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Abstract. This paper investigate the different response regimes of a cutting tool on a lathe strongly coupled to
a nonlinear energy sink. The equations of motion are analysed via the method of multiple scales. Condition of
elimination of secular terms permit to derive equation of the slow invariant manifold (SIM) and the behavior of
the system has been explained by studying the location of the fixed points of the slow flow on the SIM. Different
types of responses are revealed such as periodic response and also strongly modulated response (SMR) wich are
not related to the fixed points of the slow flow. Analytic results are then compared to numerical simulations.

1 Introduction

The surface quality of parts produced by machining op-
eration is strongly affected by the well know regenerative
chatter. The chatter instability is induced by the time de-
lay between two consecutive workpiece revolution. By the
effect of some external disturbance, the tool start damped
oscillation relative to the workpiece, and the surface rough-
ness is undulated. For the consecutive workpiece revolu-
tion, the chip thickness is modulated. This regenerative
mechanism is well known and presented first by Tobias
[1]. Since this work, many researcher have improved the
knowledge by the stability lobe representation, see e.g. [2,
3]. The behavior of a cutting tool on a lathe has also been
studied using the method of multiple scales [4]. Various
techniques for chatter suppression have been investigated.
In [5], they used a variable spindle speed in milling to dis-
turb the time delay. Another approach to reduce chatter is
the use of linear tuned vibration absorbers. Recently, an
analytical optimized method was presented for linear ab-
sorbers in the context of chatter [6]. These linear absorbers
are successfully applied on boring process [7]. Active ab-
sorbers have been also proposed with piezoelectric tool [8].
However all these linear absorbers are limited by the small
frequency bandwidth, and in practice their efficiency is not
interesting for the machinist. The idea of attaching a non-
linear oscillator to a turning machine is relatively recent
[9]. In recent studies, it has been demonstrated that addi-
tion of a small mass attachment with a strong nonlinear
coupling (i.e. a nonlinear energy sink (NES)) to a linear
oscillator can be benefit for vibration mitigation [10,11].
In [12], a general analytical procedure to deal with such
systems is presented. The possibility of suppressing limit
cycle oscillations due to machining chatter using a NES
has been studied in [13]. System with NES can exhibit
regimes which are not related to fixed points, and cannot
be explained using local analysis [14]. These regimes are
related to relaxation oscillation of the slow flow and are
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also benefit for passive control. In this paper, the possi-
bility of controlling regenerative chatter using a Nonlinear
Energy Sink (NES) is analyzed for turning process. The-
oretical predictions are confirmed with numerical integra-
tion. The paper is organized as follow. In the next section,
the model considered in this study is described. In the third
section, the underlying linear sub-system is analyzed. In
the fourth section the asymptotic analysis of the equations
of motion is performed. Then, various response regimes
accompanied with numerical simulation are presented.

2 Mechanical model

The model studied herein consist of a lathe cutting tool
with an embeded NES. Only the first flexible mode of the
cutting tool is considered, and the workpiece is assumed to
be rigid. A shematic of the model is given in Fig. 1 and the
governing equations of motion are as follow:

m1 ẍ + c1 ẋ + k1x + c2 (ẋ − ẏ) + k2 (x − y)3 = F (∆h (t)) (1)

m2ÿ + c2 (ẏ − ẋ) + k2 (y − x)3 = 0 (2)

Where m1, c1, k1 and m2, c2, k2 are the mass, damping
and stiffness of the cutting tool and the NES respectivelly.
F (∆ (h)) is the non constant part of the cutting force ex-
pressed as:

F (∆h (t)) = apKt (x (t − τ) − x (t)) (3)

Where ap is the depth of cut, Kt is a cutting stiffness,
x(t) is the current position of the tool and xτ = x (t − τ) is
the delayed position. τ is the time delay which correspond
to one workpiece revolution:

τ =
2π
Ω

(4)

Where Ω is the workpiece rotating speed. The nonlin-
ear part of the cutting force [15] is not taken into account
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Fig. 1: Scheme of the model

in this study. After rescalling, system (1,2) is rewritten in a
more convenient form:

ẍ+λ1 ẋ+ x+ p (x − xτ)+ελ2 (ẋ − ẏ)+εK (x − y)3 = 0 (5)

ÿ + λ2 (ẏ − ẋ) + K (y − x)3 = 0 (6)

with

t̃ = ω1t, ε = m2/m1, ω2
1 = k1/m1, ω2

2 = k2/m2,

K = ω2
2/ω

2
1, λ1 = c1/ (m1ω1) , λ2 = c2/ (m2ω1) ,

p = apKt/
(
m1ω

2
1

)
, τ̃ = ω1τ

3 Analysis of the uncoupled system

In this section, the behavior of the lathe cutting tool alone
is analysed. The procedure is described more in details in
[4]. The linearized equation of a cutting tool on a lathe is
given by:

ẍ + λ1 ẋ + x + p (x − xτ) = 0 (7)

Equation (7) admit solutions of the form:

x(t) = x0e(γ+iω)t (8)

where ω is the frequency of oscillations, γ is the grow
or decay rate, and x0 depends on the initial conditions. The
value γ = 0 define the stability boundary. Substituting (8)
into (7), splitting into real and imaginary parts and setting
γ = 0 yields:

1 − ω2 + p − p cos (ωτ) = 0 (9)

λ1ω + p sin (ωτ) = 0 (10)

It is possible to proove that the value γ = 0 correspond
to a Hopf bifurcation [4]. Solving (9,10) for cos (ωτ) and
sin (ωτ) and using trigonometric identity, the frequency of
the bifurcated periodic orbit is obtained:

ωc =
1
2

√
4 ± 2

√
−4λ2

1 + 4p2
c − 4pcλ

2
1 + λ4

1 + 4pc − 2λ2
1

(11)
The stability boundary is often plot in parameters space

(Ω, p) and is called stability lobes. An exemple is given
in Fig. 2 for λ1 = 0.1. The regions under the curves are
stables, and unstables elsewhere.

Fig. 2: Stability lobes with λ1 = 0.1

4 Study of the coupled system

In this section, the coupled system is analysed. A new co-
ordinate representing the internal displacement of the NES
is introduced:

w = x − y (12)

Taking into account (12), system (5,6) becomes:

ẍ + λ1 ẋ + x + p (x − xτ) + ελ2ẇ + εKw3 = 0 (13)

ẅ+λ1 ẋ+x+p (x − xτ)+(1 + ε) λ2ẇ+(1 + ε) Kw3 = 0 (14)

A new small parameter χ is introduced, and the vari-
ables are rescalled as follow:

χ = ε1/3, X = χ−1x, W = w (15)

Substituting (15) into (13,14), and keeping only terms
up to order χ2 yields:

Ẍ + X + λ1Ẋ + p (X − Xτ) + χ2λ2Ẇ + χ2KW3 = 0 (16)

Ẅ + χX + χλ1Ẋ + χp (X − Xτ) + λ2Ẇ + KW3 = 0 (17)

The system is analysed in the case of 1 : 1 resonance.
In this case all variables oscillates at the same frequency,
that is at the frequency of the bifurcated periodic orbit. Sys-
tem (16,17) may be reshaped as follow:

Ẍ + X + λ1Ẋ + p (X − Xτ) + χ2λ2Ẇ + χ2KW3 = 0 (18)

Ẅ + ωcW + χ
[
δ
(
λ2Ẇ + KW3 − ωcW

)
+ X + λ1Ẋ

+p (X − Xτ)
]

= 0 (19)

Where δ = χ−1. System (18,19) is the basis for the
analysis. A detuning parameter representing the nearness
of p to the critical value pc is introduced as:

p = pc + χ2σ (20)

System (18,19) is analysed using the method of multi-
ple scales. A second order uniform approximation of its so-
lution in the vicinity of the Hopf bifurcation has the form:
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X (t; χ) = X0 (T0,T1,T2) + χX1 (T0,T1,T2)

+χ2X2 (T0,T1,T2) + . . . (21)

W (t; χ) = W0 (T0,T1,T2) + χW1 (T0,T1,T2)

+χ2W2 (T0,T1,T2) + . . . (22)

