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bDepartment of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA.

Abstract

This paper proposes a general framework for the state estimation of plants modeled as hybrid dynamical systems
with discrete events (or jumps) occurring at (approximately) known times. A candidate observer consists of a hybrid
dynamical system with jumps that triggered when the plant jumps. With some information about the time elapsed
between successive jumps, a Lyapunov-based analysis allows us to derive sufficient conditions for the design of the
observer that renders the zero-estimation set uniformly asymptotically stable. The proposed sufficient conditions assure
such properties when the observer has innovation terms in both the continuous regime (or flows) and at jumps, only
at jumps, and also only during flows. These conditions apply to a large class of hybrid systems, including cases where
the time between successive jumps is unbounded or tends to zero – namely, Zeno behavior–, as well as cases where
detectability only holds during flows, at jumps, or neither. Building from these sufficient conditions, we study the
robustness of this approach when the jumps of the observer are delayed with respect to those of the plant. Under some
regularity and dwell-time conditions, we show that the estimation error remains bounded and satisfies a semi-global
practical asymptotic stability-like property. The results are illustrated in several examples and applied to switched
systems with state-triggered switches.

1. Introduction

1.1. Context

In many applications, estimating the state of a system
is crucial, whether it be for control, supervision, or
fault diagnosis purposes. Unfortunately, the problem
of designing observers for hybrid systems of the form ([21])

ẋ = f(x) x ∈ C , x+ = g(x) x ∈ D (1)

presenting both a continuous-time behavior in C and a
discrete-time behavior in D, is unsolved, even when the
flow/jump maps f and g are linear. The lack of general
tools for such systems is mainly due to the fact that so-
lutions from nearby initial conditions have different (un-
known) domains of definition. Indeed, the times at which
discrete events occur in the trajectories (jump times) typ-
ically depend on their unknown initial condition. Such a
mismatch of time domains makes the formulation of ob-
servability/detectability and, in turn, observer design very
challenging ([9]).

When the jumps of the observer cannot be triggered
when the jumps of the plant occur, a standard error sys-
tem approach for observer design does not apply since the
jumps of the observer and of the plant are not necessarily
synchronized. Very few observer results exist apart from
particular settings as in [19], which requires the composi-
tion g ◦ g to be the identity map, and in [29], thanks to a
change of coordinates transforming the jump map g into
the identity map, in this way, removing the jumps. An-
other problem that is relevant in the context of switched
systems is the problem of estimating the switching signal.

The observability properties of such a signal have been
studied in [47, 30]. Observer designs based on the so-
called mode location observers, capable of detecting and
identifying properties of the switching signal appeared in
[6, 31, 7, 22, 38, 50], to just list a few, which include the
broad literature of fault tolerant control.

Impulsive systems consist of a class of continuous-time
dynamical systems with state jumps that occur at pre-
specified times, which are usually assumed to be separated
by nonzero periods of flow – in particular, to avoid Zeno
behavior. In that setting, the difficulties due to a pos-
sible mismatch of the domains of the solutions disappear
since the jump times are assumed to be known. Observ-
ability/determinability thus reduce to comparing solutions
with same output on the same time domain and have been
extensively studied in [23, 49, 35, 51, 46]. As for observer
design, results first appeared assuming each mode is ob-
servable [2], and then more generally in [36] (resp. in [46]),
for impulsive systems (resp. switched impulsive systems)
that are observable (resp. determinable) for any impulse
time sequence containing more than a known finite number
N of jumps.

Another important class of systems with hybrid-like dy-
namics for which observer results exist is when the sys-
tem itself has continuous-time dynamics, but the mea-
surements are available intermittently at specific time in-
stances. For such a class of systems with sporadic events,
observers have been designed under specific assumptions
on the time elapsed between successive events or, in
the case of periodic events, the sampling period. From
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[44, 14], convergence of an impulsive observer with inno-
vation terms triggered by the measurement events can be
guaranteed when the sampling period is sufficiently small.
Designs were then developed in [39, 15] for any constant
sampling period provided that appropriate matrix inequal-
ities are satisfied, and further extended in [40, 1, 18, 16, 42]
to the case of sporadic measurements, i.e., when the time
elapsed between sampling events varies in a known inter-
val.

1.2. Content and Contributions

In this paper, we consider general hybrid systems as in
[21]. Under the assumption that the jumps of the plant are
instantaneously detected, a candidate observer is defined
as a hybrid system that jumps at the same time as the
plant does, and is fed with the measured output in either
the flow map, the jump map, or both (Section 2). Assum-
ing the plant has an average dwell-time or a reverse average
dwell-time, or simply that the time between its successive
jumps belongs to a known (possibly unbounded) closed
set, we derive Lyapunov-based sufficient conditions so as
to ensure uniform pre-asymptotic stability of the zero esti-
mation error set (Section 3). Then, we provide additional
design conditions in the particular cases where measure-
ments are only available during flow (Section 4) or only at
jumps (Section 5). Motivated by the fact that, in practice,
it is difficult to instantaneously detected the jumps of the
plant, we study the robustness of the observer when the
jumps of the observer are slightly delayed relative to those
of the plant (Section 6). Finally, we demonstrate how
those results can be used for observer design of switched
systems with state triggered jumps (Section 7).

Our main contributions compared to the above litera-
ture are as follows:

1. General hybrid systems are considered in a unified
framework, only assuming knowledge about the time
between successive jumps, which allows any type of so-
lutions, from Zeno and eventually discrete, to eventu-
ally continuous trajectories;

2. Preliminary results were given in [10, 41], but restricted
to hybrid systems with linear f and g, and when at
least either the flow dynamics or the jump dynamics
are detectable. Here, more general nonlinear sufficient
conditions are obtained, even in the case were neither
the continuous nor the discrete dynamics of the plant
are detectable, but, the hybrid plant as a whole is;

3. When the plant has an average dwell-time and its con-
tinuous dynamics are strongly differentially observable,
we prove that a hybrid observer can be obtained by
copying the plant’s discrete dynamics and designing a
high-gain observer for its continuous dynamics, as long
as the gain is taken sufficiently large compared to the
average dwell-time and the Lipschitz constants of the
flow and jump maps;

4. When the output measurements are only injected in
the observer at jumps, we highlight that the innovation
term in the observer, which only plays a role at jumps,
should be designed based on an equivalent discrete-time
system that models the hybrid plant sampled at jumps;

5. A robustness analysis with respect to delays in the trig-
gering of the jumps of the observer jumps is provided:
under some regularity and dwell-time conditions, we
show that the estimation error remains bounded and
semi-global practical stability holds outside the delay
intervals between the plant’s and the observer’s jumps;

6. The generality of the framework enables us to recover
and unify a significant part of the literature. In par-
ticular, the results apply well to switched systems with
state-triggered switches: we show how a high-gain ob-
server can be designed for switched systems with ob-
servable modes and average dwell-time, or how the out-
put at the switching instants can be used when each
mode is not observable on its own but the combination
of them is.

1.3. Notation and preliminaries

R (resp. N) denotes the set of real numbers (resp. inte-
gers), R≥0 = [0,+∞), R>0 = (0,+∞), and N>0 = N\{0}.
For a square matrix P , eig(P ) denotes the set of its eigen-
values, and λm(P ) (resp. λM (P )) stands for its smallest
(resp. largest) eigenvalue. The symbol ? in a matrix de-
notes the symmetric blocks. B stands for a closed Euclid-
ian ball of appropriate dimension, of radius 1 and centered
at 0. A map α : R≥0 → R≥0 is a K-map if α(0) = 0 and α
is continuous and increasing, and a K∞-map if it is also un-
bounded. For a set valued map S : Rdx ⇒ R and a scalar
c, writing S(x) ≤ c for some x ∈ Rdx means that s ≤ c for
all s ∈ S(x). For a C1 map V : Rdx → R, LSV (x) denotes
the set of Lie derivatives along vector fields s ∈ S(x), i.e.{
dV
dx (x)s , s ∈ S(x)

}
. We consider hybrid dynamical sys-

tems of the form (1) ([21]) where f (resp. g) is the flow
(resp. jump) map, and C (resp. D) is the flow (resp.
jump) set. Solutions to such systems are defined on so-
called hybrid time-domains. A subset E of R≥0 × N is a

compact hybrid time-domain if E =
⋃J−1
j=0 ([tj , tj+1], j) for

some finite sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ ,
and it is a hybrid time domain if for any (T, J) ∈ E,
E∩[0, T ]×{0, . . . , J} is a compact hybrid time domain. For
a solution (t, j) 7→ x(t, j) (see [21, Definition 2.6]), we de-
note domx its domain, domt x (resp.domj x) its projection
on the time (resp. jump) component, T (x) := sup domt x,
J(x) := sup domj x, and for a positive integer j, tj(x) the
only time defined by (tj , j) ∈ domx and (tj , j−1) ∈ domx.
When no ambiguity is possible, we will omit x and write
T , J , tj . Besides, N(t, s) denotes the number of jumps oc-
curring between times t and s. We say that x is complete,
resp. t-complete, resp. j-complete, if domx, resp. domt x,
resp. domj x is unbounded ; x is eventually continuous
(resp. eventually discrete) if J < +∞ and T > tJ (resp.
T < +∞ and domx∩(T × N) contains at least two points)
; x is Zeno if it is complete and T < +∞.

2. Synchronized hybrid observer

2.1. Problem statement

We consider a hybrid plant of the form

H
{

ẋ ∈ f(x) , yc = hc(x) , x ∈ C
x+ ∈ g(x) , yd = hd(x) , x ∈ D (2)
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with state x ∈ Rdx , and output y = (yc, yd) ∈ Rdyc ×Rdyd ,
with yc available during flow and yd during jumps. For
this class of hybrid systems, we are interested in estimating
the state of (or part of the state of) H when its solutions
are initialized in a given subset X0 ⊆ C ∪ D. We denote
by SH(X0) the set of maximal solutions of H with initial
condition in X0.

Definition 2.1. For a closed subset I of R≥0 and a pos-
itive scalar τ?, we will say that

• solutions have flow length within I if for any x ∈
SH(X0),

– 0 ≤ t− tj(x) ≤ sup I ∀(t, j) ∈ domx

– tj+1(x)− tj(x) ∈ I holds

∗ ∀j ∈ N>0 if J(x) = +∞
∗ ∀j ∈ {1, . . . , J(x)− 1} if J(x) < +∞.

For simplicity, we say that CX0
[I] holds;

• solutions have an average dwell-time (ADT) τ? if there
exists N0 ∈ N>0 such that for any x ∈ SH(X0),

N(t, s) ≤ (t− s)
τ?

