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ABSTRACT
The aim of this article is the state estimation of uncertain polytopic dynamic sys-
tems. The parametric uncertainties affecting the system are time varying, unknown
and bounded with known bounds. The objective is to determine the state estimates
consisting in the smallest interval containing the real state value caused by the para-
metric uncertainties. This set will be characterized by the lower and upper bounds
of the state trajectory. Given the uncertainty bounds, the set can be computed by
a direct simulation of the system but a more accurate estimation is obtained with
a Luenberger-type observer, fed with the system measurements. The proposed ob-
server is designed to minimize the interval width of the estimates. The observer
gains are obtained by solving an optimization problem under LMI constraints. The
efficiency of the proposed approach is illustrated by numerical examples.

1. Introduction

Observer design is a key issue in engineering since the system state variables are needed
for controller design or system supervision but all of these variables may not be directly
measured for economical or physical reasons. In this case, based on the system model
and some measurements, an observer can be designed to reconstruct the state values.
Since (Kalman, 1960; Luenberger, 1971), an abundant literature is devoted to observer
design for different system classes, e.g. (Besançon, 2007; Boubaker et al., 2019; Lendek,
Guerra, Babuska, & De Schutter, 2010). Since physical systems are always affected by
uncertainties, such as modeling errors, parameters uncertainties, measurement noises,
they may influence the performance analysis and the control design. Therefore, the way
to deal with uncertainties is a key issue. In a disturbed context, it is well known that the
so-called Kalman filter may provide a state estimation, if some statistical properties
of the noises affecting the system are known (Kalman, 1960). When no statistical
properties of the disturbances is available, the interval observer design is an efficient
alternative to the robust estimation approach aiming at minimizing the influence of
the uncertainties on the estimated state trajectory. Interval observers are dynamical
systems designed to provide, at each time instant, estimations of the upper and lower
bounds of the state of a system affected by bounded uncertainties e.g. (Efimov &
Räıssi, 2016; Moisan, Bernard, & Gouzé, 2009; Räıssi, Efimov, & Zolghadri, 2012).
Their main advantage is that, provided that the uncertainty bounds are known, the
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interval estimation results in a guaranteed estimate in the sense that, for all possible
values of the uncertainties, the real state trajectory belongs to the estimated envelope
defined by the upper and lower bounds. Many interval analysis methods are proposed
to evaluate the bounds of the state of a system described by interval models. One may
refer to the pioneer work of (Moore, 1963) which was then followed by some works
on structural properties (Faydasicoka & Arikb, 2013; Haoa, Lianga, & Roy, 2015),
stability analysis (Pastravanu & Matcovschi, 2010; Udom, 2012), parameter estimation
(Ramdani, Räıssi, Candau, & Ibos, 2005; Shao & Su, 2010; C. Wang, Li, & Guo,
2015), state estimation (Ben Chabane, Stoica Maniu, Alamo, Camacho, & Dumur,
2014; Chisci, Garulli, & Zappa, 1996), diagnosis (Martinez-Sibaja et al., 2011) and
control (Park, Kwon, & Park, 2015; Polyakov, Efimov, Perruquetti, & Richard, 2013).
Some papers addressed the design of interval observer with structural constraints, as in
(C. Wang & Sheng, 2012) where positive observer for positive linear continuous system
is proposed. With the same constraints, observer design for discrete-time switched
systems has been presented in (Guo & Zhu, 2017b; He & Xie, 2016).

As pointed in the survey (Efimov & Räıssi, 2016), interval observer design has now
reached a certain maturity for linear time-invariant (LTI) systems as well as time-
delay systems or linear parameter varying (LPV) systems. As an illustration of this
maturity, one may consider the works on unknown input (UI) observer design and the
observer-based fault detection and isolation (FDI). The interval observer design for
invariant and uncertain continuous-time systems with UI is discussed in (Ellero, Gucik-
Derigny, & Henry, 2016), while the discrete-time case is addressed in (Meyer, Ichalal, &
Vigneron, 2018; Robinson, Marzat, & Räıssi, 2017). In (Rotondo, Cristofaro, Johansen,
Nejjari, & Puig, 2018), the case of continuous systems with variable parameters is
tackled. In the field of FDI, the detection and estimation of actuator failure (considered
an UI) is proposed using an interval observer of the state and the UI in (C. M. Garcia,
Puig, Astorga-Zaragoza, & Osorio-Gordillo, 2018; Guo, Zhu, Zhu, Hu, & Yang, 2017).
The approach proposed in (Guo & Zhu, 2017a) is slightly different: two cascading
interval observers are used to estimate the system state and then, with a step delay,
the UI. In (Zarch, Puig, Poshtan, & Shoorehdeli, 2018), is proposed a combined use of
interval observers and viability theory for fault detection. The joint diagnosis/control
problem is addressed in (Lamouchi, Räıssi, Amairi, & Aoun, 2018) where a linear
state feedback is designed to compensate the impact of actuator faults on system
performance by stabilizing the closed-loop system using interval observers. In (Zhang &
Yang, 2017), the situation is a little different since FDI is performed on interconnected
systems with unknown but bounded interconnection functions.

