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Abstract

This paper proposes a general framework for the state estimation of plants modeled as hybrid dynamical systems with
discrete events (or jumps) occurring at (approximately) known times. A candidate observer consists of a hybrid dynamical
system with jumps triggered when the plant jumps. With some information about the time elapsed between successive
jumps, a Lyapunov-based analysis allows us to derive sufficient conditions for the design of the observer that renders
the zero-estimation set uniformly asymptotically stable. In particular, we show that a high-gain flow-based observer,
with innovation during flow only, can be designed when the flow dynamics are strongly differentially observable. On
the other hand, a jump-based observer, with innovation at jumps only, should be designed based on an equivalent
discrete-time system corresponding to the hybrid system discretized at jump times, and presenting the observability of
the combination of both flows and jumps. In the linear context, this reasoning leads us to a constructive hybrid Kalman
filter. These designs apply to a large class of hybrid systems, including cases where the time between successive jumps
is unbounded or tends to zero – namely, Zeno behavior–, as well as cases where detectability only holds during flows, at
jumps, or neither. Building from these sufficient conditions, we study the robustness of this approach when the jumps of
the observer are delayed with respect to those of the plant. Under some regularity and dwell-time conditions, we show
that the estimation error remains bounded and satisfies a semi-global practical asymptotic stability-like property. The
results are illustrated in several examples and applications, including mechanical systems with impacts, spiking neurons,
and switched systems.

1. Introduction

1.1. Context

In many applications, estimating the state of a system
is crucial, whether it be for control, supervision, or
fault diagnosis purposes. Unfortunately, the problem of
designing observers for hybrid systems of the form ([1])

ẋ = f(x) x ∈ C , x+ = g(x) x ∈ D (1)

presenting both a continuous-time behavior in C and a
discrete-time behavior in D, is still largely unsolved, even
when the flow/jump maps f and g are linear. A major
difficulty lies in the fact that the plant’s jump times, that
is, the times at which discrete events occur in the plant’s
solution, generally depend on its initial condition, which
is unknown in the context of observer design. From there,
one may distinguish two scenarios: when the plant’s jump
times are detected by sensors (or known a priori), and the
considerably more complex scenario when the plant’s jump
times are truly unknown.

In the second scenario, the jumps of the observer can-
not be triggered when the jumps of the plant occur. It
follows that the domain of definition of the plant’s and
observer’s solutions are different and a standard error sys-
tem approach for observer design does not apply. This
mismatch of time domains makes the formulation of ob-
servability/detectability and, in turn, observer design very
challenging ([2]). Very few observer results for plants of

the form (1) exist apart from particular settings as in [3],
which requires the composition g◦g to be the identity map,
and in [4], thanks to a change of coordinates transform-
ing the jump map g into the identity map, in this way,
removing the jumps. Note that in the particular context
of switched systems, this mismatch issue translates into
the problem of estimating the switching signal. The ob-
servability properties of such a signal have been studied in
[5, 6]. Observer designs based on the so-called mode loca-
tion observers, capable of detecting and identifying proper-
ties of the switching signal appeared in [7, 8, 9, 10, 11, 12],
to list a few, which include the broad literature of fault
tolerant control.

On the other hand, in the first scenario where the plant’s
jump times are known/detected, the observer jumps can
be triggered at the same time as the plant’s (up to small
detection delays). The difficulties due to a possible mis-
match of time domains thus disappear, and observability
analysis also reduces to comparing solutions with same
output on the same time domain.

A first class of systems falling into this first scenario, is
the so-called impulsive systems. It consists of continuous-
time dynamical systems (possibly switching among differ-
ent flow dynamics) with state jumps (or switch) that oc-
cur at pre-specified times, which are usually assumed to
be separated by nonzero periods of flow – in particular, to
avoid Zeno behavior. The impulsive systems literature is
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rich and includes a variety of models of impulsive systems.
In particular, models of impulsive systems in which the
state includes a logic variable that selects the right-hand
side of the differential equation governing the dynamics
in between impulses are referred to as switched impulsive
systems, or also as switched systems with known jump
times. In that setting, observability/determinability have
been extensively studied in [13, 14, 15, 16, 17]. As for
observer design, results first appeared assuming observ-
ability of each flow dynamics [18], and then more gen-
erally in [19] (resp. in [17]), for impulsive systems (resp.
switched impulsive systems) that are observable (resp. de-
terminable) for any impulse time sequence containing more
than a known finite number N of jumps. In other words,
the information available during a single flow interval is
not sufficient to reconstruct the full state, but it becomes
sufficient after N jumps. In [19], the observer consists
of an impulsive system synchronized with the plant, with
innovation terms at jumps only. Those innovations are lin-
ear in the error, with a time-varying gain that is related
to a weighted observability Grammian over the past N
jumps. In [17], the authors develop an observation proce-
dure based on the continuous-time estimation of the ob-
servable states of each of the past N modes: after some
time, putting together the information given by each mode
enables to reconstruct the whole state.

Another important class of hybrid systems falling
into the second scenario is when the system itself has
continuous-time dynamics, but the measurements are sam-
pled and available intermittently at specific time instances.
For such a class of systems with sporadic events, observers
have been designed under specific assumptions on the time
elapsed between successive events or, in the case of pe-
riodic events, the sampling period. From [20, 21], con-
vergence of an impulsive observer with innovation terms
triggered by the measurement events can be guaranteed
when the sampling period is sufficiently small. Designs
were then developed in [22, 23] for any constant sampling
period provided that appropriate matrix inequalities are
satisfied, and further extended in [24, 25, 26, 27, 28] to the
case of sporadic measurements, i.e., when the time elapsed
between sampling events varies in a known interval.

In this paper, we propose to address the problem of state
estimation for general hybrid systems (1), in the context
of the first scenario, namely when the jump times of the
plant’s solution are (approximately) known, and in an at-
tempt to unify most of the previously cited approaches.
Preliminary results in this direction were given in [29, 30],
in the particular case where f and g are linear, and when
at least either the flow dynamics or the jump dynamics are
detectable. We extend those results here to nonlinear dy-
namics, also when neither the continuous nor the discrete
dynamics of the plant are detectable, but, the hybrid plant
as a whole is.

1.2. Content and Contributions

First, under the assumption that the jumps of the plant
are instantaneously detected, a candidate observer is de-
fined as a hybrid system that jumps at the same time as

the plant does, and is fed with the measured output in
either the flow map, the jump map, or both (Section 2).
Assuming the plant has an average dwell-time or a reverse
average dwell-time, or simply that the time between its
successive jumps belongs to a known (possibly unbounded)
closed set, we derive Lyapunov-based sufficient conditions
so as to ensure uniform pre-asymptotic stability of the
zero estimation error set (Section 3). Then, we provide
additional design conditions for special cases of the gen-
eral observer problem and proposed hybrid observer. In
Section 4, we consider the case when measurements are
only used during flow, for which we propose a hybrid ob-
server, which we call flow-based hybrid observer. Similarly,
but for the situation when output measurements are used
only at jumps, Section 5 introduces a jump-based hybrid
observer and associated design conditions. Motivated by
the fact that, in practice, the jumps of the plant cannot
always be instantaneously detected, we study the robust-
ness of the observer when the jumps of the observer are
slightly delayed relative to those of the plant (Section 6).
Finally, we demonstrate how those results can be used for
observer design of switched systems with state triggered
jumps (Section 7.3).

Our main contributions compared to the above litera-
ture are as follows:

1. General hybrid systems (1) are considered in a unified
framework, only assuming knowledge about the time
between successive jumps, which allows any type of so-
lutions, from Zeno and eventually discrete, to eventu-
ally continuous trajectories;

2. When the plant has an average dwell-time and its con-
tinuous dynamics are strongly differentially observable,
we prove that a hybrid observer can be obtained by
copying the plant’s discrete dynamics and designing a
high-gain observer for its continuous dynamics, as long
as the gain is taken sufficiently large compared to the
average dwell-time and the Lipschitz constants of the
flow and jump maps;

3. When the output measurements are only injected in
the observer at jumps, we highlight that the innovation
term in the observer, which only plays a role at jumps,
should be designed based on an equivalent discrete-time
system that models the hybrid plant sampled at jumps.
In the linear context, this reasoning leads us to a con-
structive hybrid Kalman filter;

4. A robustness analysis with respect to delays in the trig-
gering of the jumps of the observer jumps is provided:
under some regularity and dwell-time conditions, we
show that the estimation error remains bounded and
semi-global practical stability holds outside the delay
intervals between the plant’s and the observer’s jumps;

5. The generality of the framework enables us to recover
and unify a significant part of the literature. In par-
ticular, the results apply well to switched systems with
state-triggered switches: we show how a high-gain ob-
server can be designed for switched systems with ob-
servable modes and average dwell-time, or how the out-
put at the switching instants can be used when each
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mode is not observable on its own but the combination
of them is.

These results are motivated by several applications, which
are presented in detail in Section 7, featuring hybrid dy-
namics for which the estimation of the state and of param-
eters is crucial.

1.3. Notation and Preliminaries

R (resp. N) denotes the set of real numbers (resp. inte-
gers), R≥0 = [0,+∞), R>0 = (0,+∞), and N>0 = N\{0}.
For a square matrix P , eig(P ) denotes the set of its eigen-
values, and λm(P ) (resp. λM (P )) stands for its smallest
(resp. largest) eigenvalue. The symbol ? in a matrix de-
notes the symmetric blocks. B stands for a closed Euclid-
ian ball of appropriate dimension, of radius 1 and centered
at 0. A map α : R≥0 → R≥0 is a K-map if α(0) = 0
and α is continuous and increasing, and a K∞-map if it
is also unbounded. A map β : R≥0 × R≥0 → R≥0 is a
KL-map if for all t ∈ R≥0, r 7→ β(r, t) is increasing and
for all r ∈ R≥0, limt→∞ β(r, s) = 0. For a set valued map
S : Rdx ⇒ R and a scalar c, writing S(x) ≤ c for some
x ∈ Rdx means that s ≤ c for all s ∈ S(x). For a C1 map
V : Rdx → R, LSV (x) denotes the set of Lie derivatives
along vector fields s ∈ S(x), i.e.

{
dV
dx (x)s , s ∈ S(x)

}
. We

consider hybrid dynamical systems of the form (1) ([1])
where f (resp. g) is the flow (resp. jump) map, and C
(resp. D) is the flow (resp. jump) set. Solutions to such
systems are defined on so-called hybrid time-domains. A
subset E of R≥0 × N is a compact hybrid time-domain if

E =
⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ . . . ≤ tJ , and it is a hybrid time domain
if for any (T, J) ∈ E, E ∩ [0, T ]× {0, . . . , J} is a compact
hybrid time domain. For a solution (t, j) 7→ x(t, j) (see
[1, Definition 2.6]), we denote domx its domain, domt x
(resp.domj x) its projection on the time (resp. jump)
component, T (x) := sup domt x, J(x) := sup domj x, and
for a positive integer j, tj(x) the only time defined by
(tj , j) ∈ domx and (tj , j − 1) ∈ domx. When no ambigu-
ity is possible, we will omit x and write T , J , tj . Besides,
N(t, s) denotes the number of jumps occurring between
times t and s. We say that x is complete, resp. t-complete,
resp. j-complete, if domx, resp. domt x, resp. domj x is
unbounded ; x is eventually continuous (resp. eventually
discrete) if J < +∞ and T > tJ (resp. T < +∞ and
domx ∩ (T × N) contains at least two points) ; x is Zeno
if it is complete and T < +∞.

2. Synchronized Hybrid Observer

2.1. Mathematical Modeling

We consider a hybrid plant of the form

H
{

ẋ ∈ f(x) , yc = hc(x) , x ∈ C
x+ ∈ g(x) , yd = hd(x) , x ∈ D (2)

with state x ∈ Rdx , and output y = (yc, yd) ∈ Rdyc ×Rdyd ,
with yc available during flow and yd during jumps. For
this class of hybrid systems, we are interested in estimating

the state of (or part of the state of) H when its solutions
are initialized in a given subset X0 ⊆ C ∪ D. We denote
by SH(X0) the set of maximal solutions of H with initial
condition in X0.

