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The distribution function of electrons accelerated by intense laser pulses at steep vacuum-

plasma interfaces is investigated by using Fokker-Planck equation and methods from ex-

treme statistics. The energy spectrum of electrons penetrating into the dense plasma after

being accelerated at the interface and in the pre-plasma shows systematically cutoff-like

decrease in the momentum component px/mec along the laser propagation axis. While

the distribution associated to the kinetic energy spectrum (Ekin) is often approximated by a

thermal distribution, F(Ekin) ∝ exp(−Ekin/Th), with a hot particle temperature Th, the na-

ture of the distribution close to the cutoff is clearly non-thermal. Electron distributions are

analyzed here from two-dimensional Particle-in-Cell simulations. Via a comparison with

solutions derived from a Fokker-Planck equation and based on Chirikov’s standard map

models, we find that the electron distributions show a clear signature of stochastic heating,

due to repeated acceleration in the standing wave in the pre-plasma. Further analysis of

the solutions to the Fokker-Planck equation allows us to describe the cutoff seen in the

momentum p of the distributions F(p), which can be expressed as a function of time τ in

the form F(p,τ) ∝ [(pmax− p)/δ p]exp
(
−2p3/9τ

)
, portraying a time-dependent cutoff at

p→ pmax. This implies that the energetic tail of the distribution belongs to the maximum

domain of attraction of the Weibull law, which means that the probability to find high-

energy electrons varies abruptly near pmax. The variance of physical observables sensitive

to the high-energy tail is consequently considerably higher than when assuming thermal

distribution.

a) This article has been accepted for publication in Physics of Plasmas. After it is published, it will be found at

https://aip.scitation.org/journal/php
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I. INTRODUCTION

Energetic electrons that have been accelerated at vacuum-plasma interfaces by intense laser

pulses1–3 and which penetrate into the dense plasma are nowadays often used to accelerate ions

at the rear surface of the target. The most prominent process associated with the acceleration

at the vacuum-plasma interface is TNSA (’Target Normal Sheath Acceleration’), and one of the

most fructuous applications is proton acceleration that has been investigated abundantly and is

nowadays applied for numerous diagnostic purposes4–14.

Those electrons that enter into the laser electromagnetic field under “favorable” conditions, i.

e. entering the laser field at an optimum phase, obtain a transfer of momentum from both the laser

field and the electrostatic field that form at the vacuum-plasma interface.15–19 or via the action

of counter-propagating laser fields.20–23 With the gained momentum the electrons escape from

the influence of the fields that become rapidly evanescent in the skin layer. Due to this process,

bunches of energetic electrons are injected into the dense medium with a period corresponding to

one or 1/2 of the laser field cycle24. The maximum momentum and energy that can be transferred

via the laser fields and the electrostatic field to electrons is limited, as we explain later in section

III. Estimating the maximum achievable energy from a purely ponderomotive picture for the

acceleration processes1, that does not include longitudinal oscillations, would predict electron

energies on the order of the oscillation energy of the laser field, namely γosc = Eosc/(mec2) ∼

[1+ ILλ 2/(1.37×1018Wcm−2
µm2)]1/2, with me as the electron rest mass, c the speed of light, IL,

λ as the laser intensity and wavelength, respectively.

It has however been observed in simulations25–29 that the highest momentum and energy of

electrons may evolve in time, while this depends on the complexity of the processes that arise

in the vicinity of the interface. For “relativistic” laser fields, the number of electrons that are

pushed into the relativistic energy regime increases strongly with the laser intensity1,25,26,30–34.

The probability to find electrons at relativistic energies strongly increases with the laser intensity

with respect to the population of the initially thermal electron.

It has clearly been seen in simulations25–30,33–35 that distribution functions of laser-accelerated

electrons show an upper bound in the particle momentum p/(mec). While the nature of this upper

bound is difficult to identify in Particle-in-Cell (PIC) simulations, because of the limited number of

particles in the tail of the distribution,25–27,30,33–35 it is striking that Vlasov-Maxwell simulations

bring to evidence non-Gaussian statistics and cutoff behavior for the electron distribution.28,29

2



ac
ce

pte
d for

pu
bli

ca
tio

n in
Phy

sic
s of

Plas
mas

From such studies it follows that the upper bound in the spectrum of the accelerated electrons

scales with the laser intensity, and depends furthermore on the incidence angle, the density gradient

of the vacuum plasma interface, and on the complexity of the surface structure.

We examine here the nature of the distribution function of electrons that have been accelerated

inside the dense plasma, and, by means of extreme statistics, we particularly investigate the tail of

this distribution. For this purpose we have analyzed results from Particle-in-Cell (PIC) simulations

performed with the code EMI2D in two spatial dimensions (2D), x and y, and three dimensions in

momentum space (3V) for a case where the intensity of the laser pulse drives electrons into the

regime of relativistic oscillations. In this simulation we clearly see a cutoff like behavior for the

upper bound in the electron momentum.

The article is organized as follows. In section II we present our reference simulation, in section

III we review models for acceleration mechanisms in the regime stochastic heating which lead to

standard map models. Derived from this, in section III C we use a Fokker-Planck (FP) equation.

We analyze a family of distributions and probability densities which are solutions to FP equations

and we propose a realistic distribution function for the electron momentum which is consistent

with simulations. Furthermore in III D we verify the model against standard map simulations

using the parameters deduced from the PIC simulations. In section IV we investigate the limit law

of the energetic tail of the momentum distribution, and in V we discuss the results and conclude.

II. REFERENCE SIMULATION

The reference simulation case discussed here corresponds to the case as discussed previously

in Ref. 36. In the discussed simulation the laser intensity was IL =1.23×1019W/cm2, at the wave

length λ =1µm, arriving at the interface at ω0t =140 and reaching its peak value at ω0t =200,

where ω0 stands for the laser frequency. The pulse then remains constant until the end of the

simulation at ω0t =900, corresponding to an approximate pulse duration of ∼300fs. The laser

intensity corresponds to a value of the normalized vector potential a0 [=eEL/(meω0c)] ' 3 with

EL as the peak amplitude of the oscillating laser field in vacuum, polarized in y-direction (p-

polarisation, normal incidence). The plasma behind the interface, k0x >150, with k0 ≡ 2π/λ , has

an electron density of n/nc =100 times the critical density,nc, with a sharp gradient of (2λ )−1.

An underdense pre-plasma forms gradually left of the interface initially situated at k0x '136.

For the chosen case a major part of the laser light is reflected after a transient period. In the PIC
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FIG. 1. Phase space snapshot of 2D(3V) PIC simulations taken at (a) ωt =250 and 300, along the laser

propagation axis in x and px for y = y0 (on axis in the second spatial dimension) in the vicinity of the

vacuum-plasma interface.

simulation, light is reflected at the interface with a reflection coefficient of rPIC ' 0.83 in ampli-

tude (i.e. r2
PIC '70% in light flux) after ω0t '200. The reflection coefficient stays almost constant

for the rest of the simulation. This forms hence an important reflected light component and so an

almost standing electromagnetic field in the pre-plasma. Figure 1 shows the phase space of elec-

trons, in k0x and px/(mec) for the time instant of ω0t =300. For the analysis of simulation data we

focus only on electrons close to the center of the laser spot, so that the part of the electrons shown

from this two-dimensional (2D) simulation are found in close vicinity to the axis where the laser

pulse impinges on the target. Beyond the shelf-solid interface at k0x ' 136 electrons essentially

have positive momenta px > 0 and penetrate into the dense plasma. This is further analyzed later

and shown in more detail with the help of distribution functions.Left of the interface electrons

show phase-space bursts with both negative and positive values in the momentum. Electrons have

been ejected from the interface into the negative x-direction and propagate now away from the

interface.27 At the high energies achieved, already in a relativistic regime, they propagate almost

with light speed towards the vacuum, but undergo influence both of the counter-propagating light
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FIG. 2. Electron distribution functions F̄+(px) (solid lines) and F̄−(px) (dashed lines) as defined in the text,

and multiplied with the total number of particles counted (∼1000) in the considered phase-space interval

in 130< kx <136 for time instants ω0t =200 (black), 250 (orange), 300 (light blue), 500 (dark blue), 800

(olive), and 900 (purple). Times ω0t =250 and 300 correspond to Fig. 1.

fields and the ambipolar field that forms gradually due to the charge separation from the ions.

