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Abstract
We consider the problem of operator-valued kernel
learning and investigate the possibility of going be-
yond the well-known separable kernels. Borrowing
tools and concepts from the field of quantum com-
puting, such as partial trace and entanglement, we
propose a new view on operator-valued kernels and
define a general family of kernels that encompasses
previously known operator-valued kernels, includ-
ing separable and transformable kernels. Within
this framework, we introduce another novel class
of operator-valued kernels called entangled kernels
that are not separable. We propose an efficient two-
step algorithm for this framework, where the entan-
gled kernel is learned based on a novel extension of
kernel alignment to operator-valued kernels. The
utility of the algorithm is illustrated on both artifi-
cial and real data.

1 Introduction
There is a growing body of learning problems for which each
instance in the training set is naturally associated with a set
of labels (discrete and/or continuous). Output kernel learn-
ing algorithms approach these problems by learning simul-
taneously a vector-valued function in a reproducing kernel
Hilbert space (RKHS) and a positive semidefinite matrix that
describes the relationships between the labels [Dinuzzo et al.,
2011; Dinuzzo and Fukumizu, 2011; Ciliberto et al., 2015;
Jawanpuria et al., 2015]. The main idea of these methods is
to learn a separable operator-valued kernel.

Operator-valued kernels appropriately generalize the well-
known notion of reproducing kernels and provide a means
for extending the theory of reproducing kernel Hilbert spaces
from scalar- to vector-valued functions. They were intro-
duced as a machine learning tool in [Micchelli and Pontil,
2005] and have since been investigated for use in various ma-
chine learning tasks, including multi-task learning [Evgeniou
et al., 2005], functional regression [Kadri et al., 2016], struc-
tured output prediction [Brouard et al., 2016], quantile learn-
ing [Sangnier et al., 2016] and multi-view learning [Minh et
al., 2016]. The kernel function outputs then a linear opera-
tor (a matrix in the case of finite-dimensional output spaces)
which encodes information about multiple output variables.

A challenging question in vector-valued learning is what sort
of interactions should the operator-valued kernel learn and
quantify, and how should one build and design these kernels.
This is the main question investigated in the paper in the con-
text of non-separability between input and output variables.

Some classes of operator-valued kernels have been pro-
posed in the literature [Caponnetto et al., 2008; Alvarez et al.,
2012], with separable kernels being one of the most widely
used for learning vector-valued functions due to their sim-
plicity and computational efficiency. These kernels are for-
mulated as a product between a kernel function for the input
space alone, and a matrix that encodes the interactions among
the outputs. In order to overcome the need for choosing a ker-
nel before the learning process, output kernel learning meth-
ods learn the output matrix from data [Ciliberto et al., 2015;
Dinuzzo et al., 2011; Jawanpuria et al., 2015]. However there
are limitations in using separable kernels. These kernels use
only one output matrix and one input kernel function, and
then cannot capture different kinds of dependencies and cor-
relations. Moreover the kernel matrix associated to separable
kernels is a rank-one kronecker product matrix (i.e, computed
by only one kronecker product), which is restrictive as it as-
sumes a strong repetitive structure in the operator-valued ker-
nel matrix that models input and output interactions.

To go beyond separable kernels, some attempts have been
made to learn a weighted sum of them in the multiple ker-
nel learning framework [Kadri et al., 2012; Sindhwani et al.,
2013; Gregorová et al., 2017]. Another approach, proposed
by [Lim et al., 2015], is to learn a combination of a separable
and a transformable kernel. The form of the transformable
kernel is fixed in advance but allows to encode non-separable
dependencies between inputs and outputs. Despite these pre-
vious investigations, the lack of knowledge about the full po-
tential of operator-valued kernels and how to go beyond the
restrictive separable kernel clearly hampers their widespread
use in machine learning and other fields.
Contributions. In the present paper, we provide a novel
framework for characterizing and designing inseparable ker-
nels. By leveraging tools from the field of quantum com-
puting (Section 2), we introduce a novel class of kernels
based on the notion of partial trace which generalizes the
trace operation to block matrices. This class of partial trace
kernels we propose is very broad and encompasses previ-
ously known operator-valued kernels, including separable