Definition 2.1. For a closed subset I of R≥0 and a pos-
itive scalar τ?, we will say that

• solutions have flow length within I if for any x ∈
SH(X0),

– 0 ≤ t− tj(x) ≤ sup I ∀(t, j) ∈ domx

– tj+1(x)− tj(x) ∈ I holds

∗ ∀j ∈ N>0 if J(x) = +∞
∗ ∀j ∈ {1, . . . , J(x)− 1} if J(x) < +∞.

For simplicity, we say that CX0
[I] holds;

• solutions have an average dwell-time (ADT) τ? if there
exists N0 ∈ N>0 such that for any x ∈ SH(X0),

N(t, s) ≤ (t− s)
τ?

+N0 ∀t ≥ s ≥ 0 .

For simplicity, we say that CavX0
[τ?] holds;

• solutions have a reverse average dwell-time (rADT) τ?

if there exists N0 ∈ N>0 such that for any x ∈ SH(X0),

N(t, s) ≥ (t− s)
τ?

−N0 ∀t ≥ s ≥ 0 ;

For simplicity, we say that CravX0
[τ?] holds.

In the definition of CX0
[I], the set I describes the possi-

ble lengths of the flow intervals between successive jumps.
The role of the first item is to bound the length of the
intervals of flow which are not covered by the second item,
namely possibly the first one, which is [0, t1], and the last
one, which is domt x ∩ [tJ ,+∞) (when defined).

Properties CavX0
[τ?] and CravX0

[τ?] correspond to the stan-
dard notions of average dwell-time and reverse average
dwell-time respectively ([1, 31]). They enforce that the so-
lutions jump, on average, at most (resp. at least) once per
time interval of length τ?. A particular case of CavX0

[τ?] is
when all the intervals of flow last at least τ?, namely they
have a dwell-time, which can also be modeled by CX0 [I]
with I = [τ?,+∞).

We are now ready to state the observer problem of inter-
est. Our goal is to design an observer assuming we know:
1) when the plant’s jumps occur, 2) the outputs yc dur-
ing flows and/or yd at jumps, 3) some information about
the flow time between successive jumps of the type CX0

[I],
CavX0

[τ?], or CravX0
[τ?]. Note that CX0

[R≥0] always holds, but
as we will see later, it is convenient to have as precise in-
formation about the duration of flow between successive
jumps as possible.

Example 2.2 (Mechanical systems with impacts). A La-
grangian mechanical system with impacts is typically mod-
eled as H with state x = (x1, x2) ∈ Rp × Rp capturing
its (generalized) position and velocity, flow of the form
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f(x) = (x2, α(x)), g(x) translating the velocity disconti-
nuity at the impact, D characterizing the impact condition
and C = cl(Rp \ D). A complete model is given in Sec-
tion 7.1. If there is loss of energy at impacts, we typically
know that for a bounded set of initial conditions X0, the
time between impacts is bounded, so that CX0 [I] holds with
I of the form I = [0, τM ], with τM > 0. This case does not
exclude Zeno behavior close to the impact set D. On the
other hand, we may know that solutions have a dwell-time,
for instance if at least τm > 0 amount of time is needed
to flow from g(D) to D. Then, CX0

[I] holds with I of the
form I = [τm,+∞) or I = [τm, τM ].

In the particular case of a bouncing ball with gravity
coefficient g > 0 and restitution coefficient λ > 0, modeled
as H with

f(x) = (x2,−g) , g(x) = (−x1,−λx2) (3)

C = R≥0 × R , D = {(x1, x2) ∈ R2 : x1 = 0 , x2 ≤ 0}

If λ < 1, any maximal solution x is Zeno, i.e., such that
T (x) < +∞ and J(x) = +∞. The time between two suc-
cessive jumps tj+1(x) − tj(x) tends to zero when j tends
to +∞, and its upper bound increases with |x(0, 0)|. So, if
X0 is bounded, CX0 [I] holds with I of the form I = [0, τM ],
with τM < +∞ depending on X0.

If now λ > 1, any maximal solution initialized in R2 \
{(0, 0)} is such that T (x) = +∞, J(x) = +∞. The time
between two successive jumps tj+1 − tj(x) tends to +∞
when j tends to +∞, and its lower bound decreases with
|x(0, 0)|. Therefore, if there exists δ > 0 such that X0 ⊂
Rn \ δB, CX0

[I] holds with I of the form I = [τm,+∞),
with τm > 0 depending on X0.

Example 2.3 (Switched systems). The important class of
switched systems also falls in the framework with

x =

(
xp
q

)
, f(x) =

(
fq(xp)

0

)
, g(x) =

(
gq(xp)
Q

)
(4)

C =
⋃
q∈Q

Cq × {q} , D =
⋃
q∈Q

Dq × {q}

where Q = {1, . . . , qmax} and the discrete signal q indi-
cates the mode in which the system evolves. When xp
is in Dq and a jump occurs, the mode either stays the
same or is “switched” to a new value in Q. The plant
then evolves according to the flow map fq and jump map
gq, until q is switched to another value. Note that a way
of forcing the mode to change at each jump is to take

g(x) =

(
gq(xp)
Q \ {q}

)
. By the way we have written (4), the

switches are triggered by the state being in a certain region
Dq: it is a state-dependent switching. The switches can
also be triggered by an external signal called switching sig-
nal, in which case the switches are said time-dependent.
This case could also be modeled by (2) by making some
assumptions about the time between successive switches,
which can take the form of CavX0

[τ?], CravX0
[τ?], or CX0

[I].

See [32, 1] for more detail. In this paper, we assume the
switching times are known or detected. The output map
is defined depending on the available information: known
or unknown mode q, measurements of xp, etc. See Section
7.3.

Example 2.4 (Continuous-time system with sampled
measurements). The proposed framework applies also to
continuous-time systems

ẋp = fp(xp) , y = hp(xp)

whose output y is only available at discrete times tj, which
do not necessarily occur periodically. Assuming we know
bounds on the time elapsed between two successive sam-
pling events, or more generally that it belongs to a closed
bounded set I, namely CX0

[I] holds, such a system can be
modeled by H with state x = (xp, τ),

f(x) = (fp(xp), 1) , g(x) = (xp, 0) (5)

C = Rdxp × [0,max I] , D = Rdxp × I
hc(x) = ∅ , hd(x) = (hp(xp), τ)

where τ models the (known) time elapsed since the previ-
ous jump. For instance, I is a singleton in the case of
periodic sampling [22, 23], and I is a compact interval of
R>0 in the case of aperiodic sampling with known bounds
as considered for linear systems in [26, 28] and classes of
nonlinear Lipschitz systems in [24, 25, 33, 34, 27]. Sim-
ilarly, we could say that CravX0

[τ?] holds if we know that
measurements occur at most every τ? units of time and
adapt the model (5) accordingly ([29]).

2.2. Problem Statement and Proposed Hybrid Observer

Since the plant’s jump times are assumed to be known,
it is natural to use an observer for (2) of the form

Ĥ
{

ż ∈ F (z, yc) when H flows
z+ ∈ G(z, yd) when H jumps

(6)

that is synchronized with the plant, for some functions
F : Rdz × Rdyc → Rdz and G : Rdz × Rdyd → Rdz to be
chosen such that z asymptotically enables to reconstruct
the plant state x, or part of it, as formalized next.

Since the plant and the observer jump simultaneously,
the observer analysis and design can be carried out on the
cascade system

H−Ĥ


ẋ ∈ f(x)
ż ∈ F (z, hc(x))

}
(x, z) ∈ C × Rdz

x+ ∈ g(x)
z+ ∈ G(z, hd(x))

}
(x, z) ∈ D × Rdz

(7)

whose flow and jump map we denote

F(x, z) = (f(x), F (z, hc(x)) (8a)

G(x, z) = (g(x), G(z, hd(x))) (8b)
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The observer problem can then be reformulated as a sta-
bilization problem of a set A ⊆ Rdx ×Rdz , which depends
on the observation goal. For instance, if we want to esti-
mate the full state x, we can first try to take dz = dx and
stabilize the zero estimation error set given by

A =
{

(x, z) ∈ (C ∪D ∪ g(D))× Rdz : x = z
}
, (9a)

which is nothing but the diagonal. In that case, z directly
provides an asymptotic estimate of x. But sometimes, as
for continuous-time systems, we need to change coordi-
nates, or add some degrees of freedom, thus leading to
dz ≥ dx and

A =
{

(x, z) ∈ (C ∪D ∪ g(D))× Rdz : z = T (x)
}
, (9b)

for some map T : C ∪D ∪ g(D) → Rdz . In that case, an
estimate for x may be recovered from z by left-inversion if
T is injective. We may also be interested in estimating only
a part xp of the state x, in the context of switched systems
for instance, which can be translated into an appropriate
choice of A, i.e., more generally

A =
{

(x, z) ∈ (C ∪D∪g(D))×Rdz : T (x, z) = 0
}
, (9c)

for some map T : C ∪D ∪ g(D)× Rdz → Rp. The goal of
this paper is finally to solve the following problem.

Problem (O). Given a set of initial conditions X0 ⊆ Rdx ,
a closed subset A of Rdx ×Rdz defining an observer prob-
lem, and assuming one of the conditions of Definition
2.1 holds, design maps F : Rdz × Rdyc → Rdz and
G : Rdz × Rdyd → Rdz such that there exist a class-KL
function β and a subset Z0 of Rdz such that for every
φ = (x, z) ∈ SH−Ĥ(X0 ×Z0),∣∣φ(t, j)

∣∣
A ≤ β

(∣∣φ(0, 0)
∣∣
A, t+ j

)
(10)

for all (t, j) ∈ domφ, namely A is uniformly pre-

asymptotically stable (UpAS) for H− Ĥ with basin of at-
traction including X0 ×Z0.

Note that for solutions (x, z) ∈ SH−Ĥ(X0 ×Z0), the set
A should also ensure that

x bounded and
∣∣(x, z)∣∣A bounded =⇒ z bounded

to guarantee from (10) that z cannot explode in finite time
before x does. In other words, the observer solution is
indeed defined as long as the plant’s solution is. This is
verified for A defined in (9a) or (9b) if T is continuous.

Remark 2.5. The implementation of the observer Ĥ re-
quires a perfect jump synchronization with the plant H.
Unfortunately, the practical detection of the plant’s jumps
often involve measurements and transmission of informa-
tion which might entail some delays in the triggering of the
observer’s jumps. The robustness of the UpAS property of
A given by Problem (O) is thus analyzed in Section 6.

3. A General Sufficient Condition for the Design
of Hybrid Observers

The following theorem gives a Lyapunov-based sufficient
condition to solve Problem (O). It will be used throughout
the paper in different cases.

Theorem 3.1. Assume there exist scalars ac, ad ∈ R,
K∞-maps α, α, and a C1 map V : Rdx×Rdz → R verifying

{
α (|(x, z)|A) ≤ V (x, z) ∀(x, z) ∈ (C ∪D ∪ g(D))× Rdz

V (x, z) ≤ α (|(x, z)|A) ∀(x, z) ∈ X0 ×Z0

(11a)
LFV (x, z) ≤ ac V (x, z) ∀(x, z) ∈ C × Rdz (11b)

V (G(x, z)) ≤ ead V (x, z) ∀(x, z) ∈ D × Rdz (11c)

with F and G defined in (8). Then, Problem (O) is solved
if any of the following conditions (C) holds:

(C1) ac < 0 and CX0
[I] holds with min I > ad

|ac| .

(C1’) ac < 0 and CavX0
[τ?] holds with τ? > ad

|ac| .

