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7CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, 34090 Montpellier, France
8School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
9Co-first author
10Present address: Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,

Switzerland
11Lead Contact

*Correspondence: felix.naef@epfl.ch (F.N.), frederic.gachon@rd.nestle.com (F.G.)

http://dx.doi.org/10.1016/j.cmet.2016.10.003
SUMMARY

Diurnal oscillations of gene expression controlled by
the circadian clock and its connected feeding rhythm
enable organisms to coordinate their physiologies
with daily environmental cycles.While available tech-
niques yielded crucial insights into regulation at the
transcriptional level, much less is known about
temporally controlled functions within the nucleus
and their regulation at the protein level. Here, we
quantified the temporal nuclear accumulation of pro-
teins and phosphoproteins from mouse liver by
SILAC proteomics. We identified around 5,000 nu-
clear proteins, over 500 of which showed a diurnal
accumulation. Parallel analysis of the nuclear phos-
phoproteome enabled the inference of the temporal
activity of kinases accounting for rhythmic phos-
phorylation. Many identified rhythmic proteins were
parts of nuclear complexes involved in transcrip-
tional regulation, ribosome biogenesis, DNA repair,
and the cell cycle and its potentially associated
diurnal rhythm of hepatocyte polyploidy. Taken
together, these findings provide unprecedented in-
sights into the diurnal regulatory landscape of the
mouse liver nucleus.

INTRODUCTION

While the human and mouse genomes have been available for

over a decade, progress in measuring the expression of gene

products has beenmademainly on the level ofmRNAabundance

(Melé et al., 2015) and, to a lesser extent, proteins (Geiger et al.,
102 Cell Metabolism 25, 102–117, January 10, 2017 ª 2017 The Auth
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2013; Kim et al., 2014), with little information on their cellular

localization and dynamic regulation. Indeed, cellular functions

in eukaryotes often rely on membrane-enclosed organelles

with specialized and compartmentalized functions, interacting

dynamically with each other. The cell nucleus can sense signals

from biochemical or mechanical origins and translate these into

molecular response, notably through control of gene expression.

Proteomic studies have therefore characterized the protein

composition of different nuclear compartments, notably the nu-

clear membrane (Schirmer et al., 2003), the nuclear pore (Cron-

shaw et al., 2002), the nucleolus (Andersen et al., 2005), the

centrosome (Andersen et al., 2003), or interchromatin granules

(Saitoh et al., 2004). However, apart from analyses of the brain

and neurons (Dammer et al., 2013; Ren et al., 2015), heart

(Franklin et al., 2011), liver (Zhang et al., 2013), or multiple tissues

in parallel (Foster et al., 2006; Kislinger et al., 2006), only very few

comprehensive total nuclear proteomes are available inmamma-

lian cells and tissues. In all these cases, the obtained coverage

was still fairly low compared to the predictedmammalian nuclear

proteome (Bauer et al., 2011; Fink et al., 2008). Moreover, quan-

titative proteomics techniques such as SILAC (stable isotope la-

beling with amino acids in culture) have rarely been employed,

and no studies addressed dynamic aspects or genotype depen-

dency of nuclear proteomes. In addition, while the whole-liver

phosphoproteome has been previously described at a very

high coverage (Humphrey et al., 2015), or as part of multiple tis-

sue experiments (Huttlin et al., 2010; Lundby et al., 2012), no

specific nuclear phosphoproteome has been analyzed experi-

mentally onmammalian healthy tissue, thoughorganelle-specific

phosphoproteomes have been predicted computationally based

on whole-cell studies (Chen et al., 2015).

Here, we focus on nuclear functions measured temporally in

the mouse liver, as animals are exposed to diurnal and feeding-

fasting cycles. In those conditions, the liver is spectacularly dy-

namic, changing not only its entire gene expression landscape
or(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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(Doherty and Kay, 2010), but also its morphology in response to

feeding and hormonal cues (Gerber et al., 2013; Uchiyama and

Asari, 1984). These changes are thought to allow the separation

of incompatible metabolic processes occurring at different times

of the day (Gachon et al., 2004), and are regulated through

transcriptional, post-transcriptional, translational, and post-

translational regulations (Asher and Sassone-Corsi, 2015). The

circadian clock consists of an endogenous and autonomous

oscillator with a period of nearly 24 hr, which coordinates most

aspects of physiology and behavior in mammals, including

humans (Gerhart-Hines and Lazar, 2015). This oscillatory clock-

work is organized hierarchically, with amaster clock in the supra-

chiasmatic nuclei of the hypothalamus that communicates timing

signals to enslave oscillators in peripheral organs. Rhythms in

gene products are generated by molecular feedback loops, in

which multiple layers of control, including temporal post-tran-

scriptional and post-translational regulation, contribute (Crane

and Young, 2014). While transcriptional regulation orchestrated

by the circadian clock has been well studied (Koike et al., 2012;

Le Martelot et al., 2012; Vollmers et al., 2012), regulations at

the proteome and phosphoproteome levels are largely unex-

plored, despite recent description of rhythmic protein levels in

whole-tissue extracts (Mauvoisin et al., 2014; Robles et al., 2014).

Here, we report a quantitative and high-resolution analysis of

the diurnal nuclear proteome and phosphoproteome in mouse

liver, highlighting the deep impact of diurnal rhythms on liver

function. In addition to transcriptional regulation, we found that

crucial cellular functions like DNA repair, ribosome biogenesis,

cell cycle, and polyploidy are also subject to diurnal regulation,

mostly at the post-translational level. In this context, organelle-

specific time-resolved quantitative proteomics provides an

outstanding tool to systemically reveal regulated cellular func-

tions, which would be inaccessible with genomic or whole-cell

proteomic approaches.

RESULTS

High-Coverage Nuclear Proteome Quantified by
SILAC-Based Mass Spectrometry in Mouse Liver
Tomeasure the diurnal accumulation of proteins in the nucleus of

mouse liver, we designed a quantitative SILAC mass spectrom-

etry (MS) experiment in which nuclear protein extracts were

harvested from mice liver every 3 hr for 2 days, yielding two bio-

logical replicates at each of eight time points. Relative protein

abundance in those 16 samples was quantified against a com-

mon reference sample obtained by in vivo total stable isotope la-

beling ofmouse tissues (SILAC) as described before (Figure S1A,

available online; related to Figure 1) (Mauvoisin et al., 2014). This

SILAC-based analysis identified a total of 4,820 distinct proteins,

of which 84% (4,035) yielded relative measurements in at least 8

out of the 16 samples (Figure S1B; Table S1; related to Figure 1).