The main remaining problems in interval estimation are the extension of the existing
results to systems with parametric uncertainties (in opposition to additive uncertain
inputs) and to nonlinear systems. For instance, in (Cacace, Germani, & Manes, 2015;
Mazenc & Bernard, 2010) only linear systems are considered and in (Z. Wang, Lim,
& Shen, 2018) LTI systems with additive disturbances are under study. In (Ichalal,
Marx, Maquin, & Ragot, 2018), polytopic uncertainties are dealt with but the consid-
ered models are only linear whereas in the present paper we consider nonlinear models
affected by polytopic uncertainties. More precisely, in (Ichalal et al., 2018), when the
uncertainties are null the considered systems become LTI, whereas in the present pa-
per, even for null uncertainties, the considered systems are nonlinear (see Section 6
for an illustration of the brought improvement). The nonlinear case is tackled in (Efi-
mov, Perruquetti, Räıssi, & Zolghadri, 2013; Efimov & Räıssi, 2016; C. Garcia, Puig,
& Zaragoza, 2017; Menasria, Bouras, & Debbache, 2017; Räıssi et al., 2012; Thabet,
Räıssi, Combastel, Efimov, & Zolghadri, 2014) since interval observers are designed for
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LPV, Takagi-Sugeno (T-S) or time-delay systems, but no parametric uncertainties are
encompassed in the model: only additive noises are considered. Moreover, in (Efimov,
Perruquetti, et al., 2013; Efimov, Räıssi, Chebotarev, & Zolghadri, 2013; Räıssi et al.,
2012; Thabet et al., 2014) a time-invariant or time-varying state transformation is
needed in order to make the state estimation error Metzler or cooperative. In (Lan-
gowski & Brdys, 2017) the system is time varying and affected by uncertainties, but
some restrictive assumptions are made: it is supposed to be cooperative, with a special
structure of measured outputs and the state bounds need to be a priori known. Interval
observer for uncertain nonlinear systems are proposed in (Efimov, Räıssi, et al., 2013),
but once again a prior state transformation is needed and the observer gains are not
optimized. Recently, interval estimation of uncertain LPV continuous-time systems
has been proposed in (Y. Wang, Bevly, & Rajamani, 2015).

The aim of the present paper is to propose an interval observer for discrete-time
nonlinear systems with bounded parametric uncertainties, without any prior state
transformation and with an optimization of the observer gains in order to improve the
estimation accuracy. The nonlinearity of the system is modeled by a polytopic struc-
ture. A polytopic linear model (PLM) is an efficient approach of nonlinear modeling,
defined by a time varying convex interpolation between a set of submodels (Takagi &
Sugeno, 1985). The motivation for using PLM mainly relies on their structural simi-
larity with linear models allowing to use classical tools of the linear theory and also
on their property of universal approximator (Lendek et al., 2010; Tanaka & Wang,
2001). Furthermore, the PLM formalism covers a large variety of models such as LPV
systems, T-S systems, switched systems, etc. In the present paper, the considered
uncertainties are bounded parametric uncertainties affecting the state equation. The
first contribution of the present paper is to derive the state envelope of an uncertain
nonlinear system. The second contribution is the design of an interval observer pro-
viding lower and upper bounds of the system state trajectory. The observer gains are
optimized in order to obtain an accurate state estimation by solving an optimization
problem under LMI constraints. One should note that, contrarily to most existing
works on interval observer, no positivity or cooperativity property is imposed, neither
any state transformation is needed to recover such properties.

The paper is organized as follows. The problem statement, the useful assumptions
and the objective of the paper are developed in the second section. The computation
of a state envelope for scalar or vector uncertain PLM is detailed in the third section.
The obtained envelopes are PLM systems without uncertain terms but encompassing
an absolute value term. In the fourth section, the observer structure is given and
its gains are obtained by solving an LMI optimization problem. The fifth section is
devoted to the extension of the previous results to PLM with unmeasurable premise
variables. The sixth section presents a numerical example that clearly illustrates the
contribution of the proposed observer compared to the state envelope of the third and
fourth sections. Finally, some concluding remarks are given in the last section.