+N0 ∀t ≥ s ≥ 0 .

For simplicity, we say that CavX0
[τ?] holds;

• solutions have a reverse average dwell-time (rADT) τ?

if there exists N0 ∈ N>0 such that for any x ∈ SH(X0),

N(t, s) ≥ (t− s)
τ?

−N0 ∀t ≥ s ≥ 0 ;

For simplicity, we say that CravX0
[τ?] holds.

In the definition of CX0
[I], the set I describes the possi-

ble lengths of the flow intervals between successive jumps.
The role of the first item is to bound the length of the
intervals of flow which are not covered by the second item,
namely possibly the first one, which is [0, t1], and the last
one, which is domt x ∩ [tJ ,+∞) (when defined).

Properties CavX0
[τ?] and CravX0

[τ?] correspond to the stan-
dard notions of average dwell-time and reverse average
dwell-time respectively ([21, 26]). They enforce that the
solutions jump, on average, at most (resp. at least) once
per time interval of length τ?. A particular case of CavX0

[τ?]
is when all the intervals of flow last at least τ?, namely they
have a dwell-time, which can also be modeled by CX0

[I]
with I = [τ?,+∞).

We are now ready to state the observer problem of inter-
est. Our goal is to design an observer assuming we know:
1) when the plant’s jumps occur, 2) the outputs yc dur-
ing flows and/or yd at jumps, 3) some information about
the flow time between successive jumps of the type CX0 [I],
CavX0

[τ?], or CravX0
[τ?]. Note that CX0

[R≥0] always holds, but
as we will see later, it is convenient to have as precise in-
formation about the duration of flow between successive
jumps as possible.

Example 2.2. Consider a bouncing ball with gravity co-
efficient g > 0 and restitution coefficient λ > 0, modeled
as H with

f(x) = (x2,−g) , g(x) = (−x1,−λx2) (3)

C = R≥0 × R , D = {(x1, x2) ∈ R2 : x1 = 0 , x2 ≤ 0}

If λ < 1, any maximal solution x is Zeno, i.e., such that
T (x) < +∞ and J(x) = +∞. The time between two suc-
cessive jumps tj+1(x) − tj(x) tends to zero when j tends
to +∞, and its upper bound increases with |x(0, 0)|. So, if
X0 is bounded, CX0

[I] holds with I of the form I = [0, τM ],
with τM < +∞ depending on X0.

If now λ > 1, any maximal solution initialized in R2 \
{(0, 0)} is such that T (x) = +∞, J(x) = +∞. The time
between two successive jumps tj+1 − tj(x) tends to +∞
when j tends to +∞, and its lower bound decreases with
|x(0, 0)|. Therefore, if there exists δ > 0 such that X0 ⊂
Rn \ δB, CX0

[I] holds with I of the form I = [τm,+∞),
with τm > 0 depending on X0.

Example 2.3 (Switched systems). An important class of
hybrid systems are the switched systems of the form (2)
with

x =

(
xp
q

)
, f(x) =

(
fq(xp)

0

)
, g(x) =

(
gq(xp)
Q

)
(4)

C =
⋃
q∈Q

Cq × {q} , D =
⋃
q∈Q

Dq × {q}

where Q = {1, . . . , qmax} and the discrete signal q indi-
cates the mode in which the system evolves. When xp
is in Dq and a jump occurs, the mode either stays the
same or is “switched” to a new value in Q. The plant
then evolves according to the flow map fq and jump map
gq, until q is switched to another value. Note that a way
of forcing the mode to change at each jump is to take

g(x) =

(
gq(xp)
Q \ {q}

)
. By the way we have written (4), the

switches are triggered by the state being in a certain region
Dq: it is a state-dependent switching. The switches can
also be triggered by an external signal called switching sig-
nal, in which case the switches are said time-dependent.
This case could also be modeled by (2) by making some
assumptions about the time between successive switches,
which can take the form of CavX0

[τ?], CravX0
[τ?], or CX0 [I].

See [32, 21] for more detail. In this paper, we assume the
switching times are known or detected. Then, the output
map is defined depending on the context and the available
information : known or unknown mode q, measurements
of xp, etc. See Section 7.

Example 2.4 (Continuous-time system with sampled
measurements). The proposed framework applies also to
continuous-time systems

ẋp = fp(xp) , y = hp(xp)
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whose output y is only available at discrete times tj, which
do not necessarily occur periodically. Assuming we know
bounds on the time elapsed between two successive sam-
pling events, or more generally that it belongs to a closed
bounded set I, namely CX0

[I] holds, such a system can be
modeled by H with state x = (xp, τ),

f(x) = (fp(xp), 1) , g(x) = (xp, 0) (5)

C = Rdxp × [0,max I] , D = Rdxp × I
hc(x) = ∅ , hd(x) = (hp(xp), τ)

where τ models the (known) time elapsed since the previ-
ous jump. For instance, I is a singleton in the case of
periodic sampling [39, 15], and I is a compact interval of
R>0 in the case of aperiodic sampling with known bounds
as considered for linear systems in [18, 42] and classes of
nonlinear Lipschitz systems in [40, 1, 17, 34, 16]. Sim-
ilarly, we could say that CravX0

[τ?] holds if we know that
measurements occur at most every τ? units of time and
adapt the model (5) accordingly ([10]). 4

2.2. Proposed hybrid observer

Since the plant’s jump times are assumed to be known,
it is natural to use an observer of the form

Ĥ
{

ż ∈ F (z, yc) when H flows
z+ ∈ G(z, yd) when H jumps

(6)

that is synchronized with the plant, for some functions
F : Rdz × Rdyc → Rdz and G : Rdz × Rdyd → Rdz to be
chosen such that z asymptotically enables to reconstruct
the plant state x, or part of it, as formalized next.

Since the plant and the observer jump simultaneously,
the observer analysis and design can be carried out on the
synchronized cascade system

H−Ĥ


ẋ ∈ f(x)
ż ∈ F (z, hc(x))

}
(x, z) ∈ C × Rdz

x+ ∈ g(x)
z+ ∈ G(z, hd(x))

}
(x, z) ∈ D × Rdz

(7)

whose flow and jump map we denote

F(x, z) = (f(x), F (z, hc(x)) (8a)

G(x, z) = (g(x), G(z, hd(x))) (8b)

The observer problem can then be reformulated as a sta-
bilization problem of a set A ⊆ Rdx ×Rdz , which depends
on the observation goal. For instance, if we want to esti-
mate the full state x, we can first try to take dz = dx and
stabilize the zero estimation error set given by

A =
{

(x, z) ∈ (C ∪D ∪ g(D))× Rdz : x = z
}
, (9a)

which is nothing but the diagonal. In that case, z directly
provides an asymptotic estimate of x. But sometimes, as
for continuous-time systems, we need to change coordi-
nates, or add some degrees of freedom, thus leading to
dz ≥ dx and

A =
{

(x, z) ∈ (C ∪D ∪ g(D))× Rdz : z = T (x)
}
, (9b)

for some map T : C ∪D ∪ g(D) → Rdz . In that case, an
estimate for x may be recovered from z by left-inversion if
T is injective. We may also be interested in estimating only
a part xp of the state x, in the context of switched systems
for instance, which can be translated into an appropriate
choice of A, i.e., more generally

A =
{

(x, z) ∈ (C ∪D∪g(D))×Rdz : T (x, z) = 0
}
, (9c)

for some map T : C ∪D ∪ g(D)× Rdz → Rp. The goal of
this paper is finally to solve the following problem.

Problem 1. Given a set of initial conditions X0 ⊆ Rdx , a
closed subset A of Rdx × Rdz defining an observer prob-
lem, and assuming one of the conditions of Definition
2.1 holds, design maps F : Rdz × Rdyc → Rdz and
G : Rdz × Rdyd → Rdz such that there exist a class-KL
function β and a subset Z0 of Rdz such that for every
φ = (x, z) ∈ SH−Ĥ(X0 ×Z0),∣∣φ(t, j)

∣∣
A ≤ β

(∣∣φ(0, 0)
∣∣
A, t+ j

)
(10)

for all (t, j) ∈ domφ, namely A is uniformly pre-

asymptotically stable (UpAS) for H− Ĥ with basin of at-
traction including X0 ×Z0.

Note that for solutions (x, z) ∈ SH−Ĥ(X0 ×Z0), the set
A should also ensure that

x bounded and
∣∣(x, z)∣∣A bounded =⇒ z bounded

to guarantee from (10) that z cannot explode in finite time
before x does. In other words, the observer solution is
indeed defined as long as the plant’s solution is. This is
verified for A defined in (9a) or (9b) if T is continuous.

Of course, the implementation of the observer Ĥ then
requires a perfect synchronization with the plant H. Un-
fortunately, in practice, the detection of the plant’s jumps
often involve measurements and transmission of informa-
tion which might entail some delays in the triggering of the
observer’s jumps. Therefore, the robustness of the UpAS
property of A given by Problem 1 will need to be analyzed.
Such analysis is carried out in Section 6.

3. General sufficient conditions for H− Ĥ

The following theorem gives a Lyapunov-based sufficient
condition to solve Problem 1. It will be used throughout
the paper in different cases.

Theorem 3.1. Assume there exist scalars ac, ad ∈ R,
K∞-maps α, α, and a C1 map V : Rdx×Rdz → R verifying

{
α (|(x, z)|A) ≤ V (x, z) ∀(x, z) ∈ (C ∪D ∪ g(D))× Rdz

V (x, z) ≤ α (|(x, z)|A) ∀(x, z) ∈ X0 ×Z0

(11a)
LFV (x, z) ≤ ac V (x, z) ∀(x, z) ∈ C × Rdz (11b)

V (G(x, z)) ≤ ead V (x, z) ∀(x, z) ∈ D × Rdz (11c)

with F and G defined in (8). Then, Problem 1 is solved if
any of the following conditions (C) holds:

4



(C1) ac < 0 and CX0 [I] holds with min I > ad
|ac| .

(C1’) ac < 0 and CavX0
[τ?] holds with τ? > ad

|ac| .

(C2) ad < 0 and CX0
[I] holds with ac sup I < |ad|.

(C2’) ad < 0 and CravX0
[τ?] holds with acτ

? < |ad|.

