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Abstract

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an S-packing edge-
coloring of a graph G is a partition of the edge set of G into k subsets {X1, X2, . . . , Xk} such
that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e′ ∈ Xi is at least si + 1
(where the edge-distance in G is defined as the vertex-distance in the line-graph of G). This
paper studies S-packing edge-colorings of cubic graphs. Among other results, we prove that
cubic graphs having a 2-factor are (1, 1, 1, 3, 3)-packing edge-colorable, (1, 1, 1, 4, 4, 4, 4, 4)-
packing edge-colorable and (1, 1, 2, 2, 2, 2, 2)-packing edge-colorable. We determine sharper
results for cubic graphs of bounded oddness and 3-edge-colorable cubic graphs and we
propose many open problems.

Keywords: cubic graph, packing chromatic index, S-packing chromatic index, snark,
d-distance coloring.

1. Introduction

All the graphs considered in this paper are simple and connected, unless stated oth-
erwise. A proper edge-coloring of a graph G is a mapping which associates a color (an
integer) to each edge such that adjacent edges get distinct colors. In such a coloring, each
color class is a matching (also called stable set of edges or 1-packing). According to Vizing’s
famous theorem, every cubic graph needs either 3 or 4 colors for a proper edge-coloring.
The bridgeless cubic graphs (often with other restrictions) which are not edge-colorable
with three colors are called snarks [6, 21].

As for vertex-coloring, edge-coloring can be extended to distance-d edge-coloring. In
this paper, we define the distance between any two edges e and e′ of a graph G as the
distance between the corresponding vertices in the line-graph L(G) of G (note that some
authors define differently the distance between edges in graphs, however this definition
allows to be more consistent with the vertex-counterpart of the studied parameter). A
d-strong edge-coloring of G is then a proper coloring such that edges at distance at most
d have distinct colors, i.e., a partition of E(G) into sets of edges at pairwise distance at
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Figure 1: A (1, 1, 1, 2)-coloring (on the left) and a (1, 1, 2, 2, 2)-coloring (on the right) of the Petersen graph.

least d+ 1, also called d-packings. A 2-strong edge-coloring is simply called a strong edge-
coloring and a 2-packing of edges is an induced matching. Strong edge-colorings of cubic
graphs retain a lot of attention since decades [1, 10, 20].

The aim of this paper is to study a mixing of these two types of edge-colorings, i.e.,
colorings of (sub)cubic graphs in which some color classes are 1-packings while other are
d-packings, d ≥ 2. More formally, given a non-decreasing sequence S = (s1, s2, . . . , sk) of
positive integers, an S-packing edge-coloring of a graph G is a partition of the edge set of
G into k subsets {X1, X2, . . . , Xk} such that each Xi is an si-packing, 1 ≤ i ≤ k.

The vertex analogue of S-packing edge-coloring has been first studied by Goddard and
Xu [17, 18] and then recently on cubic graphs [2, 4, 5, 13, 15]. The particular case of
(1, 2, . . . , k)-packing coloring has been the subject of many papers (see [8, 9, 14]) since its
introduction by Goddard et al. [19].

For an edge-coloring, a color for which the color class is an r-packing is said to be a
color of radius r. In order to avoid long subsequences of the same integer in sequences of
colors, we sometimes use the exponent to denote repetitions of an integer, e.g., (12, 25) =
(1, 1, 2, 2, 2, 2, 2). Also, to simplify, an S-packing edge-coloring will be simply called an
S-coloring in the remainder of the paper. A (1, 1, 1, 2)-coloring and a (1, 1, 2, 2, 2)-coloring
of the Petersen graph are illustrated in Figure 1 (one can check that the Petersen graph is
not (1, 1, 2, 2)-colorable).

Let G be a graph and A ⊆ E(G). By Gk[A], we denote the graph with vertex set A and
edge set {ee′| e ∈ A, e′ ∈ A, dG(e, e′) ≤ k}, where dG(e, e′) is the usual distance between
the two edges e and e′ in G. We recall that a 2-factor of G is a spanning subgraph of
G that consists of a disjoint union of cycles. For a cubic graph G having a 2-factor, the
oddness of G is the minimum number of odd cycle among all 2-factors of G. According to
Petersen’s theorem, every bridgeless cubic graph has a 2-factor.

Definition 1.1. For a graph G with a 2-factor F and a set A ⊆ E(F ), we use the
following notation:

i) A is of type I if it contains exactly one edge per odd cycle of F and no edge of any
even cycle of F ;
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ii) A is of type II if no two edges of A are adjacent in G and if A contains bn/2c edges
in every cycle of length n from F , n ≥ 3.

These two definitions will be used several times in the paper in order to describe the
edges that remain to be colored in a cubic graph in which a maximum number of edges are
colored with one, two or three colors of radius 1. Notice that a set of type I is also called
an odd cycle (edge) transversal of F .

Table 1: The minimum integer n = ` + m for which all cubic graphs (and all 3-edge-colorable cubic
graphs) having a 2-factor are (1`, km)-colorable (the bold numbers represent the exact values of n and a
pair of two integers a-b represents a lower bound and an upper bound on n).

Class cubic graphs 3-edge-colorable
cubic graphs

k\` 1 2 3 1 2 3
2 8-10 6-7 4 [12] 6-9 5-6 3
3 15-21 9-13 5 15-19 9-11 3
4 31-48 17-28 5-8 31-43 17-23 3

As any subcubic graph H is the subgraph of a cubic graph G and as dH(e, e′) ≥ dG(e, e′)
for any two edges e, e′ ∈ E(H), then any S-coloring of G is also an S-coloring of H.
Therefore, the results of this paper that are not concerned with oddness can be easily
extended to subcubic graphs.

Table 1 summarizes the main results proven in this paper. Note that the lower bounds,
except for the sequence (1, 1, 1, 2) and the sequences (1, 1, 1, . . .) for 3-edge-colorable graphs,
have been determined by computer.

The paper is organized as follows. In Section 2, we begin by presenting structural
results about sets of type I and the relation between S-coloring and sets of type I and II.
We prove in Section 3 that cubic graphs having a 2-factor are (1, 1, 1, 3, 3)-colorable and
conjecture that all cubic graphs are (1, 1, 1, 3)-colorable, except the Petersen and Tietze
graphs. This conjecture is proven for some restricted classes of snarks. Similar results are
given for sequences of type (1, 1, 1, 4, . . . , 4). In Section 4 we study (1, 1, k, . . . , k)-colorings
and prove that all cubics graphs having a 2-factor are (12, 25)-colorable and also colorable
with two colors of radius one and a finite number of colors of radius k, for any k ≥ 2.
In Section 5 we prove that for a fixed integer k, every cubic graph having a 2-factor is
(1, k, . . . , k)-colorable with a finite number of occurrences of k in the sequence. Finally, in
Section 6 we prove that for every positive integer k, there exists a subcubic graph which
is not (1, 2, . . . , k)-colorable.

