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ABSTRACT: Purity of carbon nanotubes (CNTs) is essential to avoid a
dramatic decrease in their performances. In addition to metallic
impurities, carbonaceous impurities have been shown to be responsible
for pronounced effects. However, they are highly difficult to be
selectively removed from CNT samples because of the similar chemical
reactivity of these two kinds of carbon species. The existing purification
methods often lead to high CNT consumption (>90 wt %). The
proposed method consists of a one-pot gas-phase treatment combining
chlorine and oxygen. The CNT powder maintained in a chlorine stream
is submitted to oxygen at moderate temperature [350 and 500 °C for
single-walled CNTs (SWCNTs) and double-walled CNTs (DWCNTs), respectively], and the thermal treatment is then
pursued at 900−1000 °C under chlorine alone. Our work reveals that this approach is able to significantly improve the
selectivity of elimination of carbonaceous impurities. Thanks to the proposed purification treatment, only 19 and 11 wt % of
carbon species (mainly carbon impurities) are lost for DWCNTs and SWCNTs, respectively. The mechanism proposed
involves a protective effect by grafting of chlorine favored to the CNT walls. Because our simple one-pot purification method is
also versatile and scalable, it opens new perspectives for CNT applications in high-added value fields.

1. INTRODUCTION

Carbon nanomaterials, such as carbon nanotubes (CNTs) and
graphene, are exciting materials showing a combination of
superior properties: lightness, thermal and electrical con-
ductivity, and optical and mechanical properties.1 The
technology of CNT synthesis, although in a continuous state
of improvement, cannot avoid the use of catalysts to increase
the conversion rate from carbon precursors to the production
of carbon nanomaterials, as this rate is still far below 100%.2−6

The presence of both metal and carbon impurities has negative
effects on the CNT properties.7,8 It is widely known that
magnetic properties of CNTs are dominated by catalyst
residues even at low content.9 Thermal and electrical
conductivity and mechanical properties (tensile strength) are
dramatically decreased because of carbon impurities in CNT
samples.10 Although it was first attributed to the CNTs
themselves, the observed electrocatalytic activity has been
shown to be due to metallic catalyst impurities11,12 or
carbonaceous by-products.13−15 Similar mistrusted effects on
electrochemical properties from carbon impurities in graphene
samples have been reported by Pumera et al.16

The purification of CNTs has been extensively desired, and
various methods allow to efficiently remove metallic

contamination.17,18 Some methods to remove only catalyst
residues consist of annealing the CNT powder at a
temperature in the 2000−2500 °C range under N2, Ar, or
vacuum.19−21 However, even if high-quality CNTs can be
prepared from the standard methods, they still fail in selectively
removing carbonaceous impurities without excessive loss of
CNTs, leading to low sample yield.22 The main reason
explaining this difficulty of eliminating carbon impurities
without attacking the CNTs is their too close chemical
reactivity.23,24 Standard approaches use strong acids, which are
known to damage the CNTs and lead to weak sample yield;
they also create functional groups at the CNT surface and
produce large amounts of amorphous carbon debris.25 These
surface groups and debris are prejudicial for further CNT
applications, for which surface and interfacial phenomena play
the major role.8,26 Gas-phase routes using air and/or oxygen,
hydrogen, carbon dioxide, and ammonia have been also
reported as efficient purification methods to selectively remove
carbonaceous impurities from CNT samples.27,28 Thermal air
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or oxygen oxidation at moderate temperature was able to
selectively attack amorphous carbon or carbonaceous impur-
ities of lower oxidation resistance than CNTs.29−32 High-
temperature heating in hydrogen or in ammonia has been
proposed as an effective purification treatment.33,34 Carbon
dioxide was also used as a milder oxidant with successful attack
of carbon impurities and less damaging of CNTs.35,36 For these
gas-phase methods, a subsequent treatment usually in a liquid
medium, such as nitric or hydrochloric acid, is required to
remove the metallic impurities. Interestingly, halogens, such as
bromine37 and chlorine, under various forms (hydrogen
chloride,38 tetrachloromethane,39 or chlorine40,41) are able to
effectively remove metallic impurity from CNTs, carbon
species (including CNTs and carbonaceous impurities) being
untouched. In a previous work,42 we had shown that the
addition of oxygen in chlorine could lead to the removal of
carbon impurities from double-walled CNTs (DWCNTs).
Unfortunately, the combustion rate at the high temperature
used (950 °C) was too rapid and not possible to be controlled
to reduce the CNT loss, which was as high as 95%. In spite of
the extensive research in the field, efficient elimination of
carbonaceous impurities from CNT samples has not been
achieved without damaging and consuming the majority of
CNTs; the missing key is to reach a high degree of selectivity
of carbonaceous impurity attack.
We present here experimental results that evidence a high

selectivity in the elimination of carbonaceous impurities with
respect to CNTs occurring in particular working conditions.
Moreover, in contrast with the few available reported non-
damaging methods, our approach allows to prepare purified
CNTs while limiting the number of chemical treatments.43−45

