer time to converge than the flow-based observer where instantaneous observability is guaranteed during flow.

Note that theoretically, we could have used the estimate x1 instead of the measurement y c in the observer flow F for the linear terms in x 1 , and take it into account in A c . However, this does not work well with the term 5x 1 because it produces an error growing in e 5τ during flow, which reaches 10 86 for τ = 40. In other words, a jump-based observer will only work numerically if the eigenvalues of A c are reasonable compared to the length of the flow intervals. Finally, we plot on the bottom right of Figure 4, the norm of the estimation error (x 1 , x2 , d) -(x 1 , x 2 , d) in steady state, when the jumps of the observer are triggered with some delay after the system state. We observe the error peaking to around 80 during the delay intervals whatever the delay's value; and then the smaller the delay the smaller the error outside of the delay intervals, as predicted by Theorem 6.4.

Application to Switched Systems

We now show how the results apply to the design of observers for switched systems with state x = (x p , q) as defined in (4) of Example 2.3. We focus on the case where the mode q is known at all times. Besides q, some additional measurements h q (x p ) of the continuous state x p are available in each mode, either at all times, namely

y c = y d = (h q (x p ), q) (46a) 
or only at the switching times, namely

y c = q , y d = (h q (x p ), q) . (46b) 

Flow-based observer

We start by assuming the output (46a) is available at all times and the continuous pair (f q , h q ) of each mode is detectable for q ∈ Q. More precisely, assume that the individual continuous dynamics ẋp = f q (x p ) of each mode q ∈ Q with output h q (x p ) admits a continuoustime observer ż = F q (z, h q (x p )) relative to some observation set A q ⊂ R dx p × R dz and with a Lyapunov function V q : R dx

p × R dz → R ≥0 that verifies (11a)-(11b), namely          α q |(x p , z)| Aq ≤ V q (x p , z) ∀(x p , z) ∈ (C q ∪ D q ∪ g q (D q )) × R dz , V q (x p , z) ≤ α q |(x p , z)| Aq ∀(x p , z) ∈ X p,0 × Z 0 (47a) L Fq V q (x p , z) ≤ a c,q V q (x p , z) ∀(x p , z) ∈ C q × R dz ( 
47b) for some scalar a c,q < 0 and some class-K ∞ maps α q , α q , and where F q (x p , z) = (f q (x p ), F q (z, h q (x p )).

Since we know an observer of each continuous mode, it is tempting to build an observer for the switched system by switching among these individual observers thanks to the knowledge of q. Because the decrease of the estimation error is brought by flowing in each mode, we need persistence of flow, namely conditions of the type C X0 [I] with min I > 0, or more generally C av X0 [τ ]. However, it is well-known that switching among asymptotically stable systems does not necessarily bring asymptotic stability, since whatever has been achieved in one mode could be destroyed by the following one, if the descent directions of the Lyapunov functions V q are not compatible [START_REF] Liberzon | Switching in systems and control. Systems and Control: Foundations and Applications[END_REF].

Let us consider

A := (x p , q, z) ∈ R dx p × Q × R dz : (x p , z) ∈ A q , which verifies for q ∈ Q, |(x p , q, z)| A = 0 ⇐⇒ |(x p , z)| Aq = 0 . ( 48 
)
Designing an observer for the hybrid system (4) with state x = (x p , q) stabilizing A indeed achieves the observation goal of each mode modeled by A q . From (46a), we define

V ((x p , q), z) := V q (x p , z) , F (z, y c ) := F q (z, h q (x p )) .

Observing that |(x p , q, z)| A ≤ |(x p , z)| Aq , we deduce from ( 47) and (48) that conditions (11a)-(11b) hold with a c := max q∈Q a c,q , X 0 = X p,0 × Q, α = min q∈Q α q , and some class-K ∞ map α q if X p,0 × Z 0 is compact. It thus remains to satisfy (11c) and ( C1a) or (C1b) to apply Theorem 3.1.

Observe that (11c) holds if G(z, y d ) := G q (z, h q (x p )) is chosen so that

V q (G q (x p , z)) ≤ e a d V q (x p , z) ∀(x p , z) ∈ D q × R dz ∀(q, q ) ∈ Q 2 (49)
with G q (x p , z) = (g q (x p ), G q (z, h q (x p )), and a scalar a d .