2. Sets of type I and II

The following result from Fouquet and Vanherpe is a structural property about non
3-edge-colorable cubic graphs [12]. It will be used several times in the proofs of Section 3.
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Figure 2: A 2-factor containing three edges e1, e2 and e3 being in different odd cycles which induce a
subgraph containing a path of length 5 (dashed lines: edges in the path of length 5, thick lines: edges from
the 2-factor).

Proposition 2.1 ([12]). Let G be a cubic graph having a 2-factor. Let F be a 2-factor
of G containing a minimum number of odd cycles and let F ′ be the set of odd cycles from
F . Then, no three edges being in different cycles of F ′ induce in G a subgraph containing
a path of length 5.

Figure 2 illustrates three edges in the forbidden configuration described in Proposi-
tion 2.1 in a fixed 2-factor of a cubic graph (by Proposition 2.1, it means that there exists
a 2-factor containing at most two odd cycles in the graph from Figure 2). Note that the
previous proposition was not explicitly presented in the paper of Fouquet and Vanherpe
but can be easily obtained by combining Properties 3 and 6 of [12, Theorem 4]. Note also
that the proof of Theorem 4 is written in another paper [11] from the same authors.

Lemma 2.2 ([12]). Let G be a cubic graph having a 2-factor. Let F be a 2-factor of G
containing a minimum number of odd cycles and let F ′ be the set of odd cycles from F .
There exists a set A of type I in F ′ such that G2[A] is an empty graph, i.e., χ(G2[A]) ≤ 1.

As the previous proposition, Lemma 2.2 has not been explicitly presented in the paper
of Fouquet and Vanherpe but is an intermediate step to prove a Theorem [12, Theorem 8].

The following lemma will allow in Sections 3, 4 and 5, to reduce the problem of finding
an S-coloring to the one of finding a set A of type I and/or II such that Gk[A] has small
chromatic number (where 2 ≤ k ≤ 4 and k appears in S).

Lemma 2.3. Let G be a cubic graph having a 2-factor F and let `, `′ and `′′ be positive
integers. Let A ⊆ E(F ), B ⊆ E(F ) and C ⊆ E(F ) be sets such that A, B and C form
a partition of E(F ), A of type I, B and C of type II. The following properties hold:

i) if χ(Gk[A]) ≤ `, then G is (1, 1, 1, k`)-colorable;

ii) if χ(Gk[A]) ≤ ` and χ(Gk[B]) ≤ `′, then G is (1, 1, k`+`′)-colorable;

iii) if χ(Gk[A]) ≤ `, χ(Gk[B]) ≤ `′ and χ(Gk[C]) ≤ `′′, then G is (1, k`+`′+`′′)-colorable.
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Proof. Note that G −F is a matching and thus can be colored with a color of radius 1.
Note also that B and C are matchings and thus can be also colored each with a color of
radius 1.
i) We color E(G − F ), B and C with three colors of radius 1. Then, any `-coloring of
Gk[A] induces a coloring of the edges of A with the remaining colors, i.e., the ` colors of
radius k.
ii) We color E(G −F ) and C with two colors of radius 1. Then, any `-coloring of Gk[A]
(`′-coloring of Gk[B], respectively) induces a coloring of the edges of A (B, respectively)
with ` (`′, respectively) colors of radius k.
iii) We color E(G−F ) with one color of radius 1. Then, any `-coloring of Gk[A] (`′-coloring
of Gk[B], `′′-coloring of Gk[C], respectively) induces a coloring of the edges of A (B, C,
respectively) with ` (`′, `′′, respectively) colors of radius k.

3. (1, 1, 1, k, . . . , k)-coloring

In this section, we first prove a general upper bound on the required number of colors
of radius k in order that all cubic graphs having a 2-factor are (1, 1, 1, k, . . . , k)-colorable.
We also prove that all cubic graphs having a 2-factor are (1, 1, 1, 3, 3)-colorable and that
some cubic graphs having a 2-factor are (1, 1, 1, 3)-colorable.

For the case k = 2, Payan [22] has shown that one color of radius two is sufficient.
Another proof of this result has been given by Fouquet and Vanherpe [12] (Lemma 2.2 is
an intermediate step of the proof of this result).

Theorem 3.1 ([12, 22]). Every cubic graph is (1, 1, 1, 2)-colorable.

Notice that this result is tight since the Petersen graph is not (1, 1, 1, 3)-colorable (as
it is not 3-edge-colorable and has diameter 2). In order to find similar results for k ≥ 3,
we consider the sequence of integers (ak)k≥2 defined by: a2 = 2, a3 = 4 and ak = ak−1 +
2ak−2 + 2, for k ≥ 4. Note that this sequence is contained in Sloane Online Encyclopedia
of Integers Sequences (A026644 and A167030) and that ak = 2k+1−(−1)k+1−3

3
for k ≥ 2.

Lemma 3.2. Let G be a cubic graph having a 2-factor, let F be any 2-factor of G and let
A ⊆ E(F ) be of type I. For k ≥ 2, the graph Gk[A], satisfies ∆(Gk[A]) ≤ ak.

Proof. Let F ′ be the subgraph of F only containing the odd cycles of F . Note that
A ⊆ E(F ′). Let e be an edge of F and let Dk

e be the subgraph of F ′ induced by the
vertices at distance at most k − 1 from any end vertex of e. For an integer k, let nk be
the maximum number of connected components of Dk

e among all cubic graphs having a
2-factor, all choice of 2-factor in these graphs and all choice of edge e in these 2-factors.
In order to prove that ∆(Gk[A]) ≤ ak, we are going to show that nk ≤ ak + 1. Note that
several connected components of Dk

e can be included in the same odd cycle of F ′.
Note that the number of connected components of Dk+1

e which are not in Dk
e is bounded

by two times the number of connected components of Dk
e which are not trivial (the con-

nected components containing only one vertex), as Figure 3 illustrates on an example.
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e

Figure 3: The vertices at distance at most 2 of an edge e and the set D3
e (dashed or non dashed line: edge

at distance at most 3 from e; square: vertex in D3
e ; non dashed line: edge in D3

e ; horizontal line: edge in
F ′).

Also, the number of connected components of Dk
e which are not trivial is bounded by nk−1,

as Figure 3 illustrates. We can easily prove that n2 ≤ 3 = a2 + 1 and n3 ≤ 5 = a3 + 1. By
induction, we suppose that nk−1 ≤ ak−1 + 1 and nk ≤ ak + 1. Consequently, for k ≥ 2, we
obtain that nk+1 ≤ nk + 2nk−1 ≤ ak + 1 + 2(ak−1 + 1) ≤ ak + 2ak−1 + 3 ≤ ak+1 + 1.

Consequently, since each connected component of Dk
e contains either at most one vertex

incident with an edge of A or at most two vertices incident with an edge of A in the case
this edge has both its end vertices in Dk

e , we have ∆(Gk[A]) ≤ nk − 1 ≤ ak (the minus 1
comes from the connected component containing e).