We globally obtained a high correlation between biological rep-

licates (70% correlation on average), with the exception of zeit-

geber time (ZT; ZT0, lights on; ZT12, lights off) 21 due to a

potential contamination of one sample during the nuclei prepara-

tion (Figure S1C). Among the detected proteins with known sub-

cellular localization in Uniprot (UniProt Consortium, 2015),

around 75% were known to localize in the nucleus or to shuttle

between the nucleus and cytoplasm. Moreover, 93% of the ob-
tained MS raw signal was from nuclear/shuttling proteins (Fig-

ures S1D and S1E), and more than 80% of all identified proteins

were nuclear according to the COMPARTMENTS database

(Binder et al., 2014) (Figure S1F). Compared with existing

compendia of nuclear proteomes, for instance, the experimen-

tally determined 824 proteins in Kislinger et al. (2006) (Fig-

ure S1G), the computationally defined proteins (�3,500) in Bauer

et al. (2011) and Fink et al. (2008), and the approximately 4,220

proteins annotated as nuclear in Uniprot, our liver data achieved

higher coverage. In fact, we covered nearly 70% of all known

proteins expressed in the liver nucleus (Figure 1A) and close to

90% for proteins annotated as parts of nuclear compartments

in mouse liver (Figures 1A and S1H). The coverage for proteins

involved in important nuclear functions, such as transcription

factors (TFs), transcriptional co-regulators, and RNA processing

proteins, was above 60% (Figure 1B).

To study temporal regulations, we first analyzed the nuclear

accumulation of protein involved in circadian rhythms. We could

detect all the known components of the core clock, as well

as clock-controlled TFs (e.g., members of PAR bZip family;

Gachon, 2007; and E4BP4/NFIL3 in Figures 1C and 1D). All these

components rhythmically accumulated in the nucleus with ex-

pected phases and amplitudes. Such rhythms were disrupted

in clock-deficient Cry1/2 double-knockout (DKO) mice (van der

Horst et al., 1999), in which no CRY proteins could be detected

(Figure S1I).

Extensive Rhythms of Nuclear Protein Abundance Are
Mainly Regulated at the Post-transcriptional Level
We identified 522 (13%, false discovery rate [FDR] = 5%) pro-

teins that rhythmically accumulated in the nucleus, or 1,835 us-

ing a less stringent criterion (45%, FDR= 0.25) (Figure S2A; Table

S2; related to Figure 2). Our previous characterization of the

whole-cell rhythmic proteome using the exact same MS and

analysis (Mauvoisin et al., 2014) identified only 195 rhythmic pro-

teins (�5%, FDR = 0.25), indicating that the nuclear proteome is

subject to extensively more diurnally rhythmic regulation. The

522 rhythmic nuclear proteins showed a bimodal peak time dis-

tribution similar to that in the total proteome (Mauvoisin et al.,

2014), with peaks at the end of the light and dark periods (Fig-

ure S2B). In addition to an increased number of rhythmic pro-

teins, nuclear proteins also displayed increased peak-to-trough

amplitudes compared to total protein extracts, with maxima

above 30-fold (Figure S2C). The potential contamination at

ZT21 (sample 1) by cytoplasmic proteins had only a minor effect

on the global analysis of rhythmicity (Figure S2D). The majority

(400 out of 522) of the rhythmic proteins are known to localize

in the nucleus or shuttle from cytoplasm to the nucleus (Fig-

ure 2A). These proteins showed a bimodal distribution of peak

times, with maxima toward the end of day and night periods. Un-

expectedly, a fraction (122 out of 522, 23%) of proteins anno-

tated to be mostly cytoplasmic as well as constituents of the

cytoskeleton showed rhythmic accumulation in the nucleus

with a sharp phase distribution around ZT0, albeit with lower am-

plitudes compared to nuclear and shuttling proteins (Figures 2B

and S2E).

We next denote nuclear/shuttling proteins as the C1 group

and cytoplasmic/cytoskeleton proteins as C2. Strikingly, only a

fraction of rhythmic nuclear proteins was encoded by rhythmic
Cell Metabolism 25, 102–117, January 10, 2017 103



Figure 1. High-Coverage Nuclear Proteome by SILAC-Based MS Identifies Robust Diurnal Rhythms in Core Clock and Clock-Regulated

Proteins in Mouse Liver

(A) Coverage of liver-expressed genes (assessed by RNA-seq, requiringmean reads per kilobase of transcript permillionmapped reads [RPKM] > 0.5 in wild-type

data from; Atger et al., 2015; white bar), annotated as nuclear (Uniprot, beige) and annotated as belonging to nuclear sub-compartments (light blue).

(B) Coverage of liver-expressed genes with specific functions. For kinases and phosphatases, the coverage, taking into account nuclear annotation, is also

shown.

(C) Core clock and clock-regulated proteins quantified in the nuclear proteome. Phases and amplitudes are indicated by the angles and distances to the center,

respectively.

(D) Temporal nuclear accumulations of individual proteins for wild-type (blue line) and Cry1/2 DKO (red line). The error bars in wild-type represent SEM between

two biological replicates.

104 Cell Metabolism 25, 102–117, January 10, 2017



Figure 2. Rhythm of Nuclear Proteins Is Mainly Regulated at the Post-transcriptional Level

A total of 522 proteins were identified as rhythmic in nuclear extracts (FDR < 0.05). They were divided into two classes according to annotations of cellular

localization: C1 for nuclear (n = 232) and shuttling proteins (n = 168); C2 for cytoplasmic (n = 94) and cytoskeleton proteins (n = 28).

(legend continued on next page)
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mRNAs, quantified by RNA sequencing (RNA-seq) in the same

light-dark (LD) and feeding conditions for both C1 (23%) and

C2 (33%) (Figures 2C and 2D), highlighting the importance of

post-transcriptional regulation in generating these rhythms in

nuclear proteins. Among the fraction of proteins with corre-

sponding rhythmic mRNAs, the phases of protein in C1 were

highly correlated with the phases of their cognate mRNAs, with

an average delay of 3 hr (Figures 2E and S2F). This delay is

shorter than what we found for total proteins (Mauvoisin et al.,

2014) and probably reflects short protein half-lives, which is sup-

ported by the observation that these proteins were enriched in

TFs (Figure S2G). In contrast, the peak times of C2 proteins in

the nucleus did not correlate with mRNA peaks (Figure 2F).

Furthermore, only a small fraction of the rhythmic nuclear pro-

teins also showed rhythms in total extracts for both C1 (6%)

and C2 (17%) (Figure S2H), suggesting that the protein translo-

cation from the cytoplasm into the nucleus is an important regu-

latory mechanism. The proteins with rhythms both in the total

and nuclear extracts coincided with food-driven rhythmically

secreted proteins (Mauvoisin et al., 2014) and showed a clear

phase preference at ZT19 in the total and ZT22 in the nuclear ex-

tracts (Figure S2I).