(C2) ad < 0 and CX0 [I] holds with ac sup I < |ad|.

(C2’) ad < 0 and CravX0
[τ?] holds with acτ

? < |ad|.

Proof. Let us assume either (C1) or (C2). Then CX0
[I]

holds and the jumps occur according to a timer following
the dynamics{

τ̇ = 1 τ ∈ [0, sup I]
τ+ = 0 τ ∈ I

The map V ′(x, z, τ) = eaτV (x, z) then verifies conditions
of the type (11) with both a′c = ac + a < 0 and a′d < 0
if: 0 < a < |ac| is chosen such that a′d = ad − amin I < 0
under (C1); or a < 0 is chosen such that a′c = ac + a < 0
and a′d = ad − a sup I < 0 under (C2). It follows from
[1, Theorem 3.18] that Problem (O) is solved (See Remark
3.2 below).

Similarly, in case of a (reverse) average dwell-time with
either (C1’) or (C2’), [35, Propositions IV.1 and IV.4] show
how to modify V to obtain a Lyapunov function V ′ which
decreases both during flow and jumps. Under (C1’), de-
noting δ? = 1

τ? the jumps can be modeled by a timer{
τ̇ ∈ [0, δ?] τ ∈ [0, N0]

τ+ = τ − 1 τ ∈ [1, N0]

so that V ′(x, z, τ) = eaτV (x, z) with a ∈ (ad, |ac|τ?) is a
strict Lyapunov function. On the other hand, under (C2’),
the jumps can be modeled by a timer{

τ̇ = 1 τ ∈ [0, N0δ
?]

τ+ = max {0, τ − δ?} τ ∈ [0, N0δ
?]

so that V ′(x, z, τ) = e−aτV (x, z) with a ∈ (ac, |ad|τ?) is a
strict Lyapunov function.
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Remark 3.2. In [1, Theorem 3.18], Condition (11a) is
strengthened into

α (|(x, z)|A) ≤ V (x, z) ≤ α (|(x, z)|A)

∀(x, z) ∈ (C ∪D ∪ g(D))× Rdz (12)

for easiness of presentation but actually the upper inequal-
ity is only needed on the initial conditions in the proof. We
thus relax it to (11a), because it will be useful later.

From conditions (C), we recover the fact that in the
case of a reverse average dwell-time or if 0 ∈ I, namely if
there could be Zeno or eventually discrete solutions, then
ad is required to be negative, i.e., the innovation term in
the discrete dynamics of the observer must make the er-
ror contractive at jumps; similarly in the case of average
dwell-time or if sup I = +∞, then ac is required to be neg-
ative, i.e., the innovation term in the continuous dynamics
must make the error contractive during flow. Finally, note
that Theorem 3.1 allows the flow and jump maps of the
plant and of the observer to be set valued, and hence, is
suitable for the design of observers for plants modeled by
differential inclusions or by difference inclusions, for which
not many tools are available in the literature.

Example 3.3 (Linear flow/jump/output maps). The case
where f(x) = Acx, g(x) = Adx, hc(x) = Hcx, hd(x) =
Hdx has been studied in [29]. It is reasonable to consider
A defined as in (9a) and linear flow and jump maps in the
observer, namely

F (z, yc) = Acz + Lc(yc −Hcx) (13a)

G(z, yd) = Adz + Ld(yd −Hdx) (13b)

with Lc ∈ Rdx×dyc and Ld ∈ Rdx×dyd . Then, the con-
ditions in (11) hold for a quadratic Lyapunov function
V (x, z) = (x − z)>P (x − z) if there exist scalars ac and
ad, and a positive definite symmetric matrix P ∈ Rdx×dx
such that

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (14a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (14b)

The problem of finding common quadratic Lyapunov func-
tions for continuous-time (resp. discrete-time) systems
has been studied in the context of switched systems and
quadratic stabilization (see e.g. [36]). But we are not
aware of any result concerning the existence of a common
quadratic Lyapunov function for both continuous and dis-
crete dynamics as in (14). If a solution to (14) exists,
Problem (O) is solved if one of the conditions (C) holds.
Note that if both (Ac, Hc) and (Ad, Hd) are detectable, (14)
may be solvable with both ac ≤ 0 and ad ≤ 0, and (C) then
holds directly if at least one of them is nonzero. By the
Schur complement, this is equivalent to solving the LMIs

A>c P + PAc − (L̃cHc +H>c L̃
>
c ) < 0(

P (PAd − L̃dHd)
>

? P

)
> 0 (15)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Figure 1: Absolute value of the eigenvalues of (Ad −
LdHd) exp

(
(Ac − LcHc)τ

)
for Ac = ( 0 1

0 0 ), Ad = 5Ac, Hc =

Hd = (1, 0), with Lc (resp. Ld) chosen such that Ac − LcHc (resp.
Ad − LdHd) is Hurwitz (resp. Schur).

in (P, L̃c, L̃d) and take Lc = P−1L̃c and Ld = P−1L̃d.
This has been done in [29, Example 3.3] for a bouncing ball
with a restitution coefficient λ < 1, and position measured
at all (hybrid) times.

Remark 3.4. In the favorable case where both the flow
and jump dynamics of H are detectable, it is not sufficient
to choose independently a map F as a continuous-time ob-
server of the flow and a map G as a discrete-time ob-
server of the jumps. Indeed, their “contraction directions”
could be incompatible: jumps could destroy what has been
achieved during flow, or vice versa. For instance, with
linear flow/jump/output maps, it is not enough to choose
Lc, Ld such that Ac − LcHc is Hurwitz and Ad − LdHd is
Schur. Actually, a necessary condition for convergence of
the observer is that the error sampled at each jump con-
verges to zero: this implies that the origin of the discrete
system

εk+1 = (Ad − LdHd) exp
(

(Ac − LcHc)τk

)
εk

has to be asymptotically stable for k 7→ τk ∈ I. If
τk = τ∗ ∈ I is constant, this is not verified for every
choice of Ad − LdHd Schur and Ac − LcHc Hurwitz, as

illustrated in Figure 1: (Ad − LdHd) exp
(

(Ac − LcHc)τ
)

is Schur only if τ∗ /∈ [0.1, 2]. To avoid this phenomenon,
(11b) and (11c) should hold with the same Lyapunov func-
tion V .

A drawback of Theorem 3.1 is that it mixes constraints
on the observer flow and jump maps which cannot be de-
signed separately. This coupling appears through ac and
ad in conditions (C) and it is not clear how it can be solved
in the general nonlinear context. Even in the linear case as
in Example 3.3, the conditions are nonlinear, unless both
ac and ad can be taken negative and (15) can be solved.
In Sections 4 and 5, we show how this loop can be broken
by using innovation only in flow or only at jumps, through
high-gain in the former and by considering an equivalent
discrete-time system for the latter.
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Another drawback is that Theorem 6.4 requires at least
ac or ad to be negative. Therefore, either the continuous
or the discrete dynamics of H has to admit an observer
and thus be detectable. But it could happen that neither
the continuous nor the discrete dynamics are observable,
and yet the system as a whole is. An application featuring
an hybrid system with such a property is given in Section
7.2. Another example is ẋ1 = x2

ẋ2 = 0
ẋ3 = 0

,

 x+1 = x1
x+2 = x2
x+3 = x1

(16)

with some arbitrary, but nonempty flow and jump sets.
Suppose hc(x) = hd(x) = x1. Neither the continuous nor
the discrete dynamics is detectable, so Theorem 3.1 cannot
apply. Nevertheless, this hybrid system as a whole is deter-
minable if there is at least one interval of flow (providing
x2) and one jump (providing x3). Actually, Section 5 will
show that we should rather study an equivalent discrete-
time system, containing both the continuous and discrete
dynamics and providing insight for observer design.

4. Flow-based Hybrid Observer

When the continuous dynamics of H are detectable and
persistent in the sense of an average dwell-time, it is tempt-
ing to use a continuous-time observer

ż = F (z, hc(x)) , x̂ = T (z) (17)

as the observer’s continuous dynamics F , and simply copy
the discrete dynamics of H in G. Indeed, intuitively, if
the estimation error decreases more during flow than it
increases at jumps, namely if the continuous-time observer
(17) is sufficiently fast, the error is expected to converge
to zero asymptotically. We thus need persistence of flow,
namely conditions of the type CX0 [I] with min I > 0, or
more generally CavX0

[τ?]. In this section, we give conditions
under which such a design works.

4.1. Sufficiently Large Average Dwell-time

The first thing to notice is that if the continuous-time
observer (17) verifies (11a)-(11b) with ac < 0 and if G
is chosen such that (11c) holds for some ad ∈ R, then
Problem (O) is solved if the average dwell time (ADT)
is sufficiently large to satisfy (C1’). This result is very
standard in the literature of switched systems as detailed
in Section 7.3. Of course, if V does not increase at jumps,
namely

V (G(x, z)) ≤ V (x, z) ∀(x, z) ∈ D × Rdz ,

(11c) holds with ad = 0. This is related to the notion of
non-expansiveness of V for g in [31]. Actually, if (11a)
is strengthened into (12) and if there exists a K∞-map κ
such that

|G(x, z)|A ≤ κ (|(x, z)|A) ∀(x, z) ∈ D × Rdz (18a)

α ◦ κ ◦ α−1 ≤ c Id (18b)

for some positive scalar c, then (11c) automatically holds
with ad = ln(c). For instance, in the case where dz = dx
and A is simply the diagonal set (9a), a map G satisfying
(18a) is a simple copy of the plant’s jump map g namely

G(z, yd) = g(z) , (19)

if g is single-valued and κ-continuous, namely

|g(x)− g(x̂)| ≤ κ(|x− x̂|) ∀(x, x̂) ∈ D × Rdx . (20)

In particular, if g is Lipschitz with Lipschitz constant
kG and V is quadratic with α = λ(·)2 and α = λ(·)2,
then Problem (O) is solved if the ADT is larger than
1
|ac| ln

(
λ(P )
λ(P )k

2
G

)
. Note that if g is only locally Lipschitz

and any x ∈ SH(X0) remains in a compact set X , it is
enough to guarantee (20) on (D ∩ X )× Rdx by taking

G(z, yd) = sat(g(z)) (21)

where sat is an appropriate saturation map active outside
of g(X ).

However, apart from switched systems where the switch-
ing signal may be a controlled input, the ADT is typically
not chosen for a general hybrid systems where the jumps
are state-dependent. Therefore, the ADT (if it exists) is a
property of the system and cannot be made “sufficiently
fast”. When the flow/jump/output maps are linear, this
problem is overcome in [29, 30] by using (13) with Ld = 0
and Lc such that there exists P > 0 solution to

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (22a)

A>d PAd ≤ eadP (22b)

acτ
? + ad < 0 (22c)

with ac < 0. However existence of a solution to (22) is a
priori not guaranteed, and more importantly, this method
is not viable for general nonlinear systems.

4.2. Arbitrary Average Dwell-time

Another way to satisfy (C1) or (C1’) is to choose a suf-
ficiently fast continuous-time observer (17), i.e. satisfy-
ing (11a)-(11b) with |ac| sufficiently large. This tunability
property requires the continuous dynamics to be instan-
taneously observable [37]. However, increasing ac may re-
quire to change V , which in turns, modifies ad. The fol-
lowing novel corollary shows that this compromise can be
achieved under some conditions applying to the so-called
“high-gain observers.”