Proof. Let us assume either (C1) or (C2). Then CX0
[I]

holds and acτ + ad < 0 for all τ ∈ I. Therefore, there
exists a positive scalar a such that acτ + ad ≤ −a(τ + 1)
for all τ ∈ I. We then easily prove that there exists M
such that for any solution φ = (x, z) to H − Ĥ initialized
in X0 × Z0, act + adj ≤ M − a(t + j) (t, j) ∈ domφ,
and Problem 1 is solved according to [21, Proposition 3.29]
(See Remark 3.2 below). Similarly, in case of a (reverse)
average dwell-time with either (C1’) or (C2’), the proof is
similar to [26, Corollary 1].

Remark 3.2. In [21, Proposition 3.29], Condition (11a)
is strengthened into

α (|(x, z)|A) ≤ V (x, z) ≤ α (|(x, z)|A)

∀(x, z) ∈ (C ∪D ∪ g(D))× Rdz (12)

for easiness of presentation but actually the upper inequal-
ity is only needed on the initial conditions in the proof. We
thus relax it to (11a), as it will be useful later.

From conditions (C), we recover the fact that in the
case of a reverse average dwell-time or if 0 ∈ I, namely if
there could be Zeno or eventually discrete solutions, then
ad is required to be negative, i.e., the innovation term in
the discrete dynamics of the observer must make the er-
ror contractive at jumps; similarly in the case of average
dwell-time or if sup I = +∞, then ac is required to be neg-
ative, i.e., the innovation term in the continuous dynamics
must make the error contractive during flow. Finally, note
that Theorem 3.1 allows the flow and jump maps of the
plant and of the observer to be set valued, and hence, is
suitable for the design of observers for plants modeled by
differential inclusions or by difference inclusions, for which
not many tools are available in the literature.

Example 3.3 (Linear flow/jump/output maps). Assume
f(x) = Acx, g(x) = Adx, hc(x) = Hcx, hd(x) = Hdx, as
considered in [10]. It is reasonable to consider A defined
as in (9a) and linear flow and jump maps in the observer,
namely

F (z, yc) = Acz + Lc(yc −Hcx)

G(z, yd) = Adz + Ld(yd −Hdx)

with Lc ∈ Rdx×dyc and Ld ∈ Rdx×dyd . Then the conditions
in (11) hold for a quadratic Lyapunov function

V (x, z) = (x− z)>P (x− z)

if there exist scalars ac and ad, and a positive definite sym-
metric matrix P ∈ Rdx×dx such that

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (13a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (13b)

The problem of finding common quadratic Lyapunov func-
tions for continuous-time (resp. discrete-time) systems
has been studied in the context of switched systems and
quadratic stabilization (see e.g. [33]). But we are not
aware of any result concerning the existence of a com-
mon quadratic Lyapunov function for both continuous and
discrete dynamics as in (13). If a solution to (13) ex-
ists though, Problem 1 is solved if one of the conditions
(C) holds. Note that if both (Ac, Hc) and (Ad, Hd) are
detectable, (13) may be solvable with both ac ≤ 0 and
ad ≤ 0, and (C) then holds directly if at least one of them
is nonzero. By the Schur complement, this is equivalent to
solving the LMIs

A>c P + PAc − (L̃cHc +H>c L̃
>
c ) < 0(

P (PAd − L̃dHd)
>

? P

)
> 0 (14)

in (P, L̃c, L̃d) and take Lc = P−1L̃c and Ld = P−1L̃d.
This has been done in [10, Example 3.3] for a bouncing
ball modeled by (3) with a restitution coefficient λ < 1,
and x1 measured at all (hybrid) times.

Remark 3.4. In the favorable case where both the flow
and jump dynamics of H are detectable (such as the bounc-
ing ball), it is not sufficient to choose independently a
map F as a continuous-time observer of the flow and a
map G as a discrete-time observer of the jumps. Indeed,
their “contraction directions” could be incompatible: jumps
could destroy what has been achieved during flow, or vice
versa. For instance, with linear flow/jump/output maps,
it is not enough to choose Lc, Ld such that Ac − LcHc is
Hurwitz and Ad − LdHd is Schur. Actually, a necessary
condition for convergence of the observer is that the error
sampled at each jump converges to zero: this implies that
the origin of the discrete system

εk+1 = (Ad − LdHd) exp
(

(Ac − LcHc)τk

)
εk

has to be asymptotically stable for k 7→ τk ∈ I. If
τk = τ∗ ∈ I is constant, this is not verified for every
choice of Ad − LdHd Schur and Ac − LcHc Hurwitz, as

illustrated in Figure 1: (Ad − LdHd) exp
(

(Ac − LcHc)τ
)

is Schur only if τ∗ /∈ [0.1, 2]. To avoid this phenomenon,
(13a) and (13b) should be solved with the same P , and
ac ≤ 0 and ad < 0.

A drawback of Theorem 3.1 is that it requires at least
ac or ad to be negative. Therefore, either the continuous
or the discrete dynamics of H has to admit an observer
and thus be detectable. But take for instance the hybrid
system ẋ1 = x2

ẋ2 = 0
ẋ3 = 0

,

 x+1 = x1
x+2 = x2
x+3 = x1

(15)

with some arbitrary, but nonempty flow and jump sets.
Suppose hc(x) = hd(x) = x1. Neither the continuous nor
the discrete dynamics is detectable, so Theorem 3.1 can-
not apply. Nevertheless, this hybrid system as a whole is
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Figure 1: Absolute value of the eigenvalues of (Ad −
LdHd) exp

(
(Ac − LcHc)τ

)
for Ac = ( 0 1

0 0 ), Ad = 5Ac, Hc =

Hd = (1, 0), with Lc (resp. Ld) chosen such that Ac − LcHc (resp.
Ad−LdHd) is Hurwitz (resp. Schur) with eigenvalues (−1+i,−1−i)
(resp. (0.5,−0.5)).

determinable if there is at least one jump and one inter-
val of flow. Indeed, pick a solution x to (15). If y(t, j) =
x1(t, j) = 0 for all (t, j) in the domain, the continuous dy-
namics give x2(t, j) = 0 as soon as [t, t+ τ)×{j} ∈ domx
for some τ > 0, and the discrete dynamics give x3(t, j) = 0
for all j such that (t, j − 1) and (t, j) are in the domain.
We thus get determinability and we may hope to design
an observer. We will see in this paper other methods that
allow to build an observer for this system.

Another drawback is that Theorem 6.4 mixes con-
straints on the observer flow and jump maps which cannot
be designed separately. This coupling appears through ac
and ad in conditions (C). Even in the linear context of Ex-
ample 3.3, the conditions are nonlinear, unless both ac and
ad can be taken negative and (14) can be solved. In the fol-
lowing sections, we show how the design can be simplified
when using innovation only in flow or only at jumps.

4. Flow-based hybrid observer

When the continuous dynamics of H are detectable and
persistent in the sense of an average dwell-time, it is tempt-
ing to use a continuous-time observer

ż = F (z, hc(x)) , x̂ = T (z) (16)

as the observer’s continuous dynamics F , and simply copy
the discrete dynamics of H in G. Indeed, intuitively, if
the estimation error decreases more during flow than it
increases at jumps, namely if the continuous-time observer
(16) is sufficiently fast, the error is expected to converge
to zero asymptotically. We thus need persistence of flow,
namely conditions of the type CX0

[I] with min I > 0, or
more generally CavX0

[τ?]. In this section, we give conditions
under which such a design works.

4.1. Sufficiently large average dwell-time
Assume the continuous-time observer (16) verifies (11a)-

(11b) with ac < 0. Then, if we can find G such that
(11c) holds for some ad ∈ R, then Problem 1 is solved if
the average dwell time is sufficiently large to satisfy (C1’).
This result is very standard in the literature of switched
systems as detailed in Section 7. Of course, if V does not
increase at jumps, namely

V (G(x, z)) ≤ V (x, z) ∀(x, z) ∈ D × Rdz ,

(11c) holds with ad = 0. This is related to the notion of
non-expansiveness of V for g in [26].

More generally, if (11a) is strengthened into (12) and if
there exists a K∞-map κ such that

|G(x, z)|A ≤ κ (|(x, z)|A) ∀(x, z) ∈ D × Rdx (17a)

α ◦ κ ◦ α−1 ≤ c Id (17b)

for some positive scalar c, then (11c) automatically holds
with ad = ln(c). For instance, in the case where dz = dx
and A is simply the diagonal set (9a), a map G satisfying
(17a) is a simple copy of the plant’s jump map g namely

G(z, yd) = g(z) , (18)

if g is single-valued and κ-continuous on Rdx , namely

|g(xa)− g(xb)| ≤ κ(|xa − xb|) ∀(xa, xb) ∈ Rdx × Rdx .

Example 4.1 (Linear detectable flow and output maps).
Assume f(x) = Acx and hc(x) = Hcx, with the pair
(Ac, Hc) detectable. Then, there exists a gain L such that
Ac − LHc is Hurwitz and (11a)-(11b), and actually (12),
hold with observer dynamics

F (z, yc) = Ac z + L(yc −Hcz) , (19)

A defined in (9a), V defined by

V (x, z) = (x− z)>P (x− z)

with the matrix P ∈ Rdx×dx such that

(Ac − LHc)
>P + P (Ac − LHc) ≤ acP

for some ac < 0 and with

α(·) = λ(P ) (·)2 , α(·) = λ(P ) (·)2 .

Therefore, if g is Lipschitz with Lipschitz constant kG, we
take G(z, yd) = g(z) and Problem 1 is solved if the average

dwell-time is larger than 1
|ac| ln

(
λ(P )
λ(P )k

2
G

)
. Note that if

g is only locally Lipschitz and any x ∈ SH(X0) remains
in a compact set X , g can be replaced by any Lipschitz
function that agrees with g on X and the above applies.
Typically, we could take G(z, yd) = sat(g(z)) where sat is
an appropriate Lipschitz saturation map. Finally, if g is
linear, namely g(x) = Adx, then G(z, yd) = Adz, we can
directly look for P and L solution to

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (20a)

A>d PAd ≤ eadP (20b)

acτ
? + ad < 0 (20c)

with ac < 0, as in [10, 41].
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4.2. Observers with arbitrarily fast flow

The previous section requires the ADT to be sufficiently
large. However, apart from switched systems where the
switching signal may be a controlled input, ADT is typ-
ically not chosen for a general hybrid systems where the
jumps are state-dependent. Therefore, the ADT (if it ex-
ists) is a property of the system and cannot be made “suf-
ficiently fast”.