To further assess the diurnal nuclear accumulation of pro-

teins annotated as cytoplasmic, we independently quantified

protein abundance in nuclear and cytoplasmic extracts using

western blots (WBs) for proteins in both C1 (GSK3A and

NR3C1 in Figures 2G and 2H) and C2 (ANXA2, LCP1, FASN,

ACACA, and ALB in Figures 2I–2L and S2J). This confirmed

the rhythms and peak accumulation times of these proteins in

the nuclear extracts, while rhythms in the cytoplasmic extracts

were absent. In addition, we performed immunofluorescence

experiments on purified nuclei on the cytoplasmic proteins

FASN, ACACA, and ALB, all showing rhythmic nuclear

accumulation. Confocal microscopy indeed confirmed that

these proteins rhythmically accumulate in the nucleus with

the same phases as in the MS, whereas structural components

of nuclei, LAMIN A/C, and NUP98 did not (Figures 2M, 2N, S2K,

and S2L).

Rhythmic Accumulation of Nuclear Protein Complexes
Many quantified nuclear proteins were subunits of well-charac-

terized nuclear protein complexes. In fact, the subunit coverage
(A) Peak time distributions in ZT for proteins in C1 (nuclear, light green; shuttling

(B) Same as (A) for C2 (cytoplasm, light red; cytoskeleton, dark red).

(C and D) Heatmap representation of proteins in C1 (C) and C2 (D) and their c

conditions (LD and night-restricted feeding) (Atger et al., 2015). Data were standa

rhythmic mRNA, and straight line constant mRNA.

(E and F) For rhythmic proteins encoded by rhythmic mRNA (FDR < 0.05), phase c

p < 10�15, circular correlation test) and C2 (F) (not significant with p = 0.21).

(G–L) Examples of rhythmic proteins in C1 (G, GSK3a [quantified] and GSK3b; H

western blot (WB) analysis in nuclear extracts (NE; upper blots) and cytoplasmic

ZT21 (replica 1) and ZT24–ZT45 (replica 2). MS and WB data are normalized to t

independent biological samples. Naphtol blue-black staining of the membranes w

the quantified values.

(M) Examples of rhythmic proteins in C2 (FASN, ACACA, and ALB) detected in th

negative control and the nuclear pore complex NUP98 as positive control. Nucle

(see z stacks in Figure S2K). Vertical white scale bars represent 1 mm.

(N) Densitometry analyses for proteins FASN (peak time = 23.4 hr, rhythmicity t

(iii) normalized by LAMIN A/C signal (iv) from (M). Data show the mean and SEM
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of known complexes was very high, even among ones with

numerous subunits (Figure S3A; Table S3; related to Figure 3).

Often, proteins belonging to the same complex showed highly

similar diurnal profiles (Figures S3B and S3C). Since not all sub-

units of annotated complexes might follow the same temporal

patterns, we identified nuclear protein complexes with synchro-

nized rhythmic subunits using singular value decomposition

(SVD). We retained complexes in which the fraction of variances

captured by the first singular component was significant

(p < 0.05), and the rhythm of the complex was estimated from

that of the first component (Experimental Procedures). Unex-

pectedly, such analysis yielded 360 complexes with synchro-

nized subunits out of the 993 detected (at least two distinct

subunits detected) (Figure S3D), of which 185 showed diurnal

accumulation representing diverse functions, peak times, and

amplitudes (Figure 3A). Some of these complexes showed low

average amplitudes, potentially reflecting that some subunits

are shared by multiple complexes not necessarily expressed in

the same phase, or that amplitudes among subunits are hetero-

geneous (Figure S3E). Most of the complexes peaking during the

day were involved in transcriptional regulation and DNA repair,

whereas ones peaking at night aremore enriched in cytoskeleton

organization, protein transport, proteolysis, and chaperoning of

proteins (Figures 3A–3G). Of note, the multimeric kinases

AMPK and CKII, involved in circadian clock regulation (Lamia

et al., 2009; Maier et al., 2009; Tamaru et al., 2009), both show

rhythmic nuclear accumulations with a maximum at the end of

the dark period (Figure 3H). Hence, our results strongly suggest

temporal compartmentalization of fundamental nuclear pro-

cesses in the liver.

Temporal Organization of Ribosome Biogenesis and
DNA Repair
The functions of rhythmic nuclear proteins and complexes

pointed toward temporal organization of ribosome biogenesis

and DNA repair. Ribosome biogenesis was represented by 99

proteins showing different phases of nuclear accumulation, cor-

responding to distinct steps (de la Cruz et al., 2015) (Figure 4A;

Table S4; related to Figure 4). First, proteins involved in rRNA

transcription, including RNA polymerase I subunits, showed a

maximum nuclear accumulation around ZT6, consistent with

the transcription of the 45S rRNA (Jouffe et al., 2013) (Figure S4A;
, dark green).

orresponding mRNAs measured by total RNA-seq in the same experimental

rdized by rows, and gray blocks indicate missing data. Sinusoidal icon means

orrelations between proteins andmRNAs for C1 (E) (statistically significant with

, NR3C1) and C2 (I, ANXA2; J, LCP1; K, FASN; and L, ACACA) confirmed by

extracts (CYTO; lower blots). The two biological replicates are shown as ZT0–

he temporal mean, and the 16 time points show the mean and SEM from two

as used as a loading control (LC) and serves as a reference for normalization of

e nucleus by confocal microscopy. Secondary antibodies alone were used as

i were stained and confocal z stack images were acquired at 0.20 mm intervals

est with p < 10�4) and ACACA (peak = 0.8 hr, p = 0.11) with confocal signal

from at least three nuclei.



Figure 3. Diurnal Accumulation of Nuclear

Protein Complexes

(A) Nuclear protein complexes with rhythmic

accumulation were identified by the singular value

decomposition (SVD). Peak times (identified from

the first eigengene in the SVD) and mean peak-to-

trough amplitudes (mean of amplitudes of rhyth-

mic subunits within the same complex) are

indicated by the angles (reference ZT times are

indicated) and length of associated solid lines (the

tick labels show log2 amplitudes). Specific func-

tions of these rhythmic complexes are color

coded.

