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Robust Observer Design for Hybrid Dynamical
Systems with Linear Maps and Approximately

Known Jump Times
Pauline Bernard and Ricardo G. Sanfelice

Abstract—This paper proposes a general framework for the
state estimation of plants given by hybrid systems with linear flow
and jump maps, in the favorable case where their jump events
can be detected (almost) instantaneously. A candidate observer
consists of a copy of the plant’s hybrid dynamics with continuous-
time and/or discrete-time correction terms multiplied by two
constant gains, and with jumps triggered by those of the plant.
Assuming that the time between successive jumps is known to
belong to a given closed set allows us to formulate an augmented
system with a timer which keeps track of the time elapsed
between successive jumps and facilitates the analysis. Then, since
the jumps of the plant and of the observer are synchronized, the
error system has time-invariant linear flow and jump maps, and
a Lyapunov analysis leads to sufficient conditions for the design
of the observer gains for uniform asymptotic stability in three
different settings: continuous and discrete updates, only discrete
updates, and only continuous updates. These conditions take the
form of matrix inequalities, which we solve in examples including
cases where the time between successive jumps is unbounded
or tends to zero (Zeno behavior), and cases where either both
the continuous and discrete dynamics, only one of them, or
neither of them are detectable. Finally, we study the robustness
of this approach when the jumps of the observer are delayed
with respect to those of the plant. We show that if the plant’s
trajectories are bounded and the time between successive jumps is
lower-bounded away from zero, the estimation error is bounded,
and arbitrarily small outside the delay intervals between the
plant’s and the observer’s jumps.

Index Terms—observer, hybrid systems, impulsive systems

I. INTRODUCTION

A. Background

In many applications, estimating the state of a system is
crucial, whether it be for control, supervision, or fault diag-
nosis purposes. Unfortunately, different from the linear time-
invariant continuous-time setting, the problem of designing
observers for hybrid systems is unsolved, even when the
flow/jump maps are linear. The lack of general tools for such
systems is mainly due to the fact that hybrid systems combine
both continuous-time and discrete-time dynamics, which in
general leads to solutions from nearby initial conditions that
have different jump times. Such a mismatch of time domains
makes the formulation of observability/detectability and, in
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turn, observer design very challenging. In particular, the no-
tions of observability (reconstruction of the initial condition)
and determinability (reconstruction of the final condition) are
no longer equivalent when the jump map is not invertible.

When the plant’s jump times are unknown, the error system
approach does not apply since the jumps of the observer and
of the plant are not necessarily synchronized. Unfortunately,
very few observer results exist for such a setting. This problem
is overcome in a particular case in [1], thanks to the fact that
the jump map g is such that g ◦ g is the identity map, and
in a slightly more general setting in [2], thanks to a change
of coordinates transforming the jump map into the identity
map. In the latter case, the observer problem reduces to the
design of an observer for a continuous-time system, but no
result concerning the existence and construction of such a
transformation is available yet. Another path explored in the
particular setting of switched systems is to estimate the plant’s
switching signal: its observability has been studied in [3], [4]
and some designs exist based on mode location observers to
detect and identify mode switches (see [5], [6], [7], [8], [9]).

Impulsive systems consist of a class of continuous-time
dynamical systems with state jumps that occur at pre-specified
times, which, in most articles in the literature, are separated by
nonzero periods of flow (in particular, to avoid Zeno behavior).
The impulsive systems literature is rich and includes a variety
of models of impulsive systems. In particular, models of
impulsive systems in which the state includes a logic variable
that selects the right-hand side of the differential equation
governing the dynamics in between impulses are referred to
as switched impulsive systems, or also as switched systems
with known jump times. In that setting, the difficulties due
to a possible mismatch of the trajectories’ domains disappear
since the jump times are assumed known. Observability and
determinability thus reduce to comparing inputs with same
time domain and have been extensively studied with geomet-
ric/algebraic conditions given in [10], [11], [12], [13], [14].
As for observer design, results first appeared assuming each
mode is observable [15], and then more generally in [16]
(resp. in [14]), for impulsive systems (resp. switched impulsive
systems) that are observable (resp. determinable) for any
impulse time sequence containing more than a known finite
number N of jumps. In other words, the information available
during a single flow interval is no sufficient to reconstruct the
full state, but it becomes sufficient after N jumps. In [16],
the observer consists of an impulsive system synchronized
with the plant, with innovation terms at jumps only. Those
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innovations are linear in the error, with a time-varying gain
that is related to a weighted observability Grammian over the
past N jumps. In [14], the authors develop an observation
procedure based on the continuous-time estimation of the
observable states of each of the past N modes: after some
time, putting together the information given by each mode
enables to reconstruct the whole state. Note however that [16],
[14], the time elapsed between successive jumps must be lower
bounded away from zero and upper bounded.

Another important class of hybrid systems for which ob-
server results exist is when the system itself has continuous-
time dynamics, but the measurements are available inter-
mittently at specific time instances. For such a class of
systems and other systems with sporadic events, observers
have been designed under specific assumptions on the time
elapsed between successive events or, in the case of periodic
events, the sampling period. From [17], convergence of an
impulsive observer with linear innovation terms triggered by
the measurement events is guaranteed when the sampling
period is sufficiently small. This design is extended in [18]
to any constant sampling period provided that appropriate
matrix inequalities are satisfied, and further extended in [19]
to the case of sporadic measurements, i.e., when the time
elapsed between sampling events varies in a known interval.
In [17], [18], [19] though, the “inter-jump” duration must be
lower bounded away from zero and upper bounded by known
constants.

B. Contributions

In this paper, we consider general hybrid systems as in [20]
with linear flow and jump maps, and possibly an input whose
value is considered known at all times. In this paper we make
the following contributions
• Definition of hybrid observer: Under the assumption that

the plant’s jumps are detected instantaneously, a candidate
observer is a hybrid system that jumps at the same time
as the plant does, and is fed with the known input and
linear correction terms in either the flow map, the jump
map, or both.

• Broad class of hybrid plants: Our results only assume
that the time between successive jumps belongs to a
known (possibly unbounded) closed set. This allows us
to formulate (Section II) an augmented hybrid system
with a timer that keeps track of the time elapsed between
successive jumps.

• General design conditions: The proposed augmented sys-
tem is employed to derive sufficient conditions for the
design of the gains defining the observer’s correction
terms, so as to ensure uniform global asymptotic sta-
bility in three different settings: both continuous-time
and discrete-time updates (Section III), only discrete-time
updates (Section IV), and finally, only continuous-time
updates (Section V).

• Constructive design conditions: The conditions take the
form of matrix inequalities, which depend on the infor-
mation available on the flow time between successive
jumps. A key difference with the literature of impulsive

systems cited above is that no assumption of lower/upper
boundedness of the “inter-jump” duration is required in
our approach. In particular, the Zeno phenomenon is
allowed.

• Semiglobal practical estimation with mismatch of jump
times: Finally, in Section VI, we treat the more chal-
lenging case where the jumps of the plant and of the
observer are not perfectly synchronized. We show the
robustness of our observer in so far as semi-global
practical stability is achieved if the plant’s trajectories
and inputs are bounded and if the time elapsed between
successive jumps is lower-bounded away from zero. More
precisely, the observer with sufficiently small delay in
the jumps provides an arbitrarily precise estimate, except
during the delay intervals between the plant’s jumps and
the observer’s where peaking occurs.

Preliminary results were given in [21], but restricted to
the case were at least either the continuous dynamics or
the discrete dynamics are detectable. We give their proofs
here and complete them by sufficient conditions in the case
were neither the continuous nor the discrete dynamics of the
plant are detectable (but the plant as a whole is), and by a
robustness analysis with respect to delays in the triggering of
the observer’s jumps.