2. Problem statement

In order to design an observer for an uncertain nonlinear system, a model of this
system is needed. As widely known, the PLM formalism (also known as Takagi-Sugeno
or T-S formalism (Takagi & Sugeno, 1985)), consisting in a time-varying combination
of linear sub-models, is an efficient modeling of any nonlinear system with bounded
nonlinearities. An analytical and systematic procedure to transform a nonlinear system
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by rewriting it into a T-S form, without any loss of information is known as the sector
nonlinearity transformation (Nagy, Mourot, Marx, Ragot, & Schutz, 2010; Tanaka &
Wang, 2001). In the present paper, we therefore consider that the uncertain nonlinear
system to observe is modeled by a PLM system with bounded parametric uncertainties.
The following notations will be used hereafter.

Notation 1. In the remaining of the paper, indexes k ∈ N and ` ∈ {1, 2, . . . , p} are
respectively used to indicate the discrete time and a submodel number. The strict or
non strict inequalities denoted by <, >, ≤ and ≥ are componentwise when applied to
vectors or matrices. The symbols P � 0 (resp. P ≺ 0) is a linear matrix inequality and
means that the matrix P is symmetric positive (resp. negative) definite. The absolute
value of • is denoted | • | and is componentwise when applied to a vector or a matrix.
The sign function is denoted sign(•). The transpose of a matrix P is denoted P T .
The matrices In and 0n respectively denote the identity and null matrices of Rn×n.
A block diagonal matrix with the blocks P1, P2, . . . , Pn on its diagonal is denoted
diag(P1, P2, . . . , Pn). For any square matrix M , S(M) is defined by S(M) = M+MT .

The terms induced by symmetry are denoted by ∗, for instance I2n =

(
In ∗
0n In

)
.

2.1. System structure

The discrete time representation (1) is considered, where x ∈ Rn is the state vector,
u ∈ Rnu the input, y ∈ Rny the measured output, Ak and B are matrices of appropriate
dimensions. The matrices Ā` are the certain part of the state matrices, whereas the
matrices ∆`,k stand for the uncertain part.

xk+1 = Ak xk +B uk

Ak =

p∑
`=1

µ`,k(ρk)
(
Ā` + ∆`,k

)
yk = C xk

(1)

The weighting functions µ`,k(ρk) depend on measured parameter vector ρk and satisfy
the so-called convex sum property (Tanaka & Wang, 2001){

0 ≤ µ`,k ≤ 1 ∀k ∈ N, and ` = 1, ..., p∑p
`=1 µ`,k = 1, ∀k ∈ N (2)

For the sake of clarity, in (2) and in the remaining of the paper, the weighting functions
will be expressed without (ρk). Also for the sake of clarity, parametric uncertainties
∆`,k are assumed to only affect the state matrix, but similar uncertainties affecting
the B and C matrices are straightforward extensions of the proposed approach.

Hypothesis 1. For ` = 1, . . . , p, the parametric uncertainties ∆`,k are assumed to be
bounded with known bounds, according to (3), where the inequalities are to be under-
stood component-wise.

−∆` ≤ ∆`,k ≤ ∆`, ∆` > 0, ∀k ∈ N (3)

Hypothesis 2. The null matrix of the same dimensions as those of Ak does not belong
to the interval matrix [Ak − ∆̄k Ak + ∆̄k] where Ak and ∆̄k are respectively defined

4



by Ak =
∑p

`=1 µ`,kĀ` and ∆̄k =
∑p

`=1 µ`,k∆`,k. Put in other words, the upper and
lower bounds of each entry of Ak have the same sign at every time instant k.

Remark 1. The structure (1) can be obtained by polytopic transformation of a non-
linear system by building the weighting functions with all the nonlinearities depending
on measured variables, and confining the parametric uncertainties and the nonlineari-
ties depending on unmeasured state variables in the uncertain terms. It allows to avoid
unmeasured parameters in the weighting functions and thus eases the observer design.

