
HAL Id: hal-02187320
https://hal.science/hal-02187320

Submitted on 22 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the scalar complexity of Chudnovsky multiplication
algorithm in finite fields

Stéphane Ballet, Alexis Bonnecaze, Thanh-Hung Dang

To cite this version:
Stéphane Ballet, Alexis Bonnecaze, Thanh-Hung Dang. On the scalar complexity of Chudnovsky
multiplication algorithm in finite fields. International Conference on Algebraic Informatics, CAI 2019,
Jun 2019, Niš, Serbia. pp.64-75. �hal-02187320�

https://hal.science/hal-02187320
https://hal.archives-ouvertes.fr

On the scalar complexity of Chudnovsky2

multiplication algorithm in finite fields

Stéphane Ballet1, Alexis Bonnecaze2, and Thanh-Hung Dang3

1 Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France.
Institut de Mathématiques de Marseille, UMR 7373, CNRS,

Aix-Marseille Université, case 930, F13288 Marseille cedex 9, France
stephane.ballet@univ-amu.fr

2 alexis.bonnecaze@univ-amu.fr
3 thanh-hung.dang@etu.univ-amu.fr

Abstract. We propose a new construction for the multiplication algo-
rithm of D.V. and G.V. Chudnovsky in order to improve scalar algebraic
complexity. In particular, we improve the Baum-Shokrollahi construc-
tion for multiplication in F256/F4 based on the elliptic Fermat curve
x3 + y3 = 1.

Keywords: Finite field, Algebraic function field, Algebraic complexity.

1 Introduction

We are interested by the multiplicative complexity of multiplication in a finite
field Fqn , i.e. by the number of multiplications required to multiply in the Fq-
vector space Fqn of dimension n. There exist two types of multiplications in Fq:
the scalar multiplication and the bilinear one. The scalar multiplication is the
multiplication by a constant (in Fq). The bilinear multiplication is a multipli-
cation that depends on the elements of Fqn that are multiplied. The bilinear
complexity is independent of the chosen representation of the finite field.

Definition 1. The total number of scalar multiplications in Fq used in an algo-
rithm U of multiplication in Fqn is called scalar complexity and denoted µs(U).

More precisely, the multiplication of two elements of Fqn is an Fq-bilinear map
from Fqn × Fqn onto Fqn . Then, it can be considered as an Fq-linear map from
the tensor product Fqn ⊗Fq Fqn onto Fqn . Therefore, it can also be considered as
an element T of (Fqn)? ⊗Fq (Fqn)? ⊗Fq Fqn , where F?qn denotes the dual of Fqn .

Set T =
∑r
i=1 x

?
i ⊗ y?i ⊗ ci, where x?i ∈ F?qn , y?i ∈ F?qn and ci ∈ Fqn . The

following holds for any x, y ∈ Fqn :

x · y = T (x⊗ y) =

r∑
i=1

x?i (x)y?i (y)ci.

Definition 2. A bilinear multiplication algorithm U is an expression

x · y =

r∑
i=1

x?i (x)y?i (y)ci,

where x?i , y
?
i ∈ (Fqn)?, and ci ∈ Fqn . Such an algorithm is said symmetric if

x?i = y?i for all i. The number r of summands in this expression is called the
bilinear (resp. symmetric bilinear) complexity of the algorithm U and is denoted
by µ(U) (resp. µsym(U)).

Definition 3. The minimal number of summands in a decomposition of the
tensor T of the multiplication is called the bilinear (resp. symmetric bilinear)
complexity of the multiplication and is denoted by µq(n) (resp. µsymq (n)):

µq(n)(resp. µsymq (n)) = min
U
µ(U)(resp. µsym(U))

where U is running over all bilinear (resp. symmetric bilinear) multiplication
algorithms in Fqn over Fq.

In their seminal papers, Winograd [11] and De Groote [7] have shown that
µq(n) ≥ 2n − 1, with equality holding if and only if n ≤ 1

2q + 1. Winograd has
also proved [11] that optimal multiplication algorithms realizing the lower bound
belong to the class of interpolation algorithms. Later, generalizing interpolation
algorithms on the projective line over Fq to algebraic curves of higher genus over
Fq, D.V. and G.V. Chudnovsky provided a method [6] which enabled to prove
the linearity [2] of the bilinear complexity of multiplication in finite extensions
of a finite field. This is the so-called Chudnovsky2 algorithm (or CCMA). Note
that the original algorithm CCMA is naturally symmetric.

Several studies focused on the qualitative improvement of CCMA but the
problem of its scalar complexity was only addressed in 2015 by Atighehchi,
Ballet, Bonnecaze and Rolland [1]. They proposed a new construction which
slightly improved the scalar complexity eventhough the main objective of this
work was not to optimize scalar complexity. Thus, in the absence of a dedicated
strategy to scalar optimization, the number of scalar multiplications has not been
significantly reduced in finite distance. Therefore, we note that so far, practical
implementations of multiplication algorithms of type Chudnovsky over finite
fields have failed to simultaneously optimize the number of scalar multiplications
and bilinear multiplications.