Our entirely gas-phase treatment consists of a concomitant
thermal activation of a protection/combustion effect of the
carbon species before the spontaneous elimination of the
formed metallic chlorides in a one-pot treatment. The favored
oxidation of carbonaceous impurities is demonstrated by
applying this treatment to both single-walled CNTs
(SWCNTs) and DWCNTs. The results show that the
combination of chlorine and oxygen at temperatures as low
as 350−500 °C can be a powerful asset for an effective carbon
impurity elimination with a much higher carbon yield than
previously reported 81 wt % instead of 5 wt %.42 These results
have been achieved thanks to a strong protecting effect of
CNTs against combustion occurring in a quite low-temper-
ature range (350−500 °C) when oxygen is introduced in
chlorine while carbonaceous impurities remain susceptible to
be vaporized. The proposed reaction mechanism, unprece-
dented in the literature, which allows to explain this finding, is
based on the identified tunable reactivity between oxygen and
chlorine toward carbon species, that is, CNTs and carbon
impurities. The method we propose here hence fulfills all of the
requirements to purify large volumes of CNTs with high
sample yields, which is of great interest for their practical
applications.

2. MATERIALS AND METHODS
2.1. CNT Purification. The DWCNT sample was

synthesized by catalytic chemical vapor deposition under
optimized operating conditions;46 the raw DWCNT sample is
referred to as rD. The raw HiPco SWCNT samples used for
this work were supplied by NanoIntegris Inc. For the
purification of the HiPco sample, because of the numerous
conditions tested, we had to use several raw batches of

SWCNTs. Each one has been distinguished: rS1-2 is the
starting raw SWCNT sample, which has been purified to
prepare S1 and S2; rS3-5 corresponds to the raw SWCNTs
used to obtain S3, S4, and S5; and rS6 for S6. The
experimental conditions used for the purification of both
SWCNTs and DWCNTs are given in the Supporting
Information, Table S1. Moreover, the treatment of a
DWCNT sample was intentionally stopped after the O2
dwell under Cl2 at 500 °C; this sample is referred to as mD.
For the purification treatment (Figure 1), the CNT powder

(∼150 mg) was placed in a silica boat (length 10 cm) in a

tubular oven (diameter 2 cm), which was first flushed by
nitrogen (nitrogen being also the carrier gas for the process) to
carefully remove air; purified chlorine at around 200 mL/min
was incorporated into the set-up while the temperature was
increased (10 °C/min). When the temperature reached the
chosen value, TO2

(TO2
variation range: 250−950 °C), O2 with

a flow rate of 2−4 mL/min was injected for the desired
duration (t1−t2 in the 20−60 min range). After the Cl2/O2

treatment stage, the sample was heated at TCl2 for 1 h under
chlorine alone before natural cooling (see also Table S1).
With the used conditions regarding the O2 flow rate and

duration of its injection, the used O2 volume is around 200 mL
(9 × 10−3 mol). The amount of carbon for the experiments is
at most 8 × 10−3 mol. That means that for every experiment
carried out, the amount of oxygen content used is sufficient
enough to burn all the unwanted carbon-based species.

2.2. Characterization Techniques. Transmission elec-
tron microscopy (TEM) observations were performed using a
JEM-ARM 200F apparatus at an accelerating voltage of 80 kV.
At least 30−40 images taken at different places were analyzed
for each sample in order to guarantee a representative
description of the samples. Thermogravimetric analysis
(TGA) was performed with a Setaram Setsys evolution 1750
by using dry air as the carrier gas and a temperature ramp of 5
°C/min from room temperature to 900 °C. The metal oxide
content evaluated by TGA was directly used to calculate the
yield of removal of metallic impurity (Ym) after purification;
that means that the oxygen part corresponding to the
respective stoichiometric amount in the oxidized form of
each metal present in the (raw or purified) CNT samples is
included in Ym.
Micro-Raman spectroscopy was carried out with a LabRAM