3.1. (1, 1, 1, 3, . . . , 3)-coloring
In this subsection, we try to minimize the number of required integers 3 in order that

all cubic graphs having a 2-factor are (1, 1, 1, 3, . . . , 3)-colorable. We give two results about
this problem but we are aware that the result of the following theorem can probably be
sharpened since we have not been able to find an infinite family of non (1, 1, 1, 3)-colorable
cubic graphs. However, at the end of the subsection, we exhibit two non (1, 1, 1, 3)-colorable
bridgeless cubic graphs.

Theorem 3.3. Every cubic graph having a 2-factor is (1, 1, 1, 3, 3)-colorable.

Proof. Let G be a cubic graph. Let F be a 2-factor of G having a minimum number of
odd cycles. Let F ′ be the set of odd cycles from F . By Lemma 2.3.i), if there exists a set
A of type I in F ′ such that ∆(G3[A]) ≤ 1, then G is (1, 1, 1, 3, 3)-colorable.

We give labels to the vertices of F ′ as follows. If a vertex belonging to an odd cycle
C from F ′ has a neighbor in a different cycle of F ′, we label it by +, otherwise we label
it by −. By Proposition 2.1, the two end vertices of any edge of any cycle C of F ′ have
neighbors in only at most one cycle of F ′ other than C. Thus, if consecutive vertices are
labeled by + in an odd cycle C from F ′, then there exists an unique cycle C ′ of F ′ such
that all these vertices only have neighbors in C ∪ C ′.

Observation 1. For each edge e ∈ E(G−F ) having an end vertex u in an odd cycle
C from F ′ the following is true:

i) if u is labeled by +, then all edges in F ′ at distance at most 2 from e are included
in C ∪ C ′, for C ′ an odd cycle of F ′;
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e

Figure 4: An edge e at distance at most 3 of twelve edges from a 13-cycle (dashed line: e; thick lines:
edges at distance at most 3 from e in the 13-cycle).

ii) if u is labeled by −, then all edges in F ′ at distance at most 2 from e are included
in C.

The previous observation can be easily obtained using the fact that e is only adjacent
to edges of F , these edges being themselves adjacent to edges either in the cycle in which
they are or in G−F .

We will construct A, starting from an empty set, as follows. Since each cycle C of F ′

has an odd number of vertices there exist two consecutive vertices both labeled either by
+ or by − in every cycle of F ′. Let u1 and u2 be these two adjacent vertices (both labeled
either by + or −) and suppose that u0, u1, u2, u3 and u4 are consecutive vertices of the
cycle C (if C contains three vertices then u3 = u0 and u4 = u1). For each cycle C of F ′,
we add to A an edge of C depending on the label of u1 and u2.

If u1 and u2 are both labeled by + in C, then we add the edge u1u2 into A. Note that
u0, u1, u2, u3 are labeled either by +,+,+,+, by −,+,+,+, by +,+,+,− or by −,+,+,−
(the labels are given following the index of u). Consequently, by Observation 1, there exists
a cycle C ′ from F ′ such that all edges from F ′ at distance at most 3 from u1u2 are in
C ∪ C ′.

If u1 and u2 are both labeled by −, then we add the edge u2u3 to A. Note that
u1, u2, u3, u4 are labeled either by −,−,+,+, by −,−,−,+, by −,−,+,− or by −,−,−,−.
Also in this case, by Observation 1, there exists a cycle C ′ from F ′ such that all edges
from F ′ at distance at most 3 from u2u3 are in C ∪ C ′.

Since there is one edge of A per cycle of F ′ we obtain, by construction, that ∆(G3[A]) ≤
1 and thus χ(G3[A]) ≤ 2. Finally, by Lemma 2.3.i), G is (1, 1, 1, 3, 3)-colorable.

In the following proposition, we prove that cubic graphs of oddness 2 are (1, 1, 1, 3)-
colorable in the case there are restrictions on the structure of the odd cycles of a 2-factor.
Note that Property i) of the following proposition implies that every cubic graph of girth
at least 13 and oddness 2 is (1, 1, 1, 3)-colorable.
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Proposition 3.4. Every cubic graph of oddness 2 having a 2-factor containing exactly two
odd cycles (and possibly some even cycles), denoted by C1 and C2, is (1, 1, 1, 3)-colorable
in the following cases:

i) If C1 or C2 is a cycle of length at least 13.

ii) If {C1, C2} contains a cycle C of length at least 9 and if there exists at least one edge
with one end vertex in {C1, C2} \ C and with the other end vertex in G− C.

iii) If {C1, C2} contains a cycle C of length at least 5 and if there exists an edge of
{C1, C2} \ C with both end vertices having no neighbors in C.

Proof. i) Suppose that C1 has length 13. Let e be an edge from C2. The edge e is adjacent
to two edges not belonging to C2. Moreover, each of these two edges is possibly at distance
at most 2 of at most four edges of C1. Also, there are possibly two edges at distance 2
from e which have one end vertex in C2 and the other end vertex in C1. Each of these two
edges are adjacent to at most two edges of C1. Thus, e can be at distance at most 3 from
at most twelve edges of C1. Figure 4 illustrates an edge at distance at most 3 from exactly
twelve edges. Hence, we can color e and one edge of C1 at distance at least 4 from e with
the color of radius 3 and the remaining uncolored edges with the three colors of radius 1.
ii) Suppose that C1 has length at least 9 and there exists xy ∈ E(G) with x ∈ V (C2) and
y ∈ V (G− C1). Let e be an edge of C2 incident with x. In contrast with Property i), the
edges adjacent to e are at distance at most 2 of at most four edges of C1 (in Property i),
it was eight). Thus, e is possibly at distance at most 3 from at most eight edges of C1.
Hence, we can color e and one edge of C1 at distance at least 4 from e with the color of
radius 3 and the remaining uncolored edges with the three colors of radius 1.
iii) Let C1 be the cycle of length at least 5 and let e be an edge of C2 with no end vertex
having a neighbor in C1. In contrast with Property i), the edges adjacent to e which are
not in C2 cannot be at distance at most 2 of an edge of C1 (in Property ii), e was at
distance at most 2 of eight edges of C1). Thus, e is possibly at distance at most 3 from
at most four edges of C1. Hence, we can color e and one edge of C1 at distance at least 4
from e with the color of radius 3 and the remaining uncolored edges with the three colors
of radius 1.

Since the flower snarks of order at least 20 have a 2-factor which is the disjoint union of
two odd cycles with one cycle among them of order at least 15, Proposition 3.4.i) implies
that flower snarks of order at least 20 are (1, 1, 1, 3)-colorable.

Similarly, generalized Petersen graphs of order at least 26 have a 2-factor which is the
disjoint union of two cycles with one cycle among them of order at least 13. Moreover,
generalized Pertersen graphs of order which is a multiple of 4 are 3-edge-colorable. Thus,
the generalized Petersen graphs of order at least 24 are (1, 1, 1, 3)-colorable.

