Enantioselective Desymmetrization of Meso Bicyclic Hydrazines: A Novel Approach to the Asymmetric Synthesis of Polysubstituted Amino Cyclopentanic Cores

A. Pérez Luna, M.-A Ceschi, M. Bonin, L. Micouin, H.-P. Husson, S.
Gougeon, G. Estenne-Bouhtou, B. Marabout, M. Sevrin, P. George

To cite this version:

A. Pérez Luna, M.-A Ceschi, M. Bonin, L. Micouin, H.-P. Husson, et al.. Enantioselective Desymmetrization of Meso Bicyclic Hydrazines: A Novel Approach to the Asymmetric Synthesis of Polysubstituted Amino Cyclopentanic Cores. Journal of Organic Chemistry, 2002, 67 (10), 10.1021/jo011190e . hal-02186763

HAL Id: hal-02186763

https://hal.science/hal-02186763

Submitted on 17 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Enantioselective Desymmetrization of meso Bicyclic Hydrazines: A Novel Approach to the Asymmetric Synthesis of Polysubstituted Amino Cyclopentanic Cores

A. Pérez Luna, M.-A. Ceschi, M. Bonin,* L. Micouin,* and H.-P. Husson

Laboratoire de Chimie Thérapeutique UMR 8638 associée au CNRS et à l'Université René Descartes Faculté des Sciences Pharmaceutiques et Biologiques 4, av de l'Observatoire, 75270 Paris cedex 06 (France)

S. Gougeon, G. Estenne-Bouhtou, B. Marabout, M. Sevrin, and P. George Département de Recherche Système Nerveux Central, Sanofi-Synthélabo Recherche, 31, Av. P. V. Couturier, 92220 Bagneux (France)

Desymmetrization of meso-compounds provides an efficient route to asymmetric synthons of high value in a limited number of steps. ${ }^{1}$ This approach is particularly powerful when performed by a catalytic enantioselective transformation, since a small amount of chiral non racemic material allows the simultaneous creation of several asymmetric centers from an easily available precursor. ${ }^{2}$ In the course of our studies on cyclic hydrazines as enantiopure $\alpha-\omega$ polyfunctional diamines precursors, ${ }^{3}$ our attention was drawn to an elegant racemic approach of diaminocyclopentitols $\mathbf{2}$ based on hydroboration of meso-bicyclic hydrazines $\mathbf{1}$ followed by the reductive cleavage of the $\mathrm{N}-\mathrm{N}$ bond. ${ }^{4}$

If one considers the obvious structural analogy between compounds $\mathbf{1}$ and norbornene, it is possible to speculate that the numerous desymmetrization operations performed with norbornene could be used on bicyclic hydrazines 1 and lead to compounds of significant synthetic and biological interest. ${ }^{5}$ We report here our first studies on desymmetrization of $\mathbf{1}$ using asymmetric catalytic hydroboration. ${ }^{6}$

Scheme 1

Hydrazines 1a-c were prepared on a multigram scale in quantitative yields from the corresponding commercial dialkylazodicarboxylates and cyclopentadiene. Urazole 1d was prepared according to a reported procedure. ${ }^{7}$ The corresponding racemic alcohols 3a-d were obtained by standard hydroboration with $\mathrm{BH}_{3} \mathrm{THF}$ followed by oxidative work-up. As previously noticed, this procedure led to the exclusive formation of exo alcohols. ${ }^{4}$

Scheme 2

Our first trials of asymmetric hydroboration were made on hydrazine 1b at low temperature, with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ as rhodium source and (S, S)-BDPP as chiral diphosphine in various solvents (Table 1). The best results were obtained with DME as a solvent. Under