and transformable kernels (Section 3). From the new class of
partial trace kernels we derive another new class of operator-
valued kernels, called entangled kernels, that are not separa-
ble. To our knowledge, this is the first time such operator-
valued kernel categorization has been performed. For this
class of kernels we develop a new algorithm called EKL (En-
tangled Kernel Learning) that in two steps learns a partial
trace kernel function (Section 4), and a vector-valued funcion.
For the first step of kernel learning, we propose a novel def-
inition of alignment between an operator-valued kernel and
labels of a multi-output learning problem. To our knowl-
edge, this is the first proposition on how to extend align-
ment to context of operator-valued kernels. Our algorithm
offers improvements to high computational cost usually asso-
ciated with learning with general operator-valued kernels. We
provide an empirical evaluation of EKL performance which
demonstrates its effectiveness on artificial data as well as real
benchmarks (Section 5).

Notation. We denote scalars, vectors and matrices as a, a
and A respectively. The notation A ≥ 0 will be used to
denote a positive semidefinite (psd) matrix. Throughout the
paper we use n as the number of labeled data samples and
p as the number of outputs corresponding to one data sam-
ple. We denote our set of data samples by {xi,yi}ni=1 on
X × Y , where X is a Polish space and Y is a separable
Hilbert space. Usually, X and Y are respectively Rd and Rp
equipped with the standard Euclidean metric. We use k(·, ·)
as a scalar-valued, and K(·, ·) as an operator-valued kernel
function; the corresponding kernel matrices are K ∈ Rn×n
and G ∈ Rnp×np, the latter containing blocks of size p × p.
We denote by K andH the reproducing kernel Hilbert spaces
associated to the kernels k and K, respectively.

2 Background
In this section we give some background about quantum en-
tanglement and review the basics of learning with operator-
valued kernels.

2.1 Background on Quantum Entanglement
Quantum entanglement is a fundamental feature of quantum
mechanics and quantum information. This section is not in-
tended to provide a broad overview or exhaustive survey of
the literature on quantum etanglement, but gives some notions
on entanglement as quantum property of mixed composite
quantum systems that inspired our entangled kernel design.
We refer the reader to [Horodecki et al., 2009], [Bengts-
son and Życzkowski, 2017], and [Rieffel and Polak, 2011,
chap. 10] for more background information.

Composite quantum systems are systems that naturally de-
compose into two or more subsystems, where each subsystem
itself is a proper quantum system. We focus here only on bi-
partite quantum systems, i.e., systems composed of two dis-
tinct subsystems. The Hilbert space F associated with a bi-
partite quantum system is given by the tensor productF1⊗F2

of the spaces corresponding to each of the subsystems. In
quantum mechanics, the state of a quantum system is repre-
sented by a state vector ψ ∈ F . However, it is also possible
for a system to be in a statistical ensemble of different state

Figure 1: Illustration of partial trace operation. The partial trace
operation applied to N × N -blocks of a pN × pN matrix gives a
p× p matrix as an output.

vectors. The sate of the quantum system in this case is called
a mixed state. It is characterized by a density matrix ρ which
in general takes the following form

ρ =
∑
j

pjψjψ
>
j ,

where the coefficients pj are non-negative and sum to one.
For a composite quantum system of two subsytems with a
density matrix ρ, the state of, say, the first subsystem is de-
scribed by a reduced density matrix, given by taking the par-
tial trace of ρ over F2. In the following we review the no-
tions of partial trace, separability and entanglement of bipar-
tite quantum systems.

We denote the set of linear operators from a Hilbert space
B to B as L(B). Let F1 and F2 be separable Hilbert spaces.

Definition 1. (partial trace)
Partial trace operator on L(F1 ⊗ F2) is the unique linear
operator trF2

: L(F1 ⊗ F2) → L(F1) such that trF2
(A ⊗

B) = A tr(B), ∀ A ∈ L(F1), B ∈ L(F2).