In that case, another way to satisfy (C1) or (C1’) could
be to choose a sufficiently fast continuous-time observer
(16), i.e. satisfying (11a)-(11b) with |ac| sufficiently large.
This tunability property requires the continuous dynamics
to be instantaneously observable [4]. However, increasing
ac may require to change V , which in turns, modifies ad.
The following corollary shows that this compromise can be
achieved under some conditions applying to the so-called
“high-gain observers.”

Corollary 4.2. Assume CavX0
[τ?] holds for some τ? > 0,

and there exist λ > 0, `0 > 0, polynomials c and c, a
continuous map T : Rdx → Rdz , and for all ` > `0, maps
F` : Rdz × Rdy → Rdz and V` : Rdx × Rdz → R such that

c(`)|z − T (x)|2 ≤ V`(x, z) ≤ c(`)|z − T (x)|2

∀(x, z) ∈ (C ∪D ∪ g(D))× Rdz (21a)

LF`
V`(x, z) ≤ −`λ V`(x, z) ∀(x, z) ∈ C × Rdz (21b)

with F`(x, z) = (f(x), F`(z, hc(x)). Then, there exists
`∗ ≥ `0d such that for all ` ≥ `∗, Problem 1 is solved for
any compact sets X0×Z0, with A defined in (9b), F := F`,
and any map G : Rdz ×Rdyd → Rdz , Lipschitz with respect
to z (uniformly in yd ∈ hd(D)), verifying

G (T (x), hd(x)) = T ◦ g(x) ∀x ∈ D . (21c)

Note that the subscript ` highlights the dependency of
V` and F` with respect to the gain ` describing the decay
rate in (21b), which can be chosen as large as necessary.

Proof. First, |(x, z)|A ≤ |z − T (x)| for all (x, z) ∈ C ∪
D ∪ g(D) and on any compact sets X0×Z0, there exists a
K∞ map α such that |z−T (x)| ≤ α(|(x, z)|A). Therefore,
(21a) implies (11a) for all ` ≥ `0. Then, (21b) implies
(11b) with ac = −`λ. Then, from the definition of G in
(8b) and from (21a), for all (x, z) ∈ D × Rdz ,

V`(G(x, z)) ≤ c(`) |G(z, hd(x))− T (g(x))|2

≤ c(`) |G(z, hd(x))−G(T (x), hd(x))|2

≤ c(`)k2G |z − T (x)|2

≤ c(`)

c(`)
k2GV`(x, z)

where kG is the Lipschitz constant of G with respect to z.

Therefore, (11c) holds for all ` ≥ `0 with ad = ln
(
k2G

c(`)
c(`)

)
.

Exploiting exponential growth over polynomial growth,

−`λτ? + ln
(
k2G

c(`)
c(`)

)
< 0 for ` sufficiently large and (C1’)

holds.

In other words, if we know a high-gain continuous-time
observer for the continuous dynamics of the plant (2), ver-
ifying (21a)-(21b), then a possible hybrid observer is made
of this continuous-time observer and a copy of the jump
dynamics (written in the high-gain coordinates z = T (x),
i.e. verifying (21c)), with a gain ` sufficiently large com-
pared to the average dwell-time and the Lipschitz constant
of the jump dynamics.

Example 4.3 (Linear observable flow and output maps).
As in Example 4.1, assume f(x) = Acx and hc(x) = Hcx,
but this time with the pair (Ac, Hc) observable. The ob-
server’s eigenvalues can then be assigned arbitrarily fast.
For that, we define V ∈ Rdx×dx a change of coordi-
nates transforming (Ac, Hc) into a block-diagonal observ-
able form, namely such that

VAcV−1 = A + DC , HcV−1 = C

with A := blkdiag(A1, . . . , Adyc ), D :=
blkdiag(D1, . . . , Ddyc

), C := blkdiag(C1, . . . , Cdyc ),

Ai =


0 0 . . . 0
1 0
...

. . .
. . .

0 1 0 0
0 . . . 0 1 0

 ∈ Rdi×di

Ci =
(

0 . . . 0 1
)
∈ R1×di ,

Di ∈ Rdi×1, and di integers such that
∑dyc
i=1 di = dyc .

Consider vectors Li such that Ai − LiCi is Hurwitz, and
for a positive scalar `, define  Li(`) := diag(`di−1, . . . , `, 1).
Then, let us take F defined by (19) with

L = V−1(D + ` L(`)L) (22)

where L := blkdiag(L1, . . . , Ldyc ),  L :=
blkdiag( L1, . . . ,  Ldyc ). We thus have eig(Ac − LHc) =
` eig(A − LC). Consider a positive definite matrix
P ∈ Rdx×dx such that

(A−LC)>P + P (A−LC) ≤ −λP

for some λ > 0. Then, (21a)-(21b) hold with T = Id,

V`(x, z) = (x− z)>V>  L(`)−1P  L(`)−1V (x− z) ,

α(·) = λ(V>PV) (·)2 , α(·) = λ(V>PV) `2(d−1) (·)2

d = max di. Therefore, whatever the average dwell-time
is, Problem 1 is solved for ` sufficiently large by tak-
ing G(z, yd) = g(z) (resp. G(z, yd) = sat(g(z))) if g is
Lipschitz (resp. locally Lipschitz and the solutions x are
bounded) as in Example 4.1.

Example 4.4 (Strongly differentially observable
flow/output maps). Assume that f and g are single-
valued, with a single output (dyc = 1), and the flow
dynamics of H are strongly differentially observable of
order dz, namely the map T : Rdx → Rdz defined by

T (x) = (hc(x), Lfhc(x), ..., Ldz−1f hc(x))
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is an injective immersion on C ∪D. If in addition, there
exists a Lipschitz map Φ verifying

Φ(T (x)) = Ldzf h(x) ∀x ∈ C ∪D ,

then a high-gain observer as in [28] can be built for the
flow dynamics, with

F`(z, y) = Az +BΦ(z) + ` L(`)K(y − z1) ,

A =


0 1 . . . 0
0 0 1
...

. . .
. . .

. . .
... 0 1
0 . . . . . . 0 0

 ∈ Rdz , B =


0
...
0
1


 L(`) = diag(1, `, `2, . . . , `dz−1), and K such that A−BK is
Hurwitz. Note that if any x ∈ SH(X0) evolves in a compact
set X ⊆ C∪D, there exists a Lipschitz map T : Rdz → Rdx
such that

T (T (x)) = x ∀x ∈ X ,

and Φ can simply be chosen as Φ = sat ◦Ldzf ◦ T where sat

saturates outside of Ldzf (X ). Classical high gain computa-

tions [28] show that conditions (21a) and (21b) then hold
for the Lyapunov function

V`(x, z) = (T (x)− z)>  L(`)−1P  L(`)−1(T (x)− z) ,

with P a positive definite matrix such that

(A−BK)>P + P (A−BK) ≤ −λ0P

for some λ0 > 0, c(`) = λ(P ), c(`) = λ(P )`2(dz−1), λ > 0
depending on the Lipschitz constant of Φ, and ` larger than
a threshold also depending on that Lipschitz constant. Se-
lecting G Lipschitz verifying (21c), finally provides an ob-
server relative to A defined in (9b), if the gain ` is suf-
ficiently large according to Corollary 4.2. In particular,
if any x ∈ SH(X0) evolves in the compact set X , we can
choose G(z, yd) = sat ◦T ◦ g ◦ T (z) where sat saturates
outside of T ◦ g(D), and an estimate of x is obtained by
x̂ = T (z). Note that the same tools can be used for multi-
output triangular normal forms [25], and if z estimates
only a part xp of the state x, by replacing x by xp every-
where.

For instance, consider a Lagrangian mechanical model
with impacts of the form{

θ̇ = ω
ω̇ = α(θ, ω)

{
θ+ = T (θ)
ω+ = Ω(θ, ω)

with (θ, ω) ∈ Rd × Rd the (bounded) positions and veloc-
ities, α, T and Ω locally Lipschitz functions, and θ mea-
sured. If the impacts can be detected and are known to have
an average dwell-time, then an observer is simply given by

˙̂
θ = ω̂ − `(θ̂ − θ)
˙̂ω = sat

(
α(θ̂, ω̂)

)
− `2(θ̂ − θ)

 θ̂+ = sat
(
T (θ̂)

)
ω̂+ = sat

(
Ω(θ̂, ω̂)

)
for ` sufficiently large, sat saturation functions as de-
scribed above, and jumps triggered at the detected impacts.

5. Jump-based hybrid observer

We now consider the case where the output is rather
used to create contraction of the Lyapunov function at
jump times, namely we mostly exploit yd. Without natu-
ral contraction in the continuous dynamics of H, we thus
need the jumps to be persistent and sufficiently frequent
to inject sufficient information in the observer, i.e., condi-
tions of the type CravX0

[τ?] or CX0 [I] with I bounded.

5.1. Sufficiently small reverse dwell time

Similarly to the previous section, we start by noting
that when the discrete dynamics of H admit a discrete-
time observer verifying (11a) and (11c) with ad < 0, we
can try to find F such that (11b) holds for some ac ∈ R:
Problem 1 will then be solved if ad is sufficiently negative
with respect to ac and the amount of flow, or equivalently
if the jumps are sufficiently frequent, i.e. either if max I is
sufficiently small to satisfy (C2), or the rADT is sufficiently
small to satisfy (C2’).

Example 5.1 (Linear detectable jump dynamics). As-
sume f is single-valued, g(x) = Adx and hd(x) = Hdx,
with the pair (Ad, Hd) detectable. There exists a gain L
such that Ad − LHd is Schur and (11a),(11c) hold with
jump dynamics

G(z, yd) = Ad z + L(yd −Hdz) ,

A defined in (9a), V defined by

V (x, z) = (x− z)>P (x− z)

with the matrix P ∈ Rdx×dx such that

(Ad − LHd)
>P (Ad − LHd) ≤ eadP

for some ad < 0. Then, choosing the flow dynamics F
single-valued so that

|f(x)− F (z, hc(x))| ≤ c |x− z| ∀(x, z) ∈ C × Rdz

with some scalar c, ensures (11b) holds. For instance,
if x ∈ SH(X0) evolves in a compact set X and f is lo-
cally Lipschitz, an intuitive choice is simply F (z, yc) =
sat ◦f(z), where sat saturates outside of f(X ). In other
words, F is simply a flow predictor. Then, Problem 1 is
solved if the jumps are sufficiently frequent to satisfy (C2)
or (C2’).

This method has an interest only when the jumps are
naturally sufficiently frequent (Zeno, eventually discrete
solutions) or can be made so (switching systems). Other-
wise, we need to take explicitly into account the potential
increase of V during flow, to ensure both the conditions
(11) and (C2’) hold simultaneously.