Corollary 4.1. Assume CavX0
[τ?] holds for some τ? > 0,

and there exist λ > 0, `0 > 0, polynomials c and c, a
continuous map T : Rdx → Rdz , and for all ` > `0, maps
F` : Rdz × Rdy → Rdz and V` : Rdx × Rdz → R such that

c(`)|z − T (x)|2 ≤ V`(x, z) ≤ c(`)|z − T (x)|2

∀(x, z) ∈ (C ∪D ∪ g(D))× Rdz (23a)

LF`
V`(x, z) ≤ −`λ V`(x, z) ∀(x, z) ∈ C × Rdz (23b)
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with F`(x, z) = (f(x), F`(z, hc(x)). Then, there exists
`∗ ≥ `0d such that for all ` ≥ `∗, Problem (O) is solved for
any compact sets X0×Z0, with A defined in (9b), F := F`,
and any map G : Rdz ×Rdyd → Rdz , Lipschitz with respect
to z (uniformly in yd ∈ hd(D)), verifying

G (T (x), hd(x)) = T ◦ g(x) ∀x ∈ D . (23c)

Note that the subscript ` highlights the dependency of
V` and F` with respect to the gain ` describing the decay
rate in (23b), which can be chosen as large as necessary.

Proof. First, |(x, z)|A ≤ |z − T (x)| for all (x, z) ∈ C ∪
D ∪ g(D) and on any compact sets X0×Z0, there exists a
K∞ map α such that |z−T (x)| ≤ α(|(x, z)|A). Therefore,
(23a) implies (11a) for all ` ≥ `0. Then, (23b) implies
(11b) with ac = −`λ. Then, from the definition of G in
(8b) and from (23a), for all (x, z) ∈ D × Rdz ,

V`(G(x, z)) ≤ c(`) |G(z, hd(x))− T (g(x))|2

≤ c(`) |G(z, hd(x))−G(T (x), hd(x))|2

≤ c(`)k2G |z − T (x)|2

≤ c(`)

c(`)
k2GV`(x, z)

where kG is the Lipschitz constant of G with respect to z.

Therefore, (11c) holds for all ` ≥ `0 with ad = ln
(
k2G

c(`)
c(`)

)
.

Exploiting exponential growth over polynomial growth,

−`λτ? + ln
(
k2G

c(`)
c(`)

)
< 0 for ` sufficiently large and (C1’)

holds.

In other words, if we know a high-gain continuous-time
observer for the continuous dynamics of the plant (2), ver-
ifying (23a)-(23b), then a possible hybrid observer is made
of this continuous-time observer and a copy of the jump
dynamics (written in the high-gain coordinates z = T (x),
i.e. verifying (23c)), with a gain ` sufficiently large com-
pared to the average dwell-time and the Lipschitz constant
of the jump dynamics. Compared to [29, 30], this result
guarantees the existence of a solution to (22) in the lin-
ear context and provides a constructive way to compute it
as detailed in Example (4.2). More importantly, the result
applies to general nonlinear dynamics whose flow dynamics
are strongly differentially observable, such as Lagrangien
models with impacts, as detailed in Example 4.3.

Example 4.2 (Linear observable flow/output maps). As-
sume f(x) = Acx and hc(x) = Hcx with the pair (Ac, Hc)
observable. The observer’s eigenvalues can then be as-
signed arbitrarily fast. For that, we define V ∈ Rdx×dx a
change of coordinates transforming (Ac, Hc) into a block-
diagonal observable form, namely such that

VAcV−1 = A + DH , HcV−1 = H

with A := blkdiag(A1, . . . , Adyc ), D :=

blkdiag(D1, . . . , Ddyc
), H := blkdiag(H1, . . . ,Hdyc

),

Ai =


0 0 . . . 0
1 0
...

. . .
. . .

0 1 0 0
0 . . . 0 1 0

 ∈ Rdi×di

Hi =
(

0 . . . 0 1
)
∈ R1×di ,

Di ∈ Rdi×1, and di integers such that
∑dyc
i=1 di = dyc .

Consider vectors Li such that Ai − LiHi is Hurwitz, and
for a positive scalar `, define Li(`) := diag(`di−1, . . . , `, 1).
Then, let us take F defined by (13a) with

Lc = V−1(D + `L(`)L) (24)

where L := blkdiag(L1, . . . , Ldyc ), L :=
blkdiag(L1, . . . ,Ldyc ). We thus have

eig(Ac − LcHc) = ` eig(A−LH) .

Consider a positive definite matrix P ∈ Rdx×dx such that

(A−LH)>P + P (A−LH) ≤ −λP

for some λ > 0. Then, (23a)-(23b) hold with T = Id,

V`(x, z) = (x− z)>V>L(`)−1PL(`)−1V (x− z) ,

α(·) = λ(V>PV) (·)2 , α(·) = λ(V>PV) `2(d−1) (·)2

d = max di. Therefore, whatever the average dwell-time
is, Problem (O) is solved for ` sufficiently large by taking
G as in (19) (resp. (21)) if g is Lipschitz (resp. locally
Lipschitz and the solutions x are bounded).

Example 4.3 (Strongly differentially observable
flow/output maps). Assume that f and g are single-
valued, with a single output (dyc = 1), and the flow
dynamics of H are strongly differentially observable of
order dz, namely the map T : Rdx → Rdz defined by

T (x) = (hc(x), Lfhc(x), ..., Ldz−1f hc(x)) (25)

is an injective immersion on C ∪D. If in addition, there
exists a Lipschitz map Φ verifying

Φ(T (x)) = Ldzf h(x) ∀x ∈ C ∪D ,

then a high-gain observer as in [38] can be built for the
flow dynamics, with

F`(z, y) = Az +BΦ(z) + `L(`)K(y − z1) ,

A =


0 1 . . . 0
0 0 1
...

. . .
. . .

. . .
... 0 1
0 . . . . . . 0 0

 ∈ Rdz , B =


0
...
0
1


8



L(`) = diag(1, `, `2, . . . , `dz−1), and K such that A−KH
is Hurwitz with H = (1, 0, . . . , 0). Note that if any x ∈
SH(X0) evolves in a compact set X ⊆ C ∪D, there exists
a Lipschitz map T : Rdz → Rdx such that

T (T (x)) = x ∀x ∈ X ,

and Φ can simply be chosen as Φ = sat ◦Ldzf ◦ T where sat

saturates outside of Ldzf (X ). Classical high gain computa-

tions [38] show that conditions (23a) and (23b) then hold
for the Lyapunov function

V`(x, z) = (T (x)− z)>L(`)−1PL(`)−1(T (x)− z) ,

with P a positive definite matrix such that

(A−KH)>P + P (A−KH) ≤ −λ0P

for some λ0 > 0, c(`) = λ(P ), c(`) = λ(P )`2(dz−1), λ > 0
depending on the Lipschitz constant of Φ, and ` larger than
a threshold also depending on that Lipschitz constant. Se-
lecting G Lipschitz verifying (23c), finally provides an ob-
server relative to A defined in (9b), if the gain ` is suf-
ficiently large according to Corollary 4.1. In particular,
if any x ∈ SH(X0) evolves in the compact set X , we can
choose G(z, yd) = sat ◦T ◦ g ◦ T (z) where sat saturates
outside of T ◦ g(D), and an estimate of x is obtained by
x̂ = T (z). This design is illustrated in Sections 7.1 and
7.2. Note that the same tools can be used for multi-output
triangular normal forms [39], and if z estimates only a part
xp of the state x, by replacing x by xp everywhere.

5. Jump-based Hybrid Observer

We now consider the case where the output is rather
used to create contraction of the Lyapunov function at
jump times, namely we mostly exploit yd. Without natu-
ral contraction in the continuous dynamics of H, we thus
need the jumps to be persistent and sufficiently frequent
to inject sufficient information in the observer, i.e., condi-
tions of the type CravX0

[τ?] or CX0
[I] with I bounded.

5.1. Sufficiently Small Reverse Dwell-time

Similarly to the previous section, we can start by noting
that when the discrete dynamics of H admit a discrete-
time observer verifying (11a) and (11c) with ad < 0, we
may choose F such that (11b) holds for some ac ∈ R and
Problem (O) will then be solved if ad is sufficiently negative
with respect to ac and the amount of flow, or equivalently
if the jumps are sufficiently frequent, i.e. either if max I is
sufficiently small to satisfy (C2), or the rADT is sufficiently
small to satisfy (C2’). When f is single-valued and A
defined as in (9a), one may choose F single-valued so that

|f(x)− F (z, hc(x))| ≤ c |x− z| ∀(x, z) ∈ C × Rdz

with some scalar c. For instance, if x ∈ SH(X0) evolves in
a compact set X and f is locally Lipschitz, one may simply
take F (z, yc) = sat(f(z)), where sat saturates outside of
f(X ). In other words, F is simply a flow predictor.

However, again, this method has an interest only when
the jumps are naturally sufficiently frequent (Zeno, even-
tually discrete solutions) or can be made so (switching
systems). Otherwise, we need to take explicitly into ac-
count the potential increase of V during flow, to ensure
the conditions (11) and (C2’) hold simultaneously. When
the flow/jump/output maps are linear, one may choose F
and G as in (13) with Lc = 0 and Ld such that there exists
P positive definite solution to

A>c P + PAc ≤ acP (26a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (26b)

acτ
? + ad < 0 (26c)

with ad < 0 as in [29, 30], where τ? denotes the rADT or
the maximal length of flow. In particular, [29, Example
4.2] shows that it can be done analytically for a bounc-
ing ball exhibiting Zeno trajectories, and with the posi-
tion only measured at jumps. In this case, τ? represents
a known bound on the length of the flow intervals, which
depends on the compact set of initial conditions. The pres-
ence of Zeno solutions is therefore not problematic to the
observer design as long as it is properly taken into account
through a rADT or with 0 ∈ I.

As noticed in [27] in the context of sampled systems
(Ad = I), this design is extendable to particular classes of
nonlinear continuous dynamics for which f is included in
the convex hull of a finite number of linear maps. The LMI
(26a) must then hold for each of those maps. Furthermore,
[27] shows that (26) might be relaxed by allowing P and
Ld to depend on the length τ of the flow intervals in a
way that ensures contraction during both flows and jumps.
But this requires the feasibility of some LMIs that are not
necessarily related to observability.

In any case, the methods mentioned in this section re-
quire the detectability of the discrete dynamics of H and
a sufficient contraction of the error at jumps. When either
the discrete dynamics are not detectable, or the coupling
between flows and jumps makes the matrix inequalities
not feasible, we show in the next section that we should
rather analyze an equivalent discrete-time system made
of the plant sampled at the jump times, which naturally
contains the information of both flows and jumps.

5.2. Arbitrary Reverse Dwell-Time

We now assume the jumps are persistent, i.e. CX0
[I]

holds with I compact, but without any constraint on the
upper-bound of I. We also suppose that absolutely contin-
uous solutions of ẋ ∈ f(x) are complete and we denote Ψf

the flow operator alongside f , i.e, Ψf (x0, τ) denotes the
set of points that can be reached at time τ by solutions to
ẋ ∈ f(x) initialized at x0 at τ = 0.

Now consider a solution x ∈ SH(X0) and notice that
xk := x(tk, k) sampled after each jump and the output
yk := hd(x(tk, k − 1)) obtained before each jump verify

xk+1 ∈ g(Ψf (xk, τk)) , yk ∈ hd (Ψf (xk, τk)) (27)

where τk = tk+1− tk denotes the length of the kth flow in-
terval. It follows that with the discrete output yd obtained
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at each jump, we are actually observing the equivalent
discrete-time system (27). It is therefore the observabil-
ity/determinability of (27) that counts, and we must look
for F and G making A UpAS for the reduced system

xk+1 ∈ g(Ψf (xk, τk))
zk+1 ∈ G(ΨF (zk, τk), hd(Ψf (xk, τk)))

or equivalently

(xk+1, zk+1) ∈ G ◦ΨF ((xk, zk), τk) , (28)

with F and G defined in (8). Indeed, the following theo-
rem shows that it is sufficient to prove UpAS of (28) with
sequences (τk) ∈ IN to solve Problem (O).

Theorem 5.1. Assume that CX0
[I] holds with I compact

and solutions to (ẋ, ż) ∈ F(x, z) are complete. Consider a
set X ⊆ C ∪D such that any x ∈ SH(X0) remains in X at

all times. Let X̃0 × Z̃0 such that

G ◦ΨF ((x0, z0), τ0) ⊆ X̃0 × Z̃0

∀(x0, z0, τ0) ∈ X0 ×Z0 × [0,max I] .