Besides the oscillatory force in y of the light field, and the ambipolar field along the x-direction, a

ponderomotive force with a periodicity of λ/2 along x-direction is established due to the reflected

light for ω0t >140. From Figure 1 one can observe electron bursts in which the momenta increase

7-9 times when propagating away from the interface. At a certain distance from the interface, very

few electrons with px < 0 are found to still propagate into the negative x-direction close to laser

axis, i. e. inside the focal spot of the incoming laser. A major part of the electrons now propagate

with positive momenta px > 0 toward the interface. In Figure 2 we show the electron distribu-

tions at different time instants, determined from the phase space in the interval 130< k0x <136
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showing both the part of electron propagating away from the shelf-solid interface towards the vac-

uum, and the electrons entering into the dense plasma. For each population, px <0 and px >0, we

have established the distribution functions from the density f (x, px) in the phase space, namely

F̄−(px) ≡
∫ 20

px=−20 d p′x
∫

130<k0x<136 f (x′, p′x)dx′ and F̄+(px) ≡
∫−20

px=20 d p′x
∫

130<k0x<136 dx′ f (x′, p′x),

respectively; i.e. they show the increase in the electron distribution both in the positive and the

negative branch of px/mec. The curves of F̄+(px) and F̄−(px) intersect at the instantaneous oscil-

lation center of the "cold" electrons. For times ω0t >200, the cutoff values in the positive branch

F̄+(px) close to the interface are systematically higher than the cutoff values in |px| in the negative

branch F̄−(px).

Figure 3 illustrates structures of electron bursts periodically injected into the dense plasma. The

colors indicate the contour values which correspond to the probability density pdf, f (px,x, t) (in

a.u.) in x and px. The colors are saturated for the cold electron population in order to emphasize

the density of the energetic electrons. The red line in the positive px-half space corresponds to the

momenta pmax(x) associated to the fastest electrons at the respective position in x. Beyond this

line no electrons were counted in the pd f determined from the PIC simulation for p > pmax at

the respective position, i.e. f (px > pmax(x),x, t) = 0. The red crosses found at the bursts in the

phase space indicate the peak momentum pmax(xn) in the spatial interval, nπ/2 ≤ k0(xn− x0) <

(n+1)π/2, corresponding to the periodic injection of electrons in the dense plasma, pronounced

in a spatial periodicity ≈ 2πc/ω0, with x0 = 150/k0, and with n as the index of the successive

bursts. We will see later (see section IV) that the histogram of these peak values constitutes the

extreme statistics corresponding to the motion of energetic electrons penetrating into the dense

plasma. We have determined the distribution of electrons as a function of momentum px and space

x at different time instants. For the phase space plots, Figs. 1 and 3 and the particle statistics

shown in Figs. 2 and 4 we integrated or averaged, respectively, over Ny =14 data sets from grid

points in the direction y transverse to the incident laser, within the interval−30 . k0(y−y0). 30,

corresponding approximately to the focal spot around the laser axis at y0.

The data sets of Fig. 2 and Fig. 4 were taken within the x-interval close to the vacuum-

plasma interface, 130 < k0x ≤ 136 and 150≤ k0x ≤250, i.e. in front and behind the interface,

respectively. In the interval 150≤ k0x ≤250 the peak values of px observed in the electron bursts

do not considerably decrease. The choice of the interval guarantees hence for sufficiently good

statistics.37.

In order to focus on the relevant data of the probability density which can clearly describe the
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FIG. 3. Phase space snapshot of 2D(3V) PIC simulations taken at ω0t = 600, along the laser propagation

axis in x and px for y = 0 (on axis in the second spatial dimension). The red dashed line indicates the

highest electron momentum at the respective position in x; the values marked with ’+’ indicate the highest

momentum observed in λ/2 intervals.

behavior in the tail of the distribution, we retain two types of data sets, namely

(i) the pdf values f (px,xn, t) at positions xn where a burst of electrons appears, i. e. as mentioned

earlier, in about Nx =36 intervals of xn+1− xn = π/k0 within 150< k0xi <250 and

(ii) the histogram of the values pmax(xi)-values taken at all x-positions xi (= xi−1 + ∆x, with

∆x = 0.2/k0) of the phase space in the interval 150< k0xi <250. This yields the complemen-

tary distribution of the maxima in px at each xi, given by F̄h(pmax,i, t) = ∑
N
i=1 f (pmax(xi, t))/N ,

7
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with N = NyNx and Nx = 500 = (250−150)/(k0∆x)� Nx.

We have extracted from the phase space the pdf data at different time instants. For each

time, the complementary distribution functions cdf from the set (i) is defined as F̄(px, t) ≡∫max(pmax(xn))
p ∑n≤NyNx f (p′x,xn, t)d p′ for px >0, where max(pmax(xn)) denotes the highest mo-

mentum value observed in all bursts and where Nx indicates the number of bursts seen along the

chosen x interval. Bursts appear with an approximate periodicity of πc/ω0, yielding Nx =36 in-

dependent data sets within 150≤ k0x≤ 250. In Figure 4 we show the complementary distribution

functions cdf from the set (i). The computation of the cdf F̄(px, t) is hence based on NyNx =14×36

independent data subsets for the time instants ω0t =200 (shortly after the full onset of the laser

pulse), 300, 400, 500 and 600. In the same plot we show, alternatively, the cdf according to set (ii),

namely, F̄h(px, t) as mentioned above determined from the values pmax(xi) of all xi positions of the

Ny =14 data sets. Note that during the simulation particles with px/(mec) >20 were not stored;

therefore also the distribution functions are unknown for px/(mec)>20. However, electrons with

px/(mec) >20 do not occur in the simulation before times ω0t ∼500 for the current case. The

comparison between both sets of curves, F̄ and F̄h, shows that the cdf, F̄h(px, t) determined from

the f (pmax(x))-values covers clearly the energetic and relativistic tail of F̄(p, t), in particular for

p > 3mec. Figure 4 shows that the distribution evolves in time. We pay particular attention to the

high-energy tail, in which one can observe a limit value in the momentum px that increases in time

pmax(t).

At each time instant the distributions show a cutoff like behavior in px/(mec), for which we

depict the value pmax in Figure 5 as a function of time. The origin of the cutoff seen in the data

could a priori be two-fold : (a) a ‘real’ cutoff due to a maximum momentum associated with a

limit value beyond which electrons cannot be accelerated, and/or (b) a cutoff due the numerical

resolution, i.e. due to limited number of particles in the PIC simulation, and associated to the

lowest contour value available. A cutoff of type (a) would correspond to a distribution of energetic

electrons not following Gaussian statistics. Figure 5 illustrates that the value of the observed

cutoff, i.e. pmax, increases with time. To underline this we have superposed to the data a curve

that follows a power law in time with ∝ t2/3. However, with respect to this power law, the increase

of pmax(t) in time clearly slows down for ω0t > 450. These power-law behavior, whose exponent

value 2/3 will be motivated later on in section III C 2, fits very well the observed time evolution

of the cutoff up to ω0t '450. Figure 5 also shows the expectation value in px of the energetic

electrons in F̄h, which will be discussed in section III C 2.
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FIG. 4. Complementary distribution functions F̄(p, t) (solid lines) and F̄h(px, t) (dashed lines), multiplied

with the total number of particles counted in the considered interval of the PIC simulations, for different

time instants, ω0t =200, 300, 400, and 500. The values corresponding to F̄h(px, t) are data sets obtained on

the basis of the points in x of the red curve in Fig. 3 delimiting the highest p-value seen in the phase space.

With the help of the distributions shown in Fig. 4 given at 5 different time instants, between

ω0t =200 and 600, we have determined the values of p = pc,i corresponding to 6 different iso-

contour levels F(pc,i, t) = ci in between c1 =0.2 and c6 =100 well above the observable cutoff

level ccutoff < ci. The evolution of the corresponding momenta pc,i(t) in time proves to be slower

than seen for the cutoff pmax ∝ t2/3.