In finite dimensions, elements in L(A) and L(A⊗ B) are
simply matrices and block matrices of some sizes p × p and
pN × pN , and the partial trace is obtained by computing the
trace of each block in the input matrix (see Figure 1). The
notion of partial trace is a generalization of the trace oper-
ation to block structured matrices [Rieffel and Polak, 2011,
chap. 10]. Note that there are two ways of generalizing trace
to block matrices. Another possiblity would be so-called
block trace [Filipiak et al., 2018] where the result is sum of
diagonal blocks, but in this work we only consider the “block-
wise trace” definition.

In the case where the density matrix ρ of a mixed bipartite
state can be written as ρ = ρ1 ⊗ ρ2, where ρ1 and ρ2 are
subsystems’ density matrices on F1 and F2, the partial trace
of ρ with respect to F2 is ρ1. This form of mixed product
states is restrictive and does not exhibit correlations between
the two subsystems. A convex sum of different product states,

ρ =
∑
i

piρ
i
1 ⊗ ρi2, (1)

with pi ≥ 0 and
∑
i pi = 1, however, will in general rep-

resent certain types of correlations between the subsystems
of the composite quantum system. These correlations can be
described in terms of the classical probabilities pi, and are
therefore considered classical. States of the form (1) thus are
called separable mixed states. In contrast, a mixed state is
entangled if it cannot be written as a convex combination of



product states, i.e.,

@ ρi1, ρi2, pi ≥ 0 such that ρ =
∑
i

piρ
i
1 ⊗ ρi2. (2)

Entangled states are one of the most commonly encoun-
tered class of bipartite states possessing quantum correla-
tions [Mintert et al., 2009]. A challenging problem in quan-
tum computing is to identify necessary and suffcient condi-
tions for quantum separability. There is no practically effi-
cient necessary and suffcient criteria for identifying whether
a given ρ is entangled or separable [Horodecki et al., 2009].

2.2 Learning with Operator-Valued Kernels
We now review the basics of operator-valued kernels (OvKs)
and their associated vector-valued reproducing kernel Hilbert
spaces (RKHSs) in the setting of supervised learning. Vector-
valued RKHSs were introduced to the machine learning com-
munity by [Micchelli and Pontil, 2005] as a way to extend
kernel machines from scalar to vector outputs. Given a set of
training samples {xi,yi}ni=1 onX×Y , optimization problem

argmin
f∈H

n∑
i=1

V (f,xi,yi) + λ‖f‖2H, (3)

where f is a vector-valued function and V is a loss function,
can be solved in a vector-valued RKHS H by the means of a
vector-valued extension of the representer theorem.
Definition 2. (vector-valued RKHS)
A Hilbert space H of functions from X to Y is called a re-
producing kernel Hilbert space if there is a positive definite
L(Y)-valued kernel K on X × X such that:

i. the function z 7→ K(x, z)y belongs to H, ∀ z,x ∈
X , y ∈ Y ,

ii. ∀f ∈ H,x ∈ X , y ∈ Y, 〈f,K(x, ·)y〉H = 〈f(x),y〉Y
(reproducing property).

Definition 3. (operator-valued kernel)
A L(Y)-valued kernel K on X ×X is a function K(·, ·) :
X × X → L(Y); it is positive semidefinite if:

i. K(x, z) = K(z,x)∗, where superscript ∗ denotes the
adjoint operator,

ii. and, for every r ∈ N and all {(xi,yi)i=1,...,r} ∈ X ×Y ,∑
i,j〈yi,K(xi,xj)yj〉Y ≥ 0.

Theorem 1. (bijection between vector-valued RKHS and
operator-valued kernel) An L(Y)-valued kernel K on X ×X
is the reproducing kernel of some Hilbert spaceH, if and only
if it is positive semidefinite.
Theorem 2. (representer theorem)
Let K be a positive semidefinite operator-valued kernel and
H its corresponding vector-valued RKHS. The solution f̂ ∈
H of the regularized optimization problem (3) has the form

f̂(x) =

n∑
i=1

K(x,xi)ci, with ci ∈ Y. (4)

With regard to the classical representer theorem, here the
kernel K outputs a matrix and the “weights” ci are vectors.
The proofs of Theorem 1 and 2 can be found in [Micchelli
and Pontil, 2005; Kadri et al., 2016]. For further reading
on operator-valued kernels and their associated RKHSs, see,
e.g., [Caponnetto et al., 2008; Carmeli et al., 2010].