Our main goal is to seek an optimal construction of Chudnovsky2 algorithm
in order to optimize its multiplicative complexity. We will consider the elliptic
case for which it has been proven that the bilinear complexity of the algorithm
is optimal [9]. Therefore, we will focus on optimizing the scalar complexity of
this algorithm.

The paper is arranged as follows. Section 2, describes CCMA in the gen-
eral case. Section 3 proposes a new method of construction with an objective to
reduce the scalar complexity of Chudnovsky2 multiplication algorithms. An opti-
mized basis representation of the Riemann-Roch space L(2D) is sought in order

II

to minimize the number of scalar multiplications in the algorithm. Considering
the multiplication in F256/F4, which is the case study of Baum and Shokrollahi
in [4], our strategy leads to improve the scalar complexity of their algorithm.

2 The Chudnovsky2 multiplication algorithm

2.1 Description and construction of CCMA algorithm

Let F/Fq be an algebraic function field over the finite field Fq of genus g(F). We
denote by Nk(F/Fq) the number of places of degree k of F over Fq. If D is a
divisor, L(D) denotes the Riemann-Roch space associated to D. We denote by
OQ the valuation ring of the placeQ and by FQ its residue class fieldOQ/Q which
is isomorphic to Fqdeg Q where degQ is the degree of the place Q. The order of a
divisor D =

∑
P aPP in the place P is the number aP , denoted ordP (D). The

support of a divisor D is the set supp D of the places P such that ordP (D) 6= 0.
The divisor D is called effective if ordP (D) ≥ 0 for any P . Let us define the
following Hadamard product in Fql1 ×Fql2 ×· · ·×FqlN denoted by � , where the
li’s denote positive integers, by (u1, . . . , uN)� (v1, . . . , vN) = (u1v1, . . . , uNvN).
The following theorem describes the original multiplication algorithm of D.V.
and G.V. Chudnovsky [6].

Theorem 1. Let

– n be a positive integer,
– F/Fq be an algebraic function field,
– Q be a degree n place of F/Fq,
– D be a divisor of F/Fq,
– P = {P1, . . . , PN} be an ordered set of places of degree one of F/Fq.

We suppose that supp D ∩ {Q,P1, ..., PN} = ∅ and that

(i) The evaluation map
EvQ : L(D)→ FQ

f 7→ f(Q)

is surjective
(ii) The evaluation map

EvP : L(2D)→ FNq
f 7→

(
f (P1) , . . . , f (PN)

)
is injective

Then

(1) For any two elements x, y in Fqn , we have:

xy = EQ ◦ EvP |ImEvP
−1
(
EP ◦ Ev−1Q (x)� EP ◦ Ev−1Q (y)

)
, (1)

III

where EQ denotes the canonical projection from the valuation ring OQ of
the place Q in its residue class field FQ, EP the extension of EvP on the

valuation ring OQ of the place Q, EvP |ImEvP
−1

the restriction of the inverse
map of EvP on its image, and ◦ the standard composition map.

(2)

µsymq (n) ≤ N.

Since Q is a place of degree n, the residue class field FQ of place Q is an ex-
tension of degree n of Fq and it therefore can be identified to Fqn . Moreover,
the evaluation map EvQ being onto, one can associate the elements x, y ∈ Fqn
with elements of Fq-vector space L(D), denoted respectively f and g. We define
h := fg by

(h(P1), ..., h(PN)) = EP(f)� EP(g) = (f(P1)g(P1), ..., f(PN)g(PN)) . (2)

We know that such an element h belongs to L(2D) since the functions f, g lie in
L(D). Moreover, thanks to injectivity of EvP , the function h is in L(2D) and is
uniquely determined by (2). We have

xy = EvQ(f)EvQ(g) = EQ(h)

where EQ is the canonical projection from the valuation ring OQ of the place Q
in its residue class field FQ, EvQ is the restriction of EQ over the vector space
L(D).

In order to make the study and the construction of this algorithm easier, we
proceed in the following way. We choose a place Q of degree n and a divisor D of
degree n+g−1, such that EvQ and EvP are isomorphisms. In this aim in [2], S.
Ballet introduces simple numerical conditions on algebraic curves of an arbitrary
genus g giving a sufficient condition for the application of the algorithm CCMA
(existence of places of certain degree, of non-special divisors of degree g − 1)
generalizing the result of A. Shokrollahi [9] for the elliptic curves. Let us recall
this result:

Theorem 2. Let q be a prime power and let n be an integer > 1. If there exists
an algebraic function field F/Fq of genus g satisfying the conditions

1. Nn > 0 (which is always the case if 2g + 1 ≤ q n−1
2 (q

1
2 − 1)),

2. N1 > 2n+ 2g − 2,

then there exists a divisor D of degree n+ g − 1 and a place Q such that:

(i) The evaluation map

EvQ : L(D)→ OQ

Q

f 7→ f(Q)

is an isomorphism of vector spaces over Fq.