Example 5.2. Let us come back to Example 5.1, but
this time with a linear flow map, namely f(x) = Acx.
We can still take a copy of the continuous-time dynamics
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F (z, yc) = Acz, but this time directly look for P and L
solution to

A>c P + PAc ≤ acP (23a)

(Ad − LHd)
>P (Ad − LHd) ≤ eadP (23b)

acτ
? + ad < 0 (23c)

with ad < 0 as in [10, 41], where τ? denotes the rADT or
the maximal length of flow. In particular, [10, Example
4.2] shows that it can be done analytically for a bouncing
ball exhibiting Zeno trajectories modeled by (3) with λ < 1,
and with the output hd(x) = x1 only available at jumps.
In this case, τ? represents a known bound on the length
of the flow intervals, which depends on the compact set
of initial conditions (see Example 2.2). The presence of
Zeno solutions is therefore not problematic to the observer
design as long as it is properly taken into account through
a rADT or with 0 ∈ I.

As noticed in [16] in the context of sampled systems
(Ad = I), the design of Example 5.1 is extendable to par-
ticular classes of nonlinear continuous dynamics for which
f is included in the convex hull of a finite number of linear
maps. The LMI (23a) must then hold for each of those
maps. Furthermore, [16] shows that (23) might be relaxed
by allowing P and Ld to depend on the length τ of the flow
intervals in a way that ensures contraction during both
flows and jumps. But this requires the feasibility of some
LMIs that are not necessarily related to observability.

In any case, the methods mentioned in this section re-
quire the detectability of the discrete dynamics of H and
a sufficient contraction of the error at jumps. When either
the discrete dynamics are not detectable, or the coupling
between flows and jumps makes the matrix inequalities
not feasible, we propose in the next section to rather ana-
lyze an equivalent discrete-time system made of the plant
sampled at the jump times, which naturally contains the
information of both flows and jumps.

5.2. Equivalent discrete-time system

We now assume the jumps are persistent, i.e. CX0
[I]

holds with I compact. We also suppose that absolutely
continuous solutions of ẋ ∈ f(x) are complete and denote
Ψf the flow operator alongside f , i.e, Ψf (x0, τ) denotes the
set of points that can be reached at time τ by solutions to
ẋ ∈ f(x) initialized at x0 at τ = 0.

Now consider a solution x ∈ SH(X0) and notice that
xk := x(tk, k) sampled after each jump and the output
yk := hd(x(tk, k − 1)) obtained before each jump verify

xk+1 ∈ g(Ψf (xk, τk)) , yk ∈ hd (Ψf (xk, τk)) (24)

where τk = tk+1− tk denotes the length of the kth flow in-
terval. It follows that with the discrete output yd obtained
at each jump, we are actually observing the equivalent
discrete-time system (24). It is therefore the observabil-
ity/determinability of (24) that counts, and we must look
for F and G making A UpAS for the reduced system

xk+1 ∈ g(Ψf (xk, τk))
zk+1 ∈ G(ΨF (zk, τk), hd(Ψf (xk, τk)))

or equivalently

(xk+1, zk+1) ∈ G ◦ΨF ((xk, zk), τk) , (25)

with F and G defined in (8). Indeed, the following theo-
rem shows that it is sufficient to prove UpAS of (25) with
sequences (τk) ∈ IN to solve Problem 1.

Theorem 5.3. Assume that CX0 [I] holds with I compact
and solutions to (ẋ, ż) ∈ F(x, z) are complete. Consider a
set X ⊆ C ∪D such that any x ∈ SH(X0) remains in X at

all times. Let X̃0 × Z̃0 such that

G ◦ΨF ((x0, z0), τ0) ⊆ X̃0 × Z̃0

∀(x0, z0, τ0) ∈ X0 ×Z0 × [0,max I] .

Suppose there exists a class-KL function β and Z ⊆ Rdz
such that any solution (x, z) to (25) initialized in X̃0 × Z̃0

and with input k 7→ τk ∈ I verifies (xk, zk) ∈ X × Z and∣∣(xk, zk)
∣∣
A ≤ β

(∣∣(x0, z0)
∣∣
A, k

)
∀k ∈ N . (26)

Then, Problem 1 is solved if there exists a class-K func-
tion ρ such that for all (x0, z0) ∈ X × Z and for all
τ ∈ [0,max I],

|ΨF ((x0, z0), τ)|A ≤ ρ (|(x0, z0)|A) . (27)

Proof. See Appendix A.

Assumption (27) guarantees that the distance of (x, z)
to A during flow is continuous on the compact interval
[0,max I] with respect to the initial distance to A. If A
is defined by (9a) and f = F is locally Lipschitz, this
regularity property is always satisfied when X and Z are
compact.

The reduced system (25) may not be handier to use
for design than (7) if ΨF and Ψf are not explicit, but it
helps to understand the observability conditions that are
at stake here. Besides, when f is linear, i.e. f(x) = Acx,
we can choose F (z) = Acz, so that

Ψf (xk, τk) = exp(Acτk)xk , ΨF (zk, τk) = exp(Acτk)zk

and (27) immediately holds for A diagonal defined in (9a).
When both g and f are linear we obtain the following

constructive sufficient condition, that is weaker than (23).

Corollary 5.4. Assume that CX0
[I] holds with I compact

and f, g, hd are defined by f(x) = Acx, g(x) = Adx and
hd(x) = Hdx. Assume there exist a positive definite matrix
P ∈ Rdx×dx and a gain vector Ld ∈ Rdx×dyd such that

(exp(Acτ))>(Ad − LHd)
>P (Ad − LHd) exp(Acτ) < P

∀τ ∈ I . (28)

Then, F (z) = Acz and G(z, yd) = Adz+L(yd−Hdz) solve
Problem 1 with A defined in (9a).
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Proof. Follows from Theorem 5.3 by noticing that the dis-
tance to A is the norm of the error e = z−x with dynamics

ek+1 = (Ad − LHd) exp(Acτ)ek (29)

and using the Lyapunov function V (x, z) = (x−z)>P (x−
z).

The existence of the matrix P verifying (28) for a given τ
is equivalent to (Ad−LdHd) exp(Acτ) being Schur for some
gain Ld, which in turn is equivalent to the detectability of
the discrete-time system

xk+1 = Ad exp(Acτ)xk , yk = Hd exp(Acτ)xk . (30)

Thus, having (28) for any τ ∈ I requires detectability of
(30) for any τ ∈ I. It is not sufficient, however, because
(28) must be verified with the same Ld and P for all τ ∈ I.
So (28) requires in fact the detectability of the LTV or LPV
discrete-time system

xk+1 = Ad exp(Ac τk)xk , yk = Hd exp(Acτk)xk (31)

with input τk in the compact set I, which is exactly (24).
Actually, (28) is stronger because it requires a quadratic
Lyapunov function with a matrix P , that is independent
from the sequence k 7→ τk. This property is sometimes
called “quadratic detectability” (see [48, 24, 11]).

Remark 5.5. By the Schur complement, finding P and Ld
satisfying (28) is equivalent to finding P and L̃d satisfying
the LMIs(

P exp(Acτ)>(PAd − L̃Hd)
>

? P

)
> 0 ∀τ ∈ I (32)

with L̃ = PL. In the case where I has infinitely many el-
ements, an infinite number of LMIs must be solved which
is not desirable. However, it is shown in [18] that it is
always possible to compute numerically a polytopic decom-
position of exp(Acτ), namely a finite number of matrices
{M1,M2, . . . ,Mν} such that exp(Acτ) is in the convex hull
of those matrices whenever τ ∈ I. Since (32) is convex in
exp(Acτ), it is then sufficient to solve the finite number of
LMIs(

P M>i (PAd − L̃Hd)
>

? P

)
> 0 ∀i ∈ {1, 2, . . . , ν} (33)

with common P and L̃d. In particular, if Ac is nilpotent

of order N , we have exp(Acτ) =
∑N−1
k=0

τk

k! A
k
c so that for

all τ in a compact subset I of R≥0, exp(Acτ) is in the

convex hull of the ν = 2N−1 matrices
{
I +

∑N−1
k=1

τk
k

k! A
k
c

}
with τk ∈ {min I,max I} for all k.

Example 5.6. Consider the system (15) where Ac =(
0 1 0
0 0 0
0 0 0

)
, Ad =

(
1 0 0
0 1 0
1 0 0

)
, and Hd = ( 1 0 0 ). Neither the

continuous pair (Ac, Hc) nor the discrete pair (Ad, Hd)
is detectable, so Theorem 3.1 cannot be used. How-

ever, the pair A(τ) := Ad exp(Acτ) =
(

1 τ 0
0 1 0
1 τ 0

)
, H(τ) :=

0 1 2 3 4 5 6 7 8 9
-1

0

1

2

3

4

5

6

7

Figure 2: Error between a Zeno trajectory of system (3) with λ = 0.8
and a trajectory of observer (6) with F,G defined in Corollary 5.4
and L = (−1,−0.1487)>.

Hd exp(Acτ) = ( 1 τ 0 ) is detectable for any nonzero τ .
Since Ac is nilpotent of order 2, according to Remark 5.5,
for any I compact subset of R>0, it is enough to solve the
two LMIs given by(

P (I + τAc)
>(PAd − L̃C)>

? P

)
> 0 (34)

for τ = τm := min I > 0 and τ = τM := max I. If they
are solvable (with a common P ), then by Corollary 5.4, we
obtain an observer. For instance, when choosing τm = 2
and τM = 5 and solving the LMIs via Yalmip for P and
L̃, we get L = PL̃ = (1, 0.2259, 1)>. 4

Example 5.7. Consider again the bouncing ball (3) with
restitution coefficient λ < 1, with measurements at jumps
only, namely Hc = 0 and Hd = (1, 0). As observed in
Example 2.2, for any compact set of initial conditions
X0, there exists τM > 0 such that CX0(I) holds with
I = [0, τM ]. According to Corollary 5.4, it is enough to
satisfy (28) instead of (23). Since Ac is nilpotent of order
2, we get again from Remark 5.5 that it is enough to solve
(34) for τ = 0 and τ = τM .With λ = 0.8 and τM = 5,
we obtain L = (−1,−0.1487). The result of a simulation
with initial condition x0 = (5, 0), x̂0 = (10, 1) is shown on
Figure 2. 4

What makes the above work is the fact that the flow
operator of the error e = x̂ − x, is explicitable through
exp(Acτ)e and contained in the convex hull of a finite num-
ber of linear maps. In the context of sampled nonlinear
systems, [5, 15] noticed that by copying the continuous
dynamics in the observer, namely taking F = f , the error
components evolve during flow according to

ėi = fi(x̂)− fi(x) =
dfi
dx

(v(t))e

for some v depending on x and x̂, thanks to the mean
value theorem. For certain classes of maps f [15], the error
reachable set within a time τ ∈ I may then be included
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in the convex hull of a finite number of linear maps {e 7→
Mie}i=1,..ν if the Jacobian components of f are bounded.
If g is linear, the discrete error system (29) is then replaced
by

ek+1 =

ν∑
i=1

βi,k(Ad − LHd)Miek

with
∑ν
i=1 βi,k = 1, and following the same steps as in [5]

with the Lyapunov function of Corollary 5.4, it is enough
to ensure (28) with exp(Acτ) replaced by Mi, for each
i ∈ {1, 2, . . . ν}, namely solve the LMIs (33).