HR 800 micro-Raman spectrometer with two incident
wavelengths: 632.8 and 514.5 nm. The incident laser beam,
focused on the sample with an ×50 objective, was reduced with
an optic filter to avoid any damage due to overheating during

Figure 1. Schematic of the applied one-pot purification method
displaying the nature of the gas used in each step, and the temperature
sequence (dwells and ramps).
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the spectrum recording. The recorded number of spectra (at
least 3) depended on the observed data dispersion. After
subtraction of a baseline, the ID/IG intensity ratio was
determined by dividing the height of the D band by that of
the G band. As only one representative spectrum is shown for
each sample, the D/G ratio was close to the average of ID/IG of
the sample. The given ID/IG evolutions correspond to the
evolution of the average value of the ID/IG ratios obtained for
each spectrum for the sample, after the applied chemical
treatment. For Auger electron spectroscopy (AES), the CNT
powder is fixed with a copper scotch on a molybdenum sample
holder. A primary electron energy of 2500 eV is focused on the
sample, and a cylindrical detector with a resolution of 1 eV is
used for data collection.
X-ray photoelectron spectroscopy (XPS) spectra were

collected on a Kratos Axis Ultra (Kratos Analytical, UK)
spectrometer equipped with a monochromatic Al Kα source
(1486.6 eV). All spectra were recorded at a 90° takeoff angle,
with the analyzed area being about 0.7 × 0.3 mm. Survey
spectra were acquired with 1.0 eV step and 160 eV analyzer
pass energy and the high-resolution regions with 0.1 eV step
and 20 eV pass energy (instrumental resolution better than 0.5
eV). Curve fitting was performed using a Gaussian/Lorentzian
(70/30) peak shape after Shirley’s background subtraction and
using the X-vision 2.2.11 software.

3. RESULTS AND DISCUSSION
3.1. Purification Approach, Carbonaceous Impurity

Removal, and CNT Quality. From the synthesis method,
catalyst residues remain in the CNT samples, including
DWCNTs and SWCNTs. DWCNTs contain cobalt- and
molybdenum-based impurities. The latter represent about 10%
of the sample weight. The as-produced HiPco SWCNT sample
contains iron-based impurities at a non-negligible amount,
reaching a third or more of the sample weight. The used
DWCNTs have an internal and external average diameter of
1.35 and 2.05 nm, respectively, with a length between 1 and 10
μm. The diameter of the SWCNTs varies from 0.7 to 2 nm,
and their length is similar to that of the DWCNTs. Non-
nanotube carbon species are also present in both CNT
samples, inherent to the chemical vapor deposition (CVD)
synthesis. The close reactivity between these carbonaceous
impurities and the CNTs is clearly put into evidence from their
resistance against oxidation by means of TGA. The
combustion of CNT samples commonly appears as one single
weight loss, meaning that CNTs and non-nanotube carbon
species burn off in the same temperature range, as is the case
also for the DWCNTs and SWCNTs used here (cf. Figure 2).
The as-produced DWCNT and SWCNT powders were
submitted to our one-pot thermal treatment under chlorine
(until Tmax), in which oxygen is introduced at a chosen
temperature, TO2

(TO2
being ≤Tmax), the carrier gas being

nitrogen, N2 (Figure 1 and Table 1). With the aim of
investigating the mechanisms involved in the Cl2/O2-based
treatment, we have performed experiments with different
approaches: (i) O2 was introduced in the reactor at a
temperature lower than that used for the final dwell in
chlorine (TO2

< Tmax) (D1, S1, and S2); (ii) O2 was introduced

during the Cl2 dwell, TO2
= Tmax (D2, S3, and S4); (iii)

treatments under Cl2 only (D3 and S5) or O2 only (D4 and
S6) were also conducted (Table 1 and Supporting Information,
Table S1). Among all of the performed treatments, for the sake

of clarity, we present those showing significant differences in
metallic removal and/or carbon impurity elimination, con-
sistency and reproducibility having been carefully tested.
The typical behavior from TGA of the raw and treated CNT

samples after treatment with Cl2 alone and with a mixture Cl2/
O2 is shown in Figure 2. For the raw DWCNT sample, the
shape of the TGA curves and the observed combustion
temperatures are quite similar (around 500 °C) before and
after purification (Figure 2a). Raw SWCNTs burn off around
350 °C, and the combustion temperature is upshifted to
around 550 °C after purification (Figure 2b). The pronounced
upshift (∼+200 °C) of the combustion temperature for
SWCNTs may be due to the greater metal content in this
sample compared to that in DWCNT; the upshift of the burn-
off temperature of CNTs is indeed commonly observed after
the elimination of the metallic impurities47 (Supporting
Information, Figure S1).
Figure 3 shows TEM images of the used DWCNT and