Where Tn = χnt, n = 0, 1, . . .. The time delay is con-
sidered as O(1) since the zone which present most interest
for the machinist is closeto the first hopf lobe (see Fig. 2).
The delay term is expressed as:

X (t − τ; χ) = X0

(
T0 − τ,T1 − χτ,T2 − χ

2τ
)

+χX1

(
T0 − τ,T1 − χτ,T2 − χ

2τ
)

+χ2X2

(
T0 − τ,T1 − χτ,T2 − χ

2τ
)

+ . . . (23)

Substituting Eq. (20-23) into (18,19) and equating co-
efficients of like power of χ yields:

D2
0X0 + λ1D0X0 + X0 + pc (X0 − X0τ) = 0 (24)

D2
0W0 + ωcW0 = 0 (25)

D2
0X1 + λ1D0X1 + X0 + pc (X1 − X1τ)

= −2D0D1X0 − λ1D1X0 − pcτD1X0τ (26)

D2
0W1 + ωcW1 = −δλ2D0W0 − δKW3

0 + δωcW0

−X0 + pc (X0τ − X0) − λ1D0X0 − 2D0D1W0 (27)

D2
0X2 + λ1D0X2 + X0 + pc (X2 − X2τ)

= −2D0D1X1 − D2
1X0 +

1
2

pcτ
2D2

1X0τ − pcτD2X0τ

−pcτD1X1τ + σX0τ − 2D0D2X0 − λ1D1X1

−λ1D2X0 − σX0 − KW3
0 − λ1D0W0 (28)

Where Xiτ = Xi (T0 − τ,T1,T2). Only the equation gov-
erning the evolution of X2 is shown, because it is the only
one used in this study.

The general solution of Eq. (24) can be expressed as:

X0 = A (T1,T2) eiωcT0 +

∞∑
n=1

[
An (T1,T2) e(γn−iωn)T0

]
+ cc

(29)
Where cc stand for complex conjugate, ωc is the crit-

ical frequecy of the oscillations on the boundary of Hopf
bifurcation and is given by (11). (γn − iωn) are the remain-
ing roots of Eq. (24). Close to the Hopf bifurcation, all the
roots have negative real parts exept one which change sign
at the stability boundary. After transient, all the roots de-
cay with time, and the long time behavior at O (1) is given
by:

X0 = A (T1,T2) eiωcT0 + cc (30)

W0 = B (T1,T2) eiωcT0 + cc (31)

Substituting (30,31) into (26,27) yields:

D2
0X1 + λ1D0X1 + X0 + pc (X1 − X1τ)

= (−2iωcD1A − pcτD1A − λ1D1A) eiωcT0 + cc (32)

D2
0W1 + ωcW1 =

(
−δλ2Biωc − 3δKB2B∗

+δωcB − A + pcAe−iωcτ − iλ1ωcA − pcA

−2iωcD1B
)
eiωcTO + NS T + cc (33)

Where NST stands for non secular terms, and the star
(∗) for the complex conjugate. Eliminatig terms that pro-
duce secular terms in Eq. (32), we obtain:

A (T1,T2) = A (T2) (34)

which means that A does not depend on time scale
T1,therefore:

X0 = X1 = A (T2) eiωcT0 + cc (35)

Now, eliminating terms that produce secular terms in (33)
gives:

−δλ2iωcB − 3δKB2B∗ + δωcB + pcAe−iωcτ

−A − 2iωcD1B − pcA − λ1iωcA = 0 (36)

It is possible to proove with the help of Bendixon cri-
terion, that solution of equation (36) must end or begin at
fixed point of the equation and cannot be periodic. Conse-
quently, looking for the fixed points of (36):

B̃ (T2) = lim
T1→∞

B (T1,T2) (37)

Then, we obtain:

A = −

eiωcτδB̃
(
λ2iωc + 3K

∣∣∣B̃∣∣∣2 − ωc

)
eiωcτ (1 + pc + iλ1ωc) − pc

(38)

The polar form is introduced as:

B̃ = Neiθ (39)