The advantage of using a constant gain L is that it is
sufficient to compute once the vertices Mi of the polytopic
decomposition of the flow operator for τ ∈ I and solve
offline the finite number of LMIs (33). However, as men-
tioned above, those LMIs might not be solvable since they
require a stronger property than detectability of (31). In
that case, we may allow L to be time-varying, by adapting
L to τk, as done in the particular case of sampled-data
observers in [42]. Indeed, observe that the observer jump
map G in (25) is applied after flowing τk units of time with
F . Therefore, at the moment where G is used, τk repre-
sents the time elapsed since the previous jump and can be
considered known and added to the output yd. It follows
that at each jump, at hybrid time (tk, k), the jump map
can be adapted to the length of the previous intervals of
flow, namely L is replaced by Lk in G defined in Corollary
5.4, in a way that makes

zk+1 = A(τk)zk + Lk(yk −H(τk)zk)

with A(τk) = Ad exp(Acτk) and H(τk) = Hd exp(Acτk),
an observer for (31), i.e. the error system

ek+1 =
(
A(τk)− LkH(τk)

)
ek (35)

asymptotically stable. Since H is not constant, we cannot
use the results obtained for LPV systems ([24] and refer-
ences therein). However, an even simpler approach is to
consider (31) as a LTV system and design Lk as the gain of
a standard discrete-time Kalman filter. In the same spirit,
if (31) is known to be observable after N jumps, [36] pro-
posed to compute Lk based on the weighted observability
Grammian over the past N jumps.

6. Robustness with respect to delays in jumps

We now study how the observer convergence is impacted
if the observer jumps are delayed with respect to the
plant’s, thus leading to a mismatch between the observer
jump times and those of the plant. For this, we start from
the following assumption.

Assumption 6.1. CX0
[I] holds with I compact and

min I > 0, and Problem 1 has been solved, namely the set
A is UpAS for H − Ĥ with basin of attraction including
X0 ×Z0.

We choose to study the particular case where the value
of the innovation term, implemented in the observer at

the delayed jump, is the one that would have been com-
puted at the actual plant’s jump time if there had been no
delay. This covers the situations where the measurement
and computation of the innovation G(z, yd) are instanta-
neous, but the implementation of the jump in the observer
is delayed; or the measurement takes a known amount of
time δ ≥ 0 to arrive to the observer, and the update of
z is chosen as G(z(t − δ), yd), thanks to a buffer in z or
by backward integration of z. Inspired from [3], for any
∆ ∈ [0,min I), this situation can be modeled as

Ĥ(∆)



ẋ = f(x)
ż = F (z, hc(x))
µ̇ = 0
τ̇δ = −min{τδ + 1 , 1}

 x ∈ Ĉ(∆)

x+ = g(x)
z+ = z
µ+ = G(z, hd(x))
τ+δ ∈ [0,∆]

 x ∈ D̂−1(∆)

x+ = x, µ+ = 0 ,
z+ = µ, τ+δ = −1,

}
x ∈ D̂0(∆)

(36)

with state x = (x, z, µ, τδ), flow set

Ĉ(∆) =
(
Ĉ × {0} × {−1}

)
∪
(
Ĉ × Rdz × [0,∆]

)
,

jump set D̂−1(∆) ∪ D̂0(∆) with

D̂−1(∆) = D̂ × {0} × {−1}

D̂0(∆) = (Ĉ ∪ D̂)× Rdz × {0} ,

Ĉ := C × Rdz , D̂ := D × Rdz .

Ĥ(∆) contains two new states µ and τδ evolving in Rdz
and [0,∆] ∪ {−1} respectively. The state τδ is a timer
modeling the delay between the plant’s jump and the ob-
server’s jump. The role of µ is to store the update to be
implemented in the observer at the end of the delay inter-
val, when it actually jumps. More precisely, when τδ = −1
and x does not jump, Ĥ(∆) flows, with µ and τδ remain-
ing equal to 0 and −1 respectively. When x jumps, then
the update that should have been instantaneously imple-
mented in the observer is stored in the memory state µ,
and τδ is set to a number in [0,∆] thus starting a delay

period: Ĥ(∆) then flows and the time τδ decreases, until it
reaches 0. At this point, a delay interval of length smaller
than or equal to ∆ has elapsed, and the observer state z
is updated with the content of µ, while µ is reset to 0.

Note that the plant’s state is not allowed to jump again
before the delay expressed by τδ has expired. That is why
this model only works in the case where ∆ < min I, i.e.,
the maximal delay is smaller than the smallest possible
time between successive jumps of the plant.

In order to study the robustness of this property in pres-
ence of delay, we need to resort to compact attractors and
some regularity properties of H− Ĥ.
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Assumption 6.2. There exists a compact subset X of
C∪D, such that any solution x ∈ SH(X0) verifies x(t, j) ∈
X for all (t, j) ∈ domx. Besides, AX := A∩ (X ×Rdz ) is
compact.

Assumption 6.3. H−Ĥ defined in (7) satisfies the hybrid
basic conditions defined in [21, Assumption 6.5], namely C
and D are closed, F|Ĉ and G|D̂ are outer semicontinuous

and locally bounded, and F|Ĉ takes convex values.

It follows that the solutions of interest are also solution
to (2) with flow set C ∩X and jump set D ∩X , which are
compact. The assumption that AX is compact, is typically
satisfied whenever

(x, z) ∈ A ⇐⇒ z = T (x)

for some continuous map T : Ø → Rdz with X ⊆ Ø,
namely in all the examples considered above.

Let us define the set

A′ =
(
AX × {0} × {−1}

)
∪
(
Ĝ× {0}

)
Ĝ :=

{
(g(x), z,G(z, hd(x))) : x ∈ D , (x, z) ∈ AX

}
.

Theorem 6.4. Suppose Assumptions 6.1, 6.2 and 6.3
hold. Then, the set A′ is UpAS for Ĥ(0) with basin of
attraction containing X0 × Z0 × {0} × {−1}. Besides,
there exist a KL function β, ε∗ > 0 and ∆∗ > 0, t? ≥ 0,
j? ∈ N, such that for any ∆ ∈ [0,∆∗], any ε ∈ [0, ε∗]

and any solution φ = (x, z, µ, τδ) to Ĥ(∆) initialized in
X0 ×Z0 × {0} × {−1}, we have

|φ(t, j)|A′ ≤ β(|φ(0, 0)|A′ , t+ j) + ε , (37)

and domφ = D−1∪D0 with Dk =
(⋃

j∈Jk [tj , tj+1]× {j}
)

,

k ∈ {0,−1},

J−1 = {j ∈ N : τδ(t, j) = −1 ∀t ∈ [tj , tj+1]}

J0 = {j ∈ N : τδ(t, j) ∈ [0,∆] ∀t ∈ [tj , tj+1]} ,
such that

• for all j in J0, tj+1 − tj ≤ ∆,

• for all (t, j) ≥ (t?, j?) in D−1,
∣∣(x, z)(t, j)∣∣A ≤ 2ε.

Proof. See Appendix B.

In other words, we achieve semiglobal practical stability
of A except possibly on the delay intervals (of maximal
length ∆).

In fact, if A is the diagonal set (9a), the mismatch dur-
ing the delay intervals cannot be prevented if the jump
map is not the identity. Indeed, after one jump of either x
or z, one is close to x− while the other is in g(x−), no mat-
ter how long the delay is. This well-known phenomenon,
called peaking, was reported in the context of observation
[19], but also more generally output-feedback and tracking

Figure 3: Error between a trajectory of system (15) with random
interjump intervals in I = [2, 5] and observer (6) with Lc = 0 and
L = (1, 0.2259, 1)>, and jumps triggered with a delay ∆ = 0.05.

[13]. This suggests that the Euclidian distance to evaluate
the observer error is not appropriate and more general dis-
tances could be designed [12]. In particular, the expression
of A′ shows that semi-global practical stability is actually
ensured for the peaking free set

Ã = A∪
{

(x, z) ∈ Rdx ×Rdz : x ∈ g(x−) , (x−, z) ∈ A
}
.

Note that in the limit case where min I = 0, namely Zeno
or multiple jumps could happen, then an arbitrarily small
delay in the observer jumps could lead to several jumps of
delay, namely, one would need to consider

Ã = A∪
{

(x, z) ∈ Rdx×Rdz : x ∈ gk
∗
(x−) , (x−, z) ∈ A

gk(x−) ∩D 6= ∅ ∀k ∈ {1, · · · , k∗ − 1}
}
.

In the case of an average dwell-time, k∗ would be limited
by N0. Finally, in the extreme case where an infinite num-
ber of jumps happened during the delay interval, nothing
could be done in presence of delay in jump detection: one
would need to consider observers that automatically syn-
chronize themselves with the plant.

Example 6.5. We come back to Example 5.6 with a delay
in the triggering of the observer’s jump. The results are
presented in Figures 3 -4 with delays of ∆ = 0.05 and ∆ =
0.5 respectively. Note that in this example, the assumption
of boundedness of the plant’s trajectory is not verified since
x1 and x3 diverge. We can still see that the smaller the
delay, the smaller the error outside the delay intervals.
Since trajectories are here unbounded, it could also happen
that the mismatch during the delay intervals grows larger
and larger, although this is not the case here.