Notation. R (resp. N) denotes the set of real numbers (resp. integers),
R≥0 = [0,+∞), R>0 = (0,+∞), and N>0 = N \ {0}. The
components of a square matrix P are denoted pij , and λm(P ) (resp.
λM (P )) stands for its smallest (resp. largest) eigenvalue. The symbol
? in a matrix denotes the symmetric blocks. B stands for a closed
Euclidian ball of appropriate dimension, of radius 1 and centered at
0.

II. HYBRID OBSERVER

A. Problem statement

In this paper, we consider hybrid plants of the form

Hu


ẋ = Ac x+Bc uc x ∈ C

x+ = Ad x+Bd ud x ∈ D

yc = Hc x x ∈ C
yd = Hd x x ∈ D

(1)

with state x ∈ Rn, input u being the collection of a
continuous-time input uc : R≥0 → Rmc and a discrete-time
input ud : N → Rmd , and output y = (yc, yd) ∈ Rpc × Rpd .
For this class of hybrid systems, we are interested in estimating
the state of the plant (1) when its solutions are initialized in a
given subset X0 of Rn. To formally state this problem, we first
introduce the notion of solution and other needed definitions
related to hybrid systems.

A solution x to a hybrid system is given by a hybrid arc
which is a function defined on a hybrid time domain, denoted
domx. A hybrid time domain domx is a subset of R≥0 ×N
such that for any (T ′, J ′) in domx, there exist J ∈ N and a
sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ such that

domx ∩ ([0, T ′]× {0, 1, . . . , J ′}) =

J−1⋃
j=0

([tj , tj+1], j) .
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Then, x : domx → Rn is a hybrid arc if domx is a
hybrid time domain and t 7→ x(t, j) for each j ∈ N is
absolutely continuous. For a hybrid arc x, we denote domt x
(resp. domj x) the projection of domx on the first (resp.
second) dimension, T (x) = sup domt x, J(x) = sup domj x,
tj(x) the time stamp associated to jump j which is uniquely
characterized by

(tj(x), j − 1) ∈ domx , (tj(x), j) ∈ domx

and T (x) = {tj(x) : j ∈ domj x ∩ N>0}. We say that x is
• complete if domx is unbounded
• eventually continuous (resp. eventually discrete) if
J(x) < +∞ and T (x) > tJ(x) (resp. T (x) < +∞
and domx ∩ (T (x)× N) contains at least two points)

• Zeno if x is complete and T (x) < +∞ .
For uc : R≥0 → Rmc and ud : N → Rmd , we say that a
hybrid arc x is solution to Hu with output y = (yc, yd) if for
all j ∈ N,
• for all t ∈ (tj(x), tj+1(x)), x(t, j) ∈ C
• for almost all t in (tj(x), tj+1(x)), we have ẋ(t, j) =
Ac x(t, j) +Bc uc(t)

• for all t in [tj(x), tj+1(x)], yc(t, j) = Hc x(t, j)

and for all (t, j) ∈ domx such that (t, j + 1) ∈ domx,
x(t, j) ∈ D, yd(t, j) = Hd x(t, j), and

x(t, j + 1) = Ad x(t, j) +Bd ud(j) .

A solution x is maximal if it cannot be continued into a
solution with larger domain. We denote SHu(X0) the set of
maximal solutions of Hu with initial condition in X0 and input
u. We will also need the following definition.

Definition II.1. For a closed subset I of R≥0, an input u,
and a subset X0 of Rn, we will say that CHu(X0, I) holds if
for any solution x ∈ SHu(X0),
• 0 ≤ t− tj(x) ≤ sup I ∀(t, j) ∈ domx
• tj+1(x)− tj(x) ∈ I holds

– ∀j ∈ N>0 if J(x) = +∞
– ∀j ∈ {1, . . . , J(x)− 1} if J(x) < +∞

In other words, the set I describes the possible lengths
of the flow intervals between successive jumps. The role of
the first item in Definition II.1 is to bound the length of the
intervals of flow which are not covered by the second item,
namely possibly the first one, which is [0, t1(x)], and the last
one, which is domt x ∩ [tJ(x)(x),+∞) (when defined). We
are now ready to state the observer problem of interest.

Problem 1. Design an observer assuming we know
• the value of the input u at all times,
• when the plant’s jumps occur,
• the outputs yc during flows and/or yd at jumps,
• some information about the flow time between successive

jumps, namely a closed subset I of R≥0 such that
CHu(X0, I) holds.

The existence of a set I such that CHu(X0, I) holds is not a
problem because it always holds for I = R≥0. But as we will
see later, it is advantageous to select I as tight as possible,

namely it is convenient to have as much information about the
duration of flow between successive jumps as possible. The
following example shows how I can be chosen depending on
X0.

Example II.2. Consider a bouncing ball with gravity coef-
ficient g > 0 and restitution coefficient λ > 0, modelled as
system (1) with1,2

Ac =

(
0 1
0 0

)
, Ad =

(
−1 0
0 −λ

)
(2)

C = R≥0 × R , D = {(x1, x2) ∈ R2 : x1 = 0 , x2 ≤ 0}

Bc =

(
0
1

)
, Bd = 0 , uc ≡ −g

If λ < 1, any maximal solution x is such that3 T < +∞
and J = +∞. The time between two successive jumps tj+1−
tj tends to zero when j tends to +∞, and its upper bound
increases with |x(0, 0)|. So we can take I = [0, τM ] with
τM ≥ 0, if X0 is bounded. Otherwise, I = R≥0.

If now λ > 1, any maximal solution x initialized in R2 \
{(0, 0)} is such that T = +∞, J = +∞. The time between
two successive jumps tj+1 − tj tends to +∞ when j tends to
+∞, and its lower bound decreases with |x(0, 0)|. Therefore,
if there exists δ > 0 such that X0 is a subset of Rn \ δB, one
can take I = [τm,+∞) with τm > 0. Otherwise, I = R≥0.

Finally if λ = 1, any maximal solution x initialized in
R2 \ {(0, 0)}, is such that T = +∞, J = +∞, and the
time between two successive jumps tj+1 − tj is constant for
all j ≥ 1, and increases with |x(0, 0)|. The maximal solution
initialized at (0, 0) is discrete, i.e., T = 0 and J = +∞. We
can take I of the form:
• I = [0, τM ] with τM ≥ 0, if X0 is bounded.
• I = [τm,+∞) with τm > 0, if there exists δ > 0 such

that X0 is a subset of R2 \ δB.
• I = [τm, τM ] with τm > 0 and τM > 0, if there exists
δ > 0 such that X0 is a bounded subset of R2 \ δB.

• otherwise, I = R≥0. 4

B. Proposed hybrid observer

Since the plant’s jump times and the value of the input are
assumed to be known, we propose to use an observer

Ĥu,y


˙̂x=Acx̂+Bcuc + Lc(yc −Hcx̂) when Hu flows

x̂+ =Adx̂+Bdud + Ld(yd −Hdx̂) when Hu jumps
(3)

that is synchronized with the plant. Problem 1 thus reformulate
as:

Problem 2. For a set of initial conditions X0 and a closed
subset I, design gains Lc ∈ Rn×pc and Ld ∈ Rn×pd such that
for any input u such that CHu(X0, I) holds, every maximal

1The coefficient −1 in Ad is arbitrary because x1 = 0 in the jump set.
We use −1 because, numerically, if x1 is negative when the jump condition
is detected, it is useful to change its sign after the jump in order for the flow
condition to be verified at the next iteration.