2.1.1. Illustrative example

Let us consider the nonlinear uncertain system described by

x1,k+1 = a1,kcos(x1,kuk)x2,k

x2,k+1 = (2 + a2,ksin(x2,k))x1,k − x2,k + uk (4)

yk = x1,k

where a1,k and a2,k are uncertain parameters of the form ai,k = āi + δi,k (i = 1, 2),
where āi is known and δi,k represent the uncertainties. The system (4) can then be
expressed as follows

xk+1 =

([
0 ā1 cos(x1,kuk)
2 −1

]
+

[
0 δ1,k cos(x1,kuk)

a2,k sin(x2,k) 0

])
xk +

[
0
1

]
uk (5)

Considering the bounded parameter ρk = cos(x1,kuk) = cos(ykuk) ∈ [−1 1], the fol-
lowing polytopic form of the system (4) is obtained

xk+1 =

2∑
`=1

µ`,k (A` + ∆`,k)xk +Bu (6)

where µ1,k = ρk+1
2 , µ2,k = 1−ρk

2 and

A1 =

[
0 ā1

2 −1

]
, A2 =

[
0 −ā1

2 −1

]
, B =

[
0
1

]
,

∆1,k =

[
0 δ1,k

a2,k sin(x2,k) 0

]
, ∆2,k =

[
0 −δ1,k

a2,k sin(x2,k) 0

]
Notice that this system can also be expressed in a polytopic form with 4 submodels by
considering a second parameter defined by sin(x2,k). Unfortunately, since it depends
on an unmeasured state, the observer design becomes more difficult to tackle and it is
more efficient to consider this term as an uncertainty included in the matrix ∆k.

2.2. Objective

For a given PLM (1) and the knowledge of the uncertain parameter bounds ∆k, the
objective is to build the upper and lower bounds of the state trajectory xk and xk
containing all the possible values of the state variables corresponding to the values of
the bounded uncertain parameters. These bounds may be determined by calculating
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the different possible state trajectories but it leads to a heavy calculus burden and the
obtained interval width may be large.

The first goal of the present paper is to avoid the evaluation of all the possible val-
ues of the parametric uncertainties and the corresponding state trajectories. To do so,
an analytical expression of the state bounds is defined and only the upper and lower
extremal trajectories of the state envelope are recursively calculated, as done in the
linear case in (Ichalal et al., 2018). It will be proved that all the possible state trajec-
tories are included in this envelope. The drawback is that the width of this envelope
may be large. To overcome this drawback, the second goal is to design an interval ob-
server providing the lower and upper bounds of the system state trajectory. Based on
a polytopic form of the uncertain nonlinear system, the observer gains are determined
to minimize the interval width using the L2 approach and an LMI optimization.

3. Computing the state envelope of an uncertain PLM

3.1. The scalar case

To begin with, the simple case of a first order PLM (i.e. with n = 1) is studied in
order to be then generalized to the PLM of any orders.

The interval form of an autonomous first order PLM with p submodels is:
xk+1 = ak xk

ak =

p∑
`=1

µ`,k (ā` + δ`,k)
(7)

where the functions µ`,k satisfy (2) and where the uncertainties are bounded as follows:

−δ` ≤ δ`,k ≤ δ`, δ` > 0 (8)

According to the Hypothesis 2, zero does not belong to the interval [a`−δ` a`+δ`],
thus the parameter lower and upper bounds a`−δ`,k and a`+δ`,k are of the same sign.

Based on the upper bound of the parametric uncertainty δ`, the aim is to determine
the lower and upper bounds of the state xk and xk, such that at each time instant,
the following inequalities hold:

xk ≤ xk ≤ xk (9)

In order to formulate the state trajectory of the system (7) as an interval, the sign of the
uncertain term ak should be taken into account. Two situations must be considered.
If ā` + δ`,k > 0, according to Hypothesis 2, it holds a` > 0 and it follows:

(ā` + δ`,k)xk ≤ (ā` + δ`,k)xk ≤ (ā` + δ`,k)xk (10)

From {
−δ` | xk | ≤ δ`,k xk ≤ δ` | xk |
−δ` | xk | ≤ δ`,k xk ≤ δ` | xk |

(11)
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the inequalities (10) hold, for all possible values of the current uncertainties δ`,k, if :

ā` xk − δ` | xk | ≤ (ā` + δ`,k)xk ≤ ā` xk + δ` | xk | (12)

If ā` + δ`,k < 0 (or equivalently, if ā` < 0), it follows :

(ā` + δ`,k)xk ≤ (ā` + δ`,k)xk ≤ (ā` + δ`,k)xk (13)

From (11), (13) holds, for all possible values of the current uncertainties δ`,k, if :

ā` xk − δ` | xk | ≤ (ā` + δ`,k)xk ≤ ā` xk + δ` | xk | (14)

Gathering the two situations described in (12) and (14), the bounds of (ā` + δ`,k)xk
at the time instant k + 1 are obtained as:

1

2
[ā` (xk + xk)− δ`(| xk | + | xk |) + sign(ā`) (ā` (xk − xk)− δ`(| xk | − | xk |))]