3 Partial Trace and Entangled Kernels
Some well-known classes of operator-valued kernels include
separable and transformable kernels. Separable kernels are
defined by

K(x, z) = k(x, z)T, ∀ x, z ∈ X , (5)

where T is a psd matrix in Rp×p (an operator in L(Y) in
the general case of any separable Hilbert space Y) and k is a
scalar-valued kernel. This class of kernels is very attractive
in terms of computational time, as it is easily decomposable.
However the matrix T acts only on the outputs independently
of the input data, which makes it difficult for these kernels
to capture input-output relations. In the same spirit a more
general class, sum of separable kernels, is given by

K(x, z) =
∑
l

kl(x, z)Tl, ∀ x, z ∈ X , (6)

where kl are a scalar-valued kernels and Tl ∈ Rp×p are psd.
It can capture different kinds of similarities but still assumes
that the unknown input-output dependencies can be decom-
posed into a product of two separate kernel functions that en-
code interactions among inputs and outputs independently.

Transformable kernels are defined by

K(x, z) =
[
k̃(Smx, Slz)

]p
l,m=1

, ∀ x, z ∈ X . (7)

Herem and l are indices of the output matrix and {St}pt=1 are
mappings which transform the data from X to another space
X̃ in which a scalar-valued kernel k̃ : X̃ ×X̃ → R is defined.
In contrast to separable kernels, here the mappings St operate
on input data while dependening on outputs; however they are
not intuitive nor easy to interpret and determine.

While it is straightforward to see that separable kernels be-
long to the larger class of sum of separable, the picture is less
clear for transformable kernels. The following examples clar-
ify this situation.
Example 1. On the space X = R, consider the kernel

K(x, z) =

(
xz xz2

x2z x2z2

)
, ∀ x, z ∈ X .

K is a transformable kernel, but not a (sum of) separable
kernel. We obtain thatK is transformable simply by choosing
k̃(x, z) = xz, S1(x) = x, and S2(x) = x2 in Eq. 7. From
the property of positive definiteness of the operator-valued
kernel, it is easy to see that the matrix T of a separable kernel
is symmetric (see Eq. 5), and since the matrix K(x, z) is not,
K is not a separable kernel.
Example 2. Let K be the kernel function defined as

K(x, z) = 〈x, z〉T, ∀ x, z ∈ X ,

where T ∈ Rp×p is a rank one positive semidefinite matrix.
K is both separable and transformable kernel. Since T is
of rank one, it follows that

(
K(x, z)

)
lm

= ulum〈x, z〉, with
T = uu>. We can see that K is transformable by replacing
in Eq. 7 k̃(x, z) by 〈x, z〉 and St(x) by utx, t = 1, . . . , p. K
is separable by construction.
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Figure 2: Illustration of inclusions among various operator-valued
kernel classes.

It is worth noting that separable kernels are not limited to
finite-dimensional output spaces, while transformable kernels
are. Figure 2 depicts inclusions among kernel classes dis-
cussed here and the two new families of operator-valued ker-
nels we propose: partial trace kernels and entangled kernels.

We now define two novel classes of operator-valued ker-
nels. The first one, class of partial trace kernels, encompasses
both (sum of) separable and transformable kernels, while the
second, entangled kernels, is a class of non-separable kernels.
We start by introducing the more general class of partial trace
kernels. The intuition behind this class of kernels is that in
the scalar-valued case any kernel function k can be written
as the trace of an operator in L(K). It is easy to show that
k(x, z) = tr

(
φ(x)⊗ φ(z)>

)
.

Definition 4. (Partial trace kernel)
A partial trace kernel is an operator-valued kernel function
K having the following form

K(x, z) = trK(Pφ(x),φ(z)), (8)

where Pφ(x),φ(z) is an operator on L(Y ⊗K), and trK is the
partial trace on K (i.e., over the inputs).