2Several definitions of Hc and Hd will be considered later.
3To simplify the notation, we write T , J and tj for T (x), J(x), tj(x).
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solution x of Hu initialized in X0 and every maximal solution
x̂ of Ĥu,y are complete and verify

lim
t+j→∞

x(t, j)− x̂(t, j) = 0 .

To use the hybrid framework introduced in [20] and express
the fact that CHu(X0, I) is satisfied, we will consider the
augmentation of Hu in (1) given by the hybrid system

Hτu



ẋ = Acx+Bcuc
τ̇ = 1

}
(x, τ) ∈ Cτ

x+ = Adx+Bdud
τ+ = 0

}
(x, τ) ∈ Dτ

yc = Hcx (x, τ) ∈ Cτ
yd = Hdx (x, τ) ∈ Dτ

(4)

with, denoting τM = sup I,

Cτ = Rn × ([0, τM ] ∩ R≥0) , Dτ = Rn × I (5)

and the cascade interconnection of Hτu with Ĥu,y resulting in
the hybrid system

Ĥτu



ẋ=Acx+Bcuc
˙̂x=Acx̂+Bcuc + Lc(Hcx−Hcx̂)
τ̇ = 1

 (x, x̂, τ) ∈ Ĉτ

x+ =Adx+Bdud
x̂+ =Adx̂+Bdud + Ld(Hdx−Hdx̂)
τ+ = 0

 (x, x̂, τ) ∈ D̂τ

(6)
with

Ĉτ = Rn×Rn× ([0, τM ]∩R≥0) , D̂τ = Rn×Rn×I (7)

The models Hτu and Ĥτu are such that the timer τ has to reach
I before a jump can occur and is forced to jump when reaching
τM (if finite). This enables to relate the behavior of Hu, Ĥu,y ,
Hτu, and Ĥτu as follows.

Lemma II.3. Consider a subset X0 of Rn, a closed subset
I of R≥0 and denote τM = sup I ≤ +∞. For any input u
such that CHu(X0, I) holds, for any maximal solution x of
Hu initialized in X0, and for any maximal solution x̂ of Ĥu,y ,
we have domx = dom x̂ =: D, and there exists a function τ
defined on D such that (x, τ) is solution to Hτu and (x, x̂, τ)
is solution to Ĥτu.

Proof. By definition of T (x), x and x̂ have the same time
domain D = domx = dom x̂. Besides, since CHu(X0, I)
holds, the function τ defined by τ(t, j) := t − tj(x) for all
(t, j) in D gives the result.

We conclude that any property obtained for Hτu or Ĥτu will
be extendable to Hu and the cascade Hu-Ĥu,y , respectively,
as long as Hu is initialized in X0 and CHu(X0, I) holds.

Example II.4. As mentioned in the introduction, the proposed
framework also applies to the case where the plant itself has
continuous-time dynamics

ẋ = Ax+B u , y = Hx

but the output y is only available at discrete times tj , which
do not necessarily occur periodically. In that case, one can
use an observer given in (3) with Lc = 0,

Ac = A , Bc = B , Ad = I , Bd = 0

uc = u , ud = 0 , Hd = H ,

and Ld to be designed. If we know that the time elapsed
between two successive sampling events is in a closed subset
I of R≥0, then the interconnection between the system and the
observer can be modelled exactly by Ĥτu. For instance, I is a
singleton in the case of periodic sampling, and I is a compact
interval of R>0 in the case of aperiodic sampling considered
in [19]. In fact, depending on the class of events of interest,
the set I could be discrete, contain a finite or infinite number
of elements, be a collection of intervals of R≥0, etc. 4

III. HYBRID OBSERVER WITH INNOVATION TERMS ON
FLOWS AND JUMPS

The following theorem gives our first sufficient condition to
ensure global exponential stability of the observer.

Theorem III.1. Consider a subset X0 of Rn and a closed
subset I of R≥0. Assume there exist scalars ac and ad,
matrices Lc ∈ Rn×pc and Ld ∈ Rn×pd , and a positive definite
symmetric matrix P ∈ Rn×n such that:

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (8a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (8b)

acτ + ad < 0 ∀τ ∈ I (8c)

Then, there exist γ > 0 and θ > 0 such that for any input u
such that CHu(X0, I) holds, every maximal solution x of Hu
initialized in X0 and every maximal solution x̂ of Ĥu,y are
complete and verify∣∣∣x(t, j)− x̂(t, j)

∣∣∣ ≤ γ∣∣∣x(0, 0)− x̂(0, 0)
∣∣∣e−θ(t+j) (9)

for all (t, j) ∈ domx (= dom x̂).

Proof. First observe that there always exists4 a positive scalar
a such that

acτ + ad ≤ −a(τ + 1) ∀τ ∈ I . (10)

Let us introduce the continuously differentiable function V
defined on Rn × Rn × R by

V (x, x̂, τ) = (x̂− x)>P (x̂− x)

To show (9), we apply [20, Proposition 3.29]. For that, we
will first prove that there exists M such that for any solution
φ = (x, x̂, τ) to Ĥτu, we have

act+ adj ≤M − a(t+ j) (t, j) ∈ domφ . (11)

4Either I is a compact set and this is satisfied for a sufficiently small
positive number a thanks to (8c) ; or I is unbounded and then necessarily ac
is negative, and by taking a < |ac| sufficiently small, the inequality holds.
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We have for all (t, j) ∈ domφ,

act+ adj = act1 +

j−1∑
i=1

(ac(ti+1 − ti) + ad)

ac(t− tj) + ad .

Fix j ∈ domj φ. By definition of Ĉτ and D̂τ in Ĥτu,

ti+1 − ti ∈ I ∀i ∈ {1, . . . , j − 1} , t− tj ∈ [0, τM ]∩R≥0
so that according to (10),

act1 +

j−1∑
i=1

(ac(ti+1 − ti) + ad)

≤ act1 − a
j−1∑
i=1

(ti+1 − ti + 1)

≤ −a(tj + j − 1) + (ac + a)t1

and for τm = min I,

ac(t− tj) + ad = ac(t− tj − τm) + acτm + ad

≤ ac(t− tj − τm)− a(τm + 1)

= (ac + a)(t− tj − τm)− a(t− tj + 1) .

This yields

act+ adj ≤ −a(t+ j) + (ac + a)t1 + (ac + a)(t− tj − τm) .

A bound for (ac+a)(t−tj−τm) is obtained with the following
arguments:
• if 0 ≤ t − tj ≤ τm, we get (a + ac)(t − tj − τm) ≤
|ac + a|τm

• else if t− tj ≥ τm, either τM < +∞ and

(ac + a)(t− tj − τm) ≤ |ac + a|(τM + τm)

or τM = +∞, then necessarily from (10), ad ≤ −a, and

(ac + a)(t− tj − τm) ≤ 0

because t− tj ≥ τm.
As for the term (ac + a)t1, similarly, either τM < +∞ and

(ac + a)t1 ≤ |ac + a|τM
or τM = +∞, then necessarily from (10), ad ≤ −a, and

(ac + a)t1 ≤ 0 .

We conclude that there exists M such that (11) holds. Accord-
ing to [20, Proposition 3.29], we have

V (φ(t, j)) ≤ eMe−a(t+j)V (φ(0, 0)) ∀(t, j) ∈ domφ

and because for all (x, x̂) in Rn × Rn,

λm(P )|x− x̂|2 ≤ V (x, x̂, τ) ≤ λM (P )|x− x̂|2

we finally get (9) for all (t, j) in domφ with

θ =
a

2
, γ = e

M
2

√
λM (P )

λm(P )
.