(B–H) Temporal profiles of subunits of some

rhythmic nuclear protein complexes are shown,

e.g., mediator/associated, NCOR/SMRT, NCOR-

SIN3, and NuRD complexes for transcription (B);

Mt3-Hsp84-Ck and HSP90-associated com-

plexes for chaperone (C); APPBP1-UBA3 and

CSN/CSA/DDB2 complexes for proteolysis (D);

Profilin 1 and AQP2-force-generator complexes

for cytoskeleton (E); retromer and endocytic coat

complexes for protein transport (F); DNMT1-RB1-

HDAC1-E2F1 and APC/C complexes for cell

cycle (G); and AMPK and CKII complexes for

kinases (H).
related to Figure 4). Proteins and complexes involved in rRNA

processing and pre-ribosome assembly also peaked at ZT6,

including the small-subunit processome (SSU) (Phipps et al.,

2011), the PeBoW complex (Lapik et al., 2004), and the exosome

(Lykke-Andersen et al., 2009) (Figures 4A and S4A). Second,

rRNA synthesis and maturation during the day were followed

by ribosomal protein synthesis, shown to take place in the

cytoplasm around ZT18 (Atger et al., 2015; Jouffe et al., 2013).

Lastly, the final assembly of the ribosomes in the nucleolus in-

volves the rhythmic nuclear accumulation of the pre-60S ribo-

some (Nissan et al., 2002) and the large-subunit processome
Cell Meta
(LSU) (McCann et al., 2015) with peak

phases near ZT22 (Figure S4A). Alto-

gether, ribosome biogenesis, one of

the most energy-consuming cellular

processes (Warner, 1999), appeared

diurnally and sequentially orchestrated,

possibly to occur in sync with sufficient

nutrient availability.

DNA repair, a crucial process for the

maintenance of genome integrity (Ciccia

and Elledge, 2010) (Figure 4B; Table S4),

was represented by 96 rhythmic nuclear

proteins. The majority of rhythmic pro-

teins involved in DNA repair peak be-

tween ZT7 and ZT12 (Figure S4B). Enzy-

matic DNA repair (Martineau-Pivoteau

et al., 1996) and telomere mainte-

nance (Chen et al., 2014) were shown to

have maximum activity during the night,

whereas nucleotide excision repair

(NER) peaked at the end of the light period

(Kang et al., 2009), like other processes
involved in ionizing radiation-induced DNA damage (Palombo

et al., 2015). The circadian clock has been involved in the process

(Fu et al., 2002; Kang et al., 2010). Here, we found that the pro-

teins involved in all DNA repair mechanisms show a rhythmic nu-

clear accumulation (Figures 4B and S4C). In addition, we

observed enrichment in proteins involved in DNA replication-

associated DNA repair around ZT9 (Mjelle et al., 2015), corre-

sponding to the time of maximal diurnal DNA synthesis in mouse

liver (Barnum et al., 1958; Echave Llanos et al., 1970). This obser-

vation suggests that increased DNA repair activity may be asso-

ciated with increased DNA replication around ZT9.
bolism 25, 102–117, January 10, 2017 107



Figure 4. Temporal Organization of Ribosome Biogenesis and DNA Repair

(A) Temporal accumulations and phase distributions of rhythmic nuclear proteins involved in sequential steps of ribosome biogenesis, namely rRNA synthesis (1)

and processing (2), and ribosome assembly (4). Temporal profiles of several complexes involved are found in Figure S4B.

(B) Peak time distributions of rhythmic nuclear proteins in the different mechanisms involved in DNA repair. Temporal profiles of several complexes involved are

found in Figure S4C.
Diurnal Nuclear Phosphoproteome and Predicted
Rhythmic Kinase Activities
Phosphorylation is involved in the regulation of both core clock

and clock outputs (Reischl and Kramer, 2011). We found two ki-

nase complexes, AMPK and CKII, showing diurnal accumulation

in the nucleus (Figure 3H). To further study the diurnal phospho-

proteome and its associated kinome activity, we used the same

nuclear extracts and performed SILAC MS after enriching for

phosphopeptides. Among the 4,689 phosphosites identified,

1,448 could be quantified in at least 8 out of 16 samples and
108 Cell Metabolism 25, 102–117, January 10, 2017
mainly comprised phospho-serine (Figure S5A; related to Fig-

ure 5). The limited ratio of quantified over identified phosphopep-

tides came from a limitation of the SILAC technique, for which

only lysine-containing phosphopeptides can be quantified. In

total, 154 of these quantified phosphosites (11%), distributed

within 113 canonical proteins, showed rhythmic nuclear accu-

mulation (FDR < 5%) (Table S5; related to Figure 5), with a

bimodal distribution of peak times located in the middle of the

day (ZT7) and night (ZT21), and amplitudes up to 60-fold (Figures

S5B and S5C). We could compare the rhythmic phosphorylation



Figure 5. Rhythmic Nuclear Phosphorylation and Inferred Kinase Activities

(A) Heatmap representation of rhythmically phosphorylated peptides (n = 92, right panel) with associated non-rhythmic nuclear proteins (left panel).

(B and C) Phase (B) and peak-to-trough (C) amplitude (log2) distributions for rhythmic nuclear phosphoproteins in (A).

(D) Individual examples of rhythmic phosphorylated sites (blue line, nuclear proteins; green line, nuclear phosphosites).

(E) Kinase motifs displaying rhythmic activities inferred from non-rhythmic nuclear proteins containing rhythmic phosphorylation sites through a linear model with

elastic-net regularization. Direction of lines indicates peak activity times, and distances to the center of solid lines indicate activity amplitudes of each motif.

(F) Inferred rhythmic activities of CSNK1A1, GSK3A, and MAPK14 compared with their respective nuclear protein accumulations.
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levels with the levels of the corresponding proteins for �90% of

identified phosphoproteins (Figure S5D). To identify putative

rhythmic phosphorylation activities, we distinguished two clas-

ses of rhythmic nuclear phosphosites, those with or without cor-

responding rhythmic nuclear protein accumulation (FDR < 0.05).

The first class of phosphosites (n = 52, 36%) with rhythmic nu-

clear proteins showed biphasic phase distribution and the

same high amplitudes as the corresponding proteins (Figures

S5E–S5G). Also, the rhythms of phosphosites were highly corre-

lated to the rhythms of nuclear proteins (Figures S5H and S5I),

indicating that rhythmic phosphorylation passively reflects the

rhythmic protein accumulation. Rhythmic phosphosites in the

second class (64%) corresponded to non-rhythmic proteins (Fig-

ure 5A) and showed a similar biphasic peak time distribution (Fig-

ure 5B), but hadmoremoderate amplitudes compared to the first

class (Figure 5C). Such rhythms (examples in Figure 5D) sug-

gested active regulation of phosphorylation by either kinases

or phosphatases. We exploited known kinase specificities (Hu

et al., 2014) to identify putative kinases with rhythmic activities.