Refering to models for diffusion in momentum space38,39, the evolution of the distributions

9



ac
ce

pte
d for

pu
bli

ca
tio

n in
Phy

sic
s of

Plas
mas

 0

 5

 10

 15

 20

 25

 200  300  400  500  600  700  800  900

p
/(

m
 c

)

ω0 time

pmax(t)
∼(ω0t-140)2/3

ph(t)
∼(ω0t-140)1/3

FIG. 5. Values of the highest observable electron momentum pmax (red points) from the distributions

F̄(px, t) and F̄h(px, t) in Fig. 4 as well as the expectation values in momentum, p̄h (blue points), of the

energetic electrons corresponding to F̄h(px, t) from PIC simulations in the interval behind the vacuum-

plasma interface, for different time instants. The red dashed line shows, as a guide line, the evolution of

the contour for a cutoff behavior following a power law behavior ∝ t2/3, the blue dashed line to the power

law evolution ∝ t1/3. Note that for advanced times, ω0t >500, the contour where a cutoff was observable is

below the resolution of the PIC code.

follows a diffusion-like behavior, F̄(p, t) ∝ exp{−p2/Dt} we have numerically determined from

the iso-contour values the diffusion coefficient D belonging to this type of solutions. In F̄(p, t) we

neglect for simplicity power-law dependence on p and t. The inverse of the diffusion coefficient for

each data point of the i =1. . . 6 contour values and 6 time instants is then determined by computing

D−1 = −(t/p2
c,i) log[F(pc,i, t)]. The resulting values of the diffusion coefficient from the data

10
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FIG. 6. Inverse of the diffusion coefficient D−1 associated with the exponential behavior ∝ exp(−p2/Dt) for

the distribution F̄(p, t), deduced from iso-contour values of Fig. 4 at different time instants. As a guideline,

a linear increase with ∝ p for D−1 is drawn.

extracted of Fig.4 are drawn in in Fig. 6, and they show a clear dependence of D−1 on px, i.

e. following a linear increase in px for the interval of interest 5< px/(mec) <20. This means

that the energetic tail of the distribution should be dominated by the exponential dependence ∼

exp{−p2/D(p)t}= exp{−p3/κt}, with D(p)≡ κ/p, except for the high-energy tail close to the

cutoff p→ pmax(t) in which the decrease is faster. We discuss this in more detail in section III C 2.

Our goal is to understand the nature of the energetic tail and the limit law in terms of extreme

statistics40, which unequivocally allows us to distinguish the distribution associated with thermal-

like Gaussian statistics, and non-thermal, non-Gaussian statistics. For this purpose we discuss in

the following the possible acceleration mechanisms involved. The acceleration of the electrons up

to highly relativistic momenta takes place both at the interface between the solid-density plasma
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and the pre-plasma as well as in the pre-plasma where waves still propagate. Electrons that are

eventually accelerated and injected into the dense plasma are hence exposed to the ponderomotive

force in counter-propagating light fields, to the electrostatic field from charge separation between

electrons and ions, and to the effective electric driver field in the skin layer. It should be mentioned

that kinetic heating mechanisms have been identified inside the dense plasma behind the skin

layer36,41, where the high energy electron bunches coming from the interface excite a wake field-

type plasma wave, which in turn provokes wave-particle interaction.

An important aspect for the understanding of the motion of energetic electrons in this arti-

cle will be the potential mechanisms for stochastic acceleration. In the context of superposed

light fields numerous, mostly theoretical studies have been undertaken20,22,23,42–44, several par-

ticularly focused on the situation considering incident and reflected light waves having the same

frequency.21,23,27 The formation of electron bursts originating from electron acceleration in the

vicinity of the interface has been widely discussed.18,23,24,26,45–48 Essentially, the description of

the electron motion at the interface between pre- and solid-density plasma can be condensed into a

model that considers the motion in both an oscillating electric driver field18,45, and a self-generated

inhomogeneous electric field.15,16,18,46,49 In Ref. 50 this type of motion has been discussed and

elaborated, resulting in a description similar to Chirikov’s standard map and to diffusion in mo-

mentum space. In the work by Bulanov et al.38 a simplified description by conserving the essential

physics is elaborated, with further analysis of the phase space diffusion. The models for evoking

stochastic heating mechanisms, both the acceleration in superposed light waves and the accel-

eration combining a driver field and an electrostatic potential, can be reduced to an essentially

one-dimensional picture. Two-dimensional (2D) features, definitely present in the 2D (3V in ve-

locity space) simulations, have to be taken into account in the context, in particular what concerns

the number of particles that circulated in the vicinity of the interface.

To take into account all the different acceleration mechanism described above, we discuss in

the following models that were developed in the context of both the acceleration in the layer of

the interface and the acceleration in the pre-plasma in presence of superposed counterpropagating

light waves.

12
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III. MODEL AND STOCHASTIC HEATING

While the motion of electrons under the influence of an intense laser pulse at the pre- to solid-

density plasma interface can be quite complex, several attempts have been made to reduce this

motion to the essential effects. Bulanov et al. (2015) and Paradkar et al. (2012)38,50,51 have

developed models that explain the formation of energetic tails in the electron distribution function

based on stochastic acceleration processes. Their models combine the periodic acceleration in

the laser field with the motion in the electric field due to charge separation at the sharp plasma

boundary. The equation of motion for electrons in x-direction can then be presented in the form

d px

dt
=− 1

2γ

∂ (a⊥)2

∂x
− eEx , (1)

where a⊥ is the electromagnetic vector potential, Ex the electrostatic field due to charge separation,

and the relativistic factor being defined as γ2 = 1+(p2
x + 〈(py +a⊥)2〉) with time averaging 〈 〉.

From our reference simulation it can be seen that the initial acceleration of electrons starts from

the interface with a steep density gradient. After initial acceleration in the skin layer, electrons

can propagate both into the direction of the dense plasma as well as into the direction of the

vacuum. A part of the electrons immediately propagate into the dense plasma with sufficiently high

energy such that they escape from the influence of the electromagnetic light field. The electrons

propagating towards the vacuum, however, remain under the influence of the incident and reflected

light waves. The effect of the ponderomotive force on the density gradient has eventually an

important influence on the number of electrons that are stochastically accelerated in the standing

wave. The effects in one- or two (three) dimensional geometry have clearly to be distinguished

(see also 30): in 1D, the ponderomotive force due to the field amplitude variation in the skin layer,

∝ ∇|a⊥|2, provokes important profile steepening in the x-direction on both the electron and the

ion density profile, such that particles cannot escape from this force. As a result, few electrons

escape towards the vacuum region. In 2D (or 3D), hole boring or filamentation effects will arise

by locally increasing the laser intensity, such that profile modifications are not homogeneous in

y along the target surface. A non-negligible fraction of electrons with non-zero values in py may

escape from regions where the ponderomotive force in x is strong, which are then laterally injected

into the vacuum region, eventually getting under the influence of the standing wave30.

In the following we consider the electron motion in the electromagnetic fields and distinguish

their motion in the vicinity of the interface between the very low-density pre-plasma and the dense
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plasma layer, which we index as case ’i", and the motion in the pre-plasma dominated by the

superposed fields of the incoming and reflected light, indexed as case ’tw’. The associated models

to these cases are essentially one-dimensional.

Interface case ’i’

In Ref. 38 a model Hamiltonian has been derived in a condensed manner for 1D relativistic

electron motion in an electrostatic potential U(x) in the presence of an oscillating driver field Ad(x)

that is associated to an electromagnetic wave:

H(x, px, t) =
√

1+ p2
x +U(x)−Ad(x)cos(ωt) , (2)

where px is the electron momentum (in units of mec), x its spatial coordinate, and where the driver

field oscillates in time with the frequency ω at the amplitude Ad that may itself depend on x. The

aspect of acceleration for case ’i’ in the frame of the model Eq. (2) has been extensively studied

in Refs. 38, 50, and 51. The spatial shape of the potential depends on the plasma interface; for

sufficiently thin foils one would adopt a V-shaped potential with U(x) = εp|x− xc|, while for an

extendend dense plasma with the interface situated at x = xc it should read U(x) = εp(xc− x) for

x≤ xc and = 0 for x> xc, with εp being the electrostatic field, considered to be constant. The driver

field is taken via a dipole model as Ad = adx. The driven motion along the direction normal to

the surface is well-known from resonance absorption at oblique laser incidence, for which particle

acceleration has been seen52 even at non-relativistic intensities. While the driver field model has

later been revisited, even for higher intensities47–49, it has been shown that a field pointing along

the normal can be justified as well for normal incidence at high laser intensity.13,45,53 Later, in sec-

tion III C 2, we discuss the relation between the driver field amplitude ad and the electromagnetic

field strength a0.

