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Transverse turbulent bands in rough plane Couette flow

Abstract
In most subcritical planar shear flows, the transitional regime features oblique large-scale laminar-turbulent pat-
terns. So far, such laminar-turbulent patterns have only been investigated in flows over perfectly smooth walls and
little attention has been devoted to cases with rough surfaces as found in most practical engineering, urban appli-
cations, and in nature. In this study, we investigate laminar-turbulent patterns in plane Couette flow with one rough
wall by means of direct numerical simulation, as a function of the Reynolds number and of the roughness height.
The roughness is modeled using a force term in the Navier–Stokes equations. The focus of this study is on a new
regime featuring non-oblique turbulent bands transverse to the motion of the walls, and separated by arbitrary long
laminar gaps. This regime is found when the wall is sufficiently rough. This transverse turbulent band occurs at
Reynolds numbers just below the onset of self-sustained turbulence found in the smooth wall case. The localized
turbulence patches have a streamwise extent as large as 50–180 gap widths, decreasing with decreasing Reynolds
number. The turbulent fraction as well as the band width show a linear relationship with the Reynolds number.

1. Introduction

Most wall-bounded shear flows become turbulent following a subcritical transition scenario. A striking consequence
of the competition between laminar and turbulent dynamics is the possibility of spatial coexistence of laminar flow and
sustained turbulent patches at the lowest Reynolds numbers, see the comprehensive review by Manneville (2016). In-
vestigation of such coexistence regimes becomes demanding in terms of statistics near the lowest limit in terms of the
Reynolds number, where the turbulent fraction becomes small and the flow field exhibits strong intermittency in both
space and time (Shi et al., 2013; Lemoult et al., 2016; Sano & Tamai, 2016; Chantry et al., 2017; Mukund & Hof 2018).
In plane Couette flow, the transitional regime occurs for 1300 ≤ Rew ≤ 1600, where Rew = Uwd/ν is based on the relative
wall velocity Uw, the channel gap d, and the kinematic viscosity ν. It features oblique large-scale laminar-turbulent stripe
patterns that proliferate in the homogenous directions (Prigent et al., 2002; Barkley & Tuckerman, 2005; Tsukahara et
al, 2009; Duguet et al., 2010; Tuckerman & Barkley, 2011). Each turbulent band has well-defined width and angle with
respect to the mean flow direction. The wavelength of the patterns and the oblique angle of the bands vary gently with
the Reynolds number. Similar stripe patterns can occur in higher Reynolds number flows, in the presence of either stable
stratification or Coriolis forces. Even in such cases, the turbulent bands are oblique and have an angle comparable to those
in the neutrally-stratified flow (Tsukahara et al., 2010; Tsukahara, 2011; Brethouwer et al., 2012). Despite recent progress
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Fig. 1 Configuration of plane Couette flow with a rough fixed bottom wall.

in elucidating the mechanisms for the observed obliqueness (Duguet & Schlatter, 2013), several points still remain to be
better understood and quantified like the physical reasons for the laminar-turbulent coexistence, its self-organization, and
its dynamics.

Most experimental studies of wall-bounded shear flows were performed with carefully designed smooth walls, while
numerical studies of the laminar-turbulent pattern have exclusively focused on perfectly smooth walls. However, practi-
cal/natural solid surfaces in engineering applications feature wall roughness. A crucial issue here is the robustness of the
laminar-turbulent patterning in the presence of wall roughness. This task involves a clear cartography of the regime of
laminar-turbulent patterns in a parameter space including the parametrization of the roughness elements.

Ishida et al. (2017) studied numerically the transitional regime of plane Couette flow with rough walls by adding a
body force mimicking the roughness effect. The competition between the induced body force and shear-induced instabil-
ities led to a variety of transition sequences and structures. The main parameters that were varied in their simulation were
the roughness height and the Reynolds number. They determined the flow states in the parameter space spanned by these
two parameters using the numerical observations. An interesting prospect arising from the work of Ishida et al. (2017)
is that the localized turbulence can form a non-oblique pattern when one wall is sufficiently rough. Such a plane Couette
flow is asymmetric since one wall is rough and the other smooth. They actually reported a transverse turbulent band (TTB,
hereafter) that was perpendicular to the motion of the walls in the range Rew = 900–1000, instead of the oblique turbulent
band (OTB) expected for the subcritical transition scenarios between smooth walls.