Using two methods, a linear model and phase enrichment anal-

ysis (Experimental Procedures), we predicted 39 kinase motifs

with rhythmic activities (Figure 5E; Table S5). Three of these pre-

dicted kinases were detected in the nuclear proteome and

showed rhythmic accumulation with the same phases as the

predicted corresponding motif activities (Figures 5F and S5J),

suggesting that in those cases the rhythmic phosphorylation is

regulated by the cyclic nuclear accumulation of the kinase.

Among these kinases, several were known as regulators of the

circadian clock. For example, GSK3a and GSK3b, which are

known to phosphorylate and regulate BMAL1, CLOCK, and

REV-ERBa (Reischl and Kramer, 2011), presented a maximum

activity and/or nuclear accumulation during the day, whereas

CKIa and CKId, known as regulators of PER proteins, showed

a maximum activity and/or nuclear accumulation during the

night. In addition, we predicted several kinases involved in the

regulation of the cell cycle as having diurnal activities. Notably,

the cell-cycle-related kinases CDK4 and CDK6 showed a

maximum activity around ZT6, whereas CDK1 had a maximum

activity around ZT23, in opposite phase to its inhibitory kinase

WEE1 (Vermeulen et al., 2003).

Comprehensive Diurnal Transcriptional Landscape in
Mouse Liver
Proteins involved in transcription regulation were highly repre-

sented among rhythmic nuclear proteins and phosphoproteins

(Table S6; related to Figure 6). Indeed, we identified 80 TFs

and 99 transcription co-regulators showing robust diurnal nu-

clear accumulation (FDR < 0.05; Figures 6A and S6A–S6D;

related to Figure 6). Of those, the rhythms of 16 TFs and 17 co-

regulators persisted in Cry1/2 DKO mice (Figures 6A, S6B, and

S6D), indicating that these are most likely driven by feeding

rhythms. Among the rhythmic TFs identified in wild-type, we

found core clock components, known clock output regulators

(e.g., DBP, HLF, TEF, and NFIL3), and factors previously shown

to be involved in the coupling between the clock and meta-

bolism—for example, HSF1 (Reinke et al., 2008), FOXA family

members (Rouyer et al., 1997), the sterol-regulated SREBP1 (Gi-

lardi et al., 2014), and ETS family members, recently predicted to

be implicated in diurnal transcriptional activity in mouse liver
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(Fang et al., 2014). Among other identified rhythmic TFs, many

are related to hormone and metabolic regulations, involving

several nuclear receptors, notably GR (NR3C1), MR (NR3C2),

NR1H4, PPARa, and PPARd. We also noted the starvation/

feeding-dependent regulator of autophagy TFEB and ZKSCAN3

(Chauhan et al., 2013; Settembre et al., 2013), possibly linked

with rhythmic autophagy in mouse liver (Ma et al., 2011). Another

intriguing observation is the opposite phase between the antag-

onistic regulators of liver zonation TCF4 (encoded by the Tcf7l2

gene) and HNF4a (Gougelet et al., 2014).

We next assessed whether these diurnally accumulating TFs

in the nucleus induced rhythmic transcriptional activities. Specif-

ically, we used RNA-seq data under the same LD and night-

restricted feeding conditions (Atger et al., 2015) and considered

pre-mRNA accumulation as a proxy for transcription (Gaidatzis

et al., 2015). We then modeled transcription output as a linear

combination of transcriptional activities associated with known

DNA binding motifs of TFs (Balwierz et al., 2014; Rey et al.,

2011) located within DNase 1 hypersensitive regions (from

mouse ENCODE) and near gene promoters in mouse liver (Fig-

ure S6E; Table S6). The availability of nuclear protein expression

patterns allowed us tomakemore specific hypotheses regarding

the proteins responsible for time-specific transcriptional activ-

ities. In particular, the delays between TF accumulations and

maximal predicted activities of cognate motifs showed a

bimodal distribution around 0 and 12 hr (Figure 6B). Strikingly,

TFs annotated as transcriptional activators tended to peak in

phase with their motif activities, while repressors were in oppo-

site phase with motif activities. For example, the RORE element

was predicted as maximally active near ZT21, which coincided

with maximal expression of the activators RORA/RORC, while

the repressors NR1D1/NR1D2 (REV-ERBa and REV-ERBb)

peaked in opposition (Figure 6C). Further examples included

the E-box, with ARNTL (BMAL1) and CLOCK (activators); the

D-box and DBP, HLF, TEF (activators), and NFIL3 (repressors);

as well as nuclear receptors and regulators of hepatic meta-

bolism, including the recently proposed ETS family members

(Fang et al., 2014) (Figures 6C and S6F).

Many of the transcriptional co-regulators with acetylase and

deacetylase, ormethylase and demethylase activities, quantified

in our dataset showed a rhythmic nuclear accumulation, with

peak phases between ZT6 and ZT12 (Figures S6G and S6H).

We tested for correlations between the rhythm of these enzymes

and global changes in histone acetylation and methylation

by WB (Figure S6I). Despite a general decrease in histone modi-

fication near ZT10, we did not detect clear rhythm of these

modifications, consistent with genome-wide chromatin immu-

noprecipitation (ChIP) studies on those histone marks (Le

Martelot et al., 2012; Vollmers et al., 2012). In sum, themeasured

accumulation rhythms of many transcription regulators signifi-

cantly help understanding the origins of diurnal rhythms in

transcription.

Rhythmic Orchestration of Polyploidy in Mouse Liver
Numerous rhythmic nuclear proteins, phosphosites, and tran-

scriptional activities are involved in cell-cycle regulations, which

occurred at specific times during the day in a consistent tempo-

ral ordering (Figure 7A). Indeed, PLK2 kinase activity is involved

in centriole duplication at the G1/S transition (Warnke et al.,



Figure 6. Eighty TFs and �100 Transcrip-

tional Co-regulators with Clear Diurnal Os-

cillations Identified in the Nuclear Proteome

and Phosphoproteome

(A) Rhythmic TFs are represented by the squares

around the inner circle and co-regulators by the

empty dots around the outer circle. Each line

represents one TF; direction of lines indicates

peak time; lengths of solid lines represent peak-to-

trough amplitudes (log2). Colors of the lines and

squares encode if TFs are rhythmic only in the

nuclear proteome (pink), the phosphoproteome

(yellow), or both datasets (blue). For the co-regu-

lators, dot colors indicate their enzymatic activ-

ities. Persistence of the rhythmicity in Cry1/2 DKO

mice is indicated by a black asterisk.

(B) Time differences between TF accumulations

and corresponding motif activities for all rhythmic

TFs identified (white), or for TFs already charac-

terized as activators (green) and repressors (red).