Both Paradkar et al.50,51 and Bulanov et al.38 suggest that the electron motion under the com-

bined influence of driver field and potential can lead to repeated acceleration. Stochastic accel-

eration via this motion can then be described by recurrence relations via Chirikov’s standard (or

return) map model, in which the quotient of the parameters ad and εp eventually determines the

transition to stochasticity. The validity range of this model is however limited by both the electro-

static potential and the spatial range of the assumed driver field, namely the skin layer. Electrons

that are rapidly accelerated into the positive x-direction to sufficiently high px values, will be lost

from the influence of both field components once being beyond the skin layer. Electrons ejected
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into the pre-plasma will still be under the influence of the electrostatic field, but will be rapidly out

of influence of the driver field.

Stochastic and repeated acceleration at the interface should in particular be excluded for the

case of ultra-short laser pulses. For short pulses it has been shown18,54 that acceleration at the

interface can attain values of pmax = a2
0/2, which for the ultra-relativistic case, a2

0 �1, can be

far above the values expected from the maximum acceleration, pmax ∼ γosc, associated with the

oscillation energy1 γosc ≡ Eosc/(mec2).

Two-waves case ’tw’

In the reference simulation case, as already mentioned, a non-negligible part of the incoming

light field is reflected, with the reflection coefficient r '0.83 in the field amplitude (and r2 =0.7

in intensity). The ponderomotive force from the standing wave dominates the electrostatic field

already in a wavelength-distance from the interface.

To obtain the superposition of the incident and the reflected light waves, eventually resulting

in a standing wave in front of the interface27,30, requires that the laser pulse, as in our simulation,

is sufficiently long lasting, in our case ω0t >400. The latter may not be the case for very short

pulses, as e.g. in the study of Ref. 54.

As observed in the reference simulation, the motion of energetic electrons escaping from the

interface towards the negative x-direction is therefore governed by the superposed light fields. The

electron motion in the standing wave can lead to repeated acceleration and repeated change in

the sign of the particle momentum px. Electrons, initially ejected from the interface in negative

x-direction, can therefore return in positive x-direction and penetrate into the dense plasma with a

net energy gain due to the stochastic acceleration.

The electron motion under the influence of two light wave fields, A1 and A2 is described by

Eq.(1) with a⊥ = A1 +A2 = a1 cos(k0x−ω0t)+ a2 cos(−k0x−ω ′0t +Ψ) with a2 = ra1 at |ω0−

ω ′0| � ω0 for the electromagnetic field amplitudes and frequencies, respectively. The coefficient r

is then the reflection coefficient of the fundamental component of the reflected light wave. Let us

remark here that higher odd harmonics (3rd, 5th, etc.) in the reflected light field may be excited,

as in our simulation, so that the reflection coefficient for the fundamental component is weaker as

the value indicated earlier.

This type of dynamics – and the stochastic heating associated with it – has been subject of

numerous studies in a similar context with two or more wave components, see Refs. 20, 22, 23, 39,
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42, 55–58, with particular attention to counter-propagating waves in Refs. 23 and 59. From these

approaches, it has been pointed out that for electromagnetic wave interaction the corresponding

Hamiltonian can be simplified for the longitudinal motion in x as23 H = [1+ p2
x +(py0 +A1 +

A2)
2]1/2.

The motion under the influence of a standing electromagnetic wave is then governed by an

equation of motion in the x-direction due the ponderomotive force of the counter-propagating lin-

early polarized light wave components. The ponderomotive force, dominated by the term ∝ A1A2,

yields primarily a spatial periodicity ∼ sin2k0x, with the amplitude ∝ a1a2 = ra2
1 = (2ra2

⊥,0/4).

The equation of motion can hence be presented in a 2nd order differential equation for the guiding

center motion of an electron, namely60

d2k0x
d(ω0t)2 −

ω2
b

γ2
0 ω2

0
sin2k0x = 0 . (3)

in which γ0 = [1+ p2
x + a2

⊥,0]
1/2 stands the relativistic factor for the electron entering with mo-

mentum px into the standing wave61 and ωb for the bounce frequency of trapped particle motion

around phases 2k0x = π . In the current context of relativistic motion in a standing wave we define

ωb ≡ ω0
√

ra⊥,0 and ωγ = ωb/γ0 . (4)

This type of equation has been studied also in similar context for trapped particle motion, and

particularly for the case of electrostatic waves59.

From the observations in our simulation in Fig. 1 due to strong acceleration at the interface,

and related to the above mentioned driver model, Eq. (2), electrons enter with already a non-

negligible momentum (p2
0,x �1) into the standing wave. This motion of fast electrons entering

into a standing wave field has been subject of numerous studies and is associated with the Kapitza-

Dirac effect62,63, resulting in Compton harmonic resonances and stochastic instabilities39.

The Hamiltonian and the motion related to the above-mentioned model, Eq. (3), using J =

2k0dx/(dω0t) = 2px/γ0 and φ = 2k0x, can be written as

H(J,φ) = J2/2+U0 cosφ , (5)

with the amplitude of the potential U0 = ω2
b/(ω

2
0 γ2

0 ) for the present case. This type of Hamil-

tonian has been extensively studied by Chirikov55 as well as by Escande and Doveil43 for the

non-relativistic limit (see also Ref.44, p. 249), in which also the role of perturbations to the poten-

tial via spatio-temporal oscillations ∝ cos(ψ−Ωt) and higher order has been considered.
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A. Standard map model

For systems described by Eq. (2) from case ’i’ and by Eq. (5) from case ’tw’, it is possible,

after Chirikov55, and in analogy to Fermi acceleration44,64,65, to write down difference equations

for quantities representing momentum P and phase φ , and which are associated to Poincaré’s

standard (or return) map. This set of difference equations reads

Pn+1 = Pn +Ks sin(φn) , (6)

φn+1 = φn +Pn+1 , (7)

with the stochasticity parameter Ks, whose magnitude determines the onset of stochastic regions

in the phase space, and the further transition to global stochasticity.

(i) For the interface case ’i’, following Bulanov et al.38, one has Ks,i = 8 ad/εp, with the am-

plitude of the oscillating driver, ad , and the electrostatic field strength εp in the vicinity of the

interface. Here, P is defined as P≡ 4px/εp, and φ = 2ω0t as the phase.

(tw) For the case with standing waves, Eqs. (6-7) result by taking a time step related to the

bounce period, ω0∆t =Ctwπ(ω0/ωγ), resulting in Ks,tw =C2
twπ2 together with P=Ctwπ(ω0/ωγ) J

= 2Ctwπ(ω0/ωb) px and φ = 2k0x. The factor Ctw depends on whether one counts a full period,

Ctw = 2, or a half period with a possible change of the sign in p for Ctw =1, respectively.

The threshold for onset of stochastic particle trajectories and stochastic acceleration has been

examined by Chirikov55. For the stochasticity parameter, from Ks &1 particle motion can enter

the stochastic regime due to resonances, and for values Ks > Kc, with the critical value43,44,55,59,66

Kc = (π/2)2 ' 2.46, the fully stochastic regime is attained.

From this estimate we can assume that electrons entering the standing wave will undergo

stochastic acceleration. We shall discuss later on, see section V, the important factors related

to the influence of the plasma density gradient, and geometry on the number and energy of the

ejected electrons.

In the Hamiltonian Eq. (5) we have neglected the presence of the electrostatic potential induced

by the electron cloud, as in Eq. (2). It is, however, still present while its influence on the electron

motion in a high-amplitude standing wave should mainly play a role of dephasing and deceleration

for a trajectory away from the interface, or acceleration for a trajectory toward the interface. In

our simulations we observe, that electrons are returned towards the positive x-direction around

k0x∼ 100, and only a very small fraction of very energetic electrons can definitely escape toward
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the vacuum x→ 0. Most of the electrons have already been returned before into the positive

x-direction, after having been temporarily trapped in the standing wave ponderomotive potential.

One has to keep in mind that the spatial range of the model in case ’i’ is very narrow in x. The

model does not consider a limited spatial extent of the oscillating driver ∝ ad . For this reason,

it would be difficult to to explain repeated acceleration of highly energetic electrons by trapping

in the localized electrostatic potential for as steep density gradient as present at interfaces. The

physics of this model is nevertheless important for the magnitude of the px-momentum of electrons

entering the standing wave. A single acceleration event in the interface layer may hence already

be important to attain energetic electrons that enter either with px > 0 into the dense plasma, or

enter with px < 0 into the standing wave.