In this study, by means of direct numerical simulation (DNS) of plane Couette flow with one strongly rough wall, the
size of the TTB and its dependence on the Reynolds number are investigated. In addition, we refine the parameter space
for the formation of the TTB. Smooth plane Couette flow is a convenient prototype for the study of subcritical transition,
since its base flow has a simple analytical expression that is linearly stable for all values of the Reynolds number. We
employ a periodic numerical domain large enough to accommodate at least one wavelength of a laminar-turbulent pattern
in the transitional range. The choice of rough Couette flow is motivated by the following reasons : the smooth wall case
is well documented in the literature with respect to pattern formation, and this configuration is realistic as attested by
several experimental studies (Prigent et al., 2002; Tsukahara et al., 2010; Couliou & Monchaux, 2017). The roughness
effect on other shear flows with laminar-turbulent intermittency deserves separate studies. In the present investigation, the
roughness is distributed along one wall only and is modelled numerically using a parametric model suggested recently in
the context of higher-Re shear flows (Busse & Sandham, 2012).

2. Flow case and numerical procedure

We consider fully-developed plane Couette flow (pCf), i.e., the flow sheared between two parallel infinite plates
moving with respective velocities 0 and Uw in the x direction. The two walls are separated by a gap d in the y direction
normal to the walls. A rough surface is assumed only on the static bottom wall at y = 0, while the moving wall at y = d is
considered perfectly flat. Figure 1 schematically illustrates the flow configuration, the spanwise direction being denoted
as z. The computational domain has size Lx × Ly × Lz, and periodic boundary conditions are applied in both x and z
directions.

The flow, i.e., the velocity field [u, v, w](x, y, z, t) and the pressure p(x, y, z, t), are governed by the incompressible
Navier–Stokes equations with no-slip boundary conditions at the walls, but for the rough case the governing equations
are modified by the addition of a volumetric drag force term. The roughness effect is incorporated in our own DNS code
without any change in the boundary conditions and the Cartesian grid system. The modified Navier–Stokes equation (with
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Table 1 Main parameters and numerical conditions.

Reference domain (Ly = d) Long domain (Ly = d)
Rew h/d αid Lx × Lz Nx × Ny × Nz Lx × Lz Nx × Ny × Nz Δx+, Δz+ Δy+max Δy+min

800–1000 0.2 1.0 136d × 68d 1024 × 96 × 512 544d × 34d 4096 × 96 × 256 2.35–3.19 0.43–0.58 0.018–0.024

time t and the density ρ) reads

∂ui

∂t
+ u
∂ui

∂x
+ v
∂ui

∂y
+ w
∂ui

∂z
= −1
ρ

∂p
∂xi
+ ν

(
∂2ui

∂x2 +
∂2ui

∂y2 +
∂2ui

∂z2

)
− αiFi(y)|ui|ui. (1)

The last term on the right-hand side represents the additional drag force induced by all roughness elements together. It
is exactly the body force used by Busse & Sandham (2012) to model the effect of roughness. Note that the summation
convention with respect to (·)i does not apply for this term in Eq. (1), in which αi is the roughness factor and Fi the
roughness shape function according to the terminology of Busse & Sandham (2012). That force on a unit volume alone
also reads⎧⎪⎪⎨⎪⎪⎩

−ρ
(
αxu|u|, αyv|v|, αzw|w|

)
if y ≤ rh = 2h,

(0, 0, 0) if y > rh = 2h.
(2)

This term is quadratic with respect to the velocity field, inducing a dominant form drag expected at high Reynolds numbers
to scale with the dynamic pressure. Drag terms of a comparable form −|u|ui were used in several numerical studies of
atmospheric boundary layer flows over plant canopies (Su et al., 1998; Finnigan, et al., 2009). In our study, we chose the
expression −|ui|ui suggested by Busse & Sandham (2012). Such a form ensures that this term always plays a damping
role against the flow motions near the rough surface. The roughness factor α accounts for the spatial density (with a
unit of m−1) of unspecified roughness elements, therefore the model should be considered as a statistical one. We chose
αx = αy = αz = 1 (corresponding to a mildly dense array of roughness elements) and we confirmed that the present results
are qualitatively insensitive to variations in α. The shape function Fi models the wall-normal distribution of the roughness
elements. Based on the original study by Busse & Sandham (2012), we employ a simple box profile:

Fi(y) =
⎧⎪⎨⎪⎩ 1 if y ≤ rh = 2h

0 if y > rh = 2h
(3)

with rh the height of the roughness sublayer above which the drag term vanishes, see Fig. 1. In the following, as in previous
studies, we use a mean height h to describe the roughness height. As for the profile given by Eq. (3), h = rh/2. Another
Gaussian profile for Fi was also tested in Ishida et al. (2017). No significant qualitative difference in phenomenological
results was found using the two different profiles for Fi(y).

The governing equations include the equation of continuity

∂u j

∂x j
= 0, (4)

are coupled by the fractional step method, and discretized using finite differences, namely a fourth-order central scheme
in the x and z directions and a second-order scheme in the y direction with a non-uniform grid. Time advancement was
carried out using the second-order Adams–Bashforth method, whereas the second-order Crank–Nicolson method was
used for the viscous term in y. The pressure Poisson equation is solved in Fourier space using fast Fourier transforms in
x and z, and a tridiagonal solver was employed in y. The DNS code was adapted and validated in earlier studies of fully
turbulent and transitional pCf with smooth walls (Tsukahara et al., 2006, 2009).

The parametric study was conducted in a range of Rew=750–1200 and h=0.075–0.25d, aiming at a comprehensive
picture of the complex variations in flow state and structure in rough pCf. The domain Lx×Ly×Lz was set to 136d×d×68d
using a grid with Nx × Ny × Nz = 1024 × 96 × 512 points. This size was selected after preliminary DNSs with different
computational domains, as described in Section 3.2. The present basic domain is larger than that of Ishida et al. (2017)
and sufficient to capture the OTB, whose structure displays long correlations in both x and z directions, of the order of
10d–100d. The main purpose is a deeper investigation of the new regime characterized by the TTB identified in Ishida et
al. (2017). In order to capture such a one-dimensional coherent structure, which may show long correlation in x but not
in z, a long (in x) and narrow (in z) computational domain would be reasonable in the context of limited computational
resources. A domain size of 544d × d × 34d was chosen for the additional numerical investigation of TTB in a more
limited parameter range (Rew, h/d) = (800–1000, 0.2), where the appearance of the TTB is expected.
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Fig. 2 Two-dimensional contours of instantaneous u′/Uw shown by colours and low-pass filtered large-scale
flow (U,W) shown as vectors at y/d = 0.5. The contour levels are the same in the two figures, and the
reference-vector length is shown in the top left corner of each panel.

Table 1 summarizes the numerical conditions especially for the main investigation of the TTB, including the grid
resolution Δx+i in wall units. The present resolutions are comparable to those used by Busse & Sandham (2012), and
are fine enough to capture fine-scale near-wall eddies as well as the large-scale laminar-turbulent patterns. Note that the
usual oblique patterns are numerically robust in this range of parameters, according to the extended resolution study by
Manneville & Rolland (2011). The time increment Δt is small enough to satisfy the Courant-Friedrichs-Lewy criterion
(u jΔt/Δx j < 0.5).

3. Results and discussion
3.1. Transverse turbulent band (TTB)

Figures 2(a) and 2(b) display in-plane visualizations of a TTB and an OTB (oblique turbulent band) found at
(Rew, h/d) = (1000, 0.2) and (Rew, h/d) = (1100, 0.1), respectively. Here, the domain size of Lx ×Ly×Lz = 68d×d×34d
is the same as in Ishida et al. (2017). Both figures reveal a single band of localized turbulence with a streamwise width
of about 30d. Inside the turbulent band, we can see many quasi-streamwise streaks of length less than 20d and spanwise
spacing of O(d). This streak cluster allows us to recognize the macroscopic laminar-turbulent interfaces. The laminar-to-
turbulent (L→T with respect to x) and turbulent-to-laminar (T→L) interfaces in Fig. 2(a) are along the z-axis, while they
are parallel to the domain diagonal in Fig. 2(b). The OTB has an oblique angle of 27◦ (= tan−1 0.5) with the x axis, which
is a typical order of magnitude reported by several teams (see Tuckerman & Barkley, 2011 and references therein).