IV

(ii) There exist places P1,...,PN such that the evaluation map

EvP : L(2D)→ FNq
f 7→

(
f (P1) , . . . , f (PN)

)
is an isomorphism of vector spaces over Fq with N = 2n+ g − 1.

Remark 1. First, note that in the elliptic case, the condition (2) is a large in-
equality thanks to a result due to Chaumine [5]. Secondly, note also that the
divisor D is not necessarily effective.

By this last remark, it is important to add the property of effectivity for the
divisor D in a perspective of implemention. Indeed, it is easier to construct the
algorithm CCMA with this assumption because in this case L(D) ⊆ L(2D) and
we can directly apply the evaluation map EvP instead of EP in the algorithm
(1), by means of a suitable representation of L(2D). Moreover, in this case we
need to consider simultaneously the assumption that the support of the divisor
D does not contain the rational places and the place Q of degree n and the
assumption of effectivity of the divisor D. Indeed, it is known that the support
moving technic (cf. [8, Lemma 1.1.4.11]), which is a direct consequence of Strong
Approximation Theorem (cf. [10, Proof of Theorem I.6.4]), applied on an effective
divisor generates the loss of effectivity of the initial divisor (cf. also [1, Remark
2.2]). So, let us suppose these two last assumptions.

Remark 2. As in [3], in practice, we take as a divisor D one place of degree
n+ g− 1. It has the advantage to solve the problem of the support of divisor D
(cf. also [1, Remark 2.2]) as well as the problem of the effectivity of the divisor
D. However, it is not required to be considered in the theoretical study, but, as
we will see, it will have some importance in the strategy of optimization.

We can therefore consider the basis BQ of the residue class field FQ over Fq as
the image of a basis of L(D) by EvQ or equivalently (which is sometimes useful
following the considered situation) the basis of L(D) as the reciprocal image of
a basis of the residue class field FQ over Fq by Ev−1Q . Let

BD := (f1, ..., fn) (3)

be a basis of L(D) and let us denote the basis of the supplementary space
M of L(D) in L(2D) by

BcD := (fn+1, ..., fN) (4)

where N := dimL(2D) = 2n+ g − 1. Then, we choose

B2D := BD ∪ BcD (5)

as the basis of L(2D).
We denote by T2D the matrix of the isomorphism EvP : L(2D) → FNq in

the basis B2D of L(2D) (the basis of FNq will always be the canonical basis).

V

Then, we denote by TD the matrix of the first n columns of the matrix T2D.
Therefore, TD is the matrix of the restriction of the evaluation map EvP on the
Riemann-Roch vector space L(D), which is an injective morphism.

Note that the canonical surjection EQ is the extension of the isomorphism
EvQ since, as Q /∈ supp(D), we have L(D) ⊆ OQ. Moreover, as supp(2D) =
supp(D), we also have L(2D) ⊆ OQ. We can therefore consider the images of
elements of the basis B2D by EQ and obtain a system of N linear equations as
follows:

EQ(fr) =

n∑
m=1

cmr EvQ(fi), r = 1, ..., N

where EQ denotes the canonical projection from the valuation ring OQ of the
place Q in its residue class field FQ, EvQ is the restriction of EQ over the vector
space L(D) and cmr ∈ Fq for r = 1, ..., N . Let C be the matrix of the restriction
of the map EQ on the Riemann-Roch vector space L(2D), from the basis B2D
in the basis BQ. We obtain the product z := xy of two elements x, y ∈ Fqn by
the algorithm (1) in Theorem 1, where M t denotes the transposed matrix of the
matrix M :

Algorithm 1 Multiplication algorithm in Fqn

INPUT: x =
n∑

i=1

xiEvQ(fi), and y =
n∑

i=1

yiEvQ(fi) //xi, yi ∈ Fq

1. X := (X1, ..., XN)← (x1, ..., xn)T t
D

Y := (Y1, ..., YN)← (y1, ..., yn)T t
D

2. Z := X � Y = (Z1, ..., ZN)← (X1Y1, . . . , XNYN)
3. (z1, . . . , zn)← (Z1, ..., ZN)(T t

2D)−1Ct.

OUTPUT: z = xy =
n∑

i=1

ziEvQ(fi) //z := xy

Now, we present an initial setup algorithm which is only done once.

Algorithm 2 Setup algorithm

INPUT: F/Fq, Q,D, P = {P1, . . . , P2n+g+1}.
OUTPUT: B2D, T2D and CT−1

2D .
(i) Check the function field F/Fq, the place Q, the divisors D are such that Condi-

tions (i) and (ii) in Theorem 2 can be satisfied.
(ii) Represent Fqn as the residue class field of the place Q.

(iii) Construct a basis B2D := (f1, . . . , fn, fn+1, . . . , f2n+g−1) of L(2D), where BD :=
(f1, . . . , fn) is a basis of L(D), and Bc

D := (fn+1, ..., f2n+g−1) a basis of the
supplementary space M of L(D) in L(2D).