B. Diffusion in momentum space

The stochastic motion can be measured by the diffusion in momentum space, for which the

average square deviation of the momentum change (∆px)2 has to be evaluated, which results for

both cases in

(∆px)2 =

2a2
d for case ’i’ ,

C2
tw

π2

8 (ωb/ω0)
2 for case ’tw’,

(8)

where, for case ’tw’, we take sin2(φ) = 1/2 and for the time interval of momentum change ∆t =

Ctwπ/ωγ = Ctwπγ0/ωb. For both cases (∆px)2 results to be independent of the relativistic factor

γ0.

This average square deviation in px is directly related to the diffusion coefficient D = (∆px)2/tc

that enters into the Fokker-Planck equation39, with tc standing for the characteristic time scale for

momentum transfer events. Resuming both cases, taking for case ’i’, tc,i = Ci|px|/ε (with Ci =4

from Ref. 38), and for case ’tw’, again tc,tw = ∆ttw =Ctwπγ0/ωb, the diffusion coefficient reads

D=

(2/Ci)a2
d εp |px|−1 case ’i’ ,

Ctw
π

8 (ωb/ω0)
3γ
−1
0 case ’tw’.

(9)

We notice that for both cases, the coefficients are inversely proportional to |px|, namely γ0 =

γa[1+ p2
x/γ2

a ]
1/2 ' |px| for p2

x � γa with γa = [1+ a2
⊥,0]

1/2. This typical dependence of the dif-

fusion coefficient D on |px| corresponds hence to the behavior seen in Fig. 6 where values have
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been deduced numerically from the simulation. On this basis we develop in the following section

solution to the Fokker-Planck equation.

C. Fokker-Planck model

We will now describe the electron distribution in terms of a Fokker-Planck equation via the link

with the diffusion coefficient D = (∆px)2/tc. We use in this paragraph for simplicity p for px.

Based on the knowledge of the diffusion coefficient of the model, one can now derive distri-

bution functions of the accelerated energetic electron. The Fokker-Planck equation written in the

form
∂ f
∂ t

=
1
2

∂

∂ p

(
D

∂

∂ p

)
f =

B
2

∂ f
∂ p

+
D
2

∂ 2 f
∂ p2 , (10)

expresses the probability density (pdf) of the distribution function f . In the case that the diffusion

coefficient depends on p, also the term with the coefficient B in Eq. (10) has to be considered

because of B = ∂D/∂ p. We concentrate in the current study to electron momenta p = px > 0

in the positive half space of the phase space (due to the motion into the positive x direction for

electrons entering in the dense plasma).

Regarding the models of the preceding section, where the square momentum deviation (∆p)2

is essentially proportional to powers of the driver amplitudes, the dependence of D on p lies in the

typical diffusion time δ t. For the model cases discussed above, the diffusion coefficient can be

written as D = κ/p for which the key parameters of the model reads

κ =

(2/Ci)a2
d/εp for case ’i’ ,

Ctw
π

8 (ωb/ω0)
3 (p/γ0) for case ’tw’ ,

(11)

wherein p/γ0 '1 for p2� γa.

The relation between κ and the simulation parameters will be discussed further on in section

III C 2 and in the context of standard map simulations in section III D.

1. Solutions to the Fokker-Planck model equation

From the models assuming stochastic acceleration and heating, a diffusion coefficient that is

inversely proportional to p is evident, and also the numerically determined dependence of D shown

in Fig. 6 gives evidence for such a dependence of D ∝ 1/p on the momentum.
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On the basis of these results, with D ∼ 1/|p|, the form of diffusive term invites to perform a

change of variables (p, t)→ (u,τ) with u = p3/(κt) = p3/τ and τ = κt, which yields the Fokker-

Planck equation in the form, with f ′ ≡ ∂ f/∂u,

f ′′/ f ′ =−2u/9−1/3 for u > 0 , (12)

from which a solution kernel of the type exp[−p3/(9κt)] results. This leads to a family of solutions

– loosely referred as ’similarity solutions’67,68 – f (u,τ) with the similarity parameter u = p3/(κt),

and generated by the function kernel exp(−2u/9) = exp[−2p3/(9κt)]. Indeed, if one seeks for

a change of variables u = pαtβ in order to reduce the FP equation to an ordinary differential

equation, the form of diffusive coefficient leads to the relation α = −3β and subsequently u =

(t/p3)β . The basic choice mentioned above corresponds hence to β = -1.

A set of solutions of FP equation can be determined, where we seek for a solution that can

explain a cutoff line behavior seen in the distribution. The direct integration of Eq. (12) yields

the solution generated by the function kernel exp(−2u/9), and results in the solution denoted

below as f3(u,τ). Other similarity solutions can be found in seeking for solutions of the form

pµtν exp[−2p3/(9κt)], which yields exactly two possible combinations (µ,ν) = (0,−1/3) and

(µ,ν) = (2,−5/3).

In the current context, it is preferable to express these solutions as a function of p and of the

normalized time τ ≡ κt – instead of the similarity variable u = p3/τ – which yields functions each

with a different time behavior, namely

f1(p,τ) = f1,0 τ
−1/3 exp

(
−2p3/9τ

)
, (13)

f2(p,τ) = f2,0 p2
τ
−5/3 exp

(
−2p3/9τ

)
,and (14)

f3(p,τ) = f3,0 Γ
(
2/3,2p3/9τ

)
, (15)

with Γ(.., ..) denoting the incomplete Gamma function, and f1,0 , f2,0, and f3,0 as normalization

constants. Solution f1(p,τ) was employed in Ref.38 for a Dirac delta function as initial condition.

The complementary distributions to the pdfs Eqs. (13-15) defined as F1,2,3 ≡
∫

∞

p f1,2,3(p′,τ)d p′,

read

F1(p,τ)= 6−1/3 f1,0Γ
(
1/3,2p3/9τ

)
, (16)

F2(p,τ)=3/2 f2,0τ
−2/3e−2p3/9τ , (17)

F3(p,τ)=1/2 f3,0

[
62/3

τ
1/3e−2p3/9τ−2pΓ

(
2/3,2p3/9τ

)]
. (18)
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Developing F1 and F3 for large values of p3� τ yields

F1(p,τ)=
3
2

f1,0
τ2/3

p2 e
−2p3

9τ

[
1− 9

2
τ

p3 +O
(

τ

p3

)2
]
, (19)

F3(p,τ)=
3
2

f3,0τ
1/3e

−2p3
9τ

[(
9
2

)1/3
τ

p3 +O
(

τ

p3

)2
]
. (20)

All pdfs and distributions have in common that their long range behavior in p, for fixed τ , is

dominated by the exponentially decreasing function kernel exp(−2p3/9τ). In contrast to f1 and

f3, both monotonically decreasing with p for p >0, the solution pdf f2 has a time-dependent

local maximum at p = (3τ)1/3 before it joins the decrease in p as both other solutions. The cdfs

hence show three distinguished behaviors in time, F1 conserves the mass of the particles with

p >0, F1(p = 0,τ) = const, F3 increases in time with ∝ τ1/3 (because f3(p = 0,τ) = const), and

F2 favors a high-energy tail, but diffuses towards larger values in p and decreases in time like

∝ τ−2/3.

2. Application to the simulation

From the models developed above and from the numerical results, we assume that stochastic

heating (or acceleration) explains the observed distributions of energetic electrons entering in the

dense plasma. We know however that this type of behavior is only valid where stochastic processes

take place, namely in the pre-plasma and in the vicinity of the vacuum-plasma interface skin

layer. It has been shown that further inside the dense plasma36, Ohm-like collisional heating will

dominate, hence a different type of diffusion law.

For this reason it is not adequate to follow (in space and time) the distribution of the elec-

tron population that has been accelerated at the interface. This would mean to follow them

along their trajectory, where they later on would no longer undergo acceleration in the combined

electromagnetic-electrostatic field. We examine the evolution of the distribution further inside in

section V.

We therefore have analyzed the electron distribution in strictly the same volume just behind

the vacuum plasma interface, i.e. 150 < k0x < 250. This distribution witnesses in the positive

half-space of the x− px phase space the time history of potentially re-accelerated particles.