Suppose there exists a class-KL function β and Z ⊆ Rdz
such that any solution (x, z) to (28) initialized in X̃0 × Z̃0

and with input k 7→ τk ∈ I verifies (xk, zk) ∈ X × Z and∣∣(xk, zk)
∣∣
A ≤ β

(∣∣(x0, z0)
∣∣
A, k

)
∀k ∈ N . (29)

Then, Problem (O) is solved if there exists a class-K func-
tion ρ such that for all (x0, z0) ∈ X × Z and for all
τ ∈ [0,max I],

|ΨF ((x0, z0), τ)|A ≤ ρ (|(x0, z0)|A) . (30)

Proof. See Appendix A.

The condition (30) guarantees that the distance of (x, z)
to A during flow is continuous on the compact interval
[0,max I] with respect to the initial distance to A. If A
is defined by (9a) and f = F is locally Lipschitz, this
regularity property is always satisfied when X and Z are
compact.

It is important to note that Ψf and ΨF need not be
computed for the implementation of the observer (6) : they
are only used in the analysis in order to design the maps F
and G to be used in (6). Although the reduced system (28)
may not be handier to use for design than (7), it helps to
understand the observability conditions that are at stake
here. Besides, when f is linear, i.e. f(x) = Acx, we can
choose F (z) = Acz, so that

Ψf (xk, τk) = exp(Acτk)xk , ΨF (zk, τk) = exp(Acτk)zk

and (30) immediately holds for A diagonal defined in (9a).
When both g and f are linear we obtain the following

constructive sufficient condition, that is weaker than (26).

Corollary 5.2. Assume that CX0 [I] holds with I compact
and f, g, hd are defined by f(x) = Acx, g(x) = Adx and
hd(x) = Hdx. Assume there exist a positive definite matrix
P ∈ Rdx×dx and a gain vector Ld ∈ Rdx×dyd such that

(exp(Acτ))>(Ad−LdHd)
>P (Ad−LdHd) exp(Acτ) < P

∀τ ∈ I . (31)

Then, F and G defined in (13) with Lc = 0, solve Problem
(O) with A defined in (9a).

Proof. Follows from Theorem 5.1 by noticing that the dis-
tance to A is the norm of the error e = z−x with dynamics

ek+1 = (Ad − LdHd) exp(Acτ)ek (32)

and using the Lyapunov function V (x, z) = (x−z)>P (x−
z).

Remark 5.3. We say that (31) is weaker than (26)
because (26) implies (31). Indeed, denoting f(τ) =
(exp(Acτ))>(Ad−LdHd)

>P (Ad−LdHd) exp(Acτ), (26b)
implies that f(τ) ≤ ead(exp(Acτ))>P exp(Acτ). Define
the function fε : R→ R by

fε(τ) = ε>(exp(Acτ))>P exp(Acτ)ε

With (26a), we have

dfe
dτ

(τ) = e>(exp(Acτ))>[A>c P + PAc] exp(Acτ)e

≤ acfe(τ) .

It follows that for all τ ≥ 0, fε(τ) ≤ eacτfε(0) and since
this is valid for all e in Rn, we get

(exp(Acτ))>P exp(Acτ) ≤ eacτP

and f(τ) ≤ eacτ+adP < P with (26c).

The existence of the matrix P verifying (31) for a given τ
is equivalent to (Ad−LdHd) exp(Acτ) being Schur for some
gain Ld, which in turn is equivalent to the detectability of
the discrete-time system

xk+1 = Ad exp(Acτ)xk , yk = Hd exp(Acτ)xk . (33)

Thus, having (31) for any τ ∈ I requires detectability of
(33) for any τ ∈ I. It is not sufficient, however, because
(31) must be verified with the same Ld and P for all τ ∈ I.
So (31) requires in fact the detectability of the LTV or LPV
discrete-time system

xk+1 = Ad exp(Ac τk)xk , yk = Hd exp(Acτk)xk (34)

with input τk in the compact set I, which is exactly (27).
Actually, (31) is stronger because it requires a quadratic
Lyapunov function with a matrix P , that is independent
from the sequence k 7→ τk. This property is sometimes
called “quadratic detectability” (see [40, 41, 42]).
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Remark 5.4. By the Schur complement, finding P and Ld
satisfying (31) is equivalent to finding P and L̃d satisfying
the LMIs(

P exp(Acτ)>(PAd − L̃dHd)
>

? P

)
> 0 ∀τ ∈ I (35)

with L̃d = PLd. In the case where I has infinitely many el-
ements, an infinite number of LMIs must be solved which
is not desirable. However, it is shown in [26] that it is
always possible to compute numerically a polytopic decom-
position of exp(Acτ), namely a finite number of matrices
{M1,M2, . . . ,Mν} such that exp(Acτ) is in the convex hull
of those matrices whenever τ ∈ I. Since (35) is convex in
exp(Acτ), it is then sufficient to solve the finite number of
LMIs(

P M>i (PAd − L̃dHd)
>

? P

)
> 0 ∀i ∈ {1, 2, . . . , ν}

(36)

with common P and L̃d. An example is given in Sec-
tion 7.1. In particular, if Ac is nilpotent of order N ,

we have exp(Acτ) =
∑N−1
k=0

τk

k! A
k
c so that for all τ in

a compact subset I of R≥0, exp(Acτ) is in the convex

hull of the ν = 2N−1 matrices
{
I +

∑N−1
k=1

τk
k

k! A
k
c

}
with

τk ∈ {min I,max I} for all k. See Section 7.2.

Example 5.5. Consider the system (16) where Ac =(
0 1 0
0 0 0
0 0 0

)
, Ad =

(
1 0 0
0 1 0
1 0 0

)
, and Hd = ( 1 0 0 ). Neither the

continuous pair (Ac, Hc) nor the discrete pair (Ad, Hd)
is detectable, so Theorem 3.1 cannot be used. How-

ever, the pair A(τ) := Ad exp(Acτ) =
(

1 τ 0
0 1 0
1 τ 0

)
, H(τ) :=

Hd exp(Acτ) = ( 1 τ 0 ) is detectable for any nonzero τ .
Since Ac is nilpotent of order 2, according to Remark 5.4,
for any I compact subset of R>0, it is enough to solve the
two LMIs given by(

P (I + τAc)
>(PAd − L̃C)>

? P

)
> 0 (37)

for τ = τm := min I > 0 and τ = τM := max I. If they
are solvable (with a common P ), then by Corollary 5.2, we
obtain an observer. For instance, when choosing τm = 2
and τM = 5 and solving the LMIs via Yalmip for P and
L̃d, we get Ld = PL̃d = (1, 0.2259, 1)>. 4

What makes the above work is the fact that the flow
operator of the error e = x̂ − x, is explicitable through
exp(Acτ)e and is contained in the convex hull of a finite
number of linear maps. In the context of sampled nonlin-
ear systems, [43, 23] noticed that by copying the continu-
ous dynamics in the observer, namely taking F = f , the
error components evolve during flow according to

ėi = fi(x̂)− fi(x) =
dfi
dx

(v(t))e

for some v depending on x and x̂, thanks to the mean
value theorem. For certain classes of maps f [23], the error

reachable set within a time τ ∈ I may then be included
in the convex hull of a finite number of linear maps {e 7→
Mie}i=1,..ν if the Jacobian components of f are bounded.
If g is linear, the discrete error system (32) is then replaced
by

ek+1 =

ν∑
i=1

βi,k(Ad − LdHd)Miek

with
∑ν
i=1 βi,k = 1, and following the same steps as in [43]

with the Lyapunov function of Corollary 5.2, it is enough
to ensure (31) with exp(Acτ) replaced by Mi, for each
i ∈ {1, 2, . . . ν}, namely solve the LMIs (36).

The advantage of using a constant gain Ld is that it
is sufficient to compute only once the vertices Mi of the
polytopic decomposition of the flow operator for τ ∈ I
and solve offline the finite number of LMIs (36). However,
as mentioned above, those LMIs might not be solvable
since they require a stronger property than detectability
of (34). In that case, we may allow Ld to be time-varying,
by adapting Ld to τk, as done in the particular case of
sampled-data observers in [28]. Indeed, observe that the
observer jump map G in (28) is applied after flowing τk
units of time with F . Therefore, at the moment where G
is used, τk represents the time elapsed since the previous
jump and is known to the observer. This can be modeled in
this framework with a timer τ added to the observer state,
where τ flows according to τ̇ = 1 and jumps according to
τ+ = 0. It follows that at each jump, the gain Ld in the
jump map G defined in Corollary 5.2 can be adapted to
the length of the previous interval of flow, in a way that
makes

x̂k+1 = A(τk)x̂k + Ld,k(yk −H(τk)x̂k) (38)

an observer for (34), where

A(τk) = Ad exp(Acτk) , H(τk) = Hd exp(Acτk) .

Since H is not constant, we cannot use the results ob-
tained for LPV systems ([41]). However, an even simpler
approach is to consider (34) as a LTV system and design
Ld,k as the gain of a discrete Kalman filter. More pre-
cisely, we use an observer with state z = (x̂, τ,K, P ), flow
dynamics F (z) = (Acx̂ , 1 , 0 , 0) and jump dynamics

G(z, yd) =

Adx̂+A(τ)K(yd −Hdx̂)
0

χ(P, τ)(
I − χ(P, τ)H(τ)

)
p(P, τ)

 (39)

where the maps p and χ are defined by

p(P, τ) = A(τ)PA(τ)> +Q

χ(P, τ) = p(P, τ)H(τ)>
(
H(τ)p(P, τ)H(τ)> +R

)−1
It is important to note that the innovation of x̂k+1 in (38)
must be with yk, instead of yk+1 in a standard Kalman
filter. That is why we use in (39) a Kalman filter with
prediction after innovation, where the gain writes Ld =
A(τ)K with K the Kalman gain computed at the previous
jump. In the same spirit, if (34) is known to be observable
after N jumps, [19] proposed to compute Ld,k based on the
weighted observability Grammian over the past N jumps.
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6. Robustness with Respect to Delays in Jumps

We now study how the observer convergence is impacted
if the observer jumps are delayed with respect to the
plant’s, thus leading to a mismatch between the observer
jump times and those of the plant. For this, we start from
the following assumption.

Assumption 6.1. CX0 [I] holds with I compact and
min I > 0 (dwell-time), and Problem (O) has been solved,

namely the set A is UpAS for H−Ĥ with basin of attrac-
tion including X0 ×Z0.

We choose to study the particular case where the value
of the innovation term, implemented in the observer at
the delayed jump, is the one that would have been com-
puted at the actual plant’s jump time if there had been no
delay. This covers the situations where the measurement
and computation of the innovation G(z, yd) are instanta-
neous, but the implementation of the jump in the observer
is delayed; or the measurement takes a known amount of
time δ ≥ 0 to arrive to the observer, and the update of
z is chosen as G(z(t − δ), yd), thanks to a buffer in z or
by backward integration of z. Inspired from [44], for any
delay ∆ ∈ [0,min I), this situation can be modeled as

Ĥ(∆)



ẋ = f(x)
ż = F (z, hc(x))
µ̇ = 0
τ̇δ = −min{τδ + 1 , 1}

 x ∈ Ĉ(∆)

x+ = g(x)
z+ = z
µ+ = G(z, hd(x))
τ+δ ∈ [0,∆]

 x ∈ D̂−1(∆)

x+ = x, µ+ = 0 ,
z+ = µ, τ+δ = −1,

}
x ∈ D̂0(∆)

(40)

with state x = (x, z, µ, τδ), flow set

Ĉ(∆) =
(
Ĉ × {0} × {−1}

)
∪
(
Ĉ × Rdz × [0,∆]

)
,

jump set D̂−1(∆) ∪ D̂0(∆) with

D̂−1(∆) = D̂ × {0} × {−1}

D̂0(∆) = (Ĉ ∪ D̂)× Rdz × {0} ,

Ĉ := C × Rdz , D̂ := D × Rdz .