The class of partial trace kernels is very broad and encom-
passes the classes of separable and transformable kernels (see
Figure 2). From the definition of the partial trace opera-
tion, we can see that if we choose Pφ(x),φ(z) =

∑
l Tl ⊗(

φl(x) ⊗ φl(z)
>), we recover the case of sum of separa-

ble kernels. In the same way, if we fix [Pφ̃(x),φ̃(z)]
p
l,m=1 =(

φ̃ ◦Sl(x)
)
⊗
(
φ̃ ◦Sm(z)

)>
in Eq. 8, computing the trace of

each block using the partial trace will give the transformable
kernel. With this in mind, we can use the partial trace ker-
nel formulation to induce a novel class for operator-valued
kernels which are not separable, with the goal to characterize
inseparable correlations between inputs and outputs.
Definition 5. (Entangled kernel)
An entangled operator-valued kernel K is defined as

K(x, z) = trK
(
U
(
T⊗ (φ(x)⊗ φ(z)>)

)
U>
)
, (9)

where T is of size p× p, and U ∈ RpN×pN is not separable.

Here we have abused the notation by introducing N as the
dimensionality of feature representation φ(x). However we
do not restrict ourselves to finite dimensions and N in this
notation can also be infinite. In this definition, U not being

separable means that it cannot be written as U = A⊗B, with
A ∈ Rp×p and B ∈ RN×N . The term T ⊗ (φ(x) ⊗ φ(z)>)
represents a separable kernel function over inputs and out-
puts, while U characterizes the entanglement shared between
them. Some intuition to U can be seen from its role of an ”en-
tangled” similarity in the joint feature space. It is entangled in
the sense that cannot be decomposed into two ”sub”-matrices
of similarity between inputs and between outputs indepen-
dently. The partial trace is the operation used to recover the
sub-similarity matrix between the outputs from the entangled
joint similarity matrix. In the particular case of separability,
the partial trace will give the output metric. Choice of U is
crucial to this class of kernels. In the next section we develop
an algorithm that learns an entangled kernel from data.

4 Entangled Kernel Learning
In general, there is no knowing whether input and output data
are or are not entangled. In this sense, learning the entangled
K in Eq. 9 by imposing that U is inseparable can sometimes
be restrictive. In our entangled kernel learning approach we
do not impose any separability restriction, with the hope that
our learning algorithm can automatically detect the lack or
presence of entanglement. Key to our method is a reformu-
lation of the entangled kernel K (Eq. 9) via Choi-Kraus rep-
resentation. The infinite case is less treated in literature, and
for it we refer reader to [Attal, 2015].
Theorem 3. (Choi-Kraus representation [Choi, 1975; Kraus,
1983; Rieffel and Polak, 2011])
The mapK(x, z) = trK

(
U
(
T⊗ (φ(x)⊗ φ(z)>)

)
U>
)

can
be generated by an operator sum representation containing at
most pN elements,

K(x, z) =

r∑
i=1

Miφ(x)φ(z)
>M>

i , (10)

where Mi ∈ Rp×N and 1 ≤ r ≤ pN .

It is easy to see that our kernel is positive. Using this
formulation, entangled kernel learning consists of finding a
low-rank decomposition of the kernel by learning the matri-
ces Mi, i = 1, . . . , r (r � pN ), which ”merge” the matrices
T and U. While every entangled kernel can be represented
like this, the representation is not restricted only to entan-
gled kernels. Thus by learning the Mi we expect to learn the
meaningful relationships in the data, be they entangled or not.