In these distributions deduced from the PIC simulations we observe a clear cutoff like behavior

in the electron momentum p, particularly pronounced at times ω0t <500 (corresponding to real
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FIG. 7. Distribution of the maxima in the electron momentum for different time instants, ω0t =200, 300,

400, 500, 600, and 800 from the simulations (solid lines). The dashed lines show analytic approximations,

see text, based on the solution F32(p,τ), for τ = κt with κ/ω0 =0.55, c32 =7.

times t .200 fs), see also Fig. 5. Note that at later times, a clear cutoff can no longer be identified

in the simulation due to the limited resolution because of the finite number of particles per cell.

Cut-off like behavior for similar configuration has been systematically observed both in Maxwell-

Vlasov and PIC simulations.25,26,28–30,33–35 The cutoff in the distribution means that electrons

could not be accelerated beyond this value in p, or, the probability to find electrons beyond a

certain p-value drops to zero. It means that electrons cannot attain momenta p > pmax. A fast

cutoff-like decrease as a function of p cannot be described by a single one of the solutions Eqs.
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FIG. 8. As in Fig. 7, distribution of the maxima in the electron momentum for different time instants,

ω0t =200, 300, 400, 500, 600, and 800 from the simulations (solid lines). The dashed lines show analytic

approximations, see text, here based on the solution F12(p,τ), for τ = κt with κ/ω0 =0.55, c12 =3.

(16-18) derived above from the Fokker-Planck model equation. Observing the value of pcontour

where F̄h decrease down to a contour level F̄h(pcontour) = const, it is evident that this momentum

value advances in time like pcontour ∝ τ1/3.

Via linear combinations between two of the mentioned solutions, however, a cutoff-like de-

crease, faster than exp(−2p3/9τ), can be described. Relevant combinations of distributions are

between F1 and F2, i.e. F12 ≡ F1− c12F2, and between F3 and F2, i.e. F32 ≡ F3− c12F2, with

c12,c32 > 0, which subtracts the contribution of electrons beyond an upper limit in p, namely
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p = pmax. It means that electrons could not be accelerated to momenta greater than pmax up

to this time, such that the distribution is zero beyond this value in p, F12(p > pmax,τ) = 0 or

F32(p > pmax,τ) = 0. To be precise, we denote F̄(p,τ) =
∫ pmax

p [ f j(p′,τ)− c j2 f2(p′, t)]d p′, with

j=1 or 3 in f j and c j2 and where we define pmax(τ) as the sup{p∈ R+ : F̄h(p)> 0}. By combining

the solutions given by F3 and F2 or F1 and F2 and using the development Eqs. (19)-(20), we find

F̄(p,τ) =

F32' f3,0
e−2p3/9τ

τ2/3
62/3τ2−c32 p3

p3 , for p <
62/9τ2/3

c1/3
32

(21)

or

F12'
3 f1,0

2
e−2p3/9τ

τ2/3
τ4/3−c12 p2

p2 , for p <
τ2/3

c1/2
12

, (22)

with the constants c32 = f2,0/ f3,0 and c12 = f2,0/ f1,0.

Clearly, a cutoff-like behavior in p results for p→ pmax(τ), where the time-dependent cutoff

in p at pmax is proportional to pmax(τ) ∝ τ2/3 for both cases Eqs. (21) and (21), more precisely

pmax = c−1/3
32 62/9τ2/3 for expression (21), and by pmax = c−1/2

12 τ2/3 for (22). Remind that the

complementary distribution is defined as F̄h = 0 beyond the electron momentum p > pmax(τ).

A linear combination between the solutions F1 and F3 yields a similar cutoff behavior, but the

different temporal evolution on the lower energetic part proves that this combination is irrelevant.

In spite of the differences of F32 and F12 in p far below pmax, their behavior is very similar

when approaching p→ pmax, namely linear in p for p < pmax,

F̄h(p,τ)' 3 f2,0 e−2p3
max/9τ

τ
−2/3 pmax(τ)− p

pmax(τ)
. (23)

It is important to remark here, that the level of F̄h(pmax(τ),τ) described by Eqs. (21-22) or (23),

decreases in time. This means that the number of particles in the vicinity of the cutoff decreases in

time with respect to the ensemble of particles. In PIC simulations with a finite resolution in phase

space due to the limited number of particles, this renders the cutoff value pmax unobservable for

advanced times. The time dependence of the cutoff, pmax(τ), depicted in Fig. 5 on the basis of

F̄h from our simulation, shows an evolution that fits well with the predicted power law, namely

∝ τ2/3 up to ω0t− 140 ' 350, where ω0t =140 is the time instant when the laser arrives at the

interface. For ω0t >500, the data extracted from PIC simulations do no longer allow to identify a

clear cutoff because of too few particles registered in the distribution.

A good measure for the importance of the most energetic particles close to the cutoff with re-

spect to the hot particle distrtibution is the expectation value p̄h, defined as p̄h =
∫ pmax

0 p′ fh(p′)d p′
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with fh corresponding to the cdfs Eqs. (21) or (22). This expectation value p̄h also evolves in

time, essentially with the power law ∝ τ1/3 for τ� 1, being hence slower than for the cutoff value

pmax(τ) ∝ τ2/3 . The simulation data in Fig. 5 for both the cutoff value in p and for the expec-

tation value p̄h show hence a good agreement with the power laws deduced from the solutions to

Eq. (10).

Based on the solutions above, F̄h = F32, and F12, we have seeked to find the closest agreement

with the distributions as shown in Fig. 4 by adapting the parameter κ , i.e. the conversion from

ω0t to τ = κt, and the normalizing constants f1,0 and f2,0 = c21 f1,0 and f1,0 and f2,0 = c32 f3,0,

respectively. The curves superposed to the PIC-simulation data (here normalized) based on F32 in

Fig. 7, and on F12 in Fig. 8, show very good agreement for a parameter set given by f3,0 = 0.1,

c32 =7, (i.e. f2,0 = 7 f3,0) in Fig. 7, as well as, f1,0 = 0.8, c12 =7, (i.e. f2,0 = 2.95 f1,0) in Fig. 8.

For both cases the value of the key model parameter κ proves to converge into a narrow interval

κ/ω0 ' 0.5 . . .0.6, in agreement with the curve seen in Fig. 6. This value, κ , related to the field

values via Eq. (11) has here been determined by the best agreement in the distributions F̄h.

In Figure 9 we illustrate as well the comparison between PIC-simulation data and the FP so-

lutions F1(p,τ) when no combination with solution F2(p,τ) is applied: in this case (and similar

for the case based on solution F3(p,τ), not shown here) no cutoff like behavior is seen, as obvious

from Figs. 7 and 8 for times ω0t <500 (or τ = (κ/ω0)(ω0t−140)<175 ).

As already mentioned, for late times, in general the cutoff behavior may become unobservable

because of the limited resolution. The time evolution of the highest observable value in p at the

lowest contour in F̄h(p,τ) follows a time law ∝ τ1/3 corresponding to the dependence of the kernel

exp(2p3/9τ) of the similarity solution.

Note that in complement to the time-dependent solutions discussed above, stationary solutions

to the FP equation, i.e. for ∂ f/∂ t = 0, yield pdf s with the functional dependence f (p) = c1 p2+c2

where c1 and c2 are normalization constants. It is interesting to observe that for c1/c2 < 0 the

behavior of the stationary solution corresponds to the near-cutoff behavior of the combined time-

dependent solutions Eqs. (21-23), derived above.

This would mean that f (p, t)∼ f (p, pmax(t)) when d log(pmax(τ))/dt� 1, so that f (p, pmax(τ))

‘almost’ satisfies the stationary FP equation for sufficiently small ∂ f/∂ t ' 0, i.e. ∂pp f '

(1/p)∂p f .

We now compare the coefficients deduced from the simulation with coefficients expected from

the models :
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FIG. 9. As in Fig. 7, distribution of the maxima in the electron momentum for different time instants,

ω0t =200, 300, 400, 500, 600, and 800 from the simulations (solid lines). The dashed lines show analytic

approximations, see text, here based on the solution without cutoff behavior, F1(p,τ), for τ = κt with

κ/ω0 =0.51.