Besides the angle of the laminar-turbulent interface, there are other strong differences between TTB and OTB. As
can be seen in Fig. 2, the intensity of the streaks differ between the two cases. For the isovalues displayed at y/d = 0.5,
whereas in Fig. 2(b) both low- and high-speed streaks can be seen along both laminar-turbulent interfaces for the OTB,
in Fig. 2(a) only the most intense streaks can be seen at the interfaces of the TTB. Note here that, by convention, the
impermeable wall is located at y = 0 (no virtual origin), while the smooth wall is at y/d = 1. The current asymmetry with
respect to y does not allow to make meaningful comparisons at the exact mid-gap value of y/d = 0.5. Instead, the velocity
contours might be plotted at the apparent mid-gap value defined by the minimum of ∂ux(y)/∂y for y ≥ rh (above the rough
region), but such a procedure would make the comparison of the cases with different roughness heights more complex.

In addition to the above-mentioned difference in the streaks observed inside the turbulent regions, the accompanying
large-scale flow (LSF) is qualitatively different between the two cases. Figure 2 shows velocity vectors of a low-pass
filtered instantaneous field for each case. The LSF is obtained by the application of a low-pass filter that selects only the
lowest-order modes in the x and z directions. The spectral cutoff criterion was chosen to extract the modes (mx,mz) =
(0,±1), (±1, 0), (±1,±1), and (±2, 0) in this post processing. The exact choice of the filter kernel matters little as long as
the scale separation between the fine-scale structures such as streaks and the LSF is sufficiently large. As clearly seen in
Fig. 2, the LSF in the case of the OTB has a significant spanwise component, which is absent in the case with the TTB.
More specifically, Fig. 2(b) demonstrates that a spanwise LSF component exists, directed towards negative z around the
L→T interface of the OTB and in the opposite direction near the T→L interface. This large-scale spanwise flow along
the band is a key feature of the OTB (Duguet & Schlatter, 2013). The case with the TTB, presented in Fig. 2(a), does not
feature a LSF in the spanwise direction (or along the band). This deviation of the LSF at the interfaces may be explained
by the presence of the roughness region, as proposed in the previous paper (Ishida et al., 2017). On the other hand, the
streamwise component of the LSF for both the TTB and OTB has a similar magnitude and pattern. Further investigations
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Fig. 3 Visualizations of the instantaneous streamwise velocity in the x-z plane at y/d = 0.5 for Rew = 1000 and
h/d = 0.2 in DNS with different domain sizes. Contours are normalized by the wall speed Uw. In the
subfigures (a1) and (a2) the domain size is Lx × Lz = 68d×34d, in (b) 136d×68d, and in (c) 272d×136d.

of the LSF and its relevance to the mechanisms of TTB and OTB will be presented in future works.
We may notice that the turbulent band is wider for the TTB than for the OTB, see Fig. 2, although the Reynolds

number is lower in the former case. Wider turbulent bands correspond to a larger turbulent fraction, which suggests that
a decreasing Reynolds number delays the decaying process. The increased turbulent fraction, seen in the TTB case for
h/d = 0.2, compared to the case with the OTB and h/d = 0.1, implies an enhancement of the velocity fluctuations (i.e. the
streaks) by the wall roughness. The Reynolds number dependence of the band width and the turbulent fraction for fixed
h/d = 0.2 will be discussed in Sections 3.3 and 3.4.

3.2. Domain size versus band width
As described in Section 3.1, an OTB evolves into a TTB by slightly changing the parameters. In order to verify that

the regime of TTB is not an artefact of the spatial periodicity assumption, larger additional DNSs have been performed for
(Rew, h/d) = (1000, 0.2), for which Ishida et al. (2017) reported a flow state with one or several laminar spots evolving
in a turbulent environment, rather than a well-organized turbulent band. However, the present DNS reveals a TTB as the
final flow state at equilibrium for the same parameter set, as reported in this section. This finding motivated us to carry
out the following longer simulations inside larger computational domains.