Note that the Pertersen and Tietze graphs are non (1, 1, 1, 3)-colorable since they have
oddness 2 and the distance between any two edges in any 2-factor of these graphs is at
most 3. By computer we have verified that every cubic graph of order at most 22, except
the Petersen graph and the Tietze graph, is (1, 1, 1, 3)-colorable.
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Corollary 3.5. The Petersen graph is the only generalized Petersen graph which is not
(1, 1, 1, 3)-colorable and the Tietze graph is the only flower snark which is not (1, 1, 1, 3)-
colorable.

Finally, in the next proposition, we prove that every cubic graph of oddness 4 is also
(1, 1, 1, 3)-colorable when the odd cycles of the 2-factor are sufficiently large.

Proposition 3.6. Every cubic graph of oddness 4 having a 2-factor with four odd cycles
and with three cycles among them of length at least 13 is (1, 1, 1, 3)-colorable.

Proof. Let G be a cubic graph of oddness 4 and let F ′ be the set containing the four odd
cycles from the 2-factor. Let C1 be the odd cycle having the minimum number of vertices
in F ′. As in proof of Theorem 3.3, we give labels to the vertices of F ′ as follows. If a
vertex belonging to C from F ′ has a neighbor in a different cycle of F ′, we label it by +,
otherwise we label it by −. Figure 5 illustrates a labeling of the vertices of the odd cycles
of a 2-factor.

Let e1 be an edge of C1 such that there exists a cycle C2 from F ′ such that all edges
at distance at most 3 from e1 in F ′ are in C1 ∪ C2. Such an edge can be obtained by
proceeding as in the proof of Theorem 3.3. As in the proof of Proposition 3.4.i), e1 is at
distance at most 3 of at most twelve edges of C2. Let e2 be an edge of C2 being at distance
at least 4 of e1. Such an edge exists since C2 has at least thirteen edges.

First, suppose there exists a cycle C3 of F ′ such that all edges at distance at most 3
from e2 are in C2 ∪ C3. As previously, by Proposition 3.4.i), e2 is at distance at most 3 of
at most twelve edges of of C3. Let e3 be an edge of C3 being at distance at least 4 of e2.
Also in this case, e3 is at distance at most 3 of at most twelve edges of C4, C4 being the
odd cycle of F ′− (C1 ∪C2 ∪C3). Consequently, there exists an edge e4 of C4 such that e4
is at distance at least 4 of e3. Finally, A = {e1, e2, e3, e4} is a set of type I such that G3[A]
is an empty graph.

Second, by excluding the first case, the two odd cycles C3 and C4 of F ′−(C1∪C2) both
contain edges at distance at most 3 from e2. Figure 5 illustrates the edge e2 in this case. Let
u1 and u2 be the end vertices of e2 and suppose u0, u1, u2 and u3 are consecutive vertices of
C2. By hypothesis and by Proposition 2.1, these vertices are either labeled by +,−,+,+,
or by +,−,+,−, or by −,+,−,+ or by +,+,−,+. Up to symmetry, we can suppose that
these vertices are either labeled by +,−,+,+ or by +,−,+,− (as in Figure 5). Let C3

be the odd cycle of F ′ − (C1 ∪ C2) containing a neighbor of u0. By excluding the first
case, u2 and u3 have no neighbor in C3. Let v0 be the neighbor of u0 in C3. Suppose
v0, v1, v2 and v3 are consecutive vertices of C3 and let e3 = v1v2. By Hypothesis v0 is
labeled by +. Note that v0, v1, v2 and v3 are labeled consecutively by +,−,+,+ (as in
Figure 5), or by +,−,+,−, or by +,−,−,+ or by +,−,−,−. Consequently, there are at
most six edges at distance at most 3 from e2 in C4 and at most six edges at distance at
most 3 from e3 in C4. Since C4 has length at least thirteen, there remains an edge e4 in C4

such that e4 is at distance at least 4 from both e2 and e3, as Figure 5 illustrates. Finally,
A = {e1, e2, e3, e4} is a set of type I such that G3[A] is an empty graph and Lemma 2.3.i)
allows to conclude.
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Figure 5: An illustration of the odd cycles {C1, C2, C3, C4} from a 2-factor considered in proof of Propo-
sition 3.6 (dashed lines: edges of A; the edge having end vertices labeled by − in G −F are omitted in
order to simplify the figure).

We have performed computations on cubic graphs with small order that lead us to
believe that all cubic graphs, except two snarks, are (1, 1, 1, 3)-colorable.

Conjecture 1. Every cubic graph different from the Petersen graph and from the Tietze
graph is (1, 1, 1, 3)-colorable.

A weaker form of the previous conjecture is to restrict to cubic graphs of oddness 2 or
4.

3.2. (1, 1, 1, 4, . . . , 4)-coloring
As in the previous subsection, we try in this subsection to minimize the number of

required integers 4 in order that all cubic graphs having a 2-factor are (1, 1, 1, 4, . . . , 4)-
colorable. We give a first result about this problem, however it is probably not tight since
we have not been able to find a non (1, 1, 1, 4, 4)-colorable cubic graph.

Theorem 3.7. Every cubic graph having a 2-factor is (1, 1, 1, 45)-colorable.

Proof. Let G be a cubic graph. Let F be 2-factor of G having a minimum number of odd
cycles. Let F ′ be the set of odd cycles from F . By Lemma 2.3.i) and by Brooks’ theorem,
it is sufficient to exhibit a set A of type I in F such that ∆(G4[A]) ≤ 4 in order G to be
(1, 1, 1, 45)-colorable.

As in the proof of Theorem 3.3, we give labels to the vertices of F ′ as follows. If a
vertex belonging to a cycle C from F ′ has a neighbor in a different cycle of F ′, we label
it by +, otherwise we label it by −. By Proposition 2.1, the two end vertices of any edge
of any cycle C of F ′ have neighbors in only at most one cycle of F ′ other than C. Thus,
if there are consecutive vertices labeled by + in an odd cycle C from F ′, then there exists
an unique cycle C ′ of F ′ such that all these vertices only have neighbors in C ∪ C ′.
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Let u be a vertex of an odd cycle C from F ′ and suppose that u0, u, u1 are consecutive
vertices of C. Let e0 be the edge incident with u0 in G−F ′ and let e1 be the edge incident
with u1 in G −F ′. Let DC

3 (u) denotes the set of odd cycles from F ′ − C containing a
vertex at distance at most 3 from u in the subgraph G − {e0, e1}. Note that we exclude
e0 and e1 since we want only to count the number of odd cycles that have an edge e′ at
distance at most 4 of u and for which there exists a path of length at most 4 that begins by
the edge of G−F ′ incident with u and finishes by e′. We make the following observation
about DC

3 (u).

Observation 2. For any vertex u in an odd cycle C from F ′ the following is true:

i) if u is labeled by +, then |DC
3 (u)| = 1;

ii) if u is labeled by −, then |DC
3 (u)| ≤ 2.

Observation 2.i) can be obtained by observing that in the case u is labeled by +,
the other end vertex of the edge incident with u in G −F ′ is also labeled by + and its
neighbors are either labeled by + (and, in this case, are adjacent to vertices of C) or by −.
Observation 2.ii) can be obtained by observing that in the case u is labeled by −, the other
end vertex of the edge incident with u in G−F ′ is also labeled by − and its neighbors are
either labeled by + (and, in this case, are adjacent to vertices in a cycle which is possibly
not C) or by −.