(iv) Compute the matrices T2D, C and CT−1
2D .

VI

2.2 Complexity analysis

The total complexity, in terms of number of multiplications in Fq, is equal to
(3n + 1)(2n + g − 1), including 3n(2n + g − 1) scalar multiplications. Recall
that the bilinear complexity of Chudnovsky2 algorithms of type (1) in Theorem
1 satisfying assumptions of Theorem 2 is optimized. Therefore, we only focus
on optimizing the scalar complexity of the algorithm. From Algorithm (1), we
observe that the number of the scalar multiplications, denoted by Ns, depends
directly on the number of zeros in the matrices TD and C.T−12D , respectively
denoted by Nzero(TD) and Nzero(C.T

−1
2D). Indeed, all the involved matrices being

constructed once, the multiplication by a coefficient zero in a matrix has not to
be taken into account. Thus, we get the formula to compute the number of
scalar multiplications of this algorithm with respect to the number of zeros of
the involved matrices as follows:

Ns = 2

(
n(2n+ g − 1)−Nzero(TD)

)
+

(
n(2n+ g − 1)−Nzero(C.T−12D)

)
= 3n(2n+ g − 1)−Nzero,

(6)

where
Nzero = 2Nzero(TD) +Nzero(C.T

−1
2D). (7)

3 Optimization of the scalar complexity

By Section 2.2, reducing the number of operations means finding an algebraic
function field F/Fq having a genus g as small as possible and a suitable set
of divisors and place (D,Q,P) with a good representation of the associated
Riemann-Roch spaces, namely such that the matrices TD, T2D and C.T−12D are
as hollow as possible. Therefore, for a place Q and a suitable divisor D, we seek
the best possible representations of Riemann-Roch spaces L(D) and L(2D) to
maximize both parameters Nzero(TD) and Nzero(C.T

−1
2D).

3.1 Different types of strategy

With fixed divisor and places In this section, we consider the optimization
for a fixed suitable set of divisor and places (D,Q,P) for a given algebraic
function field F/Fq of genus g. So, let us give the following definition:

Definition 4. We call UF,nD,Q,P := (UAD,Q,P ,URD,Q,P) a Chudnovsky2 multiplica-

tion algorithm of type (1) where UAD,Q,P := EP ◦ Ev−1Q and URD,Q,P := EQ ◦
EvP |ImEvP

−1
, satisfying the assumptions of Theorem 1. We will say that two

algorithms are equal, and we will note: UF,nD,Q,P = UF,nD′,Q′,P′ , if UAD,Q,P = UAD′,Q′,P′
and URD,Q,P = URD′,Q′,P′ .

Note that in this case, this definition makes sense only if the bases of implied
vector-spaces are fixed. So, we denote respectively by BQ, BD, and B2D the

VII

basis of the residue class field FQ, and of Riemann-Roch vector-spaces L(D),

and L(2D) associated to UF,nD,Q,P . Note that the basis of the Fq-vector space FNq
is always the canonical basis. Then, we obtain the following result:

Proposition 1. Let us consider an algorithm UF,nD,Q,P such that the divisor D is
an effective divisor, D−Q a non-special divisor of degree g−1, and such that the
cardinal of the set P is equal to the dimension of the Riemann-Roch space L(2D).
Then we can choose the basis B2D as (5) and for any σ in GLFq (2n + g − 1),
where GLFq (2n+ g − 1) denotes the linear group, we have

UF,nσ(D),Q,P = UF,nD,Q,P ,

where σ(D) denotes the action of σ on the basis B2D of L(2D) in UF,nD,Q,P , with
a fixed basis BQ of the residue class field of the place Q and Bc the canonical
basis of F2n+g−1

q . In particular, the quantity Nzero(C.T
−1
2D) is constant under this

action.

Proof 1 Let E, F and H be three vector spaces of finite dimension on a field
Krespectively equipped with the basis BE, BF and BH . Consider two morphisms
f and h respectively defined from E into F and from F into H and consider
respectively their associated matrix Mf (BE ,BF) and Mh(BF ,BH). Then it is
obvious that the matrix Mh◦f (BE ,BH) of the morphism h ◦ f is independant
from the choice of the basis BF of F . As the divisor D is effective, we have
L(D) ⊂ L(2D) and then UAD,Q,P := EP ◦ Ev−1Q = EvP ◦ Ev−1Q and as D − Q
a non-special divisor of degree g − 1, EvQ is an isomorphism from L(D) into
FQ and we have UAD,Q,P = EvP |L(D) ◦ Ev−1Q . Moreover, as the cardinal of the
set P is equal to the dimension of the Riemann-Roch space L(2D), EvP is an
isomorphism from L(2D) into F2n+g−1

q equipped with the canonical basis Bc.
Thus, URD,Q,P := EQ ◦ Ev−1P |ImEvP = EQ|L(2D) ◦ Ev−1P . Then, the matrix of

UAD,Q,P (resp. URD,Q,P) is invariant under the action of σ in GLFq
(n) (resp. in

GLFq
(2n+g−1)) on the basis BD (resp. B2D) since the set (E,F,H) is equal to

(FQ,L(D),Bc) (resp. (F2n+g−1
q ,L(2D),BQ)) for h◦f := EvP |L(D) ◦Ev−1Q (resp.