SWCNT samples before (Figure 3, rD and rS) and after
different treatment conditions. Metallic and carbon impurities
can be easily noticed in both SWCNT and DWCNT samples
on the TEM images of the starting raw samples. As normally
observed, these impurities widely cover the CNT interlacing.
After heating the powdered CNT sample under chlorine,
carbon impurities were still present and could be clearly
imaged (Figure 3, D3 and S5). These non-nanotube species

Figure 2. TGA curves (in dry air, temperature ramp 5 °C/min) for
the raw and selected CNTs treated with Cl2 and Cl2/O2 (a): raw
DWCNT rD (blue); Cl2-purified DWCNT D3 (red); Cl2/O2-purified
DWCNT D1 (green) and for SWCNTs (b): raw SWCNT (blue) rS1-
2; Cl2-purified SWCNT S5 (red); Cl2/O2-purified SWCNT S1
(green).
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are present in various shapes, more or less spherical or crooked
particles, with a size in the 5−10 nm range or higher. On the
nanometer scale, their structure is quite well ordered with
graphitic multi-layer walls observable at high magnification
(not shown). Quantifying the carbonaceous impurities within a
CNT sample is complex.48−51 Even if they remain very rough,
their content can be estimated from TEM,28 about 10−30% in
these samples. As expected and already reported by applying
chlorine alone,40,41 carbon impurities were not eliminated from
the CNT samples (D3 and S5). However, they were
completely destroyed as oxygen was added to chlorine (Figure
3, D1 and S1). In the Cl2/O2-treated samples (D1, D2, S1, S2,
S3, and S4), CNTs appear very clean, without any other
impurity visible on most of the TEM images (Table 1). From
time to time, either metallic or carbon impurities could still be
observed, but the efficiency of their removal is really obvious.
In the presence of chlorine, the carbon impurities could be
selectively eliminated from the CNT samples when O2 was
introduced at 500 °C or higher and at 350 °C or higher for
DWCNTs and SWCNTs, respectively. Absorbance spectros-
copy, performed on S1 (corresponding to the SWCNTs

purified by using the optimized conditions), has shown that
carbon impurity content was significantly reduced in these
purified SWCNTs compared to the raw SWCNTs (cf.
Supporting Information, Figure S2). If O2 is introduced at
lower temperature, the amount of carbon impurities with
respect to CNTs is similar to what is observed in the respective
raw sample. When only oxygen was used (D4 and S6), carbon
impurities were not eliminated from the samples (not shown)
and combustion of both CNTs and carbon impurities occurred
simultaneously, as further discussed from TGA.
Raman spectroscopy is a powerful technique to probe any

modification (improvement or damaging) of the CNT
structure after a chemical treatment.52 In a Raman spectrum,
the G band (around 1590 cm−1) is characteristic of the sp2

network formed by the double-bonded carbon atoms and the
D band (around 1330 cm−1) is related to “disorder” or defects
when the hybridization of carbon atoms turns to sp3 through
damaging or functionalization. The evolution of the ID/IG
intensity ratio is hence a signature of the structural quality
modification of CNTs. Figure 4 gives the variation of the ID/IG
intensity ratio for the studied samples, including Cl2-, O2-, and
Cl2/O2-purified CNTs for both DWCNT and SWCNT.

For our treatment conditions, except for S2 with the red
incident wavelength (λ = 632.8 nm), for which the
temperature (600 °C) for oxygen introduction can be
prejudicial to some part of CNTs, ID/IG was decreased for
all the treated samples, meaning that the CNTs were not
damaged by any of the applied treatments (Figure 4). The
observed decrease in the D band might be due to various

Table 1. Temperature at Which O2 Is Introduced in the Purification Reactor, Temperature of Cl2 Dwell (T
max), Occurrence of