Substituting (39) into (38), and expressing A in terms
of modulus yields:

|A|2 = δ2Z
(
λ2

2ω
2
c + ω2

c + 9K2Z2 − 6KZωc

)
Γ−1 (40)

with

Γ = 1 + 2pc + 2p2
c + 2pcλ1ωc sin (ωcτ)

+λ2
1ω

2
c − 2p2

c cos (ωcτ) − 2pc cos (ωcτ) (41)

and

N2 = Z (42)
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Fig. 3: Shape of the SIM in the case λ2 < 1/
√

3. Solid and
dashed lines denotes stables and unstables branch respec-
tivelly

Equation (40) defines the slow invariant manifold (SIM)
of the problem and inside its domain of attraction, vari-
ables A and B evolves on it. The SIM can be monotonous
or have extremums. To check this possibility, the roots of
the derivative of the right hand side of (40) are computed:

Z1,2 =

(
2 ±

√
1 − 3λ2

2

)
ωc

9K
(43)

Depending on the value of λ2, the SIM can consist ei-
ther of one stable branch if λ2 > 1/

√
3 or two stable and

one unstable branch if λ2 ≤ 1/
√

3. In the later case, the
structure of the SIM may give rise to relaxation oscillation.
An exemple of such a SIM is presented in Fig. 3. In the
scenario of relaxation oscillations — also called strongly
modulated response (SMR) —, the flow can achieve fold
points Z1 or Z2, then the flow jump on the other stable
branch to the landing point Zu or Zd respectively. These
landing points are computed by using the invariance prop-
erty of the SIM:

δ2Z1,2

(
λ2

2ω
2
c + ω2

c + 9K2Z2
1,2 − 6KZ1,2ωc

)
= δ2Zu,d

(
λ2

2ω
2
c + ω2

c + 9K2Z2
u,d − 6KZu,dωc

)
(44)

then

Zu,d =

(
1 ±

√
1 − 3λ2

2

)
2ωc

9K
(45)

To study the different response regimes on the SIM, the
equation at O

(
χ2

)
should be analysed. Substituting Eq. (31)

and (35) into (28) yields the following equation:

D2
0X2 + λ1D0X2 + X0 + pc (X2 − X2τ)

= −pcτD2Ae−iωcτ + σAe−iωcτ − λ2iωcB − λ1D2A

−σA − 3KB2B∗ − 2iωcD2A + NS T + cc (46)

Eliminating terms that produce secular terms in Eq. (46)
gives:

−pcτD2Ae−iωcτ + σAe−iωcτ − λ2iωcB − λ1D2A

−σA − 3KB2B∗ − 2iωcD2A = 0 (47)

The equation for the SIM (40) is substituted into (47)
Splitting into real and imaginary parts, and reorganis-

ing, it is possible to obtain an expression for the derivative
of N. The entire expression is not displayed here due to its
length, but it can be expressed in more compact form as:

D2N =
N

(
α1N4 + α2N2 + α3

)
β1N4 + β2N2 + β3

(48)

Where αi and βi are coefficients which depends only
on the systems parameters. The behavior of the system can
be understood by studying the fixed points of (48). From
Eq. (48) it follows that a trivial fixed point is N0 = 0 and
the two others are expressed as:

Z0 =
−α2 ±

√
α2

2 − 4α1α3

2α1
(49)

The different scenarii are presented in the next section.

5 Description of some response regimes

In this section, some different response regimes are stud-
ied. The following set of parameters has been used for each
cases:

ε = 0.01, λ1 = 0.1, λ1 = 0.2, K = 1,
pc = 0.12, τ = 3.94, ωc = 1.08 (50)

Only the detunning parameter σ, which can be related
to the depth of cut, will varries. Initial conditions used for
simulation are x(0) = 0.1 and ẋ(0) = w(0) = ẇ(0) = 0.
The integration scheme used for numerical simulation is
the Matlab dde23 algorithm. The stable fixed points on the
SIM are denoted by circles, and the unstables one by cross.
The NES is not optimized in this study.

5.1 Complete suppression of chatter

In Fig. 4a, the SIM for σ = 0.05 is presented. In this case, a
stable fixed point exist at the origin, and an unstable one on
the second stable branch of the SIM. In this case, the flow is
repelled to the origin, and chatter is fully suppressed. This
scenario is confirmed by numerical integration presented
in Fig. 4b.