7. Application to switched systems

We now show how the previously obtained results apply
to the design of observers for switched systems with state
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Figure 4: Error between a trajectory of system (15) with random
interjump intervals in I = [2, 5] and observer (6) with Lc = 0 and
L = (1, 0.2259, 1)>, and jumps triggered with a delay ∆ = 0.5.

x = (xp, q) as defined in (4) of Example 2.3. We focus on
the case where the mode q is known at all times. Besides
q, some additional measurements hq(xp) of the continuous
state xp are available in each mode, either at all times,
namely

yc = yd = (hq(xp), q) (38a)

or only at the switching instants, namely

yc = q , yd = (hq(xp), q) . (38b)

7.1. Detectable individual flow dynamics

We start by assuming the output (38a) is available at
all times and the continuous pair (fq, hq) of each mode is
detectable for q ∈ Q. More precisely, assume that the in-
dividual continuous dynamics ẋp = fq(xp) of each mode
q ∈ Q with output hq(xp) admit a continuous-time ob-
server

ż = Fq(z, hq(xp))

relative to some observation set Aq ⊂ Rdxp ×Rdz and with

a Lyapunov function Vq : Rdxp × Rdz → R≥0 that verifies
(11a)-(11b), namely

αq
(
|(xp, z)|Aq

)
≤ Vq(xp, z)
∀(xp, z) ∈ (Cq ∪Dq ∪ gq(Dq))× Rdz ,

Vq(xp, z) ≤ αq
(
|(xp, z)|Aq

)
∀(xp, z) ∈ Xp,0 ×Z0

(39a)
LFq

Vq(xp, z) ≤ ac,q Vq(xp, z) ∀(xp, z) ∈ Cq × Rdz (39b)

for some scalar ac,q < 0 and some class-K∞ maps αq, αq,
and where Fq(xp, z) = (fq(xp), Fq(z, hq(xp)).

Since we know an observer of each continuous mode, it
is tempting to build an observer for the switched system
by switching among these individual observers thanks to
the knowledge of q. Because the decrease of the estima-
tion error is brought by flowing in each mode, we need
persistence of flow, namely conditions of the type CX0

[I]
with min I > 0, or more generally CavX0

[τ?]. However, it
is well-known that switching among asymptotically stable

systems does not necessarily bring asymptotic stability,
since whatever has been achieved in one mode could be
destroyed by the following one, if the descent directions of
the Lyapunov functions Vq are not compatible [32]. We
show here how the results of Section 4 shed a new light on
this problem.

For that, let us consider

A :=
{

(xp, q, z) ∈ Rdxp ×Q× Rdz : (xp, z) ∈ Aq
}
,

which verifies for q ∈ Q,

|(xp, q, z)|A = 0 ⇐⇒ |(xp, z)|Aq
= 0 . (40)

Therefore, designing an observer for the hybrid system (4)
with state x = (xp, q) stabilizing A indeed achieves the
observation goal of each mode modeled byAq. From (38a),
we can define

V ((xp, q), z) := Vq(xp, z) , F (z, yc) := Fq(z, hq(xp)) .
(41)

Observing that |(xp, q, z)|A ≤ |(xp, z)|Aq , we deduce from
(39) and (40) that conditions (11a)-(11b) hold with ac :=
maxq∈Q ac,q, X0 = Xp,0 × Q, α = minq∈Q αq, and some
K∞-map αq if Xp,0 × Z0 is compact. It thus remains to
satisfy (11c) and (C1) or (C1’) to apply Theorem 3.1. Sim-
ilarly to the literature, we consider the following two cases.

7.1.1. Common Lyapunov function
Assume Vq = Vq′ =: V for all (q, q′) ∈ Q2. In that case,

it is sufficient to check (11c) for V independently, namely
choose G(z, yd) = Gq(z, hq(xp)) such that

V (Gq(xp, z)) ≤ ead V (xp, z)

∀(xp, z) ∈ Dq × Rdz , ∀q ∈ Q (42)

with Gq(xp, z) = (gq(xp), Gq(z, hq(xp)), and a scalar ad.
This is in particular satisfied with ad = 0 if Gq = Id, thus
directly satisfying (C1’). Otherwise, as noticed in Section
4.1, (42) holds if (12) holds for each q and there exist
class-K∞ maps κq and a positive scalar c such that

|Gq(xp, z)|Aq
≤ κq

(
|(xp, z)|Aq

)
∀(xp, z) ∈ Dq × Rdx

αq ◦ κq ◦ α−1q ≤ c Id ∀q ∈ Q .

(C1’) then holds if the average dwell-time is sufficiently
large, i.e. τ? ≥ ln c

|ac| .

Example 7.1 (Linear switched systems with detectable
modes). Assume fq(xp) = Aqxp, hq(xp) = Hqxp, and
there exist gain vectors Lq and a positive definite matrix
P such that

(Aq − LqHq)
>P + P (Aq − LqHq) < 0 ∀q ∈ Q .

Then, (39) holds with Fq(z, y) = Aq z + Lq(y −Hqz), Aq
defined by

Aq =
{

(xp, z) ∈ (Cq ∪Dq)× Rdz : xp = z
}
,

V (xp, z) = (xp − z)>P (xp − z)
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αq(·) = λ(P ) (·)2 , αq(·) = λ(P ) (·)2 .

If gq = Id for all q, we then take G(z, yd) = z and ob-
tain an observer as in [2]. If the maps gq are Lipschitz
on Dq with an upper bound on the Lipschitz constants,
we simply take a copy of the jump dynamics, namely
G(z, yd) = gq(z), and Problem 1 is solved if the average
dwell-time is sufficiently large as used1 in [8] (resp. [6])
with linear (resp. affine) jump maps gq.

7.1.2. Multiple Lyapunov functions
In the more general case where the Lyapunov functions

associated to each mode are not the same, some additional
compatibility conditions appear between Vq and Vq′ to sat-
isfy (11c), namely we need the stronger condition

Vq′(Gq(xp, z)) ≤ ead Vq(xp, z)
∀(xp, z) ∈ Dq × Rdz ∀(q, q′) ∈ Q2 . (43)

In fact, it is well-known that even in the case where gq = Id
and Gq = Id, switching between asymptotically stable sys-
tems can lead to unstable dynamics if the descent direc-
tions of the Lyapunov functions are not “compatible”. Ex-
amples of such phenomena appear in [32]. However, if
condition (42) holds with a scalar ad,0 and we add the
assumption that there exists µ such that

Vq′(xp, z) ≤ µVq(xp, z)
∀(xp, z) ∈ (Cq ∪Dq)× Rdz ∀(q, q′) ∈ Q2 (44)

then (43) holds with ad = lnµ+ ad,0. Therefore, Problem
1 is solved if the switching is sufficiently slow in average,

namely if τ? >
lnµ+ad,0
|ac| . This is exactly the result of [27]

in the context of linear switched systems and Gq = Id,
ad,0 = 0. Note that (44) always holds if (12) holds for
each q and there exists µ such that

αq′ ◦ α−1q ≤ µ Id ∀(q, q′) ∈ Q2 .

Example 7.2 (Linear switched systems with detectable
modes). Let us come back to Example 7.1. By detectability
of each mode, there exist positive definite matrices Pq and
gain vectors Lq such that

(Aq − LqHq)
>Pq + Pq(Aq − LqHq) < 0 ∀q ∈ Q .

Then, (39) holds with same Fq, same Aq and

Vq = (xp − z)>Pq(xp − z)

αq(·) = λ(Pq) (·)2 , αq(·) = λ(Pq) (·)2 .

Besides, (44) holds with µ = max{λ(Pq′)/λ(Pq)} and
Problem 1 is solved for sufficiently slow switching if the

1In [8], the more general framework of unknown inputs is consid-
ered. Therefore, a first transformation is carried out to isolate the
part of xp that is not impacted by those unknown inputs.

maps gq are uniformly Lipschitz as in Example 7.1. Actu-
ally a lot of effort has been made in the literature to find
less conservative conditions on the switching signal. Re-
cently, [20] exhibited generalized sufficient conditions rely-
ing on the framework of slowly-varying linear time-varying
systems. The idea is that a switched linear system is stable
if the overall variation of the matrix on a long interval is
small: one way to achieve this, is to have slow-switching,
but this switching can be faster if the variation Aq−Aq′ is
small enough.

However, as mentioned in Section 4, restrictions on the
(average) dwell-time makes sense only if the switching sig-
nal is chosen by the user, not if it is a property of the
hybrid system.

A first way of avoiding constraints on the (average)
dwell-time would be to use the information given by the
output at the switches to ensure that V decreases through
the switch. This is done in [37] for linear switched sys-
tems where yd = (Hqxp, q) (see (38a)), noticing that when
gq = Id, the conditions on (Vq, Vq′) can be relaxed by
ensuring Hqz

+ = Hqxp = y after the jump, through an
oblique projection along the metric of Pq (instead of tak-
ing z+ = z), namely

G(z, yd) = z + P−1q H>q
(
HqP

−1
q H>q

)−1
(Hqxp −Hqz) .

Indeed, it can be shown via standard geometrical argu-
ments that (42) then holds with ad = 0 and (43) holds if
the additional LMI

Pq′ = Pq + d>q,q′Hq +H>q dq,q′

is verified for some dq,q′ ∈ Rdxp×dy .
More generally, when each mode is observable arbitrar-

ily fast and admits a high-gain observer, we may avoid the
restrictions on the average dwell-time by applying Corol-
lary 4.2.

Example 7.3 (Linear switched systems with observable
modes). Assume now the pairs (Aq, Hq) are observable.

Following Example 4.3, there exist matrices Vq ∈ Rdxp×dxp

such that

VqAqV−1q = A + DqC , HqV−1q = C .

Then, define

Fq,`(z, y) = Aq z + Lq(`)(y −Hqz)

with
Lq(`) = V−1q (Dq + ` L(`)L)

and

V`,q(xp, z) = (xp − z)>V>q  L(`)−1P  L(`)−1Vq (xp − z) .

Then, (21a)-(21b) hold with T (xp, q) = xp,

V`((xp, q), z) = Vq,`(xp, z) , F`(z, y) = Fq,`(z, hq(xp))

c(`) = min
q∈Q

λ(V>q PVq) , c(`) = `2(dx−1) max
q∈Q

λ(V>q PVq) .
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Therefore, whatever the average dwell-time, Problem 1 is
solved for ` sufficiently large by taking G(z, yd) = gq(z)
(resp. G(z, yd) = sat(gq(z))) if g is Lipschitz (resp. locally
Lipschitz and the solutions x are uniformly bounded) as in
Example 4.1.

This principle can also be applied to nonlinear switched
systems.