We will construct A as follows. Since each cycle of F ′ has an odd number of vertices
there exists two consecutive vertices labeled by + or by − in every cycle of F ′. For each
cycle C of F ′, we add an edge of C into A depending on the existence of two consecutive
vertices labeled by + and the existence of vertices labeled by +.

If there exist two consecutive vertices u0 and u1 which are both labeled by + in C,
then we add the edge u0u1 into A. Let v0 be a vertex adjacent to u0 and let v1 be a
vertex adjacent to u1, v0 and v1 being in a cycle C ′ from F ′ − C. Let e0 = u0v0 and let
e1 = u1v1. By Observation 2, there are no edges at distance less than 4 of either e0 or e1
in F ′ − (C ∪ C ′). Finally, suppose u−2, u−1, u0, u1, u2, u3 are consecutive vertices of C.
The vertices u−2, u−1, u0, u1, u2 and u3 are labeled in the worst case by +,−,+,+,−,+.
Effectively, if u−1 or u2 is labeled by +, then, by Proposition 2.1, its neighbors should be
in C∪C ′. Thus, in the other cases, there are less vertices among u−2, u−1, u2 and u3 which
are labeled by + and without having a neighbor in C ′. Therefore, u0u1 has degree at most
3 in G4[A].

Suppose now that every vertex of C is labeled by −. Let e = uv be an edge of C. As
in proof of Theorem 3.3, no edge of C can be at distance less than 4 of an edge of F ′−C.
By Observation 2 on the two vertices u and v, we obtain that e has degree at most 4 in
G4[A].

By excluding the two previous cases and since C has odd length, there exists four
consecutive vertices v−2, v−1, v0, v1 labeled by −, −, +, −. Let v2 and v3 be the vertices
such that v−2, . . ., v2, v3 are consecutive in C. In this case, we add v0v1 into A. Without loss
of generality, we can suppose that, by excluding the first case, there are no two consecutive
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vertices of C labeled by +. Thus, v−2, v−1, v0, v1, v2 and v3 are labeled consecutively by
−,−,+,−,+,−, or by −,−,+,−,−,+ or by −,−,+,−,−,−. Therefore, by Observation
2, v0v1 has degree at most 4 in G4[A].

We have performed computations on cubic graphs with small order that lead us to
believe that all cubic graphs are (1, 1, 1, 4, 4)-colorable.

Conjecture 2. Every cubic graph is (1, 1, 1, 4, 4)-colorable.

Trivially, this conjecture holds for cubic graphs of oddness 2 and a weaker form of the
previous conjecture is to restrict the conjecture to cubic graphs of oddness 4. Note that
we have found, performing computations, four bridgeless cubic graphs of order 14 which
are (1, 1, 1, 3)-colorable but are not (1, 1, 1, 4)-colorable.

Also, we state the following open problem which has already been solved for k ≤ 2 [12].

Question 3.8. For every integer k ≥ 3, is it true that there exists a cubic graph of arbitrary
large order which is not (1, 1, 1, k)-colorable ?

4. (1, 1, k, . . . , k)-coloring

As for (1, 1, 1, k, . . . , k)-colorings, we first show a general result for arbitrary k. For this,
we consider the following two sequences of integers: let (bk)k≥2 and (ck)k≥1 be sequences
of integers defined for k ≥ 2 by c1 = 0, ck = 2k − ck−1 and bk =

∑k
i=1 ci. The sequence

(bk) is known in OEIS under the number A153772 and has a closed-form formulæ: bk =
2k+2+2(−1)k+2−6

3
.

Lemma 4.1. Let G be a cubic graph having a 2-factor F and let B ⊆ E(F ) be of type
II. For k ≥ 2, the graph Gk[B] satisfies ∆(Gk[B]) ≤ bk.

Proof. Let e ∈ B. The idea of the proof is to show that there are at most bk edges at
distance at most k from e in G. The rest of the proof is divided into two claims.

Claim 1. If any 3-edge-colorable cubic graphG′ with any 2-factor F ′ ofG′ only containing
even cycles, and any set B′ ⊆ E(F ′) of type II is such that ∆(G′k[B′]) ≤ bk, then
∆(Gk[B]) ≤ bk.

Remark that each odd cycle of F contains two adjacent edges of E(G)\B. We create
a new graph G′ by replacing, in each odd cycle of F , one of these two adjacent edges
of E(G)\B by a path of length 2, i.e., by two adjacent edges. The vertices of degree 2
created are connected together by a perfect matching (the number of created vertices
of degree 2 is even since the number of odd cycles in F is even). We construct
B′ from B by adding, for each odd cycle of F , an edge of this cycle which has no
neighboring edge of B to B′.

We easily remark that ∆(G′k[B′]) ≤ bk implies ∆(Gk[B]) ≤ bk.

12



Claim 2. Suppose G is a 3-edge colorable graph and F only contains even cycles. There
are at most ck edges at distance k from e in B and at most 2k+1−ck edges at distance
k from e in E(G) \B, for c1 = 0 and ck = 2k − ck−1, k ≥ 2.

Let nk
B and nk

E\B be the number of edges at distance k from e in B and in E(G) \B,
respectively. There are four edges adjacent to e, each of these edges not being in
B. Thus n1

B = 0 and n1
E\B = 4. Now suppose by induction that nk

B ≤ ck and
nk
E\B ≤ 2k+1 − ck.

Observe that any edge from e′ ∈ B has no neighbor in B and at most two neighboring
edges in E(G) \ B which are at greater distance from e than e′. Also, observe that
an edge e′′ ∈ E(G) \ B has at most one neighbor in B which is at greater distance
from e than e′′ and at most one neighbor in E(G) \ B which is at greater distance
from e than e′′. Thus we obtain that nk+1

B ≤ nk
E\B ≤ 2k+1 − ck = ck+1 and that

nk+1
E\B ≤ 2nk

B + nk
E\B ≤ 2ck + 2k+1 − ck = ck + 2k+1 = 2k+2 − 2k+1 + ck = 2k+2 − ck+1.

Since bk =
∑k

i=1 ci, Claim 2 allows to obtain that there are at most bk edges of B at
distance at most k from e in the case the considered 2-factors do not contain odd cycles.
Using Claim 1, this result can be extend to the case we consider any 2-factors. Therefore,
the graph Gk[B] satisfies ∆(Gk[B]) ≤ bk.

Combining this lemma with the ones of Section 2, we obtain the following theorem.

Theorem 4.2. For any k ≥ 2, every cubic graph having a 2-factor is (1, 1, kak+bk+2)-
colorable and every 3-edge-colorable cubic graph having a 2-factor is (1, 1, kbk+1)-colorable,
where ak = 2k+1−(−1)k+1−3

3
and bk = 2k+2+2(−1)k+2−6

3
.