Applying Lemma II.3 concludes the proof since the above
holds for any solution of Hτu.

Remark III.2. From conditions (8a)-(8c), we recover the fact
that if 0 ∈ I, namely there are Zeno or eventually discrete
solutions, then ad must be negative, i.e., the innovation term
in the discrete dynamics of the observer must make the error
contractive at jumps; similarly if sup I = +∞, then ac
must be negative, i.e., the innovation term in the continuous
dynamics must make the error contractive during flow.

It is important to note that the set of initial conditions
X0 is used to choose the set I such that CHu(X0, I) holds.
Therefore, it possibly impacts conditions (8a)-(8c), but only
through (8c).

The interesting property of conditions (8a)-(8c) is that they
are affine (and thus convex) in τ , which means that it is
sufficient to check them at the boundaries of the set I only.
This fact is formalized in the next result.

Corollary III.3. Consider a closed subset I of R≥0. Let τm =
min I and τM = sup I. Assume there exist scalars ac and ad,
matrices Lc ∈ Rn×pc and Ld ∈ Rn×pd , and a positive definite
symmetric matrix P ∈ Rn×n such that (8a)-(8b) are satisfied.
(8a)-(8c) hold if any of the following conditions is verified

1) ac ≤ 0 and ad < 0,
2) ac < 0 and acτm + ad < 0,
3) ac > 0, τM < +∞, and acτM + ad < 0.

It is shown in [21, Example 3.3] how Conditions (8a)-(8c)
can be solved analytically with ac < 0 and ad < 0 (item 1.
of the previous corollary) for a bouncing ball modelled by (2)
with a restitution coefficient λ < 1, and x1 measured at all
(hybrid) times, thus giving a global observer.

Remark III.4. It is important to note that in the favorable
case where both the continuous and the discrete dynamics are
detectable (such as [21, Example 3.3]), it is not sufficient to
choose independently Ac − LcHc Hurwitz and Ad − LdHd

Schur. Indeed, their descent directions could be incompatible:
jumps could destroy what has been achieved during flow, or
vice versa. Take for instance I = {τ∗} with τ∗ ≥ 0. A
necessary condition for convergence of the observer is that
the error sampled at each jump converges to zero: this implies
that the origin of the discrete system

e+ = (Ad − LdHd) exp
(

(Ac − LcHc)τ
)
e

has to be asymptotically stable. For a given τ∗ ≥ 0, this
is not verified for every choice of Ad − LdHd Schur and
Ac − LcHc Hurwitz, as illustrated on Figure 1 : (Ad −
LdHd) exp

(
(Ac − LcHc)τ

)
is Schur only if τ∗ /∈ [0.1, 2].

To avoid this phenomenon, (8a) and (8b) should be solved
with the same P , and ac ≤ 0 and ad < 0. By the Schur
complement, this is equivalent to solving the LMIs

A>c P + PAc − (L̃cHc +H>c L̃
>
c ) < 0(

P (PAd − L̃dHd)
>

? P

)
> 0 (12)

in (P, L̃c, L̃d) and take Lc = P−1L̃c and Ld = P−1L̃d.
Note that the problem of finding common quadratic Lyapunov
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Fig. 1. Absolute value of the eigenvalues of (Ad − LdHd) exp
(

(Ac −

LcHc)τ
)

for Ac = ( 0 1
0 0 ), Ad = 5Ac, Hc = Hd = (1, 0), with Lc

(resp. Ld) chosen such that Ac − LcHc (resp. Ad − LdHd) is Hurwitz
(resp. Schur) with eigenvalues (−1 + i,−1− i) (resp. (0.5,−0.5)).

functions for several continuous-time or several discrete-
time systems has been studied in the context of switched
systems and quadratic stabilization (see e.g. [22]). But we
are not aware of any result concerning the existence of a
common quadratic function for a continuous-time system and
a discrete-time system.

A drawback of Theorem III.1 is that (8c) requires at least
ac or ad to be negative: either the continuous or the discrete
dynamics have to be detectable. But take for instance the
hybrid system ẋ1 = x2

ẋ2 = 0
ẋ3 = 0

,


x+1 = x1
x+2 = x2
x+3 = x1

(13)

with some arbitrary, but nonempty flow and jump sets. Sup-
pose Hc = Hd = (1 0 0). Neither the continuous nor the
discrete dynamics is detectable, so Theorem III.1 cannot apply.
Nevertheless, this hybrid system as a whole is detectable if
there is at least one jump and one interval of flow. Indeed, if
y(t, j) = x1(t, j) = 0 for all (t, j) in the domain, the continu-
ous part gives x2(t, j) = 0 as soon as [t, t+τ)×{j} ∈ domx
for some τ > 0, and the discrete part gives x3(t, j) = 0 for
all j such that (t, j − 1) and (t, j) are in the domain. Given
this detectability property, we would like to be able to write
an observer for this system. We will see in the next section
that it is possible.

IV. HYBRID OBSERVER WITH INNOVATION TERMS ON
JUMPS ONLY

We now consider the case where only yd is known, namely
the measurements from the plant are only available at jump
times. Therefore, we build an observer with Lc = 0. Due to the
lack of measurements during flow, and without the assumption
that Ac is already Hurwitz, eventually continuous solutions are

not allowed. Hence, I has to be bounded. The following result
follows from combining Theorem III.1 and Corollary III.3.

Corollary IV.1. [Update at jumps] Consider a subset X0 of
Rn and a compact subset I of R≥0. Assume there exist scalars
ac ∈ R and ad < 0, a matrix Ld ∈ Rn×pd , and a positive
definite matrix P ∈ Rn×n such that

A>c P + PAc ≤ acP (14a)

(Ad − LdHd)
>P (Ad − LdHd) ≤ eadP (14b)

acτM + ad < 0 (14c)

with τM = max I. Then, there exist γ > 0 and θ > 0 such that
for any input u such that CHu(X0, I) holds, every maximal
solution x of Hu initialized in X0, and every maximal solution
x̂ of Ĥu,y , with Lc = 0 and Ld as above, are complete and
verify∣∣∣x(t, j)− x̂(t, j)

∣∣∣ ≤ γ∣∣∣x(0, 0)− x̂(0, 0)
∣∣∣e−θ(t+j)

∀(t, j) ∈ domx (= dom x̂) . (15)

In [21, Example 4.2], we showed how conditions (14a)-
(14c) can be solved analytically for I of the form [0, τM ] for
a bouncing ball modelled by (2) with λ < 1, and with the
measurement x1 only available at jumps, thus giving a global
observer for any compact set of the plant’s initial conditions.

However, as we were observing in Section V, a limitation
of conditions (14a)-(14c) is that they require the discrete part
of the system to be detectable. But as we saw for system (13),
it may happen that neither the continuous nor the discrete
parts are detectable, and yet, the whole system is detectable.
Motivated by these facts, the following result gives a sufficient
condition that is weaker than (14a)-(14c) to write an observer
with Lc = 0.

Theorem IV.2. Consider a subset X0 of Rn and a compact
subset I of R≥0. Assume there exist a positive definite matrix
P ∈ Rn×n and a gain vector Ld ∈ Rn×pd such that

(exp(Acτ))>(Ad−LdHd)
>P (Ad−LdHd) exp(Acτ) < P

∀τ ∈ I . (16)

Then, there exist γ > 0 and θ > 0 such that for any input u
such that CHu(X0, I) holds, every maximal solution x of Hu
initialized in X0, and every maximal solution x̂ of Ĥu,y , with
Lc = 0 and Ld verifying (16), are complete and verify∣∣∣x(t, j)− x̂(t, j)

∣∣∣ ≤ γ ∣∣∣x(0, 0)− x̂(0, 0)
∣∣∣ e−θ(t+j) (17)

for all (t, j) in domx (= dom x̂).