Ĥ(∆) contains two new states µ and τδ evolving in Rdz
and [0,∆] ∪ {−1} respectively. The state τδ is a timer
modeling the delay between the plant’s jump and the ob-
server’s jump. The role of µ is to store the update to be
implemented in the observer at the end of the delay inter-
val, when it actually jumps. More precisely, when τδ = −1
and x does not jump, Ĥ(∆) flows, with (x, z) flowing ac-

cording to F as in H− Ĥ, while µ and τδ remain equal to
0 and −1 respectively. When the plant’s state x jumps,

then the update G(z, hd(x)) that should have been instan-
taneously implemented in the observer state z is stored in
the memory state µ, and τδ is set to a number in [0,∆] thus

starting a delay period: Ĥ(∆) then flows and the time τδ
decreases, until it reaches 0. At this point, a delay interval
of length smaller than or equal to ∆ has elapsed, and the
observer state z is updated with the content of µ, while µ
is reset to 0 and τδ switched back to −1.

Note that the plant’s state x is not allowed to jump again
before the delay expressed by τδ has expired. That is why
this model only works in the case where ∆ < min I, i.e.,
the maximal delay is smaller than the smallest possible
time between successive jumps of the plant.

In order to study the robustness of this property in pres-
ence of delay, we need to resort to compact attractors and
some regularity properties of H− Ĥ.

Assumption 6.2. There exists a compact subset X of
C∪D, such that any solution x ∈ SH(X0) verifies x(t, j) ∈
X for all (t, j) ∈ domx. Besides, AX := A∩ (X ×Rdz ) is
compact.

Assumption 6.3. H−Ĥ defined in (7) satisfies the hybrid
basic conditions defined in [1, Assumption 6.5], namely C
and D are closed, F|Ĉ and G|D̂ are outer semicontinuous

and locally bounded, and F|Ĉ takes convex values.

It follows that the plant solutions of interest are also
solution to (2) with flow set C ∩ X and jump set D ∩ X ,
which are compact. The assumption that AX is compact,
is typically satisfied whenever

(x, z) ∈ A ⇐⇒ z = T (x)

for some continuous map T : O → Rdz with X ⊆ O,
namely in all the examples considered above.

Let us define the set

A′ =
(
AX × {0} × {−1}

)
∪
(
Ĝ× {0}

)
Ĝ :=

{
(g(x), z,G(z, hd(x))) : x ∈ D , (x, z) ∈ AX

}
.

Theorem 6.4. Suppose Assumptions 6.1, 6.2 and 6.3
hold. Then, the set A′ is UpAS for Ĥ(0) with basin of at-
traction containing X0 ×Z0 × {0} × {−1}. Besides, there
exist a KL-map β, scalars t? ≥ 0 and j? ∈ N, and for
any ε > 0, there exists ∆∗ > 0, such that any solution
φ = (x, z, µ, τδ) to Ĥ(∆) with ∆ < ∆∗ and initialized in
X0 ×Z0 × {0} × {−1} verifies

|φ(t, j)|A′ ≤ β(|φ(0, 0)|A′ , t+ j) + ε , (41)

and domφ = D−1∪D0 with Dk =
(⋃

j∈Jk [tj , tj+1]× {j}
)

,

k ∈ {0,−1},

J−1 = {j ∈ N : τδ(t, j) = −1 ∀t ∈ [tj , tj+1]}

J0 = {j ∈ N : τδ(t, j) ∈ [0,∆] ∀t ∈ [tj , tj+1]} ,
such that
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• for all (t, j) ≥ (t?, j?) in D−1,
∣∣(x, z)(t, j)∣∣A ≤ 2ε,

• for all j in J0, tj+1 − tj ≤ ∆.

Proof. See Appendix B.

In other words, we achieve semi-global practical stability
of A except possibly on the delay intervals. More precisely,
for any ε > 0, there exists a maximal delay ∆∗ between
the plant’s and observer’s jumps, such that the distance
of (x, z) to A is asymptotically smaller than 2ε, except
possibly during the delay intervals in-between the plant’s
and observer’s jump of length smaller than ∆∗. This is
illustrated in Section 7.2.

In fact, if A is the diagonal set (9a), the mismatch dur-
ing the delay intervals cannot be prevented if the jump
map is not the identity. Indeed, after one jump of either x
or z, one is close to x− while the other is in g(x−), no mat-
ter how long the delay is. This well-known phenomenon,
called peaking, was reported in the context of observation
[3], but also more generally output-feedback and tracking
[45]. This suggests that the Euclidian distance to evaluate
the observer error is not appropriate and more general dis-
tances could be designed [46]. In particular, the expression
of A′ shows that semi-global practical stability is actually
ensured for the peaking free set

Ã = A∪
{

(x, z) ∈ Rdx ×Rdz : x ∈ g(x−) , (x−, z) ∈ A
}
.

Note that in the limit case where min I = 0, namely Zeno
or multiple jumps could happen, then an arbitrarily small
delay in the observer jumps could lead to several jumps of
delay, namely, one would need to consider

Ã = A∪
{

(x, z) ∈ Rdx×Rdz : x ∈ gk
∗
(x−) , (x−, z) ∈ A

gk(x−) ∩D 6= ∅ ∀k ∈ {1, · · · , k∗ − 1}
}
.

In the case of an average dwell-time, k∗ would be limited
by N0.

7. Applications

The results in the previous sections are exercised in ap-
plications. Section 7.1 introduces a model that covers a
class of mechanical systems with impacts, including jug-
gling systems and walking robots; see [47] and [48], and the
references therein. Section 7.2 presents a second applica-
tion that pertains to a parameterized model capturing the
dynamics exhibited by a wide range of cortical neurons.
This model, introduced in [49], has been widely used by
the neuroscience community due to its capabilities of re-
producing a variety of spiking and bursting behaviors by
properly choosing its parameters. Finally, in Section 7.3,
the results are applied to the design of observers for the
general class of switched systems defined in Example 2.3.

7.1. Mechanical system with impacts

Consider a system evolving according to{
θ̇ = ω
ω̇ = α(θ, ω)

{
θ+ = gθ(θ, ω)
ω+ = gω(θ, ω)

with x = (θ, ω) ∈ Rd × Rd the (bounded) positions and
velocities, α, gθ and gω locally Lipschitz functions, the po-
sition y = θ measured and jumps occurring at the impacts
of θ on a surface W, typically modeled by a jump set of
the form

D = {(θ, w) ∈ Rd × Rd , θ ∈ W , 〈ω,∇W〉 ≤ 0}

where the second condition ensures the velocity is point-
ing inwards W. The flow dynamics are clearly strongly
differentially observable of order dz = 2, since (y, ẏ) = x
defines an injective immersion (with T simply the identity
map). Therefore, if the impacts are detected (for instance
through force sensors) and are known to have an average
dwell-time, then an observer is simply given by

˙̂
θ = ω̂ − `(θ̂ − y)
˙̂ω = sat

(
α(θ̂, ω̂)

)
− `2(θ̂ − y)

 θ̂+ = sat
(
gθ(θ̂, ω̂)

)
ω̂+ = sat

(
gω(θ̂, ω̂)

)
for ` sufficiently large, sat saturation functions saturating
outside the bounds within which x is known to evolve, and
jumps triggered at the detected impacts.

On the other hand, if the mechanical system possibly
exhibits Zeno behavior (i.e. with T (x) < +∞ and J(x) =
+∞), for instance due to gravity, a jump-based observer
should be used instead. For instance, consider a vertical
bouncing ball with

f(θ, ω) = (ω,−%ω − g) , g(θ, ω) = (−θ,−λω) (42)

C = R≥0 × R , D = {(θ, ω) ∈ R2 : θ = 0 , ω ≤ 0}

with g the gravity constant, % the friction coefficient, and
λ < 1 the impact restitution coefficient. Assume the mea-
surement yd = θ is only available at jumps, namely only
impact sensors are used. We know that any maximal solu-
tion x is Zeno. More precisely, the time between two suc-
cessive jumps tj+1(x)−tj(x) tends to zero when j tends to
+∞, and its upper bound increases with |x(0, 0)|. Hence,
for any bounded set of initial conditions X0, CX0

[I] holds
with I of the form I = [0, τM ], with τM < +∞ depending
on X0. Since the system is linear, we implement a linear
observer (13), with Lc = 0 and Ld chosen such that (31)
holds, where Ac =

(
0 1
0 −%

)
, Ad =

(−1 0
0 −λ

)
and Hd = (1, 0).

As in Remark 5.4, we compute a polytopic decomposi-
tion of exp (Acτ) based on the residues of Ac. Because
one eigenvalue of Ac equals zero and τm = 0, we obtain
that exp (Acτ) is in the convex hull of only two matri-
ces M1 = I and M2 = ( 1 3.9347

0 0.6065 ) for τm = 0, τM = 5,
λ = 0.8, and ρ = 0.1. Solving (36) with Yalmip then gives
Ld = (−1,−0.1085). The result of a simulation with ini-
tial condition x0 = (5, 0), x̂0 = (10, 2) is shown on Figure
2. One could also use the hybrid Kalman filter (39).
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Figure 2: Jump-based estimation of a Zeno bouncing ball (42).

7.2. Spiking Neurons

The parameterized model of a spiking neuron in [49]
results in a hybrid system H as in (2) with state (x1, x2) ∈
R2 and data given by

f(x) =
(
0.04x21 + 5x1 + 140− x2 + Iext , a(bx1 − x2)

)
g(x) = (c, x2 + d) , hc(x) = hd(x) = x1

C = {(x1, x2) ∈ R2 : x1 ≥ vm} (43)

D = {(x1, x2) ∈ R2 : x1 = vm}

where x1 is the membrane potential, x2 is the recovery
variable, and Iext represents the (constant) synaptic cur-
rent or injected DC current. The value of the input Iext
and the model parameters a, b, c, and d, as well as the
threshold voltage vm characterize the neuron type and its
firing pattern [50]. The solutions are known to have an
average dwell-time (actually a dwell-time), and the jump
times can be detected from the discontinuities of the out-
put y = x1. According to [49], this hybrid system model
combines the biological plausibility of Hodgkin-Huxley-type
dynamics and the computational efficiency of integrate-
and-fire neurons, making it versatile for the study of the
dynamics of a wide class of neurons. We consider two sce-
narios for estimation of state variables and parameters.

Let us first assume that c and d are known and we want
to estimate the state x2 as well as the parameters a and b.
Adding the constant parameters a and b to the state, the
nonlinear map T made of the successive derivatives of h
along f defined by (25) for dz = 4 is an injective immersion
with respect to x = (x1, x2, a, b) if the matrix

( x1 x2
ẋ1 ẋ2

)
is in-

vertible along the plant trajectories. We can therefore use
the high-gain design of Example 4.3. The result of a sim-
ulation with Iext = 10, a = 0.02, b = 0.2, c = −55, d = 4,
x(0, 0) = (−55,−6, a, b), x̂0 = (−50, 0, 0.1, 0.1), z(0, 0) =
T (x̂0), ` = 4, K = (3.0777, 4.2361, 3.0777, 1) and appro-
priate saturations is shown on Figure 3.