Proof. Let G be a cubic graph and k ≥ 2 be an integer. Let F be a 2-factor of G. Let
A ⊆ E(F ) be of type I. By Lemma 3.2, ∆(Gk[A]) ≤ ak. Thus, by Brooks’ theorem, Gk[A]
is (ak + 1)-colorable. Let B ⊆ E(F ) \ A be of type II. By Lemma 4.1, ∆(Gk[B]) ≤ bk.
Thus, by Brooks’ theorem, Gk[B] is (bk + 1)-colorable.

Therefore, by Lemma 2.3.ii), G is (1, 1, kbk+ak+2)-colorable and even (1, 1, kbk+1)-colorable
in the case G is 3-edge-colorable (since then, F can be chosen such that A is empty).

4.1. (1, 1, 2, . . . , 2)-coloring
The following proposition allows to refine our results for sequences of the form (1, 1, 2, . . . , 2).

Proposition 4.3. Let G be a cubic graph of order at least 12. If there exists a 2-factor
F in G, then for any set B ⊆ E(F ) of type II, G2[B] contains no connected component
isomorphic to K5.

Proof. We first prove that if five edges of B form a connected component isomorphic to
K5 in G2[B] then these edges lie on the same cycle of F . Suppose to the contrary, that
B5 is a set containing five edges of B forming a K5 in G2[B] and that there are, without
loss of generality, two cycles C1 and C2 of F such that at least three edges of B5 are in

13



C1 and at least one edge of B5 is in C2. An edge e = xy of C2 cannot be at distance 2 of
more than two edges of B5 ∩ C1 (the edges of C1 at distance 2 from e are those who have
one endpoint adjacent to x or to y). Hence, e is not adjacent (in G2[B]) to at least one
edge of B5 ∩ C1, a contradiction.

Now, we show that if G2[B] contains a K5, then G has order 10, which contradicts the
hypothesis. Let C be the cycle containing the five edges of B forming a K5. Note that if
an edge of B ∩C has one end vertex which is adjacent to a vertex of G \C, then this edge
is at distance (in the cycle) at most 2 of at most three other edges from B ∩C. Therefore,
each vertex of C has its neighbors in C and, consequently, C must have length 10. Since
the graph G is connected, G has order 10.

In any cubic graph G having a 2-factor, we can find a 2-factor containing a minimum
number of odd cycles and by Lemma 2.2, there exists, in such 2-factor, a set A of type I
such that G2[A] is an empty graph. Moreover, by virtue of Proposition 4.3 and by Brooks’
theorem, every set B of type II in a 2-factor of a cubic graph of order at least 12 satisfies
χ(G2[B]) ≤ 4. Consequently, by Lemma 2.3.ii) and by computation on the cubic graphs of
order up to 20, we obtain the following result for the sequences containing two times the
integer 1 and a bounded number of times the integer 2.

Corollary 4.4. Every cubic graph having a 2-factor is (1, 1, 25)-colorable. Every 3-edge-
colorable cubic graph having a 2-factor is (1, 1, 24)-colorable.

We now present sharper results for graphs with no short cycles. Note that the graphs
considered in the two following results are the subcubic graphs. By Euler’s formula, there
do not exist finite planar cubic graphs of girth at least 6.

Lemma 4.5. Let G be a subcubic graph having 2-factor F and let B ⊆ E(F ) be of type
II. If G is planar and of girth at least 7, then G2[B] has no triangle and is planar.

Proof. Let F be any 2-factor of G and let B ⊆ E(F ) be a set of type II. Suppose that
e1 = x1y1, e2 = x2y2, e3 = x3y3 are three edges of B that form a triangle in G2[B]. Then
e1 is at distance 2 of e2 and hence one end vertex of e1, say x1, is adjacent to one end
vertex of e2, say x2, i.e., x1x2 ∈ E(G). Similarly, y1 is adjacent to one end vertex of e3,
say y3 and x3 is adjacent to y2. But then x1, x2, y2, x3, y3, y1, x1 is a cycle of length six,
contradicting the hypothesis on the girth. Consequently, G2[B] has no triangles. The fact
that G2[B] is planar can be seen by drawing it ’on’ a cross-free embedding of the graph G
on the plane, putting vertices of G2[B] on the corresponding edges of G and drawing edges
of G2[B] along the shortest paths between corresponding edges of G.

Proposition 4.6. If a subcubic graph G of girth at least 7 is a subgraph of a planar cubic
graph G′ having a 2-factor, then G is (1, 1, 24)-colorable. Moreover, if G′ is bridgeless, then
G is (1, 1, 23)-colorable.

Proof. Let G be a subcubic graph of girth at least 7 and let G′ be a planar cubic graph
having a 2-factor such that G is a subgraph of G′. Let F be a 2-factor of G′ containing a
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minimum number of odd cycles. By Lemma 2.2, there exists in F a set A of type I such
that G′2[A] is an empty graph.

Tait [24] has proven that the four color theorem is equivalent to the statement that no
snark is planar. Thus, by the four color theorem, G′ is 3-edge-colorable in the case G′ is
bridgeless and the 2-factor F of G′ (containing a minimum number of odd cycles) contains
no odd cycles. Consequently, in this case, a set A of type I is not required.

If G′ contains a bridge (contains no bridges, respectively), let B be a set of type II in
F−A (in F , respectively). Let B′ = B∩E(G). Thus, by Lemma 4.5, since F is a 2-factor
of a planar cubic graph G′, G2[B′] (which is a subgraph of G′2[B′]) has no triangle and is
planar. By the famous Grötzsch’s theorem, G2[B′] is 3-colorable. Finally, by Lemma 2.3.ii)
G is (1, 1, 24)-colorable and even (1, 1, 23)-colorable in the case G′ is bridgeless.

We now show necessary conditions for a cubic graph to be (1, 1, 2, 2)-colorable. For
this, we first show a relation between (1, 1, 2, 2)-coloring and a coloring of the vertices with
two colors such that the subgraph induced by each color class has degree exactly one. This
relation is used to prove Proposition 4.8. A graph G is said to be 2-matching-colorable if
there exists a partition of V (G) into two sets A1 and A2 such that both G[A1] and G[A2]
are graphs of minimum and maximum degree 1, i.e., matchings. Note that a 2-matching
colorable graph is also what is called, in the context of defective coloring, a (2, 1)-colorable
graph [7], where the list (2, 1) means here that we can use two colors for which each of the
color class induce a subgraph of maximum degree 1. Planar graphs have been especially
studied in the context of defective coloring [7, 16, 23].

Proposition 4.7. Let G be a cubic graph. The graph G is 2-matching-colorable if and
only if G is (1, 1, 2, 2)-colorable.

Proof. Suppose G is 2-matching-colorable in two sets A1 and A2. Note that the edges of
G[A1] form a color class of radius 2 in G and the same goes for G[A2]. Moreover, the edges
which are not in G[A1] or G[A2] form a disjoint union of even cycles. Thus, we can easily
color these edges with two colors of radius 1. Therefore, G is (1, 1, 2, 2)-colorable.