Proof. Take an input u, and solutions x and x̂ as in Theorem
IV.2. According to Lemma II.3, there exists a function τ
defined on domx = dom x̂ such that (x, x̂, τ) is solution to
Ĥτu. It follows that φ = (x̂ − x, τ) is a solution to the error
hybrid system

Hτε


ε̇ = Ac ε
τ̇ = 1

}
(ε, τ) ∈ Cτ

ε+ = (Ad − LdHd) ε
τ+ = 0

}
(ε, τ) ∈ Dτ

(18)
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with Cτ and Dτ defined in (5). Let us introduce the differen-
tiable function V defined on Rn × [0, τM ] by

V (ε, τ) = ε>(exp(−Acτ))>P exp(−Acτ)ε

Since I is compact, τM is finite, and there exist positive scalars
α1 and α2 such that

α1|ε|2 ≤ V (ε, τ) ≤ α2|ε|2 ∀(ε, τ) ∈ Rn × [0, τM ] .

It is straightforward to check that along the solutions, we have

for all (ε, τ) in Cτ ,
·︷ ︷

V (ε, τ) = 0. Besides, since I is compact,
(16) implies that there exists β ∈ (0, 1) such that for all τ in
I,

(exp(Acτ))>(Ad − LdHd)
>P (Ad − LdHd) exp(Acτ)− P

≤ −βP .

So for all (ε, τ) in Dτ , with g = ((Ad − LdHd)ε, 0),

V (g) ≤ (1− β)V (ε, τ) .

Integrating along the solution φ to Hτε ,

V (φ(t, j)) ≤ (1− β)jV (φ(0, 0)) ∀(t, j) ∈ domφ .

But we know that for all (t, j) in domφ, t − tj ≤ τM and
tj−tj−1 ≤ τM for j ≥ 1, so that tj ≤ τM j and t ≤ τM (j+1).
Thus, for any positive real number σ,

−σ(t+ j) ≥ −σ(τM + 1)j − στM

and taking σ = − ln(1−β)
τM+1 , we get

V (φ(t, j)) ≤ e−σ(t+j)eστMV (φ(0, 0)) ∀(t, j) ∈ domφ .

Finally, for all (t, j) in domφ, (17) holds with

θ =
σ

2
, γ = e

σ
2 τM

√
α2

α1
.

Remark IV.3. Condition (16) is exactly the one obtained in
[19, Equation (12)] with Ad = I and I a compact interval of
R>0, in the context of a continuous-time system with sporadic
measurements, as in Example II.4.

Remark IV.4. The existence of the matrix P verifying (16)
for a given τ is equivalent to (Ad − LdHd) exp(Acτ) being
Schur for some gain Ld, which in turn is equivalent to the
detectability of the discrete-time system

z+ = Ad exp(Acτ)z , y = Hdz (19)

(since exp(Acτ) is invertible). This implies that system (1)
with u ≡ 0 and sampled at a constant sampling period τ ∈ I
must be detectable. Thus, having (16) for any τ ∈ I requires
detectability of (19) for any τ ∈ I. It may not be sufficient,
however, because (16) must be verified with the same Ld and
P for all τ ∈ I. So (16) is in fact related to the stronger
property of detectability of the difference inclusion

z+ ∈ Ad exp(Ac I)z , y = Hdz .

Remark IV.5. By the Schur complement, finding P and Ld
satisfying (16) is equivalent to finding P and L̃d satisfying the
LMIs(

P exp(Acτ)>(PAd − L̃dHd)
>

? P

)
> 0 ∀τ ∈ I (20)

with L̃d = PLd. In the case where I has infinitely many
elements, an infinite number of LMIs must be solved which is
not desirable. However, it is shown in [19] via a polytopic
decomposition that exp(Acτ) is in the convex hull of a
finite number of matrices. Therefore, since (20) is convex in
exp(Acτ), it is sufficient to solve this LMI for this finite set
of matrices. Note also that when Ac is nilpotent of order N ,
we have

exp(Acτ) =

N−1∑
k=0

τk

k!
Akc

so that for all τ in a compact subset I of R≥0, exp(Acτ) is
in the convex hull of the ν = 2N−1 matrices

{M1, . . . ,Mν} =

{
I +

N−1∑
k=1

τkk
k!
Akc :

∀k ∈ {1, . . . , N − 1} , τk ∈ {τm, τM}

}
with τm = min I and τM = max I. Therefore, it is enough
to solve the finite number of LMIs(

P M>i (PAd − L̃dHd)
>

? P

)
> 0 ∀i ∈ {1, . . . , ν}

with common P and L̃d.

Example IV.6. Consider the system (13) where

Ac =

 0 1 0
0 0 0
0 0 0

 , Ad =

 1 0 0
0 1 0
1 0 0


Hd = Hc =

(
1 0 0

)
.

Neither the continuous pair (Ac, Hc) nor the discrete pair
(Ad, Hd) is detectable, so conditions (8a)-(8c) cannot be
solved. However, following Remark IV.4,

A(τ) := Ad exp(Acτ) =

 1 τ 0
0 1 0
1 τ 0


is such that the discrete pair (A(τ), Hd) is detectable for any
nonzero τ . Therefore, if I = {τ}, there exists P and Ld such
that (16) is satisfied. Otherwise, since Ac is nilpotent of order
2, according to Remark IV.5, for any I compact subset of R>0,
it is enough to solve the two LMIs given by(

P (I + τAc)
>(PAd − L̃dC)>

? P

)
> 0 (21)

for τ = τm = min I > 0 and τ = τM = max I. If there exist
solutions to (21), then by Theorem IV.2, we obtain an observer.
For instance, when choosing τm = 2 and τM = 5 and solving
the LMIs via Yalmip for P and L̃d, we get Ld = PL̃d =
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Fig. 2. Error between a trajectory of system (13) with flow interval length
ranging in I = [2, 5] and a trajectory observer (3) with Lc = 0 and Ld =
(1, 0.2259, 1)>.

(1, 0.2259, 1)>. The error between a trajectory of system (13)
(with jumps triggered randomly such that the flow intervals
last between 2 and 5 units of time) and a trajectory of the
observer is plotted on Figure 2. 4

Since the observer with discrete updates (Lc = 0) given
by Theorem IV.2 is a particular case of the observer with
continuous and discrete updates given by Theorem III.1, it
is natural to wonder whether there is a link between the
conditions obtained in each of those results, namely between
(8a)-(8c) and (16).

Lemma IV.7. Assume there exist (ac, ad) in R2, (Lc in Rn×pc ,
Ld in Rn×pd , and a positive definite matrix P in Rn×n such
that (8a)-(8b) hold. Then, for any τ in R≥0,

(exp(Mcτ))>M>d PMd exp(Mcτ) ≤ eacτ+adP (22)

with Mc = Ac−LcHc and Md = Ad−LdHd. If, in addition,
Lc = 0 and (8c) holds, then (16) holds.

Proof. See Lemma A.1.

It follows that conditions (14a)-(14c) imply (16) in the case
where Lc = 0.