≤ (ā` + δ`,k)xk ≤
1

2
[ā` (xk + xk) + δ`(| xk | + | xk |) + sign(ā`) (ā` (xk − xk) + δ`(| xk | − | xk |))]

(15)
One should note that from Hypothesis 2, ā` + δ`,k cannot be null, and thus (12) and
(14) cover all the possible cases. Finally, from (15) and taking into account all the
parameters ā` involved in the state dynamic (7), the state envelope is defined by:

xk+1 =
1

2

p∑
`=1

µ`,k
[

(ā` (xk + xk)− δ`(| xk | + | xk |)) +

sign(ā`) (ā` (xk − xk)− δ`(| xk | − | xk |))
]

xk+1 =
1

2

p∑
`=1

µi,k
[

(ā` (xk + xk) + δ`(| xk | + | xk |)) +

sign(ā`) (āi (xk − xk) + δ`(| xk | − | xk |))
]

(16)

This latter formulation can be written under a matrix form as follows.

Proposition 3.1. The state envelope of the scalar PLM (7) is given by:[
xk+1

xk+1

]
=

p∑
`=1

µ`,k

(
M`

[
xk
xk

]
+ N`

[
| xk |
| xk |

])
(17)

with s` = sign(ā`) and

M` =
1

2

[
ā`+ | ā` | ā`− | ā` |
ā`− | ā` | ā`+ | ā` |

]
N` =

1

2

[
−δ` − δ` s` −δ` + δ` s`
δ` − δ` s` δ` + δ` s`

]
The state equation (17) recursively provides the state envelope of a PLM with

uncertain and bounded parameters from its initial condition
[
x0 x0

]
.
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3.2. The multidimensional case

Extending the previous section results from the scalar PLM (7) to the PLM of any
order (1), the state envelope of the system (1) is given in the following proposition.

Proposition 3.2. The state envelope of the PLM (1) is given by:[
xk+1

xk+1

]
=

p∑
`=1

µ`,k

(
M`

[
xk
xk

]
+ N`

[
| xk |
| xk |

]
+ E uk

)
(18)

with: 

M` =
1

2

[
Ā`+ | Ā` | Ā`− | Ā` |
Ā`− | Ā` | Ā`+ | Ā` |

]
Ni =

1

2

[
−∆` −∆` ∗ S` −∆` + ∆` ∗ S`

∆` −∆` ∗ S` ∆` + ∆` ∗ S`

]
S` = sign(Ā`)

E =
[
BT BT

]T
(19)

Proof. The system envelope [xk xk] is defined and recursively obtained from (18). It
remains to show that this envelope is guaranteed to contain the actual state of the
system (1). For this, the following property is proved by induction on k:

Hk : xk ≤ xk ≤ xk (20)

By definition of an x0 and x0, it holds: x0 ∈ [x0, x0], so the property is satisfied for
k = 0. Assuming that for a given k ∈ N the property Hk is true, then let us show that
xk+1 ≤ xk+1 is true (the second inequality in (20) is proved similarly) implying that
Hk+1 is also true. Based on the system model (1), it follows that

xk+1 =

p∑
`=1

µ`,k (Ā` + ∆`,k)xk +B uk

yk = Cxk

(21)

From (18) and (21), the discrepency between the actual state and its lower bound is:

x̃k+1 = xk+1 − xk+1 (22)

Let us detail the computation of the ith component of the interval state vector [xk xk]
with respect to the lower bound of the system state (the calculation of its upper bound
is similar). Denoting ā`,i,j , δ`,i,j and bi,j the respective elements of matrices Ā`, ∆` and
B, from (18) one gets:

xk+1,i =
1

2

p∑
`=1

µ`,k

n∑
j=1

[
(ā`,i,j+ | ā`,i,j |)xk,j + (ā`,i,j− | ā`,i,j |)xk,j

− δ`,i,j
(
| xk,j | + | xk,j |

)
+ sign(ā`,i,j)δ`,i,j

(
| xk,j | − | xk,j |

)
+ 2bi,j uk,j

] (23)

where in this expression we only use the ith line of the state matrices M` and N`. This
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result will be used latter.
Using (23) and (21), the ith component of x̃k+1 can be written as:

x̃k+1,i = xk+1,i − xk+1,i

=

p∑
`=1

n∑
j=1

µ`,kσi,`,j
(24)

where σi,`,j is defined by:

σi,`,j = (ā`,i,j + δ`,k,i,j)xk,j −
1

2

[
(ā`,i,j+ | ā`,i,j |)xk,j + (ā`,i,j− | ā`,i,j |)xk,j

− δ`,i,j
(
| xk,j | + | xk,j |

)
+ sign(ā`,i,j)δ`,i,j

(
| xk,j | − | xk,j |

)]
(25)

and where δ`,k,i,j denotes the (i, j) entry of the matrix ∆`,k.
According to Hypothesis 2, two situations may occur according to the sign of ā`,i,j .