Because the feature space can easily be of very large di-
mensionality (or infinite-dimensional), we consider an ap-
proximation to speed up the computation. For example ran-
dom Fourier features or Nyström approximation [Rahimi and
Recht, 2008; Williams and Seeger, 2001] give us φ̂ such that
k(x, z) = 〈φ(x), φ(z)〉 ≈ 〈φ̂(x), φ̂(z)〉. We note that our ap-
proximation is on scalar-valued kernel, not operator-valued,
although there are methods for approximating them, too, di-
rectly [Brault et al., 2016; Minh, 2016]. Our approximated
kernel is thus

K̂(x, z) =

r∑
i=1

M̂iφ̂(x)φ̂(z)
>M̂>

i , (11)



where φ̂(x) ∈ Rm and M̂i ∈ Rp×m, from where our goal is
to learn the M̂i. We can write our np× np kernel matrix as

Ĝ =

r∑
i=1

vec(M̂iΦ̂) vec(M̂iΦ̂)> (12)

=

r∑
i=1

(Φ̂> ⊗ Ip) vec(M̂i) vec(M̂i)
>(Φ̂⊗ Ip)

1

where Φ̂ = [φ̂(x1), · · · , φ̂(xn)] is of size m× n. Further, if
we denote D =

∑r
i=1 vec(M̂i) vec(M̂i)

>, we can write

Ĝ = (Φ̂> ⊗ Ip)D(Φ̂⊗ Ip).

To learn an entangled kernel, we need to learn the psd ma-
trix D. We adopt kernel alignment -based kernel learning
strategy introduced in [Cristianini et al., 2002; Cortes et al.,
2010] for scalar-valued kernels in the setting when every in-
put was associated with only one output, or label. Alignment
between two matrices M and N is defined as

A(M,N) =
〈Mc,Nc〉F
‖Mc‖F ‖Nc‖F

(13)

where subscript c refers to centered matrices. We extend the
concept of alignment into case of multiple outputs and con-
sider a convex combination of two such alignments. Namely
our optimization problem is

max
D

(1− γ)A
(
trp(Ĝ),Y>Y

)
+ γ A

(
Ĝ,yy>

)
(14)

where γ ∈ [0, 1], y = vec(Y), and Y is of size p×n, contain-
ing the labels associated to data sample i on its ith column.
We note that by applying Lemma 2.11 from [Filipiak et al.,
2018], we can write trp(Ĝ) = Φ̂>trp(D)Φ̂.

Intuitively the first alignment learns a scalar-valued kernel
matrix that can be obtained via partial trace applied to the
more complex operator-valued kernel, while the second term
focuses on the possibly entangled relationships in the data.
Indeed, one possibility for using the entangled kernel frame-
work is to learn a scalar-valued kernel for multi-output prob-
lem and to use this kernel in machine learning algorithms.

The optimization problem is solved with gradient-based
approach. To make sure that the resulting kernel is valid
(psd), we write D = QQ> with Q of size mp × r with r
at most mp, and perform the optimization over Q. The gra-
dients for alignment terms are straightforward to calculate.
The optimization is performed on sphere manifold as a way
to regularize D.2 After we have learned the entangled kernel,
we solve the learning problem by choosing the squared loss

min
c
‖ vec(Y)− Ĝc‖2 + λ〈Ĝc, c〉. (15)

For this c update we can find the classical closed-form solu-
tion, c = (Ĝ + λI)−1 vec(Y). Note that this computation
is, by considering the entangled structure of Ĝ, more com-
putationally efficient than a general (say, some transfomable)

1[Petersen and Pedersen, 2008, Eq. 520]
2www.manopt.org/ ; pymanopt.github.io/

Algorithm 1 Entangled Kernel Learning (EKL)

Input: matrix of features Φ, labels Y
// 1) Kernel learning: (D = QQ>)
Solve for Q in eq.14 within a sphere manifold
// 2) Learning the predictive function:
if Predict with scalar-valued kernel then

cK = (trp(Ĝ) + λI)−1Y> O(m3 +mnp)
else

cG = (Ĝ + λI)−1 vec(Y) O(r3 +mnp2)

Return D = QQ>, c

operator-valued kernel. Generally we can say that the com-
plexity of predicting with nonseparable operator-valued ker-
nels is O(n3p3). In our proposed network, however, we can
apply Woodbury formula for the matrix inversion and only in-
vert a r×r matrix, giving total complexity ofO(r3+mnp2).
Moreover it is possible in our kernel learning framework to
extract a scalar-valued kernel, K = trp(Ĝ), and use that in
predicting with traditional cost of O(n3), or O(m3 +mnp)
if taken advantage of the form of the entangled kernel. The
parameters γ and λ can be set with cross-validation, first ca-
clulating the kernel learning step with various γ parameters
and then considering the various λ for each of them.