EQ|L(2D) ◦ Ev−1P). �

Remark 3. Note that a priori for any permutation τ of the set P, we have
UF,nσ(D),Q,τ(P) different from UF,nD,Q,P , where σ(D) denotes the action of σ on the

basis B2D of L(2D) in UF,nD,Q,P , with a fixed basis BQ of the residue class field of
the place Q. Indeed, the action of τ corresponds to a permutation of the canonical
basis Bc of F2n+g−1

q . It corresponds to a permutation of the lines of the matrix
T2D. In this case, Nzero(T2D) is obviously constant under the action of τ but
nothing enables us to claim that Nzero(C.T

−1
2D) is constant.

Proposition 2. Let UF,nD,Q,P be a Chudnovsky2 multiplication algorithm in a fi-
nite field Fqn , satisfying the assumptions of Proposition 1. The optimal scalar

VIII

complexity µs,o(UF,nD,Q,P) of UF,nD,Q,P is reached for the set {BD,max,BQ} such that
BD,max is the basis of L(D) satisfying

Nzero(TD,max) = max
σ∈GLFq (n)

Nzero(Tσ(D)),

where σ(D) denotes the action of σ on the basis BD of L(D) in UF,nD,Q,P , TD,max
the matrix of the restriction of the evaluation map EvP on the Riemann-Roch
vector space L(D) equipped with the bases BD,max and BQ = EvQ(BD,max). In
particular,

µs,o(UF,nD,Q,P) = min
σ∈GLFq (n)

{µs(UF,nσ(D),Q,P | σ(BD) is the basis of L(D) and BQ = EvQ(BD)})

= 3n(2n+ g − 1)− (2Nzero(TD,max) +Nzero(T
−1
2D,n)),

where matrices C and T2D are defined with respect to the basis BQ = EvQ(BD,max),
and B2D = BD,max ∪ BcD with BcD a basis of the kernel of EQ|L(2D), and T−12D,n

denotes the matrix constituted of the n first lines of the matrix T−12D .

Proof 2 It follows directly from Proposition 1 and formulae (6) and (7). Note
that since the quantity Nzero(C.T

−1
2D) is constant for any basis B2D of L(2D), we

can take the matrix C.T−12D = T−12D,n if BcD is a basis of the kernel of EQ|L(2D). �

Other strategies of optimization In the view of a complete optimization
(with respect to scalar complexity i.e. with fixed bilinear complexity) of the
multiplication in a finite field Fqn by a Chudnovsky2 type multiplication algo-
rithm, we have to vary the eligible sets (F,D,Q,P). As an example, for a fixed
integer n, a given algebraic function field F/Fq, and a couple divisor and place
(D,Q) satisfying the conditions of Proposition 1, we must apply the optimization
strategy studied in Section 3.1 on each suitable ordered subset P (of cardinal
2n+ g− 1) of the set of rational places (i.e. each suitable subset P and all their
associated permutations τ(P)). Then we have to vary the couples (D,Q) and
apply the previous step: for example, we can start by fixing the place Q and
then vary the suitable divisors D. We can then look for a fixed suitable algebraic
function field of genus g, up to isomorphism, and repeat all the previous steps.
Finally, it is still possible to look at the trade-off between scalar complexity
and bilinear complexity by increasing the genus and then re-conducting all the
previous optimizations.

3.2 Optimization of scalar complexity in the elliptic case

Now, we study a specialisation of the Chudnovsky2 multiplication algorithm of
type (1) in the case of the elliptic curves. In particular, we improve the effective
algorithm constructed in the article of U. Baum and M.A. Shokrollahi [4] which
presented an optimal algorithm from the point of view of the bilinear complexity
in the case of the multiplication in F256/F4 based on Chudnovsky2 multiplication
algorithm applied on the Fermat curve x3 +y3 = 1 defined over F4. Our method
of construction leads to a multiplication algorithm in F256/F4 having a lower
scalar complexity with an optimal bilinear complexity.

IX

Experiment of Baum-Shokrollahi The article [4] presents Chudnovsky2 mul-
tiplication in F44 , for the case q = 4 and n = 4. The elements of F4 are denoted
by 0, 1, ω and ω2. The algorithm construction requires the use of an elliptic curve
over F4 with at least 9 F4-rational points (which is the maximum possible number
by Hasse-Weil Bound). Note that in this case, Conditions 1) and 2) of Theorem
2 are well satisfied. It is well known that the Fermat curve u3 + v3 = 1 satisfies
this condition. By the substitutions x = 1/(u + v) and y = u/(u + v), we get
the isomorphic curve y2 + y = x3 + 1. From now on, F/Fq denotes the algebraic
function field associated to the elliptic curve C with plane model y2 +y = x3 +1,
of genus one. The projective coordinates (x : y : z) of F4-rational points of this
elliptic curve are:

P∞ = (0 : 1 : 0), P1 = (0 : ω : 1), P2 = (0 : ω2 : 1), P3 = (1 : 0 : 1),

P4 = (1 : 1 : 1), P5 = (ω : 0 : 1), P6 = (ω : 1 : 1), P7 = (ω2 : 0 : 1), P8 = (ω2 : 1 : 1).