Carbon Impurity Removal, Resulting Oxidized Metallic Impurity Content Mp in wt % and Their Content nm in at. %, Metal
Removal Yield Ym, and Carbon Consumption after Purification Cc

a

sample O2 introduction temperature (TO2
)/°C Cl2 dwell temperature (Tmax)/°C carbon impurity removal Mp (Mr)/wt % nm/at. % Ym/% Cc/%

rD 10.2 1.9
D1 500 1000 y 4.8 0.9 53 19
D2¥ 950 950 y 0.01 0.002 99.9 95
D3 1100 n 5.5 1.0 46 21
D4 500 n 72.8 13.5 98
rS1-2 28.0 7.7
S1 350 900 y 5.4 1.2 81 11
S2 600 900 y 4.8 1.1 83 47
rS3-5 44.5 14.7
S3 800 800 y 5.0 1.1 88.8 76
S4 900 900 y 3.6 0.8 91.9 91
S5 900 n 5.2 1.2 88.3 3
rS6 33.0 9.6
S6 350 n N.A.

aYm and Cc are defined in the text. ¥From an earlier work.42

Figure 3. Typical TEM bright-field micrographs of the raw and
treated DWCNT and SWCNT samples: raw DWCNT (rD), Cl2-
purified DWCNT (D3), Cl2/O2-purified DWCNT (D1), raw
SWCNT (rS1-2), Cl2-purified SWCNT (S5), Cl2/O2-purified
SWCNT (S1).

Figure 4. Variation of ID/IG (%) of each treated sample compared to
its respective raw CNT sample. ¥From a preceding work (ref 42).
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effects, which can be also combined: (i) curing of CNT defects
due to the high temperature used, and (ii) elimination of the
most defective CNTs, (iii) removal of amorphous carbon
layers deposited on CNTs.53,54

3.2. Impurity Removal Yield, Sample Yield, and
Overall Efficiency of the Purification Method. TGA in
air is commonly used to determine oxidized mineral impurity
content in CNT samples. With increasing temperature,
complete combustion of the carbon species occurs, and the
remaining weight corresponds to non-carbon impurities: that
is, oxidized metallic impurities. As usually encountered, the
oxidized metallic impurities, Mr, are about 10 wt % (∼2 at. %)
and 30−45 wt % (∼7−15 at. %) for the used raw DWCNT
and SWCNT samples, respectively (Table 1). The atomic
content of metal-based impurities, nm, was roughly estimated
by dividing the metal oxide weight (from TGA) by the molar
mass of the corresponding catalyst(s).
Whatever the CNT purification conditions, in the presence

of chlorine, the content of the metal residues (nm) falls down
to values close to 1 at. % for the two types of samples (Table
1). Removal of metal impurities certainly occurs in the high-
temperature range when either Cl2 or Cl2/O2 is used. At these
temperatures, metal chlorides are easily formed and their
sublimation is favored,41 leading to their elimination from the
CNT samples.

The metal removal yield, Ym, is defined as =
−

Y
M M

Mm
r p

r
,

where Mr and Mp correspond to the mineral residue content
from TGA, that is, the oxidized metallic impurities of the raw
and the purified CNT, respectively. Ym is relatively good (80−
90%), especially for SWCNTs because the raw SWCNT
sample contains a large amount of catalyst impurities. That
part of remaining metal residues is much more difficult to
remove from the samples without destroying the majority of
CNTs. It certainly corresponds to the metal nanoparticles
already described to be highly protected in the CNT inner
channels, their encapsulation occurring during CNT growth by
CVD.5,55−57 For both DWCNT and SWCNT samples, the

carbon impurities could be efficiently eliminated when Cl2/O2
was used instead of Cl2 alone (Figure 2 and Table 1).
The second relevant parameter to assess a CNT purification

process is the carbon consumption (Cc) because it eventually
allows to appreciate the CNTs lost through the treatment. Cc
corresponds to the carbon loss through purification:

=
− − −

−
C

M M Y

Mc
100 (100 )

100
r p s

r
, where =Y

m

ms
p

r
is the overall sample

yield determined from the ratio between the weight of the
purified sample mp over the mass of the raw one mr. We point
out that Cc includes the consumption of both CNTs and
carbon impurities. As expected, increasing TO2

, which allows a
better catalyst removal, also induces high carbon consumption
(>50%) (D2, S4, and S5). Importantly, this consumption is
well below 50% for D1 and S1, samples in which metallic and
carbon impurities have been removed with good yields for
both of them.
In the literature, it is problematic to retrieve the overall

sample loss or carbon impurity loss because of the complexity
of the applied treatments and the multi-step nature of the
methods involved. Regarding DWCNTs, Flahaut et al. have
reported an effective elimination of disordered carbon species
by air53 with a sample yield lower than 20%.31 Selective
elimination of carbon impurities from SWCNT samples is
found in a few studies. The work by Dementev et al. reported
the selective removal of carbon impurities from (arc discharge-
produced) SWCNTs by dynamic air oxidation, but metal
impurities were not removed.58 Rosario-Castro et al. used a
standard multi-step purification method for purifying HiPco
SWCNTs, including a nitric acid treatment followed by wet air
oxidation and Soxhlet extraction in HCl, and finally, the sample
was annealed at 425 °C.59 Iron content was reduced by 89%,
and carbon loss subsequent to the applied treatments was not
determined. Wang et al. applied a wet combined treatment
using H2O2 and HCl. They could decrease the iron content in
HiPco SWCNTs by 86% while keeping a carbon yield of 75%,
but “little damage” of the CNT sidewalls was reported.44