("i") In the vicinity of the interface, the relevant model parameters are the electric field strength

εp and the driver amplitude ad . The peak value of the electric field in the layer close to the interface

is in the range εp '0.2 . . . 0.26, without being spatially homogeneous. The value of ad can also

be estimated from the ponderomotive force (roughly ad ∼ a2
⊥,0/(2ω0/ωp), that taken at k0x'136

yields ad ∼0.1. . . 0.3. Independent of the value of κ that results, it is important to remark that the

driver field characterized by ad is too much localized in x, namely in the very narrow skin layer.
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For this reason multiple acceleration events via the interplay between the motion in the driver and

the electrostatic field are very unlikely for already energetic electrons. This process can hence be

excluded in the current context to explain the temporal evolution of the ultra-relativistic electron

distribution.

("tw") In the pre-plasma in presence of the standing wave, the parameter κ can be evaluated

from Eq. (11), i.e. κ = Ctw(π/8)(ωb/ω0)
3. To be consistent with the numerically determined

value κ ∼0.6 mentioned above would require ωb/ω0 '1.2. With the relation between the bounce

frequency and the field strength from Eq. (4), for a⊥,0 =3, equivalently the value of
√

r '0.4

would result. This value is by a factor of 1/4 below the value of the reflectivity observed, namely

of rPIC =0.82 in field (from PIC simulations, r2
PIC =70% in intensity). Higher harmonics in the

reflected light could however explain this discrepancy: inspection of the electromagnetic field

profiles in x, along the axis of the incoming and reflected laser beams, show the presence odd

higher harmonics to the spatial frequency 2k0 in the ponderomotive force. Field amplitudes reach

values of the order of a⊥,max =5. . . 6.5 where peaks due to higher harmonics are clearly in excess of

a sinusoidal shape of the fundamental only, for which total amplitudes of (1+r)a⊥,0'3.6< a⊥,max

would result.

The coefficient κ allows us to relate the cutoff seen in the electron momentum to the laser pulse

parameters, i. e. via pmax ∝ (ωb/ω0)
2(ω0t)2/3 where the bounce frequency in the standing wave

ωb is related to the laser intensity, Eq. (4), resulting in the scaling pmax ∝ a2
0(ω0t)2/3. Similarly,

for the value of the expectation value in p of the energetic electrons, p̄h, one obtains the weaker

scaling p̄h ∝ a0(ω0t)1/3.

D. Standard map simulation

Based on the standard map model discussed in section III A, we have performed simulations of

the set of equations

px,n+1= px,n +Ctw(ωb/ω0) sin(φn) , (24)

φn+1 = φn +2Ctw(ω0/ωb) px,n+1 , (25)

which is equivalent to Eqs. (6)-(7), and in which, via px = P (ωb/ω0)/(2Ctwπ) the parameters are

Ctw and ωb/ω0. To do so, we have run the map over 50 iterations for 50000 particles in order to

determine histograms in px of the particles as a function of time, where the time is associated with
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FIG. 10. Contour map of the complementary distribution F̄map(p, t), as a function of the electron momentum

and time, derived from a simulation following the standard map, Eqs. (24-25), for 50 iterations and 50000

particles. Parameters ωb/ω0=1.2 and Ctw = 1. The curve for pmax(t) from Fig. 5, marked with line, is

reported in this plot.

the phase φn by not applying the modulo with 2π , hence φn ≡ (2k0x)n ' 2k0ctn.

The standard map simulations were initialized using a uniform distribution in the initial particle

phase in the interval [0,2π). For the initial momenta of the particles we have varied the interval

between [−1mec,+1mec] and [−3mec,+3mec] without observing essential differences. After all

iterations (index n), the obtained data pairs {k0c tn, px,n} j for the 50000 particles (index j) were

first ordered in time, and then again, for each time interval, in the magnitude of |px|. The ordering
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from the latter operations yields hence histograms which can be considered as particle distributions

F̄map(px, t).

The best agreement between standard map simulations and the temporal evolution of the cutoff

contour, see Fig. 5, is found for the interval ωb/ω0 =1. . . 1.5, which is consistent with the conclu-

sion from section III C 2. The result from such a simulation with Ctw = 1 and ωb/ω0 =1.2 is shown

in Fig. 10. Note the time shift k0c t '140 between the standard map and the PIC simulations due

to the retarded arrival of the light wave at the interface k0x'140.

It is remarkable that the distribution extracted from the standard map simulation, although not

retaining all the complexity of the physical effects described in the PIC simulations, recovers

essential features of the acceleration effects in the pre-plasma and at the interface.

IV. EXTREME THEORY

As explained in section II we have analyzed the electron distribution in strictly the same vol-

ume just behind the vacuum plasma interface, i.e. 150 < k0x < 250. Each xi of the numerical

resolution is recorded for i = 1 to N . Since the electron bursts are injected periodically in time,

π/ω0, they appear hence in regular spatial intervals of the length c×π/ω0. We denote them as

I1, . . . ,In, . . . ,IN , with In = [x0 + nπc/ω0,x0 +(n+ 1)πc/ω0). The variables pmax(xn) with

xn ∈In, for n = 1, ...,N form a sequence of independent, equally distributed variables with distri-

bution F̄h(p). Moreover, the distribution F̄(p) and F̄h(p) are tail-equivalent. We hence define the

sequence Mn = max{pmax(x1), pmax(x2), . . . , pmax(xn)} with xn ∈ In. for which we examine the

limit law.

We recall here from Ref. 40 the fundamental result of extreme value theory which we shall use

further on for comparison with our numerical results. Consider a random variable p, following a

distribution F , with its corresponding density f , and with the complementary distribution function

F̄(p) =C(pF − p)α , having the finite right endpoint pF (= sup{p ∈ R : F(p) < 1}), and with an

exponent α > 0. One can show that F belongs then to the maximum domain of attraction of the

Weibull law. This means that the sequence of maxima Mn = max(p1, ..., pn) corresponding to the

sequence of independent and equi-distributed random variables pi with a common distribution F ,

adequately recentred and rescaled, converges in distribution to the Weibull law:

P[ (n C)1/α(Mn− pF)< p ]−→ exp(−(−p)α) , (26)

with C as the scaling constant, and n denoting the number of elements in the sequence. To deal
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with our distribution F from Eq. (21), we show that they have the same behavior as the model

distribution F(p) = 1−C(pF − x)α in that they satisfy ‘von Mises’ condition40:

lim
p↑pF

(pF − p) f (p)
F̄(p)

= α > 0 , (27)

which implies that F belongs to the maximum domain of attraction of the Weibull law Ψα =

exp(−(−p)α). This limit (von Mises) yields, for our prototype distribution F̄(p,τ)= exp(−2p3/9τ) p−1τ−2/3(p3
max−

p3), whose behavior near pmax is governed by∼ 2pmax(pmax− p) such that we obtain limp↑pmax(pmax−

p) f (p)/F̄(p) = 1, by replacing pF in Eq. (27) by pF = pmax. The exponent in Eq. (27) is hence

α =1 insuring convergence of the law of Mn toward the Weibull law Ψ1 = exp(−(−p)) . Note

that as F̄h(p) and F̄(p), as defined in section II are tail-equivalent, i.e. the same result is valid

for both F̄h(p) and F̄(p) . Extreme theory shows that for an exponent in the power law α = 1,

the limit law for extreme values in the distribution, hence the distribution of the most energetic

electrons, is a Weibull distribution given by

F̄(p)∼ 1−
[
1−n−1 (pmax− p)/p∆

]n
, (28)

for a finite number of n independent values measured for the most energetic electrons, yielding

asymptotically for n→ ∞

F̄(p)∼ 1− e(p−pmax)/p∆. (29)

From the reference simulation we have hence determined histograms of the maxima in the peak

values in the electron bursts, as for the example shown in the phase space, denoted as ’+’ in Fig.

3. These histograms are obtained on the same data as used for Figs. 4 and for time instants ω0t =

200, 300. The result, in linear scale, is shown in Fig. 11, for times ω0t =200, 300, 400, and 500.

Superposed to the numerically determined distribution are the distribution following the Weibull

limit law given by Eq. 29 for which at each time t the cutoff value pmax(t) is used. The limit

law predicts hence a linear decrease of the extreme value distributions in the neighborhood of

p = pmax for p ≤ pmax beyond which F̄ is zero. This is well reproduced by Eq. (29) and best

agreement is achieved when also the interval p∆ assumes p∆ ' pmax(t). For later times, beyond

ω0t ∼400, and illustrated for ω0t =500, the agreement with the limit law fails because the cutoff

in the numerically deduced electron distributions is no longer well resolved, as already mentioned

earlier, see Fig. 5.