Table 1
these experimental conditions, (S, S)-BDPP proved to be the ligand of choice, leading to the best chemical yield and enantiomeric excess (Table 2). The stereochemical outcome of the reaction ${ }^{8}$ was the same as previously reported for the hydroboration of norbornene with this ligand. ${ }^{6 r}$ Interestingly, the use of (S, S)-DIOP afforded alcohol 3b of opposite configuration, as already observed in the case of the norbornene series. Surprisingly, a complete lack of enantioselectivity and a low conversion was observed when BINAP was used, although this chiral phosphine has been reported to give good results in the hydroboration of norbornene. ${ }^{6 r}$

Table 2

The influence of the nitrogen protective groups was studied (Table 3). In all cases,
Table 3
bicyclic hydrazines were more reactive under these conditions than norbornene. This enhanced reactivity is probably due to some neighboring participation of the protected nitrogens, as previously observed in some regioselectivity studies on substituted norbornene, although the mechanistic features of this phenomenon remain to be clarified. ${ }^{9}$

Finally, the best results were obtained with compound 1b, which could be hydroborated in very good yield and good e.e. in less than 30 min at $-50^{\circ} \mathrm{C}$. The experimental procedure had to be intensively optimized to get reproducible results with standard commercially available reagents (see experimental section for more details). Changing to the cationic rhodium source $\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{BF}_{4}$ had little effect on the reaction, since compound $\mathbf{3 b}$ could be obtained in 88% yield and 76% e.e. Using optimal conditions, no differences were observed between a 200 mg - and a 5 g -scale run, showing the high potential of this synthetic pathway.

Access to diamino-cyclopentitol 2 was achieved in a straightforward manner from 3b (Scheme 3). Optical purity of the final compound was checked by chiral HPLC. Enantiomeric

Scheme 3

excess could be increased to 92% by a single recrystallization from methanol.
Alcohol 3b is of great synthetic interest. As an example, it can be oxidized to the ketone 4 in a nearly quantitative way, leading to the endo alcohol 5 after selective reduction. The final all cis diamino-alcohol 7 was obtained after O-protection, subsequent reductive cleavage and benzoylation in a good overall yield (Scheme 4).

Scheme 4

In conclusion, we have shown that desymmetrization reactions with catalytic asymmetric hydroboration are not restricted to norbornene or non-functionnalized substrates and can be successfully applied to meso bicyclic hydrazines. The resulting alcohols are of great synthetic interest and can lead in a straightforward manner to cyclopentanic diamino alcohols with good enantiomeric purity. Scopes and limitations of this new synthetic strategy are under investigation in our laboratory.

Acknowledgments : We thank MERT (M.-A. Ceschi) and CNRS (A. Pérez Luna) for a grant.