(C) Peak times of TF nuclear accumulations (outer

circle) compared with activity phases of corre-

sponding DNA binding motif (inner circle) for core

clock regulators, clock output regulators, nuclear

receptors, and TFs regulated by metabolic cues.

Color code indicated the commonly accepted

transcriptional function of each TF, namely acti-

vator (green), repressor (red), or dual regulation

(orange).
2004) and peaked near ZT2 (Figure 5E). G1/S is also character-

ized by the inhibition of the E2F TF by the RB-HDAC complex,

which reached its maximum of nuclear accumulation around

ZT4 (Figure 3G) (Magnaghi-Jaulin et al., 1998). These findings

thus place the G1 phase between ZT0 and ZT6, synchronized

with the increase of nuclear MCM proteins (Figure S7D) known

to assemble at replication origins during late G1 and to be active

during the S phase (Costa et al., 2013). S phase entry is

controlled by RB phosphorylation in part by the cyclin

D-CDK4/6 complex, thus activating the E2F TF. Interestingly,

CDK4/6 kinase reached its maximum activity around ZT6
Cell Meta
(Figure 5E), just a few hours before the

maximum activity of the E2F motif (Fig-

ure S6E). RB accumulation and phos-

phorylation measured by WB in the

nucleus and the cytoplasm showed

decreased nuclear RB levels synchro-

nized with E2F motif activity, potentially

due to the nuclear exclusion of phosphor-

ylated RB (Jiao et al., 2006), preceding its

subsequent degradation in the cytosol

(Uchida et al., 2005) (Figures S7A and

S7B; related to Figure 7). Taken together,

these findings suggested that S phase

occurs between ZT6 and ZT15, concom-

itant with the observed maximum of DNA

repair (Figure 4B) and chromatin organi-

zation (Atger et al., 2015). Also, the

maximum nuclear accumulation of the

APC/C complex, which, when associated

with CDH1, prevents premature S phase
entry (Li and Zhang, 2009), and the maximum of WEE1 activity,

a kinase that prevents premature mitosis by inhibiting CDK1

but also plays a role in chromatin synthesis in S phase (Mahajan

andMahajan, 2013), further support this hypothesis. Following S

phase, G2 phase is characterized by cell growth. This step is in

part under the control of the TORC1 pathway, which coordinates

cell growth and cell-cycle progression according to nutrient

availability, in part through the control of ribosomes biogenesis

(Thapa et al., 2013). Since TORC1 activity is rhythmic, with a

maximum near ZT16, it is likely that this phase overlaps with

the G2 phase (Atger et al., 2015; Jouffe et al., 2013). Finally,
bolism 25, 102–117, January 10, 2017 111



Figure 7. Diurnal Orchestration of Polyploidy in Mouse Liver

(A) Summary of cell-cycle markers identified by the analysis of nuclear pro-

teome and phosphoproteome (outer circle) and inferred temporal windows of

cell-cycle phases around the clock (inner disk).

(B) Proportion of Ki-67-positive nuclei around the clock. Each of these

eight time points shows the mean and SEM of four independent biological

samples.

(C) Proportions of nuclei with different DNA contents (2N, 4N, and 8N)

measured by FACS analysis show diurnal variations. Each of these eight time

points shows the mean and SEM of four independent biological samples.

Cosine-fit curves are also shown.

(D) Representative IHC images of mouse liver sections harvested at ZT9 and

ZT21 (4 mm thick liver slices). Plasma membrane is stained using b-catenin,

and Mayer’s hematoxylin is used for nuclear staining. Horizontal black scale

bars represent 40 mm.

(E) Proportions of mono- (1 3 2N) and bi-nucleated diploid (2 3 2N), mono-

(1 3 4N) and bi-nucleated tetraploid (2 3 4N), and mono-nucleated octaploid

(1 3 8N) hepatocytes around the clock extracted from IHC image analysis.

Each time point shows the mean and SEM of four independent biological

samples.
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M phase entry is controlled by the CDC25-dependent activation

of cyclin B-CDK1 complex and characterized by the increased

phosphorylation of histone H3 on Ser10 (Figure S7C) (Hendzel

et al., 1997) and important modifications of the cellular cytoskel-

eton (Heng and Koh, 2010). Considering the maximum CDK1

activity found at the end of the night period (Figure 5E) synchro-

nized with maximum nuclear localization of complexes involved

in cytoskeleton organization (Figure 3), it is plausible that M

phase occurs near the night-day transition, which is temporally

consistent with the mitotic activity observed following partial

hepatectomy (Matsuo et al., 2003).

Thus, all evidence pointed toward aligned diurnal and cell cy-

cles (Bieler et al., 2014; Feillet et al., 2014), which was surprising

given that normal livers of 8- to 12-week-oldmice are not actively

proliferating. We estimated the fraction of cycling cells by stain-

ing for Ki-67 and found �5% of positive nuclei throughout the

day (Figure 7B). In the absence of clear readouts concerning

rhythmic cell division, we investigated whether the detected

cell-cycle activities might be linked with ploidy, since polyploidy

in hepatocytes of adult mouse is widespread and increases with

age (Gentric and Desdouets, 2014). We thus analyzed DNA con-

tent of liver nuclei by flow cytometry. Surprisingly, this revealed

antiphasic proportions of diploid nuclei (with two copies of chro-

mosomes, 2N) compared to tetraploid nuclei (4N) (Figure 7C),

suggesting a daily pattern of polyploidy. We then performed his-

tological slices of mouse liver, which, in addition to DNA content,

also allowed us to monitor the number of nuclei per cell, as well

as the cell sizes (Figures 7D, 7E, and S7E–S7G). The fraction of

bi-nucleated cells showed a diurnal pattern with maximum at

ZT9 (Figure S7E). Using nuclear size to estimate DNA content

(Figures S7F and S7G) (Martin et al., 2002), we could distinguish

a number of hepatocyte subtypes. This revealed that the

observed rhythm of DNA content (Figure 7C) came from two

populations of cells, namely bi-nucleated diploid (2 3 2N) and

mono-nucleated tetraploid (1 3 4N) cells, oscillating in opposite

phases, while other populations showed no rhythm (Figure 7E).

Moreover, we also observed a dramatic diurnal rhythm (60% in-

crease at the peak) in hepatocytes size, both for mono- and bi-

nucleated cells, with a maximum size at the night-day transition

(Figure 7F), in agreement with previous reports (Echave Llanos

et al., 1971; Gerber et al., 2013). This rhythm was in sync with

the glycogen content (Figure 7G), consistent with reports that in-

sulin-dependent cell swelling might positively regulate glycogen

synthesis (Lang et al., 1998). Thus, although the liver constitutes

a largely quiescent organ, we uncovered a diurnal rhythm in

polyploidy.