Let us now consider the case where a, b are known but
d is not. Neither the continuous dynamics nor the dis-
crete dynamics are observable for (x1, x2, d) with output
x1, so a flow-based observer cannot be used. However, x2
is observable from the flow and d impacts x2 at jumps, so
the system as a whole could be observable thanks to the
jumps. Actually, we observe that the model is linear in the
unknowns x2 and d, namely the dynamics of (x1, x2, d) are
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Figure 3: Flow-based estimation of (x1, x2, a, b) in the neuron model
(43) through high-gain observer.

characterized by the matrices

Ac =
(

0 −1 0
0 −a 0
0 0 0

)
, Ad =

(
0 0 0
0 1 1
0 0 1

)
, Hd = (1, 0, 0)

modulo output injection. One can check that the equiv-
alent discrete-time model given by (33), namely the

pair A(τ) := Ad exp(Acτ) =
(

0 0 0
0 1−aτ 1
0 0 1

)
, H(τ) :=

Hd exp(Acτ) = ( 1 −τ 0 ) is observable for any nonzero τ .
Let’s say that from the measurements, the flow intervals
in-between firing times are known to be within a compact
set I = [τm, τM ] with τm > 0. Since Ac is nilpotent of
order 2, from Remark 5.4, it is enough to solve the two
LMIs given by(

P (I + τAc)
>(PAd − L̃dHd)

>

? P

)
> 0 (44)

for τ = τm and τ = τM . If they are solvable (with common

P and L̃d), then with Corollary 5.2, we obtain an observer

with state z = (x̂1, x̂2, d̂) by taking

F (x̂1, x̂2, d̂, yc) = (f(yc, x̂2), 0)

G(x̂1, x̂2, d̂, yd) = (c, x̂2 + d̂, d̂) + Ld(yd − x̂1) .

For instance, for τm = 30 and τM = 50, solving the LMIs
via Yalmip for P and L̃d, we get Ld = (0, 0.0028,−0.0063).
The results of a simulation are provided on the top and
bottom left of Figure 4. Of course, because information
from the output is injected at the jumps only, the es-
timation error takes a longer time to converge than the
flow-based observer where instantaneous observability is
guaranteed during flow. Note that theoretically, we could
have used the estimate x̂1 instead of the measurement yc
in the observer flow F for the linear terms in x1, and take
it into account in Ac. However, this does not work well
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Figure 4: Top and bottom left : jump-based estimation of (x1, x2, d)
in the neuron model (43) without delay. Bottom right : norm of
the residual estimation error without delay (red), with delay ∆ = 1
(blue), with delay ∆ = 5 (pink).

with the term 5x1 because it produces an error growing in
e5τ during flow, which reaches 1086 for τ = 40. In other
words, a jump-based observer will only work numerically
if the eigenvalues of Ac are reasonable compared to the
length of the flow intervals. Finally, we plot on the bot-
tom right of Figure 4, the norm of the estimation error

‖(x̂1, x̂2, d̂) − (x1, x2, d)‖ in steady state, when the jumps
of the observer are triggered with some delay after the
plant’s state. We observe the error peaking to around 80
during the delay intervals whatever the delay’s value ; and
then the smaller the delay the smaller the error outside of
the delay intervals, as predicted by Theorem 6.4.

7.3. Application to Switched Systems

We now show how the results apply to the design of
observers for switched systems with state x = (xp, q) as
defined in (4) of Example 2.3. We focus on the case where
the mode q is known at all times. Besides q, some addi-
tional measurements hq(xp) of the continuous state xp are
available in each mode, either at all times, namely

yc = yd = (hq(xp), q) (45a)

or only at the switching times, namely

yc = q , yd = (hq(xp), q) . (45b)

7.3.1. Flow-based observer
We start by assuming the output (45a) is available at

all times and the continuous pair (fq, hq) of each mode is
detectable for q ∈ Q. More precisely, assume that the in-
dividual continuous dynamics ẋp = fq(xp) of each mode
q ∈ Q with output hq(xp) admit a continuous-time ob-
server

ż = Fq(z, hq(xp))

relative to some observation set Aq ⊂ Rdxp ×Rdz and with

a Lyapunov function Vq : Rdxp × Rdz → R≥0 that verifies
(11a)-(11b), namely

αq
(
|(xp, z)|Aq

)
≤ Vq(xp, z)
∀(xp, z) ∈ (Cq ∪Dq ∪ gq(Dq))× Rdz ,

Vq(xp, z) ≤ αq
(
|(xp, z)|Aq

)
∀(xp, z) ∈ Xp,0 ×Z0

(46a)

LFq
Vq(xp, z) ≤ ac,q Vq(xp, z) ∀(xp, z) ∈ Cq × Rdz (46b)

for some scalar ac,q < 0 and some class-K∞ maps αq, αq,
and where Fq(xp, z) = (fq(xp), Fq(z, hq(xp)).

Since we know an observer of each continuous mode, it
is tempting to build an observer for the switched system
by switching among these individual observers thanks to
the knowledge of q. Because the decrease of the estima-
tion error is brought by flowing in each mode, we need
persistence of flow, namely conditions of the type CX0

[I]
with min I > 0, or more generally CavX0

[τ?]. However, it
is well-known that switching among asymptotically stable
systems does not necessarily bring asymptotic stability,
since whatever has been achieved in one mode could be
destroyed by the following one, if the descent directions of
the Lyapunov functions Vq are not compatible [32]. We
show here how the results of Section 4 shed a new light on
this problem.

For that, let us consider

A :=
{

(xp, q, z) ∈ Rdxp ×Q× Rdz : (xp, z) ∈ Aq
}
,

which verifies for q ∈ Q,

|(xp, q, z)|A = 0 ⇐⇒ |(xp, z)|Aq
= 0 . (47)

Therefore, designing an observer for the hybrid system (4)
with state x = (xp, q) stabilizing A indeed achieves the
observation goal of each mode modeled byAq. From (45a),
we can define

V ((xp, q), z) := Vq(xp, z) , F (z, yc) := Fq(z, hq(xp)) .

Observing that |(xp, q, z)|A ≤ |(xp, z)|Aq
, we deduce from

(46) and (47) that conditions (11a)-(11b) hold with ac :=
maxq∈Q ac,q, X0 = Xp,0 × Q, α = minq∈Q αq, and some
K∞-map αq if Xp,0 × Z0 is compact. It thus remains to
satisfy (11c) and (C1) or (C1’) to apply Theorem 3.1.
Common Lyapunov function

The first case considered in the literature is when Vq =

Vq′ =: V for all (q, q′) ∈ Q2. In that case, it is sufficient to

check (11c) for V independently, namely choose G(z, yd) =
Gq(z, hq(xp)) such that

V (Gq(xp, z)) ≤ ead V (xp, z)

∀(xp, z) ∈ Dq × Rdz , ∀q ∈ Q (48)

with Gq(xp, z) = (gq(xp), Gq(z, hq(xp)), and a scalar ad.
This is in particular satisfied with ad = 0 if Gq = Id, thus
directly satisfying (C1’). Otherwise, as noticed in Section
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4, (48) holds if (12) holds for each q and there exist class-
K∞ maps κq and a positive scalar c such that

|Gq(xp, z)|Aq
≤ κq

(
|(xp, z)|Aq

)
∀(xp, z) ∈ Dq × Rdx

αq ◦ κq ◦ α−1q ≤ c Id ∀q ∈ Q .

(C1’) then holds if the average dwell-time is sufficiently
large, i.e. τ? ≥ ln c

|ac| . In particular, this is what is done

for linear modes in [18] when gq = Id for all q, and in [51]
(resp. [7]) with linear (resp. affine) jump maps gq.

Example 7.1 (Linear switched systems with detectable
modes). Assume fq(xp) = Aqxp, hq(xp) = Hqxp, and
there exist gain vectors Lq and a positive definite matrix
P such that

(Aq − LqHq)
>P + P (Aq − LqHq) < 0 ∀q ∈ Q .

Then, (46) holds with Fq(z, y) = Aq z + Lq(y −Hqz), Aq
defined by

Aq =
{

(xp, z) ∈ (Cq ∪Dq)× Rdz : xp = z
}
,

V (xp, z) = (xp − z)>P (xp − z)
αq(·) = λ(P ) (·)2 , αq(·) = λ(P ) (·)2 .

If gq = Id for all q, we then take G(z, yd) = z and ob-
tain an observer as in [18]. If the maps gq are Lipschitz
on Dq with an upper bound on the Lipschitz constants,
we simply take a copy of the jump dynamics, namely
G(z, yd) = gq(z), and Problem (O) is solved if the aver-
age dwell-time is sufficiently large as used1 in [51] (resp.
[7]) with linear (resp. affine) jump maps gq.

Multiple Lyapunov functions In the more general case
where the Lyapunov functions associated to each mode are
not the same, some additional compatibility conditions ap-
pear between Vq and Vq′ to satisfy (11c), namely we need
the stronger condition

Vq′(Gq(xp, z)) ≤ ead Vq(xp, z)
∀(xp, z) ∈ Dq × Rdz ∀(q, q′) ∈ Q2 . (49)

However, if condition (48) holds with a scalar ad,0 and we
add the assumption that there exists µ such that

Vq′(xp, z) ≤ µVq(xp, z)
∀(xp, z) ∈ (Cq ∪Dq)× Rdz ∀(q, q′) ∈ Q2 (50)

then (49) holds with ad = lnµ+ ad,0. Therefore, Problem
(O) is solved if the switching is sufficiently slow in average,

namely if τ? >
lnµ+ad,0
|ac| . This is exactly the result of [52]

in the context of linear switched systems and Gq = Id,
ad,0 = 0. Note that (50) always holds if (12) holds for
each q and there exists µ such that

αq′ ◦ α−1q ≤ µ Id ∀(q, q′) ∈ Q2 ,

as for linear systems.

1In [51], the more general framework of unknown inputs is con-
sidered. Therefore, a first transformation is carried out to isolate the
part of xp that is not impacted by those unknown inputs.

Example 7.2 (Linear switched systems with detectable
modes). Let us come back to Example 7.1. By detectability
of each mode, there exist positive definite matrices Pq and
gain vectors Lq such that

(Aq − LqHq)
>Pq + Pq(Aq − LqHq) < 0 ∀q ∈ Q .

Then, (46) holds with same Fq, same Aq and

Vq = (xp − z)>Pq(xp − z)

αq(·) = λ(Pq) (·)2 , αq(·) = λ(Pq) (·)2 .

Besides, (50) holds with µ = max{λ(Pq′)/λ(Pq)} and
Problem (O) is solved for sufficiently slow switching if the
maps gq are uniformly Lipschitz. Actually a lot of effort
has been made in the literature to find less conservative
conditions on the switching signal. Recently, [53] exhibited
generalized sufficient conditions relying on the framework
of slowly-varying linear time-varying systems. The idea is
that a switched linear system is stable if the overall varia-
tion of the matrix on a long interval is small: one way to
achieve this, is to have slow-switching, but this switching
can be faster if the variation Aq −Aq′ is small enough.

However, as mentioned in Section 4, restrictions on the
(average) dwell-time makes sense only if the switching sig-
nal is chosen by the user, not if it is a property of the
hybrid system.

A first way of avoiding constraints on the (average)
dwell-time would be to use the information given by the
output at the switches to ensure that V decreases through
the switch. This is done in [54] for linear switched sys-
tems where yd = (Hqxp, q) (see (45a)), noticing that when
gq = Id, the conditions on (Vq, Vq′) can be relaxed by
ensuring Hqz

+ = Hqxp = y after the jump, through an
oblique projection along the metric of Pq (instead of tak-
ing z+ = z), namely

G(z, yd) = z + P−1q H>q
(
HqP

−1
q H>q

)−1
(Hqxp −Hqz) .

Indeed, it can be shown via standard geometrical argu-
ments that (48) then holds with ad = 0 and (49) holds if
the additional LMI

Pq′ = Pq + d>q,q′Hq +H>q dq,q′

is verified for some dq,q′ ∈ Rdxp×dy .
More generally, the contribution of this paper is to re-

alize that when each mode is observable arbitrarily fast
and admits a high-gain observer, we can avoid the restric-
tions on the average dwell-time by applying Corollary 4.1.
We show in the next two examples how this applies to
any switched systems with strongly differentially observ-
able continuous modes.