Figure 5. (a) Proposed mechanism for the selective removal of carbon impurities. (1) t = ti; (2) t ≤ t1; (3) t1 ≤ t ≤ t2; (4) t = tf; tx is the time
sequence as defined in Figure 1. Also, typical Raman spectroscopy spectrum of DWCNTs in the raw state (b), DWCNTs collected just after the
Cl2/O2 step (c), and DWCNTs at the end of the purification procedure (d). λincident = 632.8 nm.



Among the purification procedures involved in halogen-based
compounds, after the oxidation of iron impurities by oxygen,
Xu et al. used a mixture of fluorinated compounds (SF6 and
C2H2F4) to form metal fluorides eliminated by subsequent
Soxhlet extraction (multi-step method).60 The authors
reported a SWCNT yield of 68% with “little sidewall damage”.
Zimmerman et al. have developed a chlorine-based method
consisting of bubbling Cl2 in HCl containing SWCNTs, and
they lost 96 wt % of the starting HiPco SWCNTs sample.38 To
the best of our knowledge, purification showing a selective
elimination of carbon impurities, with low carbon consumption
(<50%) and without any CNT damage, has not been reported
yet. Remarkably, our results show that the method we propose
is able to successfully combine metal elimination and selective
attack of carbon impurities among carbon species in a one-pot
treatment. The structural quality of the purified CNTs is
preserved and even improved without an excessive con-
sumption of the nanotubes.
3.3. Proposed Mechanism. We propose a mechanism

explaining the combustion selectivity toward the carbonaceous
impurities based on the known specific reactivity between
halogens and carbon nanomaterials, including CNTs. This
mechanism also originates from a deep analysis of the behavior
of carbon nanomaterials in an oxidative medium.
The mechanism proposed in Figure 5a is based on several

consistent aspects. Figure 5a(1) schematizes the CNTs and the
carbonaceous impurities. In this work, from combustion
selectivity of the carbon impurities observed with and without
chlorine (see, for instance, D1 and D3), it is obvious that
chlorine plays the major role in preventing CNT from
combustion by oxygen. The reactivity of CNTs with halogens
or halogenated compounds has shown remarkable effects in
carbon chemistry.61 For example, regarding fluorine, the
easiness62,63 and reversibility64,65 of the fluorination of CNTs
account for its extensive interest especially because fluo-
rocarbons could be used in a lot of applications. Grafting of
chlorine to large sp2-based carbon materials or carbon
impurities has been shown to be less favorable than the
formation of covalent C−Cl bonds on smaller and high-quality
CNTs.66,67 In our samples, both DWCNTs and SWCNTs
have a lower curvature radius (<3 nm) compared to that
within the non-nanotube species (>5 nm), as observed by
TEM. CNTs with a smaller diameter are thus expected to have
a better affinity with chlorine (Figure 5a(2)). Compared to the
raw CNTs (Figure 5b), Raman spectroscopy performed on the
CNT sample for which the treatment was stopped just after the
Cl2/O2 dwell (mD), on purpose, shows an increase in the D/G
ratio compared to the raw CNTs (Figure 5c). The intensity of
the D band is decreased at the end of the Cl2/O2-process, as
shown in Figure 5d and in agreement with Figure 4. We have

not observed any G-band shift probably because of the too
small amount of chlorine-containing functional groups present
on the CNT walls. Such G-band shift because of doping effect
by halogen was reported to be weakly pronounced or not
visible after fluorine grafting.63,68 However, the observed D/G
ratio for mD may be attributed to covalent functionalization of
the CNT walls by chlorine (cf. also Supporting Information,
Figure S3). This hypothesis is also supported by the AES of
this CNT sample for which chlorine could be well detected69