DISCUSSION

Though recent whole-cell diurnal proteomics studies could

detect more than 5,000 proteins, the coverage of lowly ex-

pressed regulatory proteins such as TFs was poor (Chiang

et al., 2014; Mauvoisin et al., 2014; Robles et al., 2014). To
(F) Diurnal oscillations of cell areas for mono- and bi-nucleated hepatocytes

extracted from IHC image analysis. Each time point shows the mean and SEM

of four independent biological samples.

(G) Temporal liver glycogen concentration. Each time point shows the mean

and SEM of three independent biological samples.



reduce sample complexity, we here performed a proteomics and

phosphoproteomics analyses of liver nuclei, while a similar

strategy recently analyzed diurnal rhythms in the mitochondria

(Neufeld-Cohen et al., 2016). Combining the accuracy of the

SILAC technology with time-series sampling in the liver allowed

us to reach above 70% coverage of the nuclear proteome.

The obtained signals allowed quantifications of all core-clock

components and many clock-controlled output TFs, in wild-

type mice as well as in clock-disrupted Cry1/2 DKO mice,

with temporal patterns that showed comparable quality as

ones obtained in transcriptome studies (Figure 1). These time

series data allowed us to show that the nuclear proteome is

subjected to very significant diurnal regulation (Figure 2A)

orchestrated mainly at the post-transcriptional level. As the

diurnal regulation of translation efficiency was recently shown

to concern only a few classes of genes (Atger et al., 2015),

our findings suggest that the diurnal regulation of protein stabil-

ity and nuclear transport of complexes are likely the most

important causes of rhythms in nuclear protein abundance (Fig-

ure 2). In particular, our quantitative and temporal approach

allowed us to dynamically monitor well-studied nuclear protein

complexes (Figure 3). This dynamic complexome identified

complexes peaking during the day, which were involved in tran-

scriptional regulation and also DNA repair. Of interest, the pro-

teins involved in DNA repair (Figure 4) constitute 18% of the

rhythmic proteins identified and are synchronized with the pre-

dicted time of DNA replication. On the other hand, complexes

peaking during the night were enriched in cytoskeleton organi-

zation, protein transport, proteolysis, and chaperoning of pro-

teins, suggesting a temporal compartmentalization of generic

biological functions of the liver nucleus. Also, the translation

of components of ribosomes and the translation machinery

occurred during the night, when nutrients are available. In

fact, ribosome biogenesis, representing 18% of the identified

rhythmic nuclear proteome, was rhythmically orchestrated in

accordance with our previous work (Atger et al., 2015; Jouffe

et al., 2013) (Figure 4).

We then performed a temporal nuclear SILAC phosphopro-

teome quantification, which identified hundreds of rhythmic

phosphorylation sites and allowed us to infer rhythmic kinase ac-

tivities (Figure 5). Although we cannot exclude the contribution of

rhythmic phosphatase activities (Reischl and Kramer, 2011),

some of the predicted kinase activities most probably originate

from the synchronized accumulation of the kinases in the nu-

cleus, as seen for CSNK1A1, GSK3A, and MAPK14 (Figure 5F).

Phosphorylation events can also regulate transcriptional activity.

In addition, for the 80 TFs and 99 co-regulators showing diurnal

rhythms in our nuclear proteomic screen, our phosphoproteome

approach also identified numerous TFs and co-regulators with

rhythmic phosphorylation sites (Figure 6). We also identified

rhythmic TFs whose rhythms persisted in clock-disrupted

mice, which allows us to distinguish effects of the circadian clock

versus metabolic cues and feeding/fasting-driven regulation of

diurnal transcription. Comprehensive and temporal measure-

ments on the abundance of transcription regulators in nuclei

are clearly powerful to explain rhythms in mRNA transcription,

since most previous efforts were limited to indirect computa-

tional inference using DNA motifs (Bozek et al., 2009; Fang

et al., 2014; Rey et al., 2011).
In addition to the diurnal regulation of transcription, DNA

repair, and ribosome biogenesis, one striking observation con-

sisted in the diurnal orchestration of cell-cycle activities and

the modifications of cell morphology and size (Figure 7). Modifi-

cation of hepatocyte size, and even liver size, was previously

observed (Echave Llanos et al., 1970, 1971; Gerber et al.,

2013; Leveille and Chakrabarty, 1967), but the mechanisms are

not fully explained. Maximal hepatocyte size occurred during

the hepatocyte growth phase (Figure 7F), in phase with maximal

glycogen synthesis (Figure 7G), but also ribosome biogenesis

(Figure 4A), which is a proxy for protein synthesis. Meanwhile,

the shrinking phase corresponded to glycogen breakdown and

liver protein secretion (Mauvoisin et al., 2014). However, the

typical fraction of liver mass represented by glycogen is about

5%, which is small compared to the observed 60% increase in

cell size. The regulation of cell volume was shown to play an

important role in hepatocyte metabolism, including glycogen

(Baquet et al., 1990) and protein synthesis (Stoll et al., 1992),

both of which are stimulated by cell swelling and inhibited by

cell shrinkage, in the absence of other stimuli (Lang et al.,

1998), implicating that cell size fluctuations could even be the

cause of these phenomena. Among the several factors reported

to regulate cell size, insulin is an important regulator of cell

swelling, which is counteracted by the opposite action of

glucagon (Schliess and H€aussinger, 2003). In parallel, insulin

can also induce actin polymerization (Theodoropoulos et al.,

1992), a phenomenon linked to hepatocyte swelling (Gerber

et al., 2013). Thus, insulin signaling may partly exert its influence

on rhythmic liver metabolism via the regulation of cell size and

hepatocyte structure. Diurnal hepatocyte swelling may also be

associated with the observed nuclear accumulation of cyto-

plasmic proteins when cells reached their largest size (Figures

2B and 7F). Indeed, while this might also reflect the presence

of nucleoplasmic structures (Malhas et al., 2011), recent studies

in cancer cells showed that cellular and nuclear deformation,

following cell migration, caused nuclear envelope rupture, fol-

lowed by entry of cytoplasmic proteins (Denais et al., 2016;

Raab et al., 2016). Such migration involves the same cytoskel-

eton complexes that we found to accumulate rhythmically at

the night-day transition (Figure 3A) (Etienne-Manneville, 2013).