The difficulty here is that the Lyapunov function changes with the mode, but actually, if there exists scalars a d,0 and µ such that

V q (G q (x p , z)) ≤ e a d,0 V q (x p , z) , ∀q ∈ Q (50a) ∀(x p , z) ∈ D q × R dz V q (x p , z) ≤ µV q (x p , z) , ∀(q, q ) ∈ Q 2 , (50b) ∀(x p , z) ∈ (C q ∪ D q ∪ g q (D q )) × R dz ,
then (49) holds with a d = ln µ+a d,0 . Note that as noticed in Section 4, (50a) holds if (12) holds for each q and there exist class-K ∞ maps κ q and a positive scalar c such that

|G q (x p , z)| Aq ≤ κ q |(x p , z)| Aq ∀(x p , z) ∈ D q × R dx α q • κ q • α -1 q ≤ c Id ∀q ∈ Q .
It then follows that Problem (O) is solved if the switching is sufficiently slow in average, namely if τ > ln µ+a d,0 |ac| . In particular, we recover the results of [START_REF] Alessandri | Switching observers for continuous-time and discrete-time linear systems[END_REF]Coletta (2001) (resp. Hespanha and[START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF]) for linear modes with g q = Id, i.e., a d,0 = 0, and common (resp. distinct) Lyapunov functions, i.e., µ = 1 (resp. µ = 1), and of [START_REF] Bejarano | Switched observers for switched linear systems with unknown inputs[END_REF]Pisano (2011) (resp. Balluchi et al. (2013)) with linear (resp. affine) jump maps g q and common Lyapunov functions (µ = 1).

Example 7.1 Assume f q (x p ) = A q x p , h q (x p ) = H q x p , with the pairs (A q , H q ) detectable. There exist positive definite matrices P q and gain vectors L q such that (A q -L q H q ) P q + P q (A q -L q H q ) < 0 ∀q ∈ Q .

Then, (47) holds with same F q , same A q and

V q = (x p -z) P q (x p -z) α q (•) = λ(P q ) (•) 2 , α q (•) = λ(P q ) (•) 2 .
Besides, (50b) holds with µ = max{λ(P q )/λ(P q )} and Problem (O) is solved for sufficiently slow switching if the maps g q are uniformly Lipschitz. Actually a lot of effort has been made in the literature to find less conservative conditions on the switching signal. Recently, [START_REF] Gao | Unified stability criteria for slowly time-varying and switched linear systems[END_REF] exhibited generalized sufficient conditions relying on the framework of slowly-varying linear time-varying systems. The idea is that a switched linear system is stable if the overall variation of the matrix on a long interval is small: one way to achieve this, is to have slow-switching, but this switching can be faster if the variation A q -A q is small enough.

However, as mentioned in Section 4, restrictions on the (average) dwell-time makes sense only if the switching signal is chosen by the user, not if it is a property of the hybrid system. A first way of avoiding constraints on the (average) dwell-time would be to use the information given by the output at the switches to ensure that V decreases through the switch. This is done in [START_REF] Petterson | Designing switched observers for switched systems using multiple lyapunov functions and dwell-time switching[END_REF] for linear switched systemswhere y d = (H q x p , q) (see (46a)), noticing that when g q = Id, the conditions on (V q , V q ) can be relaxed by ensuring H q z + = H q x p = y after the jump, through an oblique projection along the metric of P q (instead of taking z + = z), namely G(z, y d ) = z + P -1 q H q H q P -1 q H q -1 (H q x p -H q z) .

Indeed, it can be shown via standard geometrical arguments that (50a) then holds with a d = 0 and (49) holds if the additional LMI P q = P q + d q,q H q + H q d q,q is verified for some d q,q ∈ R dx p ×dy . More generally, the contribution of this paper is to notice that when each mode is observable arbitrarily fast and admits a highgain observer, we can avoid the restrictions on the average dwell-time by applying Corollary 4.1. We show in the next two examples how this applies to any switched systems with strongly differentially observable continuous modes.

Example 7.2 Assume f q (x p ) = A q x p , h q (x p ) = H q x p , with the pairs (A q , H q ) observable. Following Example 4.2, there exist matrices V q ∈ R dx p ×dx p such that

V q A q V -1 q = A + D q C , H q V -1 q = C .
Then, define F q, (z, y) = A q z + L q, (y -H q z) L q, = V -1 q (D q + L( )L) V ,q (x p , z) = (x p -z) V q L( ) -1 P L( ) -1 V q (x p -z) .