Example IV.8. Consider again the bouncing ball (2) with
restitution coefficient λ < 1, with measurements at jumps only,
namely Hc = 0 and Hd = (1, 0). As observed in Example II.2,
for any compact set of initial conditions X0, there exists τM >
0 such that CHu(X0, I) holds with I = [0, τM ]. According to
Theorem IV.2, it is enough to satisfy (16) instead of (14a)-
(14c). Since Ac is nilpotent of order 2, we get from Remark
IV.5 that it is enough to solve the two LMIs(

P (I + τAc)
>(PAd − L̃dHd)

>

? P

)
> 0

for τ = 0 and τ = τM . With λ = 0.8 and τM = 5, we obtain
Ld = (−1,−0.1487). The result of a simulation with initial
condition x0 = (5, 0), x̂0 = (10, 1) is shown on Figure (3).
4
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Fig. 3. Error between a Zeno trajectory of system (2) with λ = 0.8
and a trajectory of the synchronized observer (3) with Lc = 0 and
Ld = (−1,−0.1487)>.

V. HYBRID OBSERVER WITH INNOVATION TERMS ON
FLOWS ONLY

When I is unbounded, it is not possible to implement an
observer with discrete updates only: continuous updates are
necessary. And when the continuous dynamics are detectable,
it may be sufficient to use only continuous updates (with Ld =
0). The following corollary follows from Theorem III.1 and
Corollary III.3.

Corollary V.1. [Continuous update] Consider a subset X0 of
Rn and a closed subset I of R≥0. Assume there exist scalars
ad ∈ R and ac < 0, a matrix Lc in Rn×pc , and a positive
definite matrix P ∈ Rn×n such that

(Ac − LcHc)
>P + P (Ac − LcHc) ≤ acP (23a)

A>d PAd ≤ eadP (23b)
acτm + ad < 0 (23c)

where τm = min I. Then, there exist γ > 0 and θ > 0
such that for any input u such that CHu(X0, I) holds, every
maximal solution x ofHu initialized in X0, and every maximal
solution x̂ of Ĥu,y , with Lc as above and Ld = 0, are complete
and verify

|x(t, j)− x̂(t, j)| ≤ γ
∣∣∣x(0, 0)− x̂(0, 0)

∣∣∣e−θ(t+j)
∀(t, j) ∈ domx (= dom x̂) . (24)

In [21, Example 5.2], we have seen how the conditions
(23a)-(23c) can be analytically solved for I of the form
[τm,+∞) for the bouncing ball (2) with a restitution coef-
ficient λ ≥ 1, thus giving a global observer for the plant
initialized in R2 \ δB for δ > 0.

When the pair (Ac, Hc) is observable, the Lyapunov equa-
tion (23a) can be solved for any negative number ac. To solve
(23c), it is tempting to take |ac| very large, but this has to be
done with care since P depends on ac and thus ad in (23b)
does too. The following lemma clarifies this dependence, in
the single-output case (pc = 1) to simplify the presentation.



9

Lemma V.2. Assume the pair (Ac, Hc) is observable, pc = 1,
and the eigenvalues (λ1, . . . , λn) of Ac − LcHc are real and
with negative real part. Then, there exist P , ac and ad verifying
(23a)-(23b)-(23c) if

M>λ Mλ < e2min |λi|τmI (25)

with τm = min I and

Mλ = VλMoAdM
−1
o V −1λ , (26)

where Vλ is the Vandermonde matrix

Vλ =

 1 λ1 . . . λn−11
...

...
...

1 λn . . . λn−1n

 ,

and Mo is an invertible matrix in Rn×n such that the change
of coordinates z = Mox transforms the continuous dynamics

ẋ = Acx , y = Hc x

into the observable Brunovski form

ż = Aoz +Noy , y = Ho z

with

Ao =


0 . . . . . . 0
1

0
. . .

...
... 1
0 . . . 0 1 0

 , Ho = (0, . . . , 0, 1) ,

and a matrix No in Rn×1.

Proof. The existence of Mo is guaranteed by observability of
the pair (Ac, Hc). By definition of the change of coordinates,
Ho = HcM

−1
o . It follows that Mo(Ac − LcHc)M

−1
o is

in companion form and can be diagonalized thanks to the
Vandermonde matrix Vλ, namely

VλMo(Ac − LcHc)M
−1
o V −1λ = diag(λ1, . . . , λn) .

Thanks to this diagonality, we deduce that (23a) is verified
with5 Pλ = M>o V

>
λ VλMo and ac = −2 min |λi|. It follows

that (23b)-(23c) are equivalent to (25).

Lemma V.2 says that a possible way of selecting a gain
Lc such that (23a)-(23b)-(23c) are solvable is to choose the
n negative eigenvalues of Ac − LcHc so that (25) holds. The
advantage of this approach is that the size of the problem is
reduced from n(n+1)

2 +npc + 2 to n. In the multi-output case
where pc > 1, the target Brunovski form is made of blocks
of the type (Ao, Ho), so a similar result can be obtained by
reasoning blockwise.

Note that in [21, Example 5.2], we used the fact that Mλ

is homogeneous of degree 0 in λ to say that (25) holds for λi
sufficiently large.

5We write Pλ instead of P to highlight the matrices that depend on the
eigenvalues λi.

VI. ROBUSTNESS WITH RESPECT TO DELAYS IN JUMPS

We now study how the observer convergence is impacted
if the observer jumps are delayed with respect to the plant’s,
thus leading to a mismatch between the observer jump times
and those of the plant. For this, we suppose min I > 0, and
we choose to study the particular case where the value of the
innovation term implemented in the observer at the delayed
jump is the one that would be computed at the actual plant’s
jump time. This covers the following situations:
• The measurement and computation of the innovation
Adx̂+Bdud + Ld(yd −Hdx̂) are instantaneous, but the
implementation of the jump in the observer is delayed.

• The measurement takes a known amount of time δ
to arrive to the observer (the measurement has a time
stamp), and the update of x̂ is chosen as Adx̂(t − δ) +
Bdud +Ld(yd −Hdx̂(t− δ)), thanks to a buffer in x̂ or
by backward integration of x̂.

Inspired from [23], for any ∆ ∈ [0,min I), this situation can
be modelled as

Ĥu(∆)



ẋ = Acx+Bcuc
˙̂x = Acx̂+Bcuc + LcHc(x− x̂)
τ̇ = 1
µ̇ = 0
τ̇δ = −min{τδ + 1 , 1}


(x, x̂, τ, µ, τδ) ∈ Ĉ(∆) ,

x+ = Adx+Bdud
x̂+ = x̂
τ+ = 0
µ+ = Adx̂+Bdud + LdHd(x− x̂)
τ+δ ∈ [0,∆]


(x, x̂, τ, µ, τδ) ∈ D̂−1(∆) ,

x+ = x
x̂+ = µ
τ+ = τ
µ+ = µ
τ+δ = −1

 (x, x̂, τ, µ, τδ) ∈ D̂0(∆) ,

(27)
with

Ĉ(∆) = Ĉ × Rn × ([0,∆] ∪ {−1}) (28)

D̂−1(∆) = D̂ × Rn × {−1} (29)

D̂0(∆) = Rn × Rn × [0, τM ]× Rn × {0} (30)

where τM = sup I and the sets Ĉ and D̂ are the flow and
jump sets of Ĥu defined in (7). Compared to Ĥu, we have
added two variables µ and τδ evolving in Rn and [0,∆] ∪
{−1} respectively. The state τδ is a timer modelling the delay
between the plant’s jump and the observer’s jump. The role
of µ is to store the update to be implemented in the observer
at the end of the delay interval, when it actually jumps. More
precisely, when τδ = −1 and τ is not in I, the plant and
the observer flow and τδ remains equal to −1. If τ reaches
I and the plant jumps, then the update that should have been
instantaneously implemented in the observer is stored in the
memory state µ, and τδ is set to a number in [0,∆] thus starting
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a delay period: the plant and observer states then flow and the
time τδ decreases, until it reaches 0. At this point, a delay
interval of length smaller than or equal to ∆ has elapsed, the
observer jumps, and its state is updated with the content of µ.