References and notes

(1) (a) Magnuson, S. R. Tetrahedron 1995, 51, 2167. (b) Angelaud, R.; Babot, O.; Charvat, T.; Landais, Y. J. Org. Chem. 1999, 64, 9613. (c) Trost, B. M.; Surivet, J.-P. Angew. Chem., Int. Ed. Engl. 2000, 39, 3122.
(2) For a recent impressive example of this strategy, see : Spivey, A. C.; Woodhead, S. J.; Weston, M.; Andrews B. I. Angew. Chem., Int. Ed. Engl. 2001, 40, 769.
(3) Roussi, F.; Chauveau, A.; Bonin, M.; Micouin, L.; Husson, H.-P. Synthesis, 2000, 1170.
(4) (a) Mellor, J. M.; Smith, N. M. J. Chem. Soc. Perkin. Trans I, 1984, 2927. (b) For a similar approach with a biocatalytic desymmetrization at a latter stage, see : Grabowski, S.; Armbruster, J.; Prinzbach, H. Tetrahedron Lett. 1997, 38, 5485.
(5) (a) Berecibar, A.; Grandjean, C.; Siriwardena, A. Chem. Rev. 1999, 99, 779. (b) Lai, Y-S.; Mendoza, J. S.; Jagdmann Jr., E. G.; Menaldino, D. S.; Biggers, C. K.; Heerding, J. M.; Wilson J. W.; Hall, S. E.; Jiang, J. B.; Janzen W. P.; Ballas, L. M. J. Med. Chem. 1997, 40, 226.
(6) (a) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, 53, 5178. (b) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem Soc. 1989, 111, 3426. (c) Sato, M.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1990, 31, 231. (d) Brown, J. M.; Lloyd-Jones G. C. Tetrahedron : Asymm. 1991, 1, 869. (e) Hayashi, T.; Matsumoto, Y.; Ito, Y. Tetrahedron : Asymm. 1991, 2, 601. (f) Burgess, K.; Van der Donk, W. A.; Ohlmeyer, M. J. Tetrahedron : Asymm. 1991, 2, 613. (g) Zhang J.; Lou, B.; Guo, G.; Dai, L. J. Org. Chem. 1991, 56, 1670. (h) Brown J. M.; Hulmer, D. I.; Langzell, T. P. J. Chem. Soc., Chem. Comm. 1993, 1673. (i) Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. J. Am. Chem Soc. 1994, 116, 4062. (j) Schnyder, A.; Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 931. (k) Doucet, H.; Fernandez, E.; Layzell, T. P.; Brown, J. M. Chem. Eur. J. 1999, 5, 1320. (1) Brunel, J.-M.; Buono, G. Tetrahedron Lett. 1999, 40, 3561. (m) Fernandez, E.; Maeda, K.; Hooper, M. W.; Brown, J. M. Chem. Eur. J. 2000, 6, 1840. (n) McCarthy, M.; Guiry, P. Polyhedron. 2000, 19, 541. (o) Demay, S.; Volant, F.; Knochel, P. Angew. Chem., Int. Ed.

Engl. 2001, 40, 1235. Reviews : (p) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179. (q) Beletskaya, I.; Pelter, A. Tetrahedron 1997, 53, 4957. (r) Hayashi, T. in Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz A.; Yamamoto H., Eds.; Springer-Verlag: Berlin, 1999.
(7) Moore, J. A.; Muth, R.; Sorace, R. J. Org. Chem. 1974, 39, 3799.
(8) Exo selectivity of the hydroboration was determined by ${ }^{1} \mathrm{H}$ NMR analysis. The absolute configuration of $\mathbf{3 b}$ was confirmed by X-Ray analysis of the final diamino alcohol protected as p-bromo dibenzamide (A. Chiaroni, M. Cesario, unpublished results).
(9) Brands, K. M. J.; Kende, A. S. Tetrahedron Lett. 1992, 33, 5887.
(10) Heymn, M. L.; Snyder, J. P. Tetrahedron Lett. 1973, 30, 2859.

Experimental Section

General Comments. NMR spectra were obtained at $200 \mathrm{MHz}, 300 \mathrm{MHz}$ or $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ field value). IR spectra were recorded as thin film unless otherwise stated. Elemental analyses were obtained from the Service de microanalyse of the Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France. Enantiomeric excesses were determined by chiral HPLC (Chiralpak AD column). Compounds 1a-d were prepared according to literature procedures. ${ }^{4,7,10}$

General Procedure for Asymmetric Hydroboration:

Asymmetric hydroboration of $\mathbf{1 b}$ is representative : $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.5 \mathrm{mg}, 0.005 \mathrm{mmol})$, (S, S)-BDPP $(4.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathbf{1 b}(0.5 \mathrm{mmol})$ were placed in a Schlenk tube, dried under vacuum $(0.1 \mathrm{mmHg})$ for 1 h and then placed under argon. DME $(2 \mathrm{~mL})$ was degassed at $-50{ }^{\circ} \mathrm{C}$ and added to the mixture at this temperature. The yellow-green slurry was stirred at $50{ }^{\circ} \mathrm{C}$ for 30 min . Catecholborane $(0.11 \mathrm{~mL}, 1 \mathrm{mmol})$ was added and the mixture became orange but remained heterogeneous. The reaction was kept at $-50^{\circ} \mathrm{C}$ for an additional 30 min . Ethanol (0.5 mL) was then added and the cooling bath was removed. When the orange mixture became clear, hydrogen peroxide (30% in water, 0.5 mL) and aqueous sodium hydroxide ($3 \mathrm{M}, 0.85 \mathrm{~mL}$) were added, turning the solution to black. After 15 h of stirring, aqueous sodium hydroxide ($1 \mathrm{M}, 5 \mathrm{~mL}$) was added and the mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The organic layer was washed with sodium hydroxide ($1 \mathrm{M}, 2 \times 10 \mathrm{~mL}$), water (10 mL), brine (10 mL), and concentrated. Purification by flash chromatography $($ cyclohexane/ethyl acetate $=50: 50)$ afforded $\mathbf{3 b}$ as a colorless oil $(182 \mathrm{mg}, 90 \%)$.

5-Hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2,3-dicarboxylic Acid Diethyl Ester 3a. Spectral data are consistent with those reported in the literature. ${ }^{4 \mathrm{a}}$
5-Hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2,3-dicarboxylic Acid Dibenzyl Ester 3b. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}, 7{ }^{\circ} \mathrm{C}$) $\delta 1.46(\mathrm{dt}, J=13.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=10.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.98(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-2.04(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H})$, $5.16(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.0,38.0$ (br.), 59.6, 64.3, 68.1, $68.2,70.4,128.0,128.3,135.8,135.9,155.0$ (br.) IR (neat) 3453, 3063, 3032, 2952, 1760, 1633, 1496. MS: $400(\mathrm{M}+18), 383\left(\mathrm{MH}^{+}\right), 339,249$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C} 65.96 ; \mathrm{H}$ 5.80; N 7.33. Found C 65.79, H 5.96, N 7.33.

5-Hydroxy-2,3-diaza-bicyclo[2.2.1]heptane-2,3-dicarboxylic Acid di-ter-butyl Ester 3c.

The title compound was prepared from $\mathbf{1 c}$ according to the general procedure. Purification by flash chromatography (cyclohexane/ethyl acetate $=60: 40$) afforded $\mathbf{3 c}$ as a white solid $(91 \mathrm{mg}$, 58%). m.p. $=58-59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48(\mathrm{~s}, 18 \mathrm{H}), 2.6(\mathrm{~m}, 4 \mathrm{H}), 4.15-4.60$ (m, 3H) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.2$, 33.8, 39.0 (br.), 59.3 (br.) 63.5, 64.2, 69.3, 70.7, 81.6, 157.0 (br.) IR (neat) $3691,3606,3413,1772,1735,1688 . \mathrm{MS}: 332(\mathrm{M}+18), 315\left(\mathrm{MH}^{+}\right)$, 215. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 57.31; H 8.34; N 8.91. Found C 57.42, H 8.42, N 8.72.

8-Hydroxy-4-phenyl-2,4,6-triaza-tricyclo[5.2.1.0]decane-3,5-dione 3d. The title compound was prepared from 1d according to the general procedure. Purification by flash chromatography (cyclohexane/ethyl acetate $=50: 50$) afforded 3d as a white solid $(103 \mathrm{mg}$, 78%). m.p. $=163-173 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65$ (br. d., $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (br.d., $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.21(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=14.0,6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ $(\mathrm{s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.49(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.2$, 39.4, 59.0, 64.2, 69.9, 125.5, 128.6, 129.3, 131.5, 156.7 (br.) IR $\left(\mathrm{CHCl}_{3}\right) 3692,3606,3470$, 3040, 1771, 1713. MS $277(\mathrm{M}+18)$, $260\left(\mathrm{MH}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}, 0.5 \mathrm{H}_{2} \mathrm{O}$: C 58.20; H 5.26; N 15.66 . Found C 58.21 , H 5.27, N 15.51.