Now, we represent F256 as F4[x]/Q(x) with primitive root α, where Q(x) =
x4 + x3 + ωx2 + ωx+ ω.

– For the place Q of degree 4, the authors considered Q =
∑4
i=1 pi where

p1 corresponds to the F44-rational point with projective coordinates (α16 :
α174 : 1) and p2, p3, p4 are its conjugates under the Frobenius map. We see
that α16 is a root of the irreducible polynomial Q(x) = x4+x3+ωx2+ωx+ω.
Thus, the place Q is a place lying over the place (Q(x)) of F4(x)/F4. Note
also that the place ((Q(x)) of F4(x)/F4 is totally splitted in the algebraic
function field F/F4, which means that there exist two places of degree n in
F/F4 lying over the place (Q(x)) of F4(x)/F4, since the function field F/Fq is
an extension of degree 2 of the rational function field F4(x)/Fq. The place Q
is one of the two places in F/F4 lying over the place (Q(x)). Notice that the
second place is given by the orbit of the conjugated point (α16 : α174 +1 : 1).
Therefore, we can represent F256 = F44 = F4[x]/Q(x) as the residue class
field FQ of the place Q in F/F4.

– For the divisor D, we choose the place described as
∑4
i=1 di where d1 cor-

responds to the F44-rational point (α17 : α14 : 1) and d2, d3, d4 are its con-
jugates under the Frobenius map. By computation we see that α17 is a root
of irreducible polynomial D(x) = x2 + x + ω and degD = 4 because d1,
d2, d3, d4 are all distinct. Therefore, D is the only place in F/F4 lying over
the place (D(x)) of F4(x) since the residue class field FD of the place D is a
quadratic extension of the residue class field FD of the place D, which is an
inert place of F4(x) in F/F4.

The matrix T2D obtained in the basis of Riemann-Roch space L(2D):
B2D = {f1 = 1/f, f2 = x/f, f3 = y/f, f4 = x2/f, f5 = 1/f2, f6 = xy/f, f7 =
y/f2, f8 = x/f2}, with f = x2 + x+ ω is the following:

X

T2D =

0 0 0 1 0 0 0 0
ω2 0 1 0 ω 0 ω2 0
ω2 0 ω 0 ω 0 1 0
ω2 ω2 0 ω2 ω 0 0 ω
ω2 ω2 ω2 ω2 ω ω ω ω
ω ω2 0 1 ω2 0 0 1
ω ω2 ω 1 ω2 1 ω2 1
ω 1 0 ω2 ω2 0 0 ω

.

Then, computation gives:

C =

1 0 0 0 ω 0 ω2 ω
0 1 0 0 0 ω2 ω 0
0 0 1 0 1 0 0 1
0 0 0 1 1 ω 0 ω

 and CT−12D =

1 ω 1 ω 1 1 ω 0
1 0 ω2 ω 1 ω2 1 ω
1 ω ω ω2 1 ω2 ω ω
0 ω ω2 ω 1 ω2 0 0

 .

Consequently, we obtain:

Nzero(TD) = 10, Nzero(CT
−1
2D) = 5.

Thus, the total number Ns of scalar multiplications in the algorithm constructed
by Baum and Shokrollahi in [4] is Ns = 71 by the formula (6). In the next section,
we follow the approach described in Section 3, and we improve the Chudnovsky2

multiplication algorithm in F44 constructed by Baum and Shokrollahi in [4]. By
using the same elliptic curve and the same set {D,Q,P}, we obtain an algorithm
with the same bilinear complexity and lower scalar complexity.

New design of the Baum-Shokrollahi construction The new construction
of Chudnovsky2 algorithm for the multiplication in F256/F4 using strategy given
in Proposition 2 of Section 3.1 gives the following matrices T2D with a better
basis B2D = (f1, f2, ..., f8) of L(2D) space, where

f1 = (ωx2 + x)/(x2 + x+ ω),

f2 = (ω2x2 + ω2x+ ω2)/(x2 + x+ ω),

f3 = ω2/(x2 + x+ ω)c+ (ω2x+ 1)/(x2 + x+ ω),

f4 = ω2/(x2 + x+ ω)c+ (ω2x+ ω)/(x2 + x+ ω),

f5 = (x2 + x)/(x4 + x2 + ω2)c+ (x4 + ωx3 + ωx2 + ωx)/(x4 + x2 + ω2),

f6 = ω2x/(x4 + x2 + ω2)c+ (ωx4 + x2 + ωx+ 1)/(x4 + x2 + ω2),

f7 = (ω2x+ 1)/(x4 + x2 + ω2)c+ (ω2x4 + ω2x3 + ωx2 + ω)/(x4 + x2 + ω2),

f8 = (x2 + ωx+ 1)/(x4 + x2 + ω2)c+ (x4 + ωx3 + x2 + ω2x+ ω2)/(x4 + x2 + ω2).