Example 7.4 (Switched systems with strongly differen-
tiable modes). Assume that fq and gq are single-valued
with a single output (dy = 1), and there exists dz ∈ N
such that each mode q ∈ Q is strongly differentially ob-
servable of order dz, namely the maps Tq : Cq ∪Dq → Rdz
defined by

Tq(xp) = (hq(xp), Lfqhq(xp), ..., L
dz−1
fq

hq(xp))

are injective immersions on Cq ∪Dq. Then, following Ex-
ample 4.4 or [28], if there exist Lipschitz maps Φq with
uniformly bounded Lipschitz constants and verifying

Φq(Tq(xp)) = Ldzfqhq(xp) ∀xp ∈ Cq ∪Dq ,

a high-gain observer can be designed for each mode with

Fq,`(z, y) = Az +BΦq(z) + ` L(`)K(y − z1) ,

and the Lyapunov function

Vq,`(xp, z) = (Tq(xp)− z)>  L(`)−1P  L(`)−1(Tq(xp)− z) ,

where A, B, K, and P are defined in Example 4.4. Then,
(21a),(21b) hold with T (xp, q) = Tq(xp),

V`((xp, q), z) = Vq,`(xp, z) , F`(z, y) = Fq,`(z, hq(xp)) ,

c(`) = λ(P ), c(`) = λ(P )`2(dz−1), and λ = infq∈Q λq > 0.
It remains to choose G Lipschitz with respect to z such
that (21c) holds to apply Corollary 4.2. But (21c) says we
should have at the jumps

G(Tq(xp), yd) = Tq+(gq(xp)) (45)

where q+ is the next mode. In other words, due to the fact
that the change of coordinates T depends on q, we need
to know, before the switch, both the current mode and the
next. This is possible only if the switches are controlled or
deterministic. Otherwise, we need to wait for the switch
to happen before the observer can jump. This is exactly
the issue studied in Section 6. Suppose the assumptions
of Theorem 6.4 hold. If the observer jump (45) is imple-
mented instantaneously after the switch (namely the new
mode q+ is detected instantaneously), AX is UpAS, except
during the (instantaneous) delay, since this situation can

be modeled by Ĥ(0). In the more realistic case where there
is a slight delay ∆ between the switch and the detection of
the new mode q+, then, AX is practically stable outside
the delay intervals.

7.2. Unobservable individual flow dynamics

We now consider the case where each continuous pair
(fq, hq) is not necessarily observable individually, but per-
sistent switching between the modes brings determinabil-
ity, namely the ability to reconstruct the current contin-
uous state xp by accumulating the past information pro-
vided by each mode. This case was handled in [45, 46, 43]
by 1) using a partial state continuous-time observer dur-
ing flow, which estimates the part of xp that is observable
from (fq, hq); 2) gathering and propagating forward the
partial estimates obtained during the past N switches to
produce a full estimate of xp.

However, Section 5 sheds a new light on this problem.
Indeed, let us assume that the switches are persistent,
namely CX0

[I] holds with I compact, and that the output
is available at the switches, namely y is given by (38b).
Consider the switched system discretized at the switching
times:

xp,k+1 ∈ gqk(Ψfqk
(xk, τk))

yk =
(
hqk

(
Ψfqk

(xk, τk)
)
, τk

)
(46)

where τk = tk+1− tk denotes the length of the kth switch-
ing interval. Note that τk was added to the output to
encode the fact that it is known and can be used in the
design of the observer jump map G. Inspired from Corol-
lary 4.2, it is enough to look for F and G that make

zk+1 ∈ G(ΨF (zk, τk), yk) (47)

a UpAS observer for (46) relative to a set Ap ⊂ Rdxp×Rdz ,
as long as there exists a class-K function ρ such that for all
(xp, z) ∈ Xp ×Z, for all q ∈ Q, and for all τ ∈ [0,max I],

|(Ψfq (xp, τ),ΨF (z, τ))|Ap
≤ ρ

(
|(xp, z)|Ap

)
, (48)

where Xp (resp. Z) denotes a set where xp (resp. solutions
to (47)) evolves. Typically, when Ap is the diagonal set, we
simply take F (z, yc) = fq(z) and (48) holds for bounded
trajectories.

In particular, when fq(xp) = Aqxp, gq(xp) = Dqxp,
hq(xp) = Hqxp are linear, we take

F (z, yc) = Aqz , G(z, yd) = Dqz − Lk(Hqz −Hqxp)

where Lk is chosen at hybrid time (tk, k) based on the
known history of (qk, τk) to make the LTV discrete-time
error system

ek+1 = (Dqk − LkHqk) exp(Aqkτk)ek

asymptotically stable, for instance through a discrete
Kalman filter.

8. Conclusion

Under the assumption that the plant’s jumps can be
detected, we have given Lyapunov-based sufficient condi-
tions for asymptotic convergence of an observer for gen-
eral hybrid systems. Constructive design methods have
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been provided, in particular high-gain designs for differen-
tially observable continuous dynamics and discrete-based
designs when observability is ensured from the output at
jump times. The obtained observers must be synchronized
with the plant but we have shown its robustness with re-
spect to delays in its jumps, namely semi-global practical
stability of the estimation error outside the delay inter-
vals. All those results provide a new insight for the design
of observers for switched systems.

The next step is to develop observers able to synchronize
automatically their jumps with the plant’s, at least locally,
to avoid relying on the often noisy and delayed jump de-
tection. This problem represents a significant challenge
since the entire analysis needs to be rethought to handle
non-synchronous jumps and ensure contraction of the dif-
ference between jump times.

Appendix A. Proof of Theorem 5.3

Consider φ = (x, z) ∈ SH−Ĥ(X0 ×Z0). By assumption,

x(t, j) ∈ X for all (t, j) ∈ domφ. Denote τM = max I. It
is easy to see that (x̃, z̃) : domj φ→ Rdx ×Rdz defined by

x̃k = x(tk, k) , z̃k = z(tk, k)

verifies (25) with input τ defined by τk = tk+1− tk, for all

k ∈ domj φ\{J}. Besides, (x̃1, z̃1) ∈ X̃0×Z̃0 by definition.
Also, it follows from CX0

[I] that τ0 ≤ τM , and τk ∈ I for
all k ∈ N>0 if J = +∞ and for all k ∈ {1, . . . , J − 1}
otherwise. Therefore, (x, z)(tk, k) ∈ X × Z for all k, and
according to (26),(27), for all k ∈ domj φ ≥ 1,

|(x, z)(tk, k)|A ≤ β(|(x, z)(t1, 1)|A, k − 1)

≤ β
(
ρ(|(x, z)(0, 0)|A), k − 1

)
.

This latter inequality still holds for k = 0, by appropri-
ately defining β(s, t) for t < 0 so that β(s,−1) ≥ ρ−1(s).
Besides, we deduce that for all j ∈ domj φ, (x, z)(tj , j) ∈
X ×Z. By CX0

[I], t− tj ∈ [0, τM ] for all (t, j) ∈ domφ, so
that from (27),

|(x, z)(t, j)|A ≤ ρ (|(x, z)(tj , j)|A)

≤ ρ
(
β
(
ρ(|(x, z)(0, 0)|A), j − 1

))
But for all (t, j) in domφ, t− tj ≤ τM and tj − tj−1 ≤ τM
for j ≥ 1, so that tj ≤ τM j and t ≤ τM (j + 1). Thus,

|(x, z)(t, j)|A ≤ ρ
(
β
(
ρ(|(x, z)(0, 0)|A), a(t+ j) + b

))
with a = 1

τM+1 and b = τM − 1. Therefore, Problem 1 is
solved.

Appendix B. Proof of Theorem 6.4

The proof relies on [3]. Take a solution φδ = (x, z, µ, τδ)

to Ĥ(∆) for some ∆ ∈ [0,min I) with (x, z)(0, 0) ∈
X0 × Z0. Observe that the component x is not impacted
by the delay mechanism, therefore, from Assumption 6.2,

x(t, j) ∈ X for all (t, j) ∈ domx. It follows that φδ is solu-

tion to a hybrid system ĤX (∆) which has same dynamics

as Ĥ(∆) but with flow set ĈX (∆) := Ĉ(∆)∩ (X ×Rdz+3)

and jump set D̂X (∆) := D̂(∆) ∩ (X × Rdz+3). In the

framework of [3], ĤX (∆) is then the delayed version of the

nominal observer H−Ĥ with flow set ĈX = (C∩X )×Rdz ,

and jump set D̂X = (D ∩ X ) × Rdz . By Assumption 6.1
(and by containment [21, Theorem 3.32]), the set A is still

UpAS for ĤX , and more precisely, the set AX (that is
compact according to Assumption 6.2). With the hybrid
basic conditions, we conclude from [3, Proposition 4.3, Re-

mark 4.4] that the set A′ is UpAS for ĤX (0) with basin of

attraction containing X0×Z0×{0}×{−1}. Ĝ is compact
by outer-semicontinuity and local boundedness of g and G.
A′ is therefore compact. Besides, X0 × Z0 × {0} × {−1}
is bounded and thus included in a compact subset of the
basin of attraction, since the latter is open according to
[21, Proposition 7.4]. Still from the hybrid basic condi-
tions, A′ is actually semi-globally practically robustly KL
asymptotically stable for ĤX (0) according to [21, Lemma
7.20]. This means that there exists a KL function β
such that for any ε > 0, there exists ρ > 0 such that
any solution φ to a ρ-perturbation of ĤX (0) initialized in

X0 ×Z0 × {0} × {−1}, verifies (37). Since ĤX (∆) can be

included in any outer-perturbation of ĤX (0) by taking ∆

sufficiently small, (37) holds along solutions of ĤX (∆) for
∆ sufficiently small. Now for ε sufficiently small and for
sufficiently large (t, j) ∈ D−1, |φ(t, j)|A′ = |φ(t, j)|A′−1

and

thus |(x, z)(t, j)|A ≤ |φ(t, j)|A′ ≤ 2ε.
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ity criteria for slowly time-varying and switched linear systems.
Automatica, 96:110–120, 2018.

[21] R. Goebel, R. Sanfelice, and A. Teel. Hybrid Dynamical Sys-
tems : Modeling, Stability and Robustness. Princeton Univer-
sity Press, 2012.
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[39] T. Raff and F. Allgöwer. Observers with impulsive dynami-
cal behavior for linear and nonlinear continuous-time systems.
IEEE Conference on Decision and Control, pages 4287–4292,
2007.

[40] T. Raff, M. Kogel, and F. Allgower. Observer with sample-
and-hold updating for Lipschitz nonlinear systems with nonuni-
formly sampled measurements. In 2008 American Control Con-
ference, pages 5254–5257, 2008.
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