Now suppose that G is (1, 1, 2, 2)-colorable. Let X1 be the set of vertices incident with
an edge colored with the first color of radius 2 and let X2 be the set of vertices incident
with an edge colored with the second color of radius 2. Note that, by definition of color of
radius 2, both X1 and X2 should induce a graph of maximum degree 1.

We now prove that X1 ∩X2 = ∅ and, afterward, that X1 ∪X2 = V (G). First, suppose
that there exists a vertex u in X1 ∩X2. Let e be the edge incident with u which does not
have an end vertex in X1 or X2 and let v be the other end vertex of e. By hypothesis, e
should be colored with a color of radius 1. The two edges incident with v (different from
e) can not be both colored (note that we can not use any color of radius 2 for these two
edges) and we obtain that G is not (1, 1, 2, 2)-colorable.

Second, suppose that there exists a vertex u not in X1 ∪X2. Since u is incident with
three edges which do not have colors of radius 2, we obtain a contradiction with the fact
that G is (1, 1, 2, 2)-colorable.
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Figure 6: The smallest non (1, 1, 2, 2, 2)-colorable and non (1, 26)-colorable cubic graph.

Therefore, we obtain that X1 and X2 form a partition of V (G) and that G is 2-matching
colorable.

Proposition 4.8. Any (1, 1, 2, 2)-colorable cubic graph G satisfies the following properties:

i) G is 3-edge colorable;

ii) G has order divisible by four.

Proof. By Proposition 4.7, G is 2-matching-colorable in two sets A1 and A2.
i) Note that the edges of G[A1]∪G[A2] form a perfect matching. Note also that the edges
with one end vertex in A1 and the other end vertex in A2 form a disjoint union of even
cycles. Consequently, G is 3-edge-colorable.
ii) Since G is cubic, we have |A1| = |A2|. Moreover, by definition of 2-matching colorable,
|A1| is even. Therefore, G has order divisible by four.

We end this subsection by pointing out that there exist cubic graphs that are not
(1, 1, 2, 2, 2)-colorable. The smallest such graph, illustrated in Figure 6 has order 12 and
has been found by exhaustive search using a computer.

It seems that the results of Proposition 4.6 can be extended to the whole class of cubic
graphs. We state this as a conjecture:

Conjecture 3. Every cubic graph is (1, 1, 2, 2, 2, 2)-colorable and every 3-edge-colorable
cubic graph is (1, 1, 2, 2, 2)-colorable.

4.2. (1, 1, 3, . . . , 3)-coloring and (1, 1, 4, . . . , 4)-coloring
We finish this section by giving general results about the required number of integers

3 and 4 in order that all cubic graph having a 2-factor are (1, 1, 3, . . . , 3)-colorable and
(1, 1, 4, . . . , 4)-colorable.

Proposition 4.9. Every cubic graph G having a 2-factor is (1, 1, 311)-colorable. Moreover,
if G is 3-edge-colorable, then G is (1, 1, 39)-colorable. Also there exists a 3-edge-colorable
cubic graph which is not (1, 1, 36)-colorable

Proof. By Theorem 4.2, every 3-edge-colorable cubic graph having a 2-factor is (1, 1, 39)-
colorable. By Theorem 3.3, we can color a set of type I with two colors of radius 3. Thus,
we obtain that every cubic graph having a 2-factor is (1, 1, 311)-colorable.
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By exhaustive search, we have found a 3-edge-colorable cubic graph G of 14 vertices
such that the line graph of G has diameter 3, i.e., every two edges of G are at distance at
most 3. Thus, since a matching of G has size at most 7, we can color at most 14 edges with
two colors of radius 1 and we obtain that G is not (1, 1, 36)-colorable since there remain
seven uncolored edges.

Proposition 4.10. Every cubic graph G having a 2-factor is (1, 1, 426)-colorable. More-
over, if G is 3-edge-colorable, then G is (1, 1, 421)-colorable. Also there exists a 3-edge-
colorable cubic graph which is not (1, 1, 414)-colorable.

Proof. By Theorem 4.2, every 3-edge-colorable cubic graph having a 2-factor is (1, 1, 421)-
colorable. By Theorem 3.7, we can color a set of type I with five colors of radius 4. Thus,
we obtain that every cubic graph having a 2-factor is (1, 1, 426)-colorable.

By exhaustive search, we have found a 3-edge-colorable cubic graph G of 30 vertices
(G has girth 7) such that the line graph of G has diameter 4, i.e., every two edges of G are
at distance at most 4. Thus, since a matching of G has size at most 15, we can color at
most 30 edges with two colors of radius 1 and we obtain that G is not (1, 1, 314)-colorable
since there remain fifteen uncolored edges.

5. (1, k, . . . , k)-coloring

In this section, we show that for any cubic graph having a 2-factor and any fixed integer
k, there is a coloring with only one color of radius 1 and a finite number of colors of radius
k.

Theorem 5.1. For any k ≥ 2, every cubic graph having a 2-factor is (1, kak+2bk+3)-
colorable and every 3-edge-colorable cubic graph having a 2-factor is (1, k2bk+2)-colorable,
where ak = 2k+1−(−1)k+1−3

3
and bk = 2k+2+2(−1)k+2−6

3
.

Proof. Let G be a cubic graph and k ≥ 2 be an integer. Let F be any 2-factor of G.
Clearly, E(F ) can be partitioned into three sets A, B and C such that A is of type I and
B,C are of type II. By Lemma 3.2, ∆(Gk[A]) ≤ ak. Thus, by Brooks’ theorem, Gk[A] is
(ak + 1)-colorable. By Lemma 4.1, ∆(Gk[B]) ≤ bk, and ∆(Gk[C]) ≤ bk. Thus, by Brooks’
theorem, Gk[B] and Gk[C] are (bk + 1)-colorable.

Therefore, by Lemma 2.3.iii), G is (1, k2bk+ak+3)-colorable and even (1, k2bk+2)-colorable
in the case G is 3-edge-colorable (by setting A = ∅).

We remark that this general result is far from tight at least for small values of k: for
k = 2 it gives that cubic graphs having a 2-factor are (1, 213)-colorable, but it is known
since a long time that such graphs are (210)-colorable [1].

For the case k = 2 with restrictions on the graph, we can prove sharper results.

Proposition 5.2. If a subcubic graph G of girth at least 7 is a subgraph of a planar cubic
graph G′ having a 2-factor, then G is (1, 27)-colorable. Moreover, if G′ is bridgeless, then
G is (1, 26)-colorable.
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Proof. Let G be a subcubic graph of girth at least 7 and let G′ be a planar cubic graph
having a 2-factor such that G is a subgraph of G′. Let F be a 2-factor of G′ containing a
minimum number of odd cycles. By Lemma 2.2, there exists in F a set A of type I such
that G′2[A] is an empty graph.

Tait [24] has proven that the four color theorem is equivalent to the statement that no
snark is planar. Thus, by the four color theorem, G is 3-edge-colorable in the case G′ is
bridgeless and the 2-factor F of G′ (containing a minimum number of odd cycles) contains
no odd cycles. Consequently, in this case, a set A of type I is not required.