Then, (23a)-(23b) hold with T (x p , q) = x p , V ((x p , q), z) = V q, (x p , z) , F (z, y) = F q, (z, h q (x p )) c( ) = 1 2(dx-1) min q∈Q λ(V q P V q ) , c( ) = max q∈Q λ(V q P V q ) . Therefore, whatever the average dwell-time, Problem (O) is solved for sufficiently large by taking G(z, y d ) = g q (z) (resp. G(z, y d ) = sat(g q (z))) if g q is Lipschitz (resp. locally Lipschitz and the solutions x are uniformly bounded), according to (19) (resp. (21)).

Example 7.3 Assume that f q and g q are single valued with a single output (d y = 1), and there exists d z ∈ N such that each mode q ∈ Q is strongly differentially observable of order d z , namely the maps T q : R dx p → R dz defined by T q (x p ) = (h q (x p ), L fq h q (x p ), ..., L dz-1 fq h q (x p )) are injective immersions on C q ∪ D q . Then, following Example 4.3 or [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], if there exist Lipschitz maps Φ q with uniformly bounded Lipschitz constants verifying Φ q (T q (x p )) = L dz fq h q (x p ) ∀x p ∈ C q ∪ D q , a high-gain observer can be designed for each mode with F q, (z, y) = A z + BΦ q (z) + L( )K(y -z 1 ) , and the Lyapunov function V q, (x p , z) = (T q (x p ) -z) L( ) -1 P L( ) -1 (T q (x p ) -z) ,

where A, B, K, and P are defined in Example 4.3. Then, (23a),(23b) hold with T (x p , q) = T q (x p ),

V ((x p , q), z) = V q, (x p , z) , F (z, y) = F q, (z, h q (x p )) , c( ) = λ(P )

2(dz -1) , c( ) = λ(P ) if λ := inf q∈Q λ q > 0. It remains to choose G Lipschitz with respect to z such that (23c) holds to apply Corollary 4.1. But (23c) says we should have at the jumps G(T q (x p ), y d ) = T (g q (x p ), q + ) = T q + (g q (x p )) ( 51) where q + is the next mode. In other words, due to the fact that the change of coordinates T depends on q, we need to know, before the switch, both the current mode and the next. This is possible only if the switches are controlled or deterministic. Otherwise, we need to wait for the switch to happen before the observer can jump. This is exactly the issue studied in Section 6. Suppose the assumptions of Theorem 6.4 hold. If the observer jump (51) is implemented instantaneously after the switch (namely the new mode q + is detected instantaneously), A is UpAS, except during the (instantaneous) delay, since this situation can be modeled by Ĥ(0). In the more realistic case where there is a slight delay ∆ between the switch and the detection of the new mode q + , then, A X is practically stable outside the delay intervals. Another attempt around this problem is to run in parallel a high-gain observer for each mode q, with q fixed in each observer as suggested in [START_REF] Barhoumi | Observer design for some classes of uniformly observable nonlinear hybrid systems[END_REF] in the case where g = Id.

Jump-based observer

We now consider the case where each continuous pair (f q , h q ) is not necessarily observable individually, but persistent switching between the modes brings determinability, namely the ability to reconstruct the current continuous state x p by accumulating the past information provided by each mode. This case was handled in [START_REF] Tanwani | Observability for switched linear systems : characterization and observer design[END_REF][START_REF] Tanwani | Comments on "observability of switched linear systems: Characterization and observer design[END_REF]; [START_REF] Shim | Hybrid-type observer design based on a sufficient condition for observability in switched nonlinear systems[END_REF] by 1) using a partial state continuous-time observer during flow, which estimates the part of x p that is observable from (f q , h q ); 2) gathering and propagating forward the partial estimates obtained during the past N switches to produce a full estimate of x p .

But Section 5 sheds a new light on this problem. Indeed, let us assume that the switches are persistent, namely C X0 [I] holds with I compact, and that the output is available at the switches, namely y is given by (46b). Consider the switched system discretized at the switch-ing times

x p,k+1 ∈ g q k (Ψ fq k (x k , τ k ))

y k = h q k Ψ fq k (x k , τ k ) , τ k (52) 
where τ k = t k+1 -t k denotes the length of the kth switching interval. Note that τ k was added to the output to encode the fact that it is known and can be used in the design of the observer jump map G. Inspired from Corollary 4.1, it is enough to look for F and G that make

z k+1 ∈ G(Ψ F (z k , τ k ), y k ) (53) 
a UpAS observer for (52) relative to a set A p ⊂ R dx p × R dz , as long as there exists a class-K function ρ such that for all (x p , z) ∈ X p × Z, for all q ∈ Q, and for all τ ∈ [0, max I],

|(Ψ fq (x p , τ ), Ψ F (z, τ

))| Ap ≤ ρ |(x p , z)| Ap , (54) 
where X p (resp. Z) denotes a set where x p (resp. solutions to (53)) evolves. Typically, when A p is the diagonal set defined in (9a), we simply take F (z, y c ) = f q (z) and ( 54) holds for bounded trajectories.