5 Experiments
In this section the performance of our algorithm is illustrated
with artificial and real datasets. The algorithms compared
in these settings are: EKL3; our proposed Entangled Kernel
Learning algorithm, OKL [Dinuzzo et al., 2011]; a kernel
learning method for separable kernels (we use the code pro-
vided by the authors4), and KRR; kernel ridge regression.
Furhtermore, we investigate performance of predicting with
scalar-valued kernel extracted from the operator-valued ker-
nel matrix EKL learns, and call this ptrEKL. In all the ex-
periments we cross-validate over various regularization pa-
rameters λ, and for EKL also γs controlling the combination
of alignments. In the experiments we consider (normalized)
mean squared error (nMSE) and normalized improvement to
KRR (nI) [Ciliberto et al., 2015] as error measures.

5.1 Artificial Data
EKL is expected to learn complex relationships within the
data. To illustrate this, we created data with bi-linear model
TCA + ICK = Y, where T, C and A are randomly cre-
ated p×p, p×n, and n×n matrices respectively. K is linear
kernel calculated from randomly generated data X ∈ Rn×d;
this kernel is given to the learning algorithms along with
noisy labels Y. We can see that when p is larger than n (or
comparable) the predictive capabilities of EKL are much bet-
ter than for other methods. Here predicting with the scalar-
valued kernel extracted form learned entangled kernel gives
the best results (Figure 3(a)).

3The code will be made available at RH’s personal webpage
4http://people.tuebingen.mpg.de/fdinuzzo/okl.html
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number of outputs (left), and fixed amount of outputs and varying inputs (right).
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(b) Results on Concrete data set with vary-
ing amount of training data (n) used.

Figure 3: Results on simulated (left) and Concrete dataset (right). The advantage of learning complex relationships is the biggest on small n.

n = 50 n = 100 n = 200 n = 1000
method nMSE nI nMSE nI nMSE nI nMSE nI

KRR 0.2418 ± 0.0281 0.0000 0.1668 ± 0.0097 0.0000 0.1441 ± 0.0037 0.0000 0.1273 ± 0.0006 0.0000
OKL 0.2445 ± 0.0296 -0.0109 0.1672 ± 0.0099 -0.0026 0.1442 ± 0.0037 -0.0009 0.1273 ± 0.0006 -0.0000
EKL/ptrEKL 0.2381 ± 0.0250 0.0139 0.1661 ± 0.0097 0.0040 0.1440 ± 0.0037 0.0003 0.1273 ± 0.0006 0.0001

Table 1: Results on Sarcos dataset with various number of training samples used, averaged over 10 data partitions. The advantage of learning
complex relationships decreases with amount of data samples increasing.

n = 5 n = 10
method nMSE nI nMSE nI

KRR 0.951 ± 0.101 0.000 0.813 ± 0.141 0.000
OKL 1.062 ± 0.250 -0.092 0.900 ± 0.196 -0.094
EKL/ptrEKL 0.840 ± 0.084 0.124 0.722 ± 0.036 0.107

Table 2: Results on Weather data set averaged over 5 data partitions.

5.2 Real Data

We have considered the following regression data sets: Con-
crete slump test (UCI dataset repository) with 103 data sam-
ples and three output variables; Sarcos5 is a dataset character-
izing robot arm movements with 7 tasks; Weather6 has daily
weather data (p = 365) from 35 stations.