[Figure 6a and Fourier transform infrared (FTIR) results,
Supporting Information, Figure S4]. XPS analysis also revealed
the presence of chlorine species at the surface of mD (Figure
6b). Two components (each consisting of the 3/2 and 1/2
level with a spin−orbit splitting of 1.6 eV) were required to
obtain a satisfactory fit of the Cl 2p core-level spectrum. The
low-energy contribution with the 2p3/2 component at ca. 197.5
eV corresponds to more electronegative chlorine atoms
probably coming from metal. The high-energy contribution
with the 2p3/2 component at ca. 199.9 eV is attributed to
chlorine bonded to carbon70 in agreement with Raman
spectroscopy. From XPS, chlorine atomic content was
decreased by a factor of almost 2 between mD and D1,
being as low as around 0.83 at. % in D1 (Supporting
Information, Figure S5).
Even if chlorine is only sparsely attached to the CNTs, its

known power as a flame retardant leads to a favored carbon
impurity combustion when oxygen is introduced in the reactor.
This protective shield against combustion, which has been
already suggested without any evidence,38,42 leads to the
combustion of carbonaceous impurities by O2 at TO2

whereas
the CNTs are protected by Cl2 (Figure 5a(3)). This protection
induces a substantial improvement of removal selectivity
between carbonaceous impurities and CNTs close to the
combustion temperature (S1, D1). This beneficial effect
disappears when TO2

is increased, because carbon combustion
becomes highly favorable and very fast (S2, S3, and S4). The
well-known lability of the C−Cl bond certainly favors the
detachment of chlorine from the CNTs by heating (Figure
5a(4),d). On the basis of the proposed mechanism, our
method is versatile because purification occurs with optimum
efficiency as oxygen is introduced at the combustion
temperature of the samples for both DWCNT and SWCNT.

4. CONCLUSIONS

This work proposes a solution to the long-standing issue of
carbon impurities removal while avoiding excessive attack and
consumption of CNTs. The challenge comes from the widely
known too close chemical reactivity of carbon impurities and
CNTs. This is an important finding because CNT purification

Figure 6. Auger (a) and XPS (b) analysis of mD.
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cannot be avoided for a lot of applications and the existing
purification methods are time and sample consuming. Our
one-pot treatment consists of heating the sample under
chlorine up to Tmax (around 1000 °C) and introducing oxygen
at a given temperature, TO2

≤ Tmax. The best treatment is then

obtained when TO2
corresponds to the combustion temper-

ature range of the CNT sample, as determined by TGA. We
have shown that chlorine plays an essential role by combining
the removal of metallic impurities and protection of the CNTs
from combustion. Moreover, the efficiency of the proposed
method has been demonstrated to be due to a substantial
increase in the combustion selectivity of the carbonaceous
impurities with respect to CNTs. The proposed mechanism
appears then to be a powerful tool because it could be easily
adapted to other source of carbon nanostructures with other
kind of metal impurities (Ni, Al, ...) also. Moreover, the present
approach has the enormous advantage to produce, in a one-pot
treatment, large volumes of purified CNTs. The developed
treatment process hence has a high scale-up potential, and it
could open new opportunities for CNT applications.
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Protecting Carbon Nanotubes From Oxidation for Selective Carbon 

Impurity Elimination
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1) Experimental treatment conditions

The treatment conditions used for purifying the DWCNT and SWCNT samples are gathered in 

Table S1.

Table S1. Experimental conditions used for purifying DWCNT and SWCNT samples. The used 

flow rates are 4 mL/min and 200 mL/min for O2 and Cl2, respectively. ¥ from a preceding work 

1

Samples D1 D2¥ D3 D4 S1 S2 S3 S4 S5 S6

Temperature 
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2) Stability against combustion highlighted by TGA under dry air 

Both DWCNT and SWCNT samples have been annealed under He (O2 < 0.1 ppm mole) by 

following the same heating steps than that used under Cl2/O2 for D1 and S1, respectively. The 

prepared samples are referred to as a-rS and a-rD, respectively. The thermograms (using a 

Setaram TGA92, temperature ramp 5°C/min under air were recorded for the two thermally 

treated samples. The results are shown in Fig. S1.

For the DWCNT samples, we observe a small upshift of the combustion temperature (+ 35°C) 

between the annealed DWCNTs and the raw and the purified samples (rD and D1). The 

impurity content being quite similar for rD and a-rD, the observed upshift for a-rD treated under 

inert gas may be due to a healing effect: such effect is obviously not observed for the sample 

treated under chlorine D1.  