All results shown in Fig. 3 are for the same values of Rew and h, only the computational domain size is varied. The
Reynolds number was initially Rew ≥ 1100 in all DNS in order to provide a fully-turbulent initial flow field (without
any macroscopic intermittency), then instantaneously decreased and kept at 1000. We confirm that the decaying turbulent
flow actually reveals ‘laminar spots’ at an early stage shown in Fig. 3(a1), as observed by Ishida et al. (2017); however
a TTB appears eventually, as shown in Fig. 3(a2) after a time of 2500d/Uw. The laminar spots have thus finite lifetimes
and recurrently regenerate from the fluctuating turbulent environment. After a long transient phase, the flow reaches an
organized laminar-turbulent pattern with a TTB. The streamwise width of the TTB given in (a2) is almost comparable
with the domain size. We decided to perform a DNS with a quadrupled domain size (lengths both in x and z were doubled)
: a single TTB was again observed, as shown in Fig. 3(b). One might expect two bands to appear in the domain twice as
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profile of 〈u′rms〉z as a function of x.

long as the smaller one shown in (a2), but interestingly the band width itself doubled in the large domain in (b). Indeed,
the obtained turbulent fractions, Ft ≈ 0.6, for both (a2) and (b) are comparable to each other. Here, the turbulent fraction
Ft, which measures the amount of turbulence in the flow field, is time-averaged from x-z plane data at mid-gap. The
criterion for distinguishing laminar regions from turbulence is the wall-normal velocity and its threshold value is defined
by |v| < 0.003Uw (laminar) vs. |v| > 0.003Uw (turbulent). The fully turbulent state corresponds to Ft ≈ 1, while Ft = 0
corresponds to the globally laminar state. When the domain was further extended to Lx × Lz = 272d × 136d, we found a
wider laminar region and almost constant band width, as shown in Fig. 3(c). Such a relatively large laminar flow region
results in a decreased Ft, which actually drops to half of that in (b). It must be noted that the same number of grid points
was used in the cases shown in (b) and (c), but the grid resolution for the largest domain in (c) were still good: Δx+ and
Δz+ ≈ 6. The smaller TTB observed in (a2) must be due the limitations in Lx. From this domain-dependency study, we
conclude that, although both the band width and the size of the laminar region may depend on the domain size, the TTB
is an intrinsic state, and that the exact band width can be estimated if the domain is long enough. In the following study,
Lx × Lz = 136d × 68d was chosen as our reference domain, which appears sufficient to capture the TTB.

Figure 4 shows a flow field accompanied by a slightly narrower band compared to that in Fig. 3(b), with the same
roughness height but lower Rew, as another example of a flow with a TTB. We now introduce a way of determining the
band width quantitatively. We use a value of 〈u′rms〉z, which is computed as

〈u〉xz(y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0
u(x, y, z, t)dxdz, (5)

u′(x, y, z, t) = u(x, y, z, t) − 〈u〉xz(y, t), (6)

〈u′rms〉z(x, y, t) =
{

1
Lz

∫ Lz

0

[
u′(x, y, z, t)

]2 dz
} 1

2

. (7)

Its streamwise variation for the snapshot shown in Fig. 4 is displayed at the bottom of the figure. Based on this, one may
easily distinguish turbulent from laminar regions. Note that 〈u′rms〉z is not zero in the laminar region because of the LSF.
In the turbulent region, 〈u′rms〉z levels off at about 0.1Uw with small variations. Between turbulent and laminar regions,
〈u′rms〉z grows or decays over streamwise distances of 10d–20d. We suggest a threshold equivalent to the median value
between maximum and minimum of 〈u′rms〉z. We define the points where 〈u′rms〉z crosses this threshold line as the begin
and end points of the TTB. From this the width of TTB is determined. The obtained values and their dependences on the
Reynolds number and domain size will be discussed in Section 3.4.