One can see that the oscillations decrease slowly to a
value close to zero. It is not presented here, but for higher
initial conditions (initial conditions on the second stable
branch of the SIM), the flow will jump down to the first
stable branch of the SIM as it is illustrated by the arrows
on Fig. 3, and energy pumping occurs. Numerically, we
have found that such a scenario occurs for σ < 0.052. For
higher values of σ, other mechanisms are observed.
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(a) Structure of the SIM. ’o’ and ’+’ denotes stable and unstable
fixed points respectively

(b) Numerical verification; black line : coupled system, gray line
: uncoupled system

Fig. 4: Case of complete suppression of chatter for the set
of parameters (50) and σ = 0.05

5.2 Stabilisation of chatter

In Fig. 5a, the SIM is presented for a slightly higher value
of detunning parameter : σ = 0.09. Now the only stable
fixed point is located on the first stable branch of the SIM
and corresponds to small oscillations amplitude. Numeri-
cal verification is presented is Fig. 5b. The amplitude of os-
cillation growth slowly and stabilise at the fixed point. This
senario occurs until the fixed point reach the fold point Z1
(see Fig. 3).

5.3 Chatter control throught SMR

Further increase of σ, brings the possibility of appearance
of SMR. As it it illustrated on the SIM in Fig. 6a for σ =
0.2, there exist two unstable fixed points on each stable
branch of the SIM, and another unstable fixed point on the
unstable branch of the SIM. In this case, the only way for
the flow is to perform ralaxation cycle oscillations called
SMR response. This regime is also verified numerically in
Fig. 6b. It is interesting to find the value of σ for which
SMR appears. This arise when the fixed point on the first
stable branch of the SIM reaches the first fold point Z1.
The value of σ where this transition occurs was σ = 0.120
numerically, versus σ = 0.111 analytically. This is in good
agreement despite the fact that the parameter χ is not very
small (χ = 0.215).

5.4 Loss of stability

Again increasing the value of σ, the fixed point located
on the second stable branch of the SIM goes down until it

(a) Structure of the SIM. ’o’ and ’+’ denotes stable and unstable
fixed points respectively

(b) Numerical verification

Fig. 5: Case of stabilization of chatter for the set of param-
eters (50) and σ = 0.09

(a) Structure of the SIM. ’o’ and ’+’ denotes stable and unstable
fixed points respectively

(b) Numerical verification

Fig. 6: Case of passive control of chatter via SMR for the
set of parameters (50) and σ = 0.2



MATEC Web of Conferences

(a) Structure of the SIM. ’o’ and ’+’ denotes stable and unstable
fixed points respectively

(b) Numerical verification

Fig. 7: Loss of stability for the set of parameters (50) and
σ = 0.5

reaches the saddle point Zu yielding to an homoclinic con-
nection. A slightly increase of σ, makes system unstable.
In this case, with initial conditions on the first branch of the
SIM, the flow must grow on this branch until the fold point
Z1, then land on the second stable branch, and increase
infinitelly (unstable). This is fully verified in Fig. 7a,7b,
where the motion becomes unstable after one half SMR
cylce. Numerically, the value of σ where SMR loss stabil-
ity is σ = 0.409 versus σ = 0.455 analytically.

6 Concluding remarks

In this paper, the possiblity of passivelly controling machin-
ning chatter instability with a nonlinear energy sink was
studied. The system considered consist of a linear oscilla-
tor representing a flexible lathe cutting tool, subject to a
regenerative cutting force and strongly coupled to a NES.
Only the linear part of the cutting force was considered.
The whole system has been studied using the method of
multiple scales. Different responses regimes were revealed
by studying the location of the fixed points on the SIM.
Qualitativelly, the comparison between analytical predic-
tion and numerical simulation is very satisfying. Quantita-
tively, some discrepancies arise in the determination of the
critical parameters, certainely due to the not so small value
of χ. The potential benefit of the NES to control machining
chatter has been demonstrated. It should be interesting to
include a non linear cutting law, and to study the system’s
behavior for a larger set of parameters and an optimized
NES in a further study.
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