XI

T2D =

ω ω2 0 0 1 ω ω2 1
0 ω 0 ω 0 ω 0 ω
0 ω ω 0 0 ω ω 0
1 0 0 1 1 1 ω2 ω2

1 0 1 0 ω ω ω2 0
0 0 1 0 ω ω 0 1
0 0 0 1 1 ω2 ω 0
ω ω 1 ω2 1 0 0 ω2

and T−12D,4 =

0 ω 1 0 0 1 1 ω2

0 0 0 0 1 ω ω ω2

ω2 ω ω2 ω2 ω ω 0 0
1 ω2 ω ω2 0 0 1 ω2

Therefore, Nzero(TD) = 16 and Nzero(T
−1
2D,4) = 11. By the formula (6), we

obtain Ns = 53, a gain of 25% over Baum and Shokrollahi’s method.

References

1. Kevin Atighehchi, Stéphane Ballet, Alexis Bonnecaze, and Robert Rolland. Arith-
metic in Finite Fields based on Chudnovsky’s multiplication algorithm. Mathe-
matics of Computation, 86(308):297–3000, 2017.

2. Stéphane Ballet. Curves with Many Points and Multiplication Complexity in Any
Extension of Fq. Finite Fields and Their Applications, 5:364–377, 1999.

3. Stéphane Ballet. Quasi-optimal Algorithms for Multiplication in the Extensions of
F16 of degree 13, 14, and 15. Journal of Pure and Applied Algebra, 171:149–164,
2002.

4. Ulrich Baum and Amin Shokrollahi. An optimal algorithm for multiplication
in F256/F4. Applicable Algebra in Engineering, Communication and Computing,
2(1):15–20, 1991.

5. Jean Chaumine. On the bilinear complexity of multiplication in small finite fields.
Comptes Rendus de l’Académie des Sciences, Série I, 343:265–266, 2006.

6. David Chudnovsky and Gregory Chudnovsky. Algebraic complexities and algebraic
curves over finite fields. Journal of Complexity, 4:285–316, 1988.

7. Hans De Groote. Characterization of division algebras of minimal rank and the
structure of their algorithm varieties. SIAM Journal on Computing, 12(1):101–117,
1983.

8. Julia Pieltant. Tours de corps de fonctions algébriques et rang de tenseur de la
multiplication dans les corps finis. PhD thesis, Université d’Aix-Marseille, Institut
de Mathématiques de Luminy, 2012.

9. Amin Shokhrollahi. Optimal algorithms for multiplication in certain finite fields
using algebraic curves. SIAM Journal on Computing, 21(6):1193–1198, 1992.

10. Henning Stichtenoth. Algebraic Function Fields and Codes. Number 314 in Lec-
tures Notes in Mathematics. Springer-Verlag, 1993.

11. Shmuel Winograd. On multiplication in algebraic extension fields. Theor. Comput.
Sci., 8:359–377, 1979.

XII

A New set up algorithm

A new setup algorithm can be obtained directly from the strategy developed in
Section 3.1. More precisely, the following setup corresponds to the optimization
described by Proposition 2.

Algorithm 3 New setup algorithm

INPUT: F/Fq, Q,D, P = {P1, . . . , P2n+g+1}.
OUTPUT: B2D = BD ∪ Bc

D, T2D and T−1
2D,n.

(i) Check the function field F/Fq, the place Q, the divisors D are such that Condi-
tions (i) and (ii) in Theorem 2 can be satisfied.

(ii) Go through the set (or subset) of bases BD of L(D).
(iii) Choose a basis BD := (f1, . . . , fn) such that the matrix TD owns the largest

number of zeros.
(iv) Set BQ := EvQ(BD).
(v) Construct a basis Bc

D := (fn+1, ..., f2n+g−1) of the supplementary space M :=
KerEQ|L(2D) of L(D) in L(2D).

(iv) Compute the matrices T2D and T−1
2D,n in the basis B2D = BD ∪ Bc

D.

XIII

B Magma implementation of the optimized multiplication
algorithm in the finite field F44 over the finite field F4

//%%%%%%%%%PRE-COMPUTING FUNCTIONS %%%%%%%%%%

//Count the number of zeros in k rows et l column of a matrix A

function CountZeros(A, k, l)

CounterZ:=0;

for i:=1 to k do

for j:=1 to l do

if A[i,j] eq 0 then CounterZ:=CounterZ + 1;

end if;

end for;

end for;

return(CounterZ);

end function;

//Create matrix of the evaluation map of basis matrix B of m vectors at n points in P

function MatrixSecondEval(B,P,m,n)

ST:=[];

for j:=1 to n do

for i:=1 to m do

ST:=Append(ST, Evaluate(B[i,1], P[j]));

end for;

end for;

T:=Matrix(n,m, ST);

return(T);

end function;

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n:=4;g:=1;q:=4;

F4<a>:= GF(4);

G:=SL(4,F4); //cardinality= 987.033.600 matrices, 84 conjugacy classes.