Note that the plant’s state is not allowed to jump again
before the delay expressed by τδ has expired. That is why
this model only works in the case where ∆ < min I, i.e.,
the maximal delay is smaller than the smallest possible time
between successive jumps of the plant.

Assumption VI.1. We denote U a set of inputs u : R≥0 →
Rmc ×Rmd of interest. There exist compact subsets X , X0 of
Rn, Uc of Rmc , and Ud of Rmc , such that any input u in U ,
and any solution x to the plant (1) initialized in X0 with input
u, verify x(t, j) ∈ X and (uc(t, j), ud(t, j)) ∈ Uc×Ud for all
(t, j) ∈ domx.

Theorem VI.2. Suppose Assumption VI.1 holds. Consider a
compact subset I of R≥0 with min I > 0, vectors Lc ∈ Rn×pc
and Ld ∈ Rn×pd such that there exists a KL function β0 such
that for any input u in U , any maximal solution φ = (x, x̂, τ)
of Ĥτu defined in (6) initialized in X0×Rn×[0, τM ] is complete
and verifies∣∣∣x(t, j)− x̂(t, j)

∣∣∣ ≤ β0 (∣∣∣x(0, 0)− x̂(0, 0)
∣∣∣, t+ j

)
∀(t, j) ∈ domφ . (31)

Then, there exist a KL function β and a scalar σ such that
for any η > 0 and any ε > 0, there exists ∆∗ > 0 such that
for any ∆ ∈ [0,∆∗] and any solution φδ = (x, x̂, τ, µ, τδ) to
Ĥu(∆) verifying

ε(0, 0) := |x̂(0, 0)− x(0, 0)|+ |µ(0, 0)− x(0, 0)| ≤ η ,

we have, denoting tj = tj(φδ) for simplicity, domφδ = D−1∪
D0 with

Dk =

 ⋃
j∈Jk

[tj , tj+1]× {j}

 k ∈ {0,−1}

J−1 = {j ∈ N : τδ(t, j) = −1 ∀t ∈ [tj , tj+1]}

J0 = {j ∈ N : τδ(t, j) ∈ [0,∆] ∀t ∈ [tj , tj+1]} ,

such that for all j in J0, tj+1 − tj ≤ ∆, and we have for all
(t, j) in D−1

|x̂(t, j)− x(t, j)| ≤ β(ε(0, 0), t+ j) + ε , (32)

and for all (t, j) in D0,

|x̂(t, j)− x(t, j)| ≤ eσ(t−tj)
(
β(|ε(0, 0)|, tj + j) + ε

+ max
x∈X ,ud∈Ud

|(I −Ad)x+Bdud|

)
(33)

Proof. The proof relies on [23]. See Appendix A.

In other words, if the trajectories of the plant and the input
are bounded, we achieve

• semiglobal practical stability if Ad = I and Bd = 0,
namely the jump map is the identity;

• semiglobal practical stability except on the delay intervals
(of maximal length ∆) otherwise.

Note that the parameter σ describing the behavior of the error
during the delay intervals is related to the eigenvalues of Ac−
LcHc. Indeed, if the latter matrix is Hurwitz, the mismatch
tends to be corrected by the flow during the delay interval,
namely σ < 0.

In fact, this mismatch cannot be prevented if the jump
map is not the identity. This well-known phenomenon, called
peaking, was reported in the context of observation [1], but
also more generally output-feedback and tracking [24]. This
suggests that the Euclidian distance to evaluate the observer
error is not appropriate and more general distances could be
designed [25]. In particular here, if Bd = 0, semi-global
practical stability could be obtained with the generalized
distance

d(x, x̂) = min
{
|x− x̂| , |Adx− x̂|

}
.

Note that in the limit case where 0 ∈ I, namely the plant’s
jumps could happen arbitrarily fast, then a delay in the
observer jumps (however small) could lead to several jumps
of delay, namely, one could consider the distance

d(x, x̂) = inf
k∈N
|Akdx− x̂| .

However, not much could be done if an infinite number of
jumps happened during the delay interval.

Example VI.3. We come back to Example IV.6 and redo the
simulation presented on Figure 2 with a delay in the triggering
of the observer’s jump. The results are presented in Figures
4-5-6 with delays of ∆ = 0.05, ∆ = 0.1 and ∆ = 0.5
respectively. Note that in this example, the assumption of
boundedness of the plant’s trajectory is not verified since x1
and x3 diverge. We can still see that the smaller the delay,
the smaller the error outside the delay intervals. It could
also happen in that case that the mismatch during the delay
intervals grows larger and larger, although this is not the case
here.

VII. CONCLUSION

Under the assumption that the plant’s jumps can be detected,
we have given sufficient conditions for asymptotic conver-
gence of an observer for general hybrid systems with linear
flow/jump maps. Those conditions take the form of matrix
inequalities which can often be solved thanks to LMI solvers.
The obtained observer must be synchronized with the plant
but we have shown its robustness with respect to delays in its
jumps.

Further research is necessary to develop observer designs
that do not require the knowledge or detection of the plant’s
jumps. This case is more complex because the error system
is no longer time-invariant and the Lyapunov analysis can no
longer be carried out with Euclidian distances.
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Fig. 4. Error between a trajectory of system (13) with random interjump inter-
vals in I = [2, 5] and observer (3) with Lc = 0 and Ld = (1, 0.2259, 1)>,
and jumps triggered with a delay ∆ = 0.05.
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Fig. 5. Error between a trajectory of system (13) with random interjump inter-
vals in I = [2, 5] and observer (3) with Lc = 0 and Ld = (1, 0.2259, 1)>,
and jumps triggered with a delay ∆ = 0.1.
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Fig. 6. Error between a trajectory of system (13) with random interjump inter-
vals in I = [2, 5] and observer (3) with Lc = 0 and Ld = (1, 0.2259, 1)>,
and jumps triggered with a delay ∆ = 0.5.

APPENDIX

Lemma A.1. Assume there exist a positive definite matrix P ,
matrices A1 and A2, and scalars a1 and a2 such that

A>1 P + PA1 ≤ a1P (34)

A>2 PA2 ≤ ea2P (35)

Then, for any τ in R≥0,

(exp(A1τ))>A>2 PA2 exp(A1τ) ≤ ea1τ+a2P . (36)

Proof. Directly from (35), we get

(exp(A1τ))>A>2 PA2 exp(A1τ)

≤ ea2(exp(A1τ))>P exp(A1τ) .

Take e in Rn. Define the function fe : R→ R by

fe(τ) = e>(exp(A1τ))>P exp(A1τ)e

With (34), we have

dfe
dτ

(τ) = e>(exp(A1τ))>[A>1 P + PA1] exp(A1τ)e

≤ a1fe(τ) .

It follows that for all τ ≥ 0, fe(τ) ≤ ea1τfe(0) and since this
is valid for all e in Rn, we get

(exp(A1τ))>P exp(A1τ) ≤ ea1τP

and (36) follows.