3.3. Flow map: TTB regime
A parametric DNS study of pCf with one rough wall, as illustrated in Fig. 1, was conducted with two control param-

eters Rew and h, following an adiabatic decrease procedure in Rew. This computational strategy of ‘adiabatic decrease’
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Fig. 5 General flow properties of one rough-wall plane Couette flow in DNS with a domain size of Lx × Lz =
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for h/d = 0.2. - - - smooth plane Couette flows at Rew = 1200 (laminar state), ◦ at Rew = 2000 (turbulent
state). Solid lines represent rough-wall cases at Rew = 1100 (red), 1000, 900, and 800 (blue).

is such that we first prepare a turbulent flow at sufficiently high Rew, then decrease Rew stepwise down to the desired
value, and after each step continue the simulation until statistical equilibrium is reached. This adiabatic procedure, which
allows to estimate the critical point in Rew for the sustenance of turbulence in a given finite-size system, is carried on until
full laminarization occurs. The map of flow regimes is shown in Fig. 5(a). Using the expanded domain, we have revised
the previous map by Ishida et al. (2017) by adding a few points near (Rew, h/d) = (1000, 0.2). For such parameters we
confirm the formation of a TTB after a transient phase consisting of laminar spots, as reported in Section 3.2.

For h/d ≤ 0.05, the situation is unchanged compared to the smooth wall case (figure not shown here). For h/d > 0.05,
the apparent value of the lower critical Reynolds number decreases monotonically with increasing h. The OTB regime
(represented by gray bullets in Fig. 5(a)) is found to be robust for, at least, h/d ≤ 0.075 in the range of Rew = 1100–1200,
but they are no longer encountered at Rew < 1100 for h > 0.1. At (Rew, h/d) = (1100, 0.1) we detected a zigzagging
TTB, i.e., an intermediate shape between TTB and OTB, while a small domain captured a proper OTB (see Fig. 2(b)).
In the regime of featureless turbulence at higher Rew, the flow field is dominated by coherent streamwise streaks in the
whole domain. Flow visualizations of such states can be seen in Ishida et al. (2017). The zone delimited by a dashed line
marks the TTB regime. This regime appears a precursor to full-fledged turbulence at high Reynolds numbers, at least for
the current value of α. In the following, flow fields at a fixed h/d = 0.2 but varying Rew are visualized and discussed with
an emphasis on the laminar-turbulent pattern.

Figure 5(b) shows the mean velocity profiles averaged in x, z, and t. Only the cases at (Rew, h/d) = (800–1000, 0.2)
are plotted, but the profiles for the laminar and fully turbulent smooth wall cases are also included for reference. The
wall-normal position of the equivalent roughness crest is at 0.4d, below which the profiles are found to be independent
of the Reynolds number. As the Reynolds number increases, the roughness-free region exhibits a tendency toward more
turbulent-like profile with a higher shear rate at the top wall. Figure 6 shows that for h/d = 0.2 the TTB is not only found at
Rew = 1000 but also at Rew down to 850, whereas at Rew = 1100 the flow is fully turbulent. The streamwise extent of the
TTB at equilibrium is found to monotonically decrease as Rew decreases from 1000 to 850. The structure of the laminar-
turbulent interfaces as well as the local turbulent intensity inside the TTB do not change as the TTB becomes smaller. The
shrinking of the TTB means that the mean turbulent fraction at equilibrium declines with Rew. These variations of the
turbulent fraction with Rew will be further examined in Section 3.4. At (Rew, h/d) = (800, 0.2), turbulence is absent and
we instead observe a regular pattern of very weak disturbances, much weaker than the typical turbulent fluctuations. The
mean streamwise velocity profile almost linear throughout the roughness-free region, as shown in Fig. 5(b). The cause of
this regular pattern is yet unknown, but we may speculate that it is related to a weakly saturated linear instability.
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Fig. 6 Two-dimensional contours of typical instantaneous u′ distributions in the x-z plane at y/d = 0.5 for
h/d = 0.2. Contours range from −0.15Uw (blue) to 0.15Uw (red) for (a)–(c), as in Fig. 3; but from
−0.015Uw to 0.015Uw for (d).

3.4. Reynolds number dependence of the turbulent fraction
As demonstrated previously, the spanwise extent of the computational domain does not appear to have a critical