Kx<x>:= FunctionField(F4);

Kxy<y>:= PolynomialRing(Kx);

f:=y^2 + y - x^3 -1;

F<c> := FunctionField(f);

LP:=Places(F,1);

QQ := x^4 + x^3 + a*x^2 +a*x+a;

Q := Decomposition(F,Zeros(Kx!QQ)[1])[1];

K := ResidueClassField(Q);

"degree of Q is ", Degree(Q);

DD:= x^2+x+a;

D:= Decomposition(F,Zeros(Kx!DD)[1])[1];

D:=1*D;

"D-Q is special? ",IsSpecial(D-Q);

XIV

"dim L(D) is ", Dimension(D);

LD, h1 :=RiemannRochSpace(D);

L2D, h2 :=RiemannRochSpace(2*D);

B:=Basis(LD);

MLD:=[L2D!h1(v): v in B];

BL2D := h2(ExtendBasis(MLD,L2D));

BasisL2D:=Matrix(2*n+g-1,1, [BL2D[i] : i in [1..2*n+g-1]]);

BasisLD:=Matrix(n,1, [BL2D[i] : i in [1..n]]);

M:=Matrix(n+g-1,1, [BL2D[i] : i in [n+1..2*n+g-1]]);

T:=MatrixSecondEval(BasisL2D,LP, 2*n+g-1,2*n+g-1);

TI:=T^-1;

A:=Matrix(2*n+g-1,n, [T[j,i]: i in [1..n], j in [1..2*n+g-1]]);

//A is the matrix of the n first columns of T1

CounterA:=CountZeros(A,2*n+g-1,n);

EL2D:=Matrix(2*n+g-1,1, [Evaluate(BasisL2D[i,1],Q) : i in [1..2*n+g-1]]);

BELD:=Matrix(F4,n,n, [ElementToSequence(EL2D[i][1]) : i in [1..n]]);

//%%%%%%%%% the optimization %%%%%%%%%%%

opBasisLD:=BasisLD;

opA:=A;

mCounterA:=CounterA;

//NOTE!! replace j by numbers from 1 to 84 before executing next commands.

rep:=Classes(G)[j][3];

Orbit:=Class(G,rep);

BasisLD1:=BasisLD;

k:= 1;

for k in [1.. #Orbit] do

BasisLD1:= BELD^-1*Matrix(F,Orbit[k])*BasisLD;

A1:= MatrixSecondEval(BasisLD1,LP,n,2*n+g-1);

CounterA1:=CountZeros(A1,2*n+g-1,n);

if mCounterA lt CounterA1 then

mCounterA:=CounterA1; print(mCounterA);

opBasisLD:=BasisLD1;

end if;

end for;

//%%% Kernel of the restrictions of map E_Q on the L(2D) %%%%

nBasisL2D:=Matrix(2*n+g-1,1,[opBasisLD[i,1] : i in [1..n]]

cat [M[i,1] : i in [1..n+g-1]]);

XV

nEL2D:=Matrix(2*n+g-1,1, [Evaluate(nBasisL2D[i,1],Q) : i in [1..2*n+g-1]]);

nBEL2D:=Matrix(F4,2*n+g-1,n, [ElementToSequence(nEL2D[i][1]) : i in [1..2*n+g-1]]);

Ker:=Parent(ZeroMatrix(F,n+g-1,2*n+g-1))! Matrix(Basis(NullSpace(nBEL2D)))*nBasisL2D;

//%%%%%%%%%% Space L(2D)= L(D) + Kernel %%%%%%%%%%%

BasisL2D1:=Matrix(2*n+g-1,1, [opBasisLD[i,1] : i in [1..n]]

cat [Ker[i,1] : i in [1..n+g-1]]);

T1:=MatrixSecondEval(BasisL2D1,LP,2*n+g-1,2*n+g-1);

CounterT1I:=CountZeros(T1^-1,n,2*n+g-1);

Ns:=6*n^2-(2*mCounterA+CounterT1I);

print "The optimized basis of space L(2D):" ; BasisL2D1;

print "The matrix T_2D of the algorithm:"; T1;

print "The matrix T_(2D,4) of the algorithm:" ;

Matrix(n,2*n+g-1,[T1^-1[i,j] : i in [1..n], j in [1..2*n+g-1]]);

print "The number of scalar multiplications of the algorithm: "; Ns;

%\end{lstlisting}

XVI

	On the scalar complexity of Chudnovsky2 multiplication algorithm in finite fields