When ā`,i,j > 0, one obtains the following inequalities from (25) :

σi,`,j = (ā`,i,j + δ`,k,i,j)xk,j −
(
ā`,i,j xk,j − δ`,i,j | xk,j |

)
≥ (ā`,i,j + δ`,k,i,j)xk,j −

(
ā`,i,j xk,j − δ`,i,j | xk,j |

)
≥ δ`,k,i,j xk,j + δ`,i,j | xk,j |
≥ 0

(26)

A similar result is obtained when ā`,i,j < 0.
Finally, according to (24) and (26), x̃k+1,i is a sum of non negative terms and

thus xk+1,i ≥ xk+1,i, i.e. xk+1 ≥ xk+1.Thus, the first inequality in Hk+1 has been
demonstrated and the induction principle ensures that it holds k ∈ N, xk ≥ xk, ∀k ∈ N.
Similarly, the study of x̃k+1 = xk+1 − xk+1 leads to establish that xk ≤ xk, ∀k ∈ N.
As a conclusion, the system (18) is a valid envelope of the system state of (1).

Remark 2. In the definition of the matrix M` in (18)-(19), one can note that the
matrices Ā`+ | Ā` | and Ā`− | Ā` | can also be expressed with the positive and negative
parts of A`.

3.3. Example

The considered example is a system (1) with nu = 2 inputs and n = 3 state variables,
defined by the equations:

x1,k+1 = 0.87083x1,k − 0.0583x2,k + 0.1x3,k+

tanh(ū1,k)(0.05417x1,k − 0.1083x2,k − 0.1x3,k) + 0.05u1,k

x2,k+1 = − 0.44167x1,k + 0.3083x2,k + 0.1x3,k+

tanh( ¯1, k)(−0.2083x1,k − 0.0583x2,k − 0.1x3,k) + 0.5u2,k (27)

x3,k+1 = 0.0166x1,k + 0.1x2,k − 0.2333x3,k+

tanh( ¯1, k)(−0.1166x1,k + 0.1x2,k − 0.1667x3,k) + 0.5u1,k + 0.8u2,k

ū1,k =
u1,k − 0.32

0.075
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Let us denote:

tanh(ū1,k) = µ1,k − µ2,k

µ1,k =
tanh(ū1,k) + 1

2

µ2,k =
1− tanh(ū1,k)

2

(28)

where µ1 and µ2 satisfy the convexity property (2). Substituting (28) into (27), the
system model can be written in a polytopic form defined by (1) with:

A1 =

 0.925 −0.050 0
−0.650 0.250 0
−0.100 0 −0.40

 A2 =

 0.250 −0.250 0
−0.250 0.750 0

0 −0.2 0.9


∆1 =

0.01 0.015 0
0.02 0.02 0
0.01 0 0.01

 ∆2 =

0.01 0.015 0
0.02 0.02 0

0 0.01 0.01

 B =

0.05 0
0 0.5

0.5 0.5


µ1,k =

(
1 + tanh

(
u1,k − 0.32

0.075

))
/2 µ2,k = 1− µ1,k (29)

Figure 1 depicts the time evolutions of the two inputs u1 (top left graph) and u2 (top
middle graph), the weighting function µ1 (top right graph) and the three system states
(bottom graphs). The lower and upper bounds of the state variables are depicted (in
red dotted lines), as well as the state trajectory (in black solid lines) obtained from
(1) for random bounded entries ∆1,k and ∆2,k obtained from uniform distributions
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Figure 1. Inputs, weighting functions and state envelope of an uncertain PLM
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whose respective amplitudes are between −∆1 and ∆1 and −∆2 and ∆2. It can be
seen that the real state trajectory belongs to the determined envelope. Moreover, the
time evolution of the weighting function µ1 clearly illustrates the nonlinear nature of
the PLM since the two submodels are time varyingly activated.

Remark 3. If a stability analysis were desired, the absolute value terms in (18) might
be tedious to deal with. In this case, similarly to what has been done in (Ichalal et
al., 2018), the system (18) can be rewritten as a PLM without absolute value terms.