Example 7.3 (Switched systems with linear observable
modes). Assume fq(xp) = Aqxp, hq(xp) = Hqxp, with the
pairs (Aq, Hq) observable. Following Example 4.2, there

exist matrices Vq ∈ Rdxp×dxp such that

VqAqV−1q = A + DqC , HqV−1q = C .
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Then, define

Fq,`(z, y) = Aq z + Lq(`)(y −Hqz)

with
Lq(`) = V−1q (Dq + `L(`)L)

and

V`,q(xp, z) = (xp − z)>V>q L(`)−1PL(`)−1Vq (xp − z) .

Then, (23a)-(23b) hold with T (xp, q) = xp,

V`((xp, q), z) = Vq,`(xp, z) , F`(z, y) = Fq,`(z, hq(xp))

c(`) = min
q∈Q

λ(V>q PVq) , c(`) = `2(dx−1) max
q∈Q

λ(V>q PVq) .

Therefore, whatever the average dwell-time, Problem (O)
is solved for ` sufficiently large by taking G(z, yd) = gq(z)
(resp. G(z, yd) = sat(gq(z))) if g is Lipschitz (resp. locally
Lipschitz and the solutions x are uniformly bounded), ac-
cording to (19) (resp. (21)).

Example 7.4 (Switched systems with strongly differen-
tiable modes). Assume that fq and gq are single-valued
with a single output (dy = 1), and there exists dz ∈ N
such that each mode q ∈ Q is strongly differentially ob-
servable of order dz, namely the maps Tq : Cq ∪Dq → Rdz
defined by

Tq(xp) = (hq(xp), Lfqhq(xp), ..., L
dz−1
fq

hq(xp))

are injective immersions on Cq ∪Dq. Then, following Ex-
ample 4.3 or [38], if there exist Lipschitz maps Φq with
uniformly bounded Lipschitz constants verifying

Φq(Tq(xp)) = Ldzfqhq(xp) ∀xp ∈ Cq ∪Dq ,

a high-gain observer can be designed for each mode with

Fq,`(z, y) = Az +BΦq(z) + `L(`)K(y − z1) ,

and the Lyapunov function

Vq,`(xp, z) = (Tq(xp)− z)>L(`)−1PL(`)−1(Tq(xp)− z) ,

where A, B, K, and P are defined in Example 4.3. Then,
(23a),(23b) hold with T (xp, q) = Tq(xp),

V`((xp, q), z) = Vq,`(xp, z) , F`(z, y) = Fq,`(z, hq(xp)) ,

c(`) = λ(P ), c(`) = λ(P )`2(dz−1), and λ = infq∈Q λq > 0.
It remains to choose G Lipschitz with respect to z such
that (23c) holds to apply Corollary 4.1. But (23c) says we
should have at the jumps

G(Tq(xp), yd) = Tq+(gq(xp)) (51)

where q+ is the next mode. In other words, due to the fact
that the change of coordinates T depends on q, we need
to know, before the switch, both the current mode and the
next. This is possible only if the switches are controlled or
deterministic. Otherwise, we need to wait for the switch

to happen before the observer can jump. This is exactly
the issue studied in Section 6. Suppose the assumptions
of Theorem 6.4 hold. If the observer jump (51) is imple-
mented instantaneously after the switch (namely the new
mode q+ is detected instantaneously), AX is UpAS, except
during the (instantaneous) delay, since this situation can

be modeled by Ĥ(0). In the more realistic case where there
is a slight delay ∆ between the switch and the detection of
the new mode q+, then, AX is practically stable outside
the delay intervals.

7.3.2. Jump-based observer
We now consider the case where each continuous pair

(fq, hq) is not necessarily observable individually, but per-
sistent switching between the modes brings determinabil-
ity, namely the ability to reconstruct the current contin-
uous state xp by accumulating the past information pro-
vided by each mode. This case was handled in [55, 17, 56]
by 1) using a partial state continuous-time observer dur-
ing flow, which estimates the part of xp that is observable
from (fq, hq); 2) gathering and propagating forward the
partial estimates obtained during the past N switches to
produce a full estimate of xp.

However, Section 5 sheds a new light on this problem.
Indeed, let us assume that the switches are persistent,
namely CX0 [I] holds with I compact, and that the output
is available at the switches, namely y is given by (45b).
Consider the switched system discretized at the switching
times:

xp,k+1 ∈ gqk(Ψfqk
(xk, τk))

yk =
(
hqk

(
Ψfqk

(xk, τk)
)
, τk

)
(52)

where τk = tk+1− tk denotes the length of the kth switch-
ing interval. Note that τk was added to the output to
encode the fact that it is known and can be used in the
design of the observer jump map G. Inspired from Corol-
lary 4.1, it is enough to look for F and G that make

zk+1 ∈ G(ΨF (zk, τk), yk) (53)

a UpAS observer for (52) relative to a set Ap ⊂ Rdxp×Rdz ,
as long as there exists a class-K function ρ such that for all
(xp, z) ∈ Xp ×Z, for all q ∈ Q, and for all τ ∈ [0,max I],

|(Ψfq (xp, τ),ΨF (z, τ))|Ap
≤ ρ

(
|(xp, z)|Ap

)
, (54)

where Xp (resp. Z) denotes a set where xp (resp. solutions
to (53)) evolves. Typically, when Ap is the diagonal set, we
simply take F (z, yc) = fq(z) and (54) holds for bounded
trajectories.

In particular, when fq(xp) = Aqxp, gq(xp) = Dqxp,
hq(xp) = Hqxp are linear, we take z = (x̂p, τ) and

F (z, yc) =
(
Aqx̂p , 1

)
G(z, yd) =

(
Dqx̂p − L(τ)(Hqz −Hqxp) , 0

)
where L(τ) is chosen based on the known history of (q, τ)
to make the LTV discrete-time error system

ek+1 = (Dqk − L(τk)Hqk) exp(Aqkτk)ek
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asymptotically stable, for instance through a discrete
Kalman filter as in (39).

8. Conclusion

Under the assumption that the plant’s jumps can be
detected, we have given Lyapunov-based sufficient condi-
tions for asymptotic convergence of an observer for general
hybrid systems. Design methods have been provided, in
particular high-gain designs for nonlinear differentially ob-
servable continuous dynamics, and discrete-based designs
when observability is ensured from the output at jump
times. Jumps in the observers must be triggered at the
same time as the plant’s but we have shown their robust-
ness with respect to detection delays, namely semi-global
practical stability of the estimation error outside the de-
lay intervals. Those results provide a new insight for the
design of observers for switched systems.

However, unlike the flow-based designs which are inher-
ently made for nonlinear dynamics, the nonlinear jump-
based designs are limited by the computation of the flow
reachable set, as well as the limits already existing for the
design of nonlinear discrete-time observers. Future work
consists in combining the flow-based and jump-based de-
signs via high-gain ISS interconnections in order to enlarge
the class of systems for which those designs are construc-
tive. Besides, further work is needed to evaluate how those
observers can be used in the context of output-feedback,
as was done on a particular example of biped robot in [57],
with precisely the high-gain observer of Example 4.3.

More importantly, observers able to synchronize auto-
matically their jumps with the plant’s still need to be
developed, at least locally, to avoid relying on the often
noisy/delayed jump detection. Indeed, the robust practi-
cal stability result of Theorem 6.4 would then enable to
combine such local auto-synchronizing observers with the
global observers of this paper. This problem represents a
significant challenge since the entire analysis needs to be
rethought to handle non-simultaneous jumps and ensure
contraction of the difference between jump times.

Appendix A. Proof of Theorem 5.1

Consider φ = (x, z) ∈ SH−Ĥ(X0 ×Z0). By assumption,

x(t, j) ∈ X for all (t, j) ∈ domφ. Denote τM = max I. It
is easy to see that (x̃, z̃) : domj φ→ Rdx ×Rdz defined by

x̃k = x(tk, k) , z̃k = z(tk, k)

verifies (28) with input τ defined by τk = tk+1− tk, for all

k ∈ domj φ\{J}. Besides, (x̃1, z̃1) ∈ X̃0×Z̃0 by definition.
Also, it follows from CX0

[I] that τ0 ≤ τM , and τk ∈ I for
all k ∈ N>0 if J = +∞ and for all k ∈ {1, . . . , J − 1}
otherwise. Therefore, (x, z)(tk, k) ∈ X × Z for all k, and
according to (29),(30), for all k ∈ domj φ ≥ 1,

|(x, z)(tk, k)|A ≤ β(|(x, z)(t1, 1)|A, k − 1)

≤ β
(
ρ(|(x, z)(0, 0)|A), k − 1

)
.

This latter inequality still holds for k = 0, by appropri-
ately defining β(s, t) for t < 0 so that β(s,−1) ≥ ρ−1(s).
Besides, we deduce that for all j ∈ domj φ, (x, z)(tj , j) ∈
X ×Z. By CX0 [I], t− tj ∈ [0, τM ] for all (t, j) ∈ domφ, so
that from (30),

|(x, z)(t, j)|A ≤ ρ (|(x, z)(tj , j)|A)

≤ ρ
(
β
(
ρ(|(x, z)(0, 0)|A), j − 1

))
But for all (t, j) in domφ, t− tj ≤ τM and tj − tj−1 ≤ τM
for j ≥ 1, so that tj ≤ τM j and t ≤ τM (j + 1). Thus,

|(x, z)(t, j)|A ≤ ρ
(
β
(
ρ(|(x, z)(0, 0)|A), a(t+ j) + b

))
with a = 1

τM+1 and b = τM − 1. Therefore, Problem (O)
is solved.

Appendix B. Proof of Theorem 6.4

The proof relies on [44]. Take a solution φδ = (x, z, µ, τδ)

to Ĥ(∆) for some ∆ ∈ [0,min I) with (x, z)(0, 0) ∈
X0 × Z0. Observe that the component x is not impacted
by the delay mechanism, therefore, from Assumption 6.2,
x(t, j) ∈ X for all (t, j) ∈ domx. It follows that φδ is solu-

tion to a hybrid system ĤX (∆) which has same dynamics

as Ĥ(∆) but with flow set ĈX (∆) := Ĉ(∆)∩ (X ×Rdz+3)

and jump set D̂X (∆) := D̂(∆) ∩ (X × Rdz+3). In the

framework of [44], ĤX (∆) is then the delayed version of the

nominal observer H−Ĥ with flow set ĈX = (C∩X )×Rdz ,

and jump set D̂X = (D ∩ X ) × Rdz . By Assumption 6.1
(and by containment [1, Theorem 3.32]), the set A is still

UpAS for ĤX , and more precisely, the setAX (that is com-
pact according to Assumption 6.2). With the hybrid basic
conditions, we conclude from [44, Proposition 4.3, Remark

4.4] that the set A′ is UpAS for ĤX (0) with basin of at-

traction containing X0 × Z0 × {0} × {−1}. Ĝ is compact
by outer-semicontinuity and local boundedness of g and G.
A′ is therefore compact. Besides, X0 × Z0 × {0} × {−1}
is bounded and thus included in a compact subset of the
basin of attraction, since the latter is open according to
[1, Proposition 7.4]. Still from the hybrid basic condi-
tions, A′ is actually semi-globally practically robustly KL
asymptotically stable for ĤX (0) according to [1, Lemma
7.20]. This means that there exists a KL function β
such that for any ε > 0, there exists ρ > 0 such that
any solution φ to a ρ-perturbation of ĤX (0) initialized in

X0 ×Z0 × {0} × {−1}, verifies (41). Since ĤX (∆) can be

included in any outer-perturbation of ĤX (0) by taking ∆

sufficiently small, (41) holds along solutions of ĤX (∆) for
∆ sufficiently small. Now for ε sufficiently small and for
sufficiently large (t, j) ∈ D−1, |φ(t, j)|A′ = |φ(t, j)|A′−1

and

thus |(x, z)(t, j)|A ≤ |φ(t, j)|A′ ≤ 2ε.
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