In particular, when f q (x p ) = A c,q x p , g q (x p ) = A d,q x p , h q (x p ) = H q x p are linear, we take z = (x p , τ ) and F (z, y c ) = A c,q xp , 1 G(z, y d ) = A d,q xp -L(τ )(H q xp -y d ) , 0

where L(τ ) is chosen based on the known history of (q, τ ) to make the LTV discrete-time error system e k+1 = (A d,q k -L(τ k )H q k ) exp(A c,q k τ k )e k asymptotically stable, for instance through a discrete Kalman filter as in (40).

Conclusion

Under the assumption that the jumps of the system can be detected, we have given Lyapunov-based sufficient conditions for asymptotic convergence of an observer for general hybrid systems. Design methods have been provided, in particular high-gain designs for nonlinear differentially observable continuous dynamics, and discrete-based designs when observability is ensured from the output at jump times. Jumps in the observer must be triggered at the same time as the system jumps but we have shown their robustness with respect to detection delays, namely semi-global practical stability of the estimation error outside the delay intervals. Those results provide a new insight for the design of observers for switched systems.

However, unlike the flow-based designs which are inherently made for nonlinear dynamics, the nonlinear jumpbased designs are limited by the computation of the flow reachable set, as well as the limits already existing for the design of nonlinear discrete-time observers. Future work consists in combining the flow-based and jumpbased designs via high-gain ISS interconnections in order to enlarge the class of systems for which those designs are constructive. Moreover, further work is needed to evaluate how those observers can be used in the context of output-feedback, as was done on a particular example of biped robot in [START_REF] Grizzle | On observer-based feedback stabilization of periodic orbits in bipedal locomotion[END_REF], with precisely the high-gain observer of Example 4.3.

More importantly, observers able to synchronize automatically their jumps with those of the system still need to be developed, at least locally, to avoid relying on the often noisy/delayed jump detection. Indeed, the robust practical stability result of Theorem 6.4 would then enable to combine such local auto-synchronizing observers with the global observers of this paper. This problem represents a significant challenge since the entire analysis needs to be rethought to handle non-simultaneous jumps and ensure contraction of the difference between jump times. Preliminary work in this direction is presented in [START_REF] Bernard | A local hybrid observer for a class of hybrid dynamical systems with linear maps and unknown jump times[END_REF].
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 2 Fig. 2. Jump-based estimation of a Zeno bouncing ball (43).
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 3 Fig. 3. Flow-based estimation of (x1, x2, a, b) in the neuron model (44) through high-gain observer.

  Let us first assume that c and d are known and we want to estimate the state x 2 as well as the parameters a and b. Adding the constant parameters a and b to the state, the nonlinear map T made of the successive derivatives of h along f defined by (25) for d z = 4 is an injective immersion with respect to x = (x 1 , x 2 , a, b) if the matrix x1 x2 ẋ1 ẋ2 is invertible along the system trajectories. Under this condition, we can thus use the high-gain design of Example 4.3. The result of a simulation with I ext = 10, a = 0.02, b = 0.2, c = -55, d = 4, x(0, 0) = (-55, -6, a, b), x0 = (-50, 0, 0.1, 0.1), z(0, 0) = T (x 0 ), = 4, K = (3.0777, 4.2361, 3.0777, 1) and appropriate saturations is shown on Figure 3.
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 4 Fig. 4. Top and bottom left : jump-based estimation of (x1, x2, d) in the neuron model (44) without delay. Bottom right : norm of the residual estimation error without delay (red), with delay ∆ = 1 (blue), with delay ∆ = 5 (pink).

  5.4 By the Schur complement, finding P and L d satisfying (32) is equivalent to finding P and Ld satisfying the LMIs P exp(A c τ ) (P A d -Ld H d ) P > 0 ∀τ ∈ I (35) with Ld = P L d . In the case where I has infinitely many elements, it is shown in Ferrante et al. (2016) that it is always possible to compute numerically a polytopic decomposition of exp(A c τ ), namely a finite number of matrices {M 1 , M 2 , . . . , M ν } such that exp(A c τ ) is in the convex hull of those matrices whenever τ ∈ I. Since (35) is convex in exp(A c τ ), it is then sufficient to solve the finite number of LMIs
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