Take a solution φδ = (x, x̂, τ, µ, τδ) to Ĥu(∆) for some
∆ > 0. Given the definition of the jump map, it is straightfor-
ward to observe that for any (t, j) in domφδ , j either belongs
to J−1 or J0. Now, (x, e, τ, µe, τδ) with

e = x̂− x , µe = µ− x

is solution to the hybrid system

Heu(∆)



ẋ = Acx+Bcuc
ė = (Ac − LcHc)e
τ̇ = 1
µ̇e = −(Acx+Bcuc)
τ̇δ = −min(τδ + 1, 1)


(x, e, τ, µe, τδ) ∈ Ĉ(∆)

x+ = Adx+Bdud
e+ = e+ (I −Ad)x−Bdud
τ+ = 0
µ+
e = (Ad − LdHd)e
τ+δ ∈ [0,∆]


(x, e, τ, µe, τδ) ∈ D̂−1(∆)

x+ = x
e+ = µe
τ+ = τ
µ+
e = µe
τ+δ = −1

 (x, e, τ, µe, τδ) ∈ D̂0(∆)

(37)

If we had µ̇e = 0, Ad = I and Bd = 0, we could write
an independent error system in (e, τ, µe, τδ) without the state
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x. Besides, this system would be exactly the delayed version
introduced in [23] of the error system

Hτε


ė = (Ac − LcHc) e
τ̇ = 1

}
(e, τ) ∈ Cτ

e+ = (Ad − LdHd) e
τ+ = 0

}
(e, τ) ∈ Dτ

(38)

with Cτ and Dτ defined in (5). According to (31), we know
that the set {0}× [0, τM ] is uniformly globally asymptotically
stable (UGAS) for (38), and we could therefore deduce from
[23] semi global practical stability of the delayed system. Our
goal is thus to get (41) as close as possible to what (41) would
be with µ̇e = 0, Ad = I and Bd = 0. The key idea here is
to notice that the value taken by µe when τδ = −1, i.e. in
the time intervals [tj , tj+1] with j in J−1, have no impact on
the other states. Indeed, when τδ = −1, the flow and jump
maps are independent from µe (and µe is reset at the jump to
an arbitrary value). Therefore, (x, e, τ, µe, τδ) would still be
solution to Heu(∆) if µe was kept constant during the time
intervals associated to J−1. Let us now study the behavior of
µe during the time where τδ ∈ [0,∆], i.e. in the time intervals
given by j in J0. The flow map is still independent from µe,
but the jump map with τδ = 0 is not. Therefore, the only value
of µe which has an impact on the other states is the value at
the end of the interval, namely µe(tj+1, j) for j in J0. Denote

m = min
x∈X ,uc∈Uc

−(Acx+Bcuc)

M = max
x∈X ,uc∈Uc

−(Acx+Bcuc)

so that

µ̇e(t, j) ∈ [m,M ] ∀(t, j) ∈ domφ .

For any integer j in J0, tj+1 − tj ≤ ∆, which yields

µe(tj+1, j) ∈ µe(tj , j) + [m,M ]∆ ∀j ∈ J0 . (39)

So consider now the function µ̄e defined on domφ by

µ̄e(t, j) = µe(tj , j) ∀(t, j) ∈ domφ .

It is constant during flow and from (39),

µe(tj+1, j) ∈ µ̄e(tj+1, j) + [m,M ]∆ ∀j ∈ J0 . (40)

Besides, from the definition of the jump map of Heu(∆) on
D̂0(∆), for all j in J0,

µ̄e(tj+1, j + 1) = µe(tj+1, j + 1) = µe(tj+1, j)

and

e(tj+1, j + 1) = µe(tj+1, j) ∀j ∈ J0 .

Therefore, (e, τ, µ̄e, τδ) is solution to

He(∆)



ė = (Ac − LcHc)e
τ̇ = 1

˙̄µe = 0
τ̇δ = −min(τδ + 1, 1)

 (e, τ, µ̄e, τδ) ∈ Ce(∆)

e+ ∈ e+ (I −Ad)X +BdUd
τ+ = 0
µ̄+
e = (Ad − LdHd)e
τ+δ ∈ [0,∆]


(e, τ, µ̄e, τδ) ∈ De

−1(∆)

e+ ∈ µ̄e + [m,M ]∆
τ+ = τ
µ̄+
e ∈ µ̄e + [m,M ]∆
τ+δ = −1

 (e, τ, µ̄e, τδ) ∈ De
0(∆)

(41)
with

Ce(∆) = Rn × [0, τM ]× Rn × ([0,∆] ∪ {−1}) (42)
De
−1(∆) = Rn × [0, τM ]× Rn × {−1} (43)
De

0(∆) = Rn × [0, τM ]× Rn × {0} (44)

Now, observe that the values taken by e during the intervals
[tj , tj+1] where τδ ∈ [0,∆], i.e for j in J0, have no impact on
the other states because their flow map and the jump map on
De

0(∆) are independent from e. In other words, there exists a
function ē defined on domφ such that

ē(t, j) = e(t, j) ∀(t, j) ∈ domφ : j ∈ J−1 (45)

and (ē, τ, µ̄e, τδ) is solution to

H̄e(∆)



˙̄e = (Ac − LcHc)ē
τ̇ = 1

˙̄µe = 0
τ̇δ = −min(τδ + 1, 1)


(ē, τ, µ̄e, τδ) ∈ Ce(∆)

ē+ = ē
τ+ = 0
µ̄+
e = (Ad − LdHd)ē
τ+δ ∈ [0,∆]


(ē, τ, µ̄e, τδ) ∈ De

−1(∆)

ē+ ∈ µ̄e + [m,M ]∆
τ+ = τ
µ̄+
e ∈ µ̄e + [m,M ]∆
τ+δ = −1


(e, τ, µ̄e, τδ) ∈ De

0(∆)

(46)

From [19, Theorem 1] and [23, Proposition 3.8], we know that
the set Ae = Ae−1 ∪ Ae0 with

Ae0 = {0} × [0, τM ]× {0} × {0}

Ae−1 = {0} × [0, τM ]×M× {−1}

and M = (Ad −LdHd)Rn, is UGAS for H̄e(0). Since Ae is
compact and H̄e(0) verifies the hybrid basic conditions, Ae
is semi globally practically robustly KL asymptotically stable
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for H̄e(0) according to [20, Lemma 7.20]. This means that
there exists a KL function β such that for any ε > 0 and any
compact set K of Ce(0)∪De(0), there exists ρ > 0 such that
any solution φ̄e = (ē, τ, µ̄e, τδ) to a ρ-perturbation of H̄e(0),
initialized in K verifies

|φ̄e(t, j)|Ae ≤ β(|φ̄e(0, 0)|Ae , t+ j) + ε .

Since

|ē(t, j)| ≤ |φ̄e(t, j)|Ae ≤ |ē(t, j)|+ |µ̄e(t, j)|

andHe(∆) can be included in any outer-perturbation ofHe(0)
by taking ∆ sufficiently small, we obtain (32) thanks to (45).

Finally, let us bound the error on the intervals given by j
in J0. Because of (32) and the jump map of He(∆) when
τδ = −1, we have for all j in J0,

|e(tj , j)| ≤ β(|ε(0, 0)|, tj + j) + ε

+ max
x∈X ,ud∈Ud

|(I −Ad)x+Bdud|

so there exists a scalar σ depending on the eigenvalues of
Ac − LcHc such that (33) holds.

REFERENCES

[1] F. Forni, A. R. Teel, and L. Zaccarian, “Follow the bouncing ball :
global results on tracking and state estimation with impacts,” IEEE
Transactions on Automatic Control, vol. 58, no. 6, pp. 1470–1485, 2013.

[2] J. Kim, H. Cho, A. Shamsuarov, H. Shim, and J. Seo, “State estimation
strategy without jump detection for hybrid systems using gluing func-
tion,” IEEE Conference on Decision and Control, pp. 139–144, 2014.

[3] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry, “Observability of linear
hybrid systems,” in Hybrid Systems: Computation and Control, O. Maler
and A. Pnueli, Eds. Springer Berlin Heidelberg, 2003, pp. 526–539.
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