Defining the generalized state zk =
[
xTk xTk

]T
the system (18) takes the form:

zk+1 =

p∑
`=1

µ`,k (M` zk +N` | zk | +E uk) (30)

where the matrices M`, N` and E are defined in (19).
As detailed in (Tanaka & Wang, 2001), for any bounded function f(wk), the non-

linear sector transformation allows to obtain a polytopic representation of f(wk)wk.
Then, the component wise absolute value of a vector wk can be written as | wk |=
f(wk)wk, where the bounded f(wk) is a diagonal matrix which diagonal entries are
1 or −1 depending on the sign of the components of wk. In the scalar case, it
gives: | wk |= (µ̄1(wk) − µ̄2(wk))wk, where µ̄1 and µ̄2 satisfy (2) and are defined

by: µ̄1(wk) = sign(wk)+1
2 and µ̄2(wk) = 1−sign(wk)

2 . If dim(wk) = 2, let us denote

wk = [w1,k w2,k]
T and it holds: | wk |= diag(µ̄1(w1,k)−µ̄2(w1,k), µ̄1(w2,k)−µ̄2(w2,k))wk,

which can also be written as:

| wk |=
4∑
j=1

µj(wk)Ej wk (31)

where the functions µj satisfying (2) and the matrices Ej are given by: µ1(wk) =
µ̄1(w1,k)µ̄1(w2,k), µ2(wk) = µ̄1(w1,k)µ̄2(w2,k), µ3(wk) = µ̄2(w1,k)µ̄1(w2,k), µ4(wk) =
µ̄2(w1,k)µ̄2(w2,k), E1 = I2, E2 = diag(1,−1), E3 = diag(−1, 1) and E4 = −I2. From
the definition of the functions µ̄1 and µ̄2, it follows that the functions µj readily satisfy
the convex sum properties (2). As detailed in (Ichalal et al., 2018), this polytopic
expression of | wk | can be generalized to any vector wk of any dimension and the
number of terms in the sum (31) is r = 22n .

Finally, with (31), the system (30) is expressed under the following polytopic form:

zk+1 =

p∑
`=1

r∑
j=1

µ`,k µj(zk)
(
(M` +N`Ej)zk + E uk

)
(32)

where r = 22n and the functions µj and µ`,k satisfy (2) and where no absolute value
terms appear.
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4. Observer design for a system with bounded uncertain parameters

4.1. Observer structure

Before detailing the proposed observer, let us recall that the state envelope (18) may
also be described by its lower and upper bounds:

xk+1 =

p∑
`=1

µ`,k
1

2

[(
Ā`+ | Ā` |

)
xk +

(
Ā`− | Ā` |

)
xk

− (∆` + ∆` ∗ S`) | xk | − (∆` −∆` ∗ S`) | xk |] +B uk

xk+1 =

p∑
`=1

µ`,k
1

2

[(
Ā`− | Ā` |

)
xk +

(
Ā`+ | Ā` |

)
xk

+ (∆` −∆` ∗ S`) | xk | + (∆` + ∆` ∗ S`) | xk |] +B uk

(33)

Given the structure (33), the observer design objective is to build a state estimate x̂k,
based only on the input and output measurements of the system (21). The aim of the
proposed interval observer (34) is to provide the envelope of the actual system state.
Namely, it reduces to find the observer gains L1 and L2 in (34) such that xk ∈ [x̂k x̂k],
for every instant k and to impose some dynamics to the state reconstruction error.

x̂k+1 =

p∑
`=1

µ`,k
1

2

[(
Ā`+ | Ā` |

)
x̂k +

(
Ā`− | Ā` |

)
x̂k +B uk

− (∆` + ∆` ∗ S`) | x̂k | − (∆` −∆` ∗ S`) | x̂k |
]

+ L1(yk − Cx̂k)

x̂k+1 =

p∑
`=1

µ`,k
1

2

[(
Ā`− | Ā` |

)
x̂k +

(
Ā`+ | Ā` |

)
x̂k +B uk

+ (∆` −∆` ∗ S`) | x̂k | + (∆` + ∆` ∗ S`) | x̂k |
]

+ L2(yk − Cx̂k)

(34)

Remark 4. The observer structure in (34) is a proportional observer. As stated in
Theorem 4.2, it guarantees the convergence of the state estimation error. Other struc-
tures may be latter studied, such as the proportional integral observer (PIO) offering
better dynamical performances for the state reconstruction.

4.2. Rationale for observer structure

The rationale for this structure is done in two steps. First, it must be shown that
x̂k ≤ xk ≤ x̂k. Secondly, the observer gains L1 and L2 must be adjusted to specify
the temporal characteristics of the system state reconstruction error. Each step is
addressed in Theorem 4.1 and Theorem 4.2 respectively.

Theorem 4.1. The system (34) is an observer for (1), i.e. the state of the system
(1) belongs to the envelope defined by (34).