The agreement found between the numerically determined distributions and the extreme value

theory is hence a clear signature of the cutoff behavior described by the solutions to the Fokker-

Planck equation associated to the stochastic acceleration model.
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FIG. 11. Complementary distributions, F̂(px) (solid lines) of the maxima in the electron momentum (multi-

plied with the number of maxima counted), sampled over the maxima in px in the bursts of the phase space

150< k0x <250, behind the vacuum plasma interface. The functions fitted to the data values (dashed lines),

for the different times, ω0t =200, 300, 400, see legends, correspond to Weibull distributions in the tail,

px→ pmax, with F̂ ∼ exp[(px− pmax(t))/p∆(t)], with p∆ = pmax and by using the value of pmax(t) for to the

different time instants t. For ω0t =500 the cutoff type behavior is no longer resolved in the PIC simulations,

see text.

V. DISCUSSION AND CONCLUSIONS

We have studied the evolution of the distibution function of electrons that penetrate into a dense

plamsa after being accelerated by an intense laser wave in the vicinity of the interface between vac-
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uum and plasma. Our analysis is based on a reference simulation in the relativistic laser intensity

regime. The evolution seen in the distribution of the most energetic electrons inside the plasma

does not correspond to the momenta expected from a single laser-acceleration event, but can be

explained by stochastic acceleration. We find that the electron distribution function in the layer

behind the interface shows a cutoff in the particle momentum and consequently the energy. The

cutoff in momentum, pmax, evolves in time.

In spite of the complex electron acceleration mechanisms in the vicinity of the solid-density

interface, the essential physics in play proves to be governed by models for stochastic acceleration.

Electrons are ejected from the layer close to the solid-density plasma interface in both directions.

Those energetic electrons that enter into the standing wave, formed by the incident laser wave and

the reflected light, are easily found to be in a parameter regime for stochastic motion for relativistic

laser intensities. Their motion in this standing wave, where electrons can also be reversed in their

direction, leads eventually to a net increase in their energy. The relevance of the model based on

stochastic acceleration in a standing wave pattern relies on a not too small reflectivity coefficient

rPIC of the incident laser wave.

From the analysis of the distribution functions, we show that the stochastic motion leads to

diffusion in momentum space which can be described by a certain class of solutions to the Fokker-

Planck equation. Numerical data show, in consistence with the model for the Fokker-Planck equa-

tion, that the diffusion coefficient is inversely proportional to the electron momentum in x dimen-

sion, i.e. normal to the interface. We find that relevant solutions to the model show a cutoff behav-

ior in the electron momentum that follows a power law behavior in time pmax(t)∝ a2
0(ω0t)2/3. The

expectation value in momentum of the energetic electron, p̄h also evolves in time with a power-law

like behavior, but with a smaller exponent, namely p̄h(t) ∝ a0(ω0t)1/3. For the cutoff value pmax

as well as for the expectation value p̄h, the above mentioned dependences in terms of power laws

dependence are seen in the reference PIC simulation, as illustrated in Fig. 5. Note that the cutoff

in the distribution, at pmax(t), is more pronounced in the early part of the laser pulse. Later on, the

phase space resolution in PIC simulations may no longer be sufficient to observe a clear cutoff,

while this should still be possible in Vlasov-Maxwell simulations.

The model used here to interpret the simulation results essentially relies on the description in a

single spatial dimension, namely in the direction along the laser propagation. The physics of the

interaction in the vicinity of the vacuum-plasma density interface is, however, extremely complex.

Multi-dimensional aspects in this context have already been discussed in previous work.27,30 The
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strength and the structure of the laser field in the vicinity of the interface strongly depends on the

geometry of the interaction, such as polarisation, the incidence angle,24 but also on the presence

of surface structures.35,69

Indeed, an important factor for the stochastic acceleration is the number of electrons that are

ejected from the interface into the standing wave, resulting from the superposition of incident

and reflected light fields. In order to examine the role of the geometry as well as the plasma

density profile, we have performed simulations in one- (1D) and two-dimensional (2D) geometry,

and with different density gradients. In 1D simulations, we observe that the density gradient

steepens considerably stronger than in the same case in 2D, which has the result that in 1D only

few electrons are ejected from the interface, much less than in the 2D case. We have furthermore

performed a simulation with an initially step-like profile (i.e. an infinitely steep gradient at t =0).

This case produces essentially fast electrons with px/(mec) > a0 entering into the dense plasma.

The main acceleration process takes place at the interface, i.e. in the skin layer, mostly via a single

acceleration event. Only an insignificant number of particles undergoes the stochastic acceleration

in a standing wave. However, in 2D simulations with finite plasma density gradients, the number

of electrons ejected into the standing wave in front of the interface is drastically higher compared

to the corresponding 1D case. Similar observations were reported in Ref. 30.

While our modelling does not take into account filamentary structure inside the standing wave

pattern, it is evident from the simulations that the effect of laser light filamentation (for 2(3)D

cases), upcoming with increasing laser intensity, counts for the number of electrons that are

stochastically accelerated, namely in two ways: (i) the electrons that are directly injected in the

dense plasma attain higher energies (with respect to a plane wave case, as in 1D) due to the lo-

cally increased intensities at the interface; this has the consequence that the highest momentum

ovserved from directly injected electrons depends on the peak amplitude of the filamented field;

(ii) the number of electrons ejected in the superposed light fields augments with filamentation

such that also the electron population that is stochastically accelerated increases as well. We have,

however, not investigated in more detail how strong the stochastic acceleration is affected by the

upcoming filamentation when increasing the laser intensity beyond the value of the reference sim-

ulation. We can conclude from our simulation studies that 2D physics plays an essential role for

the number of electrons entering the standing wave formed by the light fields. The principal pro-

cess that explains stochastic heating of the fastest particles can, however, be described by the 1D

model for electron motion in a standing wave. Concerning now the time evolution of the distribu-
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tion F̄h(px, t) described by our model for energetic electrons entering into the dense plasma: it is

the number and the distribution of electrons that enter the standing electromagnetic wave that de-

termines the evolution of the cutoff in the electron momentum pmax(t), namely via the coefficients

( fi,0, i=1,2,3) to the solutions Eqs. (13)-(23).

We finally discuss the evolution of the electron distribution further inside the plasma. There,

the electrons will no longer be under the influence of the forces that are present in the skin layer.

For this reason, and again on the basis of the simulation results, we have determined how the

distribution evolves when following the trajectory of energetic electrons further inside the dense

plasma. The particles in the tail of the distribution move almost all with the speed of the light, so

that one can examine the evolution of F̄h(px, t) determined in the vicinity of k0x =150, at times

t + δ t at k0(x+ cδ t). This is illustrated in Fig. 12, where the distribution F̄h is followed for two

times, ω0t =200 and 400 taken over the interval 150< k0x <250, and then for ω0(t + δ t) over

the intervals 150+cδ t < k0x <250+δ t, with δ t =50, 100, 200, and 300. For both cases shown,

the cutoff value seen in px does not considerably evolve, and in particular, a sharp cutoff shape

is maintained. In the case of the distribution observed at ωt =400 in 150< k0x <250, the cutoff

value slightly decreases, most probably due to momentum transfer in the py-component, and due

to the upcoming return current modifying the trajectory of electrons that initially entered with a

strongly dominant px component.

The distribution of those electrons accelerated at the vacuum-plasma interface is of importance

for ion acceleration processes at the rear side of a target with finite width, and it is of interest for

the models describing ion acceleration.70–83 The evolution shown in Fig. 12, illustrating how the

most energetic electron penetrate into the dense plasma, are therefore of particular relevance for

relatively thin target foils for which the cutoff in the electron momentum remains ’preserved’ till

the arrival of the fastest electrons at the rear face.
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b) ω0t=600, 350<k0x<450

FIG. 12. Complementary distribution F̄h(px, t), as Fig.7, from PIC simulations as a function of time, but

deduced from particles in a comoving window with ∼ c, as indicated in the legend: the left-side group

of curves (solid lines) follows the early time behavior, a), starting with ω0t =200 in the spatial window

150< k0x <250 followed up with ω0t =250, 300, and 400, the latter one in the window 350< k0x <450; the

right side curves (dashed lines), b), show the behavior starting at ω0t =400 in the window 150< k0x <250,

followed by ω0t =500, and 600, the last one in the window 350< k0x <450.
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