If G′ contains a bridge (contains no bridges, respectively), let B and C be two sets
of type II forming a partition of F − A (F , respectively). Let B′ = B ∩ E(G) and
C ′ = C ∩ E(G). Thus, by Lemma 4.5, since F is a 2-factor of a planar cubic graph G′,
both G2[B′] (which is a subgraph of G′2[B′]) and G2[C ′] (which is a subgraph of G′2[C ′])
have no triangle and are planar. By the famous Grötzsch’s theorem, both G2[B′] and G2[C ′]
are 3-colorable. Finally, by Lemma 2.3.iii), G is (1, 27)-colorable and even (1, 26)-colorable
in the case G′ is bridgeless.

As for the previous section, note that there exist non (1, 26)-colorable cubic graphs, the
smallest one being the graph on 12 vertices depicted in Figure 6.

We give the following results for sequences of type (1, 3, . . . , 3) or (1, 4, . . . , 4).

Proposition 5.3. Every cubic graph G having a 2-factor is (1, 320)-colorable and (1, 447)-
colorable. Moreover, if G is 3-edge-colorable, then G is (1, 318)-colorable and (1, 442)-
colorable. Also there exists two 3-edge-colorable cubic graphs G′ and G′′ such that G′ is not
(1, 313)-colorable and G′′ is not (1, 429)-colorable.

Proof. We can easily prove that G is (1, 320)-colorable and even (1, 318)-colorable in the
case G is 3-edge-colorable using the same arguments than in the proof of Proposition 4.9.
Using the same arguments than in the proof of Proposition 4.10, we can prove analogue
results for sequences of type (1, 4, . . . , 4).

The graph G′ is the non (1, 1, 36)-colorable cubic graph of Proposition 4.9 and G′′ is
the non (1, 1, 414)-colorable cubic graph of Proposition 4.10. Since the line graph of G′
has diameter 3 and the line graph of G′′ has diameter 4 and since the matchings of G′
has size at most 7 and the matching of G′′ has size at most 15, we obtain that G′ is not
(1, 313)-colorable and that G′′ is not (1, 429)-colorable.

The computations we have made let us think that seven colors of radius 2 are enough
in general and less with girth restrictions. We end this section by stating these two open
problems.

Question 5.4. Is it true that all cubic graphs are (1, 27)-colorable ?

Question 5.5. Is it true that all cubic graphs of girth at least 5 are (1, 25)-colorable ?
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6. (1, 2, . . . , k)-coloring

We finish this paper by proving that there is no integer k such that every subcubic graph
is (1, 2, . . . , k)-colorable, i.e., that the line graphs of subcubic graphs have arbitrary large
packing chromatic number. We recall that the packing chromatic number of a graph G is
the smallest integer k such that there exists a partition of V (G) into k subsets {X1, . . . , Xk},
each Xi being a set of vertices at pairwise distance at least i+ 1. Note that it has already
been proven that for every fixed k and g ≥ 2k+2, almost every cubic graph of girth at least
g of sufficiently large order has packing chromatic number greater than k [2]. Moreover,
explicit examples of cubic graphs with packing chromatic number greater than k (for any
integer k) have been given in a recent paper [3].

Adding a leaf on a vertex u of a graph G is an operation in which we add a new vertex
v and the edge uv.

Let T1 be the graph K1,3 and let T ′1 be the graph K1,3 for which we have added two
leaves on the same vertex of degree 1. By induction on i, let Ti (T ′i , respectively), for
i ≥ 2, be the graph constructed from Ti−1 (T ′i−1, respectively) by adding two leaves on
each vertex u of degree 1.

Proposition 6.1. For any integer k, there exists an integer N such that TN is not
(1, 2, . . . , k)-colorable.

Proof. By induction on i, we begin by proving that the diameter of the line graph of Ti is
2i− 1. For i = 1, the diameter of the line graph of T1 is 1. Suppose that the diameter of
the line graph of Ti is 2i− 1. By definition, we obtain that the diameter of the line graph
Ti+1 is 2i+ 1. Similarly, we can prove that the diameter of the line graph of T ′i is 2i.

Moreover, by induction on i, we prove that |E(Ti)| = 3(2i − 1). For i = 1, |E(Ti)| = 3.
Suppose that |E(Ti)| = 3(2i−1). It is trivial to note that there are 3(2i−1)−3(2i−1−1) =
3 2i−1 vertices of degree 1 in Ti. Thus, there are 2(3×2i−1) new edges in Ti+1. Consequently,
|E(Ti+1)| = 3(2i − 1) + 2(3 2i−1) = 3(2i+1 − 1).

Also, by induction on i, we prove that |E(T ′i )| = 2i+2 − 3. For i = 1, |E(T ′i )| = 5.
Suppose that |E(T ′i )| = 2i+2−3. It is trivial to note that there are 2i+2−3−2i+1+3 = 2i+1

vertices of degree 1 in T ′i . Thus, there are 2(2i+1) new edges in T ′i+1. Consequently,
|E(T ′i+1)| = 2i+2 − 3 + 2(2i+1) = 2i+3 − 3.

Since the diameter of the line graph of Ti is 2i−1, at least one edge can be in a (2i−1)-
packing (a set of edges at pairwise distance at least 2i) in Ti. Let mN be the number of
edges which are not in any Ti for a choice of edge-disjoint Ti in TN which is maximum (the
number of edge-disjoint Ti is maximum). It can be noted that for every ε > 0, there exists
an integer N ′, such that for every N ≥ N ′, mN/|V (TN)| < ε.

Consequently, if N is a sufficiently large integer (compared to k), an upper bound on
the size of an i-packing in TN , for i an odd integer, converges towards |E(TN)|/|E(T(i+1)/2)|.
Moreover, since the diameter of the line graph of T ′i is 2i, an upper bound on the size of
an i-packing in TN , for i an even integer, converges towards |E(TN)|/|E(T ′i/2)|. Thus, if
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TN is (1, 2, . . . , k)-colorable and ε is an arbitrary small constant, then

dk/2e∑
i=1

(|E(TN)|/|E(Ti)|) +

bk/2c∑
i=1

(|E(TN)|/|E(T ′i )|)− ε ≥ |E(TN)|.

However, by calculation,

dk/2e∑
i=1

(1/|E(Ti)|) +

bk/2c∑
i=1

(1/|E(T ′i )|) ≤
∞∑
i=1

1/(3(2i − 1)) +
∞∑
i=1

1/(2i+2 − 3) < 0.8793 < 1.

Thus, we obtain a contradiction and TN is not (1, 2, . . . , k)-colorable.

Since TN is subcubic for any integer N and since for any integer m > N , Tm contains
TN as subgraph, we obtain the following corollary.

Corollary 6.2. There exist non (1, 2, . . . , k)-colorable subcubic graphs of arbitrary large
order for every integer k.

Note also that there exists non (1, 2, . . . , k)-colorable cubic graphs for every integer k,
since we can easily construct a cubic graph containing TN as subgraph, for every integer
N .
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