Preparation of N-(4-Benzoylamino-2-hydroxy-cyclopentyl)-benzamide 2: A solution of 3b ($580 \mathrm{mg}, 1.52 \mathrm{mmol}$) in AcOH (3 mL) was stirred over Pt black at room temperature under hydrogen atmosphere for 48 h . After filtration, the solvent was evaporated, the residue was dissolved in a $1: 1$ aq. $\mathrm{NaHCO}_{3}: t$-BuOH mixture (8 mL), and benzoyl chloride (0.528
$\mathrm{mL}, 4.55 \mathrm{mmol}, 3$ eq.) was added to the mixture. The reaction mixture was stirred 16 h at 25 ${ }^{\circ} \mathrm{C}$, and the excess of $t-\mathrm{BuOH}$ was removed under reduced pressure. Brine (30 mL) was added to the residue and the product was extracted with ethyl acetate ($4 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, and concentrated to give a residue which was purified by flash column chromatography ($\mathrm{AcOEt} / \mathrm{MeOH}=86: 14$) to give 2 as a white solid (370 mg , 76%). m.p. $=235-237{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.88(\mathrm{dt}, J=13.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10-2.26 (m, 2H), $2.79(\mathrm{dt}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.62$ (quint., J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 3 \mathrm{H}), 7.52-7.69(\mathrm{~m}, 6 \mathrm{H}) 7.90-8.00(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 36.8,39.5,49.2,59.2,76.9,128.3,128.4,129.6,132.7,169.1,171.0$. IR (KBr) 3296, 1628, 1530, 1490. MS : $325\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C} 70.35 ; \mathrm{H} 6.21 ; \mathrm{N}$ 8.64. Found C 70.31, H 6.33, N 8.49.

5-Oxo-2,3-diaza-bicyclo[2.2.1]heptane-2,3-dicarboxylic Acid Dibenzyl Ester 4. Oxalyl chloride ($0.2 \mathrm{~mL}, 2.3 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under argon, cooled to $-30^{\circ} \mathrm{C}$ and DMSO ($0.3 \mathrm{~mL}, 4.2 \mathrm{mmol}$) was added dropwise. Compound 3b ($382 \mathrm{mg}, 1$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added, and the resulting mixture was stirred for 3 h at $-50{ }^{\circ} \mathrm{C}$. Triethylamine (0.9 mL) was added, and the solution was stirred for 20 min at $-50^{\circ} \mathrm{C}$, and allowed to reach $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with water. The organic phase was separated and washed with brine, aq. $\mathrm{HCl}(1 \mathrm{M})$, aq. NaHCO_{3}, and brine. The organic layer was dried over MgSO_{4}, and concentrated to give a residue which was purified by flash column chromatography $(\mathrm{AcOEt} /$ cyclohexane $=1: 1)$ to give 4 as a white solid recrystallized from AcOEt/hexane $=9: 1(320 \mathrm{mg}, 84 \%)$. m.p. $=77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.50(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.30(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 5.07-5.19(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.36(\mathrm{~m}$, $10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.3,40.4,58.1,65.2,68.4,68.5,127.9,127.9,128.2$, 128.5, 135.3, 156.4, 157.8, 201.6. IR (neat) 1713, 1497. MS : $381\left(\mathrm{MH}^{+}\right)$, 132. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C} 66.31$; H 5.30; N 7.36. Found C 66.20, H 5.50, N 7.15 .

Reduction of Ketone 4:

Borane THF complex ($6.13 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added dropwise to a solution of ketone 4 $(3.50 \mathrm{~g}, 9.20 \mathrm{mmol})$ in THF $(34 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h. A second portion of borane solution $(3.13 \mathrm{~mL})$ was added and the mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with water $(5 \mathrm{~mL})$, stirred for 2 h at room temperature. Brine (30 mL) was added and the resultant mixture was extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over MgSO_{4} and concentrated. The crude product was purified by column chromatography on silica gel (hexanes $/ \mathrm{AcOEt}=6: 4$) to afford $5(2.69 \mathrm{~g}, 76 \%)$.