Proof. The proof proceeds by induction. Let Hk the property:

Hk : x̂k ≤ xk ≤ x̂k (35)

The gap between the system state xk and the lower bound x̂k of its observer, at time

12



k, is defined by:

ek = xk − x̂k (36)

It is expressed at time k + 1, from (1) and (34), by:

ek+1 = xk+1 − x̂k+1

=

p∑
`=1

µ`,k(Ā` + ∆`,k)xk − L1(yk − C x̂k)

−1

2

p∑
`=1

µ`,k
[(
Ā`+ | Ā` |

)
x̂k +

(
Ā`− | A` |

)
x̂k

− (∆` + ∆` ∗ S`) | x̂k | + (∆` −∆` ∗ S`) | x̂k |
]

(37)

The ith component of (37) is given by:

ek+1,i =

p∑
`=1

µ`,k

n∑
j=1

(
(ā`,i,j + δ`,k,i,j)xk,j −m1,i,j(xk,j − x̂k,j)

)
−1

2

p∑
`=1

µ`,k

n∑
j=1

[
(ā`,i,j+ | ā`,i,j |) x̂k,j + (ā`,i,j− | ā`,i,j |) x̂k,j

−δi,j
(
| x̂k,j | + | x̂k,j |

)
+ sign(ā`,i,j)δi,j

(
| x̂k,j | − | x̂k,j |

)]
(38)

where m1,i,j are the coefficients of the M1 = L1C matrix. Similarly to what have been
done previously, the ith component of this difference (38) can also be rewritten as:

ek+1,i =

p∑
`=1

n∑
j=1

µ`,kek+1,i,j (39)

where the term denoted ek+1,i,j is expressed according to the sign of the parameters
ā`,i,j .
If ā`,i,j > 0, the term ek+1,i,j is given by:

ek+1,i,j = (ā`,i,j + δk,i,j)xk,j − ā`,i,j x̂k,j + δi,j | x̂k,j | −m1,i,j(xk,j − x̂k,j)
= (ā`,i,j + δk,i,j −m1,i,j)xk,j − ā`,i,j x̂k,j + δi,j | x̂k,j | +m1,i,j x̂k,j
≥ (ā`,i,j + δk,i,j −m1,i,j) x̂k,j − ā`,i,j x̂k,j + δi,j | x̂k,j | +m1,i,j x̂k,j
≥ δk,i,j x̂k,j + δ`,i,j | x̂k,j |
≥ 0

(40)

If ā`,i,j < 0, the term ek+1,i,j is given by:

ek+1,i,j = (ā`,i,j + δk,i,j)xk,j − ā`,i,j x̂k,jδi,j | x̂k,j | −m1,i,j(xk,j − x̂k,j)
= (ā`,i,j + δk,i,j −m1,i,j)xk,j − ā`,i,j x̂k,j + δi,j | x̂k,j | +m1,i,j x̂k,j
≥ (ā`,i,j + δk,i,j −m1,i,j) x̂k,j − ā`,i,j x̂k,j + δi,j | x̂k,j | +m1,i,j x̂k,j
≥ δk,i,j x̂k,j + δi,j | x̂k,j |
≥ 0

(41)

This shows that ek+1,i in (39) is the sum of all positive terms and therefore xk+1,i ≥
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ek+1,i, i.e. xk+1 ≥ ek+1. The first inequality of the property Hk+1 has then been
demonstrated and the induction principle ensures that for all k > 0, we have xk ≥ x̂k.
In the same way, it can be established that xk ≤ x̂k by analysing the gap :

ek+1 = x̂k+1 − xk+1

=
1

2

p∑
`=1

µ`,k
[
(Ā`− | Ā` |)x̂k + (Ā`+ | Ā` |)x̂k + (∆` −∆` ∗ S`) | x̂k |

+(∆` + ∆` ∗ S`) | x̂k | +L2(yk − Cxk)− (Ā` + ∆`,k)xk
] (42)

As a conclusion, the system (34) is an observer of the system (1), in the sense that
x̂k ≤ xk ≤ x̂k, for any k ∈ N.

Theorem 4.2. The observer (34) for system (1) is obtained by minimizing γ > 0
under the LMI constraints (43), for ` = 1, . . . , p, where P ∈ R2n×2n is a symmetric
positive definite matrix, K1 and K2 are matrices in Rn×p, G1 and G2 ∈ Rn×n are
invertible matrices and ε` are positive real scalars.

I2n − P ∗ ∗ ∗
0 ε`∆̃`∆̃

T
` − γ2I3n ∗