For the SWCNT samples, we notice here a high increase (28.0 to 53.6 wt. %) of the remaining 

mineral impurity content despite the good quality of the inert gas used. The gain in weight 

starting from 200 °C, corresponding to the metal oxidation, is more pronounced after annealing 

(a-rS). We hypothesize that a carboreduction phenomenon could happen during the annealing 

process. Indeed, carbon can reduce the metal oxides into metal which is re-oxidized during 

TGA under air. In that case, carbon is gasified which could explain its relative reduction in 

weight in the sample. In a-rS, the metal content is higher than that of rS. If we only consider 

the catalysis effect due to these impurities, the combustion should occur at lower temperature 

than that of rD. Therefore, the better oxidation stability of a-rS observed after the thermal 

treatment under He is probably due an annealing effect. For S1, even if such annealing effect 

cannot be excluded, the much greater combustion temperature observed is probably mainly due 

to the strong reduction in the metallic impurities.



Figure S1 shows the thermograms of the raw, the purified and the thermally treated raw sample 

for both DWCNTs (Fig. S1a) and SWCNTs (Fig. S1b).  

Fig. S1. TGA curves (in dry air, temperature ramp 5°C/min) for the (a) DWCNTs and (b) 

SWCNTs. Respectively, the raw samples rD and rS (blue), the annealed-raw samples a-rD 

and a-rS (red) and the Cl
2
/O

2
 purified samples D1 and S1 (green).

3) Carbon impurity investigated by UV-NIR absorbance spectroscopy

Near Intrared (NIR) spectroscopy was carried out by using a Cary 6000i UV-Vis-NIR apparatus 

from Agilent. The samples were prepared by following the method found in the work reported 

by Itkis et al.2 Briefly, 10 mg of the SWCNT powder (rS or S1) was added to 20 mL of N,N-

dimethylformamide (DMF). After 10 min of sonication, the solutions were diluted 10 times in 

order to obtain light grey solutions. Without centrifugation, the supernatant was used for 

analysis so that the analyzed part was representative of the sample. Figure S2 shows Vis-NIR 

results for rSWCNT (Fig. S2a) and S1 (Fig. S2b).



Fig. S2. NIR spectra of (a) the raw and (b) the purified SWCNTs by Cl2/O2 in the optimized 

conditions (S1).

A semi-quantitative analysis was conducted by using the S22 transition as reported in the work 

from Itkis et al.2 For our two (rS and S1) samples, after subtracting a baseline, the total area 

corresponding to the S22 band , the contribution of SWCNTs (-plasmon) and the carbon 

impurities, i.e. AA(T), and the area of only the S22 feature, i.e. AA(S), were calculated between 

the spectral cutoffs 12500 and 17050 cm-1. The ratio AA(S)/AA(T) was of 0.0116 and 0.0365 

for rS and S1, respectively. Even if an absolute estimation of the purity is difficult to obtain2, 

these results show that the carbon impurity contribution is significantly lower in the purified 

SWCNTs in agreement with TEM observations.

4) Evidence of chlorine grafting to CNT walls

Figure S3 shows the RBM of the raw DWCNTs (rD) (Fig. S3a), the DWCNTs for which the 

treatment was stopped just after the Cl2/O2 dwell at 500°C (mD) (Fig. S3b) and the DWCNTs 

collected at the end of the Cl2/O2 purification method (D1) (Fig. S3c). 



Fig. S3. RBMs of (a) rD, (b) mD and (c) D1. incident = 632.8 nm

Fourier transform infrared (FTIR) experiments were carried out on a spectrometer Agilent 680. 

The CNT powder was mixed with potassium bromide (KBr) and compacted under pressure to 

obtain a pellet. Transmission IR spectra were recorded in the 400–4000 cm-1 range. The spectral 

resolution was 2 cm-1 and 50 scans were co-added for each spectrum.

Figure S4 shows IR spectra of the raw DWCNTs (rD) (Fig. S4c), the DWCNTs for which the 

treatment was stopped just after the Cl2/O2 dwell at 500°C (mD) (Fig. S4a),  and the DWCNTs 

collected at the end of the Cl2/O2 purification method (D1) (Fig. S3b),. Compared to rD and 

D1, an additional peak of weak intensity but clearly visible appears at around 667 cm-1. This 

feature is assigned to the C-Cl vibrations3 detected only in mD. 



Fig. S4. IR spectra of (a) mD, (b) D1 and (c) rD.



Figure S5 shows the XPS wide scans of rD (Fig. S5a), D1 (Fig. S5b), and mD (Fig. S3c)





Fig. S5. XPS wide scans of a) rD, b) D1 and c) mD.
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