The main advantage of learning complex dependencies in
the data lies in the setting where number of samples is rel-
atively low; a phenomenon observed already in output ker-
nel learning setting [Ciliberto et al., 2015; Jawanpuria et al.,
2015]. With small amounts of data learning the complex re-
lationships in EKL is even more beneficial than learning the
output dependencies of OKL. Figure 3(b) shows this advan-
tage on Concrete data set when number of instances used in
training is small. Here, in contrast to our simulated data, EKL
performs better than ptrEKL. For Sarcos data set we consider
the setting in [Ciliberto et al., 2015] and show the results in
Table 1 (predicting is done to all 5000 test samples). Simi-
larly, we observe that the advantages of using EKL diminish
with more data samples added to the problem. This is also
clearly seen in the Weather data set, where number of outputs
is much larger than the number of data samples (Table 2).

5www.gaussianprocess.org/gpml/data/
6https://www.psych.mcgill.ca/misc/fda/

6 Conclusion
In this work we shed new light on meaning of insepara-
ble kernels by defining a general framework for constructing
operator-valued kernels based on the notion of partial trace
and using ideas borrowed from the field of quantum com-
puting. Instances of our framework include entangled ker-
nels, a new conceptually interesting class of kernels that is
designed to capture more complex dependencies between in-
put and output variables as the more restricted class of sepa-
rable kernels. We have proposed a new algorithm, entangled
kernel learning (EKL), that learns this entangled kernel and a
vector- or scalar-valued function in two steps. The first step
that learns the entangled kernel uses a definition of kernel
alignment, extended here for use with operator-valued ker-
nels with help of partial trace operator. In contrast to out-
put kernel learning, EKL is able to learn inseparable kernels
and can model a larger variety of interactions between input
and output data. Moreover, the structure of the entangled ker-
nels enables more efficient computation than that with general
operator-valued kernels. Our illustration on artificial data and
experiments on real data give validation to our approach.

In the future work the potential of EKL should be inves-
tigated further, especially the effect of very small number of
columns in matrix Q, in low rank kernel setting. The two-
step kernel learning is proven to produce good predictors with
alignment to ideal kernel [Cortes et al., 2010]. It is reasonable
to expect that some similar guarantees could be formulated
also for our setting, as it is provably effective in practice.
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Cédric Auliac, and George Michailidis. Operator-valued
kernel-based vector autoregressive models for network in-
ference. Machine learning, 99(3):489–513, 2015.

[Micchelli and Pontil, 2005] Charles A. Micchelli and Mas-
similiano Pontil. On learning vector-valued functions.
Neural Computation, 17:177–204, 2005.

[Minh et al., 2016] Ha Quang Minh, Loris Bazzani, and Vit-
torio Murino. A unifying framework in vector-valued re-
producing kernel hilbert spaces for manifold regularization
and co-regularized multi-view learning. JMLR, 17(25):1–
72, 2016.

[Minh, 2016] Ha Quang Minh. Operator-valued Bochner
theorem, Fourier feature maps for operator-valued ker-
nels, and vector-valued learning. arXiv preprint
arXiv:1608.05639, 2016.

[Mintert et al., 2009] F Mintert, C Viviescas, and A Buch-
leitner. Basic concepts of entangled states. In Entangle-
ment and Decoherence, pages 61–86. Springer, 2009.

[Petersen and Pedersen, 2008] Kaare Brandt Petersen and
Michael Syskind Pedersen. The matrix cookbook. Techni-
cal University of Denmark, 7(15):510, 2008.

[Rahimi and Recht, 2008] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines. In NIPS,
pages 1177–1184, 2008.

[Rieffel and Polak, 2011] Eleanor G. Rieffel and Wolf-
gang H. Polak. Quantum computing: A gentle introduc-
tion. MIT Press, 2011.

[Sangnier et al., 2016] Maxime Sangnier, Olivier Fercoq,
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and Aurélie C. Lozano. Scalable matrix-valued kernel
learning for high-dimensional nonlinear multivariate re-
gression and granger causality. In UAI, 2013.

[Williams and Seeger, 2001] Christopher KI Williams and
Matthias Seeger. Using the nyström method to speed up
kernel machines. In NIPS, pages 682–688, 2001.


	Introduction
	Background
	Background on Quantum Entanglement
	Learning with Operator-Valued Kernels

	Partial Trace and Entangled Kernels
	Entangled Kernel Learning
	Experiments
	Artificial Data
	Real Data

	Conclusion