Acetic Acid 2,4-bis-benzoylamino-cyclopentyl Ester 7: To a solution of the endo alcohol 5 ($300 \mathrm{mg}, 0.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added freshly distilled pyridine $(0.64 \mathrm{~mL}$, $7.84 \mathrm{mmol})$ and DMAP (1 mg). To this mixture was added acetic anhydride $(0.8 \mathrm{~mL}, 7.84$ mmol) over a 10 min period. After being stirred at room temperature for 30 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The mixture was stirred for 1 h and extracted with ethyl acetate twice. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by flash silica gel chromatography to give 6 as a white oil ($270 \mathrm{mg}, 82 \%$).

The nitrogen-nitrogen bond reductive cleavage of $6(200 \mathrm{mg}, 0.47 \mathrm{mmol})$ with Pt black and benzoylation was performed according to the same procedure as for $\mathbf{3 b}$. $\mathbf{7}$ was obtained as a white oil ($134 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.17(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dt}, J=14.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{dt}, J=12.6,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.54(\mathrm{~m}, 8 \mathrm{H}), 7.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}) 7.88(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1,36.1,36.2,47.2,51.3,74.5,126.8,127.1$, 128.6, 131.5, 134.3, 167.1, 167.2, 170.3. IR (neat) 3027, 1736, 1658. MS : $367\left(\mathrm{MH}^{+}\right)$.

Tables and Schemes
Scheme 1

Scheme $2^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{R}_{1} \mathrm{~N}=\mathrm{NR}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$, quantitative, (b) (i) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, THF, $0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, (ii) aq. NaOH , $\mathrm{H}_{2} \mathrm{O}_{2}$, r.t., 2 h.

solvent	yield (\%)	e.e.(\%) $)^{a}$	config.
Toluene	40	66	$(1 R, 4 R, 5 R)$
THF	47	64	$(1 R, 4 R, 5 R)$
$\mathrm{Et}_{2} \mathrm{O}$	56	60	$(1 R, 4 R, 5 R)$
DME	90	84	$(1 R, 4 R, 5 R)$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	n.d. b	-

a) Determined by chiral HPLC. b) E.e. not determined.

Table 1

ligand yield (\%) e.e. $(\%)^{a}$ config.

(S, S)-BDPP	90	84	$(1 R, 4 R, 5 R)$
(R)-BINAP	20	0	-
(R)-QUINAP	11	24	$(1 R, 4 R, 5 R)$
(S, S)-DIOP	46	44	$(1 S, 4 S, 5 S)$

a) Determined by chiral HPLC.

Table 2

a) Determined by chiral HPLC. b) E.e. not determined. c)

Absolute configuration not determined.

Table 3

Scheme $3^{\text {a }}$

e.e. $=84 \%$
(92\% after one recrystallization)
${ }^{\mathrm{a}}$ Reagents and conditions: (a) (i) $\mathrm{H}_{2}, \mathrm{CH}_{3} \mathrm{COOH}$, Pt , (ii) PhCOCl , Py.

Scheme $4^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: (a) oxalyl chloride, DMSO, $\mathrm{Et}_{3} \mathrm{~N}$, 84%; (b) $\mathrm{BH}_{3} \cdot \mathrm{THF}, 76 \%$; (c) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}$, DMAP, 82%; (d) (i) $\mathrm{H}_{2}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{Pt}$, (ii) $\mathrm{PhCOCl}, \mathrm{Py}$., 78%.

Table of Contents Graphic

Abstract

Catalytic asymmetric hydroboration can be successfully applied to meso bicyclic hydrazines. The resulting alcohols are of great synthetic interest and can lead in a straightforward manner to cyclopentanic diamino alcohols with good enantiomeric purity.