Finally, we observed diurnal fluctuation of hepatocyte poly-

ploidy. Namely, the fraction of bi-nucleated diploid hepatocytes

peaked during the day, and mono-nucleated tetraploid hepato-

cytes peaked in opposite phase during the night, similar to ob-

servations in rat liver (Barb�aras�a, 1976; Bucher and Suppan,

1967). In liver, polyploidy increases with age and stress and is

thought to confer resistance to xenobiotic or nutritional injuries

(Gentric and Desdouets, 2014). However, depending on the

type of ploidy, hepatocytes do not have the same capacity to

divide after partial hepatectomy. Namely, while both mono-

and bi-nucleated cells entered the cell cycle, only a few of

them fully completed cell division. Indeed, only bi-nucleated

cell number decreases during regeneration, showing their

important contribution to the hepatocyte repopulation by giving

rise to two daughter cells (Miyaoka et al., 2012). Interestingly,

liver regeneration after partial hepatectomy (Barbason, 1970;

Matsuo et al., 2003; Souto and Llanos, 1985) follows a diurnal

rhythm with more rapid regeneration when the liver damage

occurred around ZT8, when bi-nucleated diploid cells reach their
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maximum level (Figure S7E). It is thus conceivable that the

diurnal proportion of these bi-nucleated diploid cells might be

responsible for the observed diurnal liver regeneration.

In conclusion, our in vivo measured quantitative nuclear tem-

poral proteomes and phosphoproteomes contribute an impor-

tant step toward the identification of a new diurnal biological

function orchestrated by the circadian clock and/or feeding

rhythms.
EXPERIMENTAL PROCEDURES

Animals

Animal studies conformed to the regulations of the veterinary office of the

Canton of Vaud. Cry1/2 DKO mice (van der Horst et al., 1999) in the C57BL/

6J genetic background are described in Bur et al. (2009). Ten-week-old

mice had free access to food and water in 12 hr light/12 hr dark cycles under

standard animal housing conditions. For all experiments, animals were fed

only at night starting 4 days before the experiment to control for genotype-

dependent feeding rhythms. SILAC mice were prepared as previously

described (Kr€uger et al., 2008; Mauvoisin et al., 2014).

Preparation of Whole-Cell Protein Extracts

Whole-cell extracts (TEs) were prepared as described in the Supplemental

Experimental Procedures.

Preparation of Nuclei and Cytoplasmic and Nuclear Protein Extracts

Nuclei were purified and extracts prepared as described in the Supplemental

Experimental Procedures.

SILAC-Based MS Analysis of Nuclear Proteomics and

Phosphoproteomics

TandemMS (MS/MS)-based SILAC proteomic analysis is mostly done as pre-

viously described (Mauvoisin et al., 2014) (details in Supplemental Experi-

mental Procedures). Raw MS data and search engine outputs were deposited

in the ProteomeXchange Consortium (proteomexchange.org) via the

PRIDE partner repository with the identifiers ProteomeXchange: PXD003818

for nuclear proteomics and ProteomeXchange: PXD004191 for nuclear

phosphoproteomics.

Annotation of Protein Localization

We used Uniprot to annotate protein localization, i.e., nuclear, shuttling, cyto-

plasmic, or cytoskeleton, for nuclear and total extracts. In addition, localization

of 522 rhythmic proteins in nuclear extract (Table S2) was manually corrected

or added according to the literature if protein localization in Uniprot was

missing.

Rhythmicity Analysis for Nuclear Proteins and Phosphoproteins

Rhythmicity in temporal nuclear accumulation of proteins and phosphopro-

teins used harmonic regression, as described previously (Mauvoisin et al.,

2014). To test whether rhythm of nuclear proteins in wild-type persists in

Cry1/2 DKO mice, we applied linear regressions combined with model selec-

tion, similar to Atger et al. (2015) (details in the Supplemental Experimental

Procedures).

Identification of Rhythmic Protein Complexes with SVD

To identify protein complexes showing diurnal accumulation in the nucleus, we

applied SVD to the matrix Egt , in which each row represents the standardized

temporal profile of each subunit belonging to the same protein complex

(details in the Supplemental Experimental Procedures).

Inference of Rhythmic Motif Activity of TFs with DNase

Hypersensitive Sites and Pre-mRNAs

Wedefined a non-redundant motif library and inferred rhythmicmotif activity of

TFs (details in the Supplemental Experimental Procedures).
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Inference of Kinases with Rhythmic Activities

We used phase enrichment analysis and linear model with regularization to

infer kinases with rhythmic activities (details in the Supplemental Experimental

Procedures).

Immunofluorescence and Confocal Microscopy

Purified nuclei were fixed using PFA 2% in PBS and seeded onto glass cover-

slips coated with poly-l-ornithine. Fixed nuclei were washed with PBS and per-

meabilized with Eth-OH / Met-OH for 5 min. After washing with PBS, nuclei

were incubated with LAMIN A/C and ACACA, FASN, NUP98 or ALB (anti-

bodies in PBS 1% Horse Serum (HS) for 1 hr at RT. Nuclei were rinsed with

PBS followed by incubation with Alexa Fluor 488 and 555 coupled secondary

antibodies in PBS 1%HS containing Hoechst (Life technologies) for 1 hr at RT.

They were imaged using Leica TCS SP8 confocal microscope after a final PBS

rinsing with images collected at 63x magnification. References for the anti-

bodies are given in Table S7, related to Experimental Procedures.

FACS Analysis

Fluorescence-activated cell sorting (FACS) analysis of purified nuclei is

detailed in the Supplemental Experimental Procedures.

Immunohistochemistry Experiment

Immunohistochemistry (IHC) analysis of mouse liver is detailed in the Supple-

mental Experimental Procedures.

IHC Image Segmentation and Estimation of Different Polyploid Cell

Populations

Whole IHC images were automatically segmented and nuclear areas, as prox-

ies of DNA contents, were estimated. It allowed us to estimate fractions of all

different polyploid cell populations (details in the Supplemental Experimental

Procedures).
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Raw MS data and search engine outputs have been deposited in the

ProteomeXchange Consortium under ID codes ProteomeXchange:
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and Bodén, M. (2011). Sorting the nuclear proteome. Bioinformatics 27, i7–i14.

Bieler, J., Cannavo, R., Gustafson, K., Gobet, C., Gatfield, D., and Naef, F.

(2014). Robust synchronization of coupled circadian and cell cycle oscillators

in single mammalian cells. Mol. Syst. Biol. 10, 739.

Binder, J.X., Pletscher-Frankild, S., Tsafou, K., Stolte, C., O’Donoghue, S.I.,

Schneider, R., and Jensen, L.J. (2014). COMPARTMENTS: unification and

visualization of protein subcellular localization evidence. Database (Oxford)

2014, bau012.

Bozek, K., Relógio, A., Kielbasa, S.M., Heine, M., Dame, C., Kramer, A., and

Herzel, H. (2009). Regulation of clock-controlled genes in mammals. PLoS

ONE 4, e4882.

Bucher, O., and Suppan, P. (1967). Amitose et fusion nucléaires au cours
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