influence on the appearance of TTBs whereas the streamwise extent does. This motivated us to carry out additional DNSs
with a narrower but significantly longer computational domain where h was kept the same as in the DNS visualized in
Fig. 6, i.e., h/d = 0.2. We refer to Table 1 for the numerical parameters of the long domain simulations. Each flow state
was again achieved via an adiabatic decrease. Visualizations of the flow field for DNSs in the long domain are shown in
Fig. 7. As before, the flow is fully turbulent at Rew = 1100. However, at Rew = 900 and 1000 we observe two TTBs
instead of one as in the DNS with a shorter domain. These TTBs travel downstream at a constant speed, and because
all fronts move with the same velocity concurrent TTBs do not collide or merge. Figure 8 shows the streamwise extent,
i.e., band width, of both TTBs observed in Fig. 7(b) as a function of time. The band width only shows minute variations
with time, implying that the statistical equilibrium regime is reached. We note that even at equilibrium one of the TTBs is
shorter than the other, a fact corroborated also for Rew =950 and 850. On the other hand, the size of both TTBs decreases
monotonically with Rew, as shown in Fig. 9(a). Figure 9(b) shows the equilibrium turbulent fraction vs. Rew, with fixed
h/d = 0.2, for the DNSs with the long domain and the reference domain. A decrease in the width of TTB is also observed
for DNSs in shorter domains, where only one TTB is present. In the reference domain, the band width is about half of
that in the long domain.

The band width determined for the long domain DNS can be as large as 180d, which is much larger than the original
reference domain. From Fig. 9(a) we can infer that the dependence of the mean band width on Rew still depends on the
length of the computation domain. However, Fig. 9(b) demonstrates that the turbulent fraction does not, in turn, depend
on the dimensions of the computational domains once they are long enough. This is also true, to some extent, for the
determination of the critical Reynolds number. When Rew is further decreased from 850 to 800 only one TTB survives
in the long domain DNS, whereas for Rew = 750 the flow is fully laminar. For comparison, in the shorter domain no
turbulence is left for Rew = 800. In both domains, the decrease of Ft with Rew follows the same curve, yet longer
domains allow for lower equilibrium values of Ft to be reached at lower Reynolds numbers. For instance, Ft can get as
low as ≈ 0.1 for Rew = 800. The figure also suggests that the turbulent fraction can be made arbitrary small by extending
the computational domain, until about Rew = 750 when the flow completely relaminarizes. Hence, longer domains are in
principle required for the correct quantitative estimation of the onset Reynolds number, below which no TTB is found. In
practice, however, a clear linear scaling of Ft vs. Rew emerges from Fig. 9(b), that is apparently independent on the length
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Fig. 7 Same as Fig. 6, inside a longer domain. Contours range from −0.15Uw (blue) to 0.15Uw (red).

of the domain. Extrapolation of Ft towards zero indicates in both cases a critical value of Rew around 750. It thus appears
that a similar master curve for Ft(Rew), linear at its origin, underlies all the simulations of the TTB independently of the
domain size. A similar conclusion holds for the (approximate) value of the onset Reynolds number below which no TTB
is found.

4. Conclusions

We performed DNS of plane Couette flows using the Busse–Sandham model with one rough wall, with an empha-
sis on the laminar-turbulent coexistence observed in most subcritical planar shear flows. As in Ishida et al. (2017), the
transitional regime features TTBs (transverse turbulent bands) when the roughness height h is sufficiently high, whereas
OTBs (oblique turbulent bands) are found in cases with lower h. We have demonstrated that TTBs persist if the compu-
tational domain is further enlarged, proving that the non-obliqueness is a robust feature of sufficiently rough walls. The
TTBs in the present conditions have a streamwise extent as large as 50–180 gap widths, which shrinks as the Reynolds
number decreases. The role of the three-dimensional large-scale flows for their sustenance process and for the explanation
of the upstream-downstream asymmetry remains to be investigated. Furthermore, the asymmetry of the mean velocity
profile suggests that similar localized turbulent structures could potentially be found in other asymmetric systems, such as
wall-bounded flows with differential heating or density stratification. In DNSs with narrow but very long computational
domains carried out in the regime of TTBs, the converged turbulent fraction decreases linearly with Rew. A TTB can even
be sustained when the mean turbulent fraction gets as low as 10%. Such a linear dependence of the turbulent fraction
with Rew was never reported in any other shear flow investigation. We further observe that the mean large-scale spanwise
flows typical of OTBs are not found for TTBs, emphasizing how the topology of large-scale flows is closely coupled to
the shape of the turbulent patches. The present flow chart determined using a simple roughness model calls for further
validation from either new experiments, or full model-free DNS with resolved roughness elements.
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Fig. 9 Reynolds number dependence of the band width of the TTB and mean turbulent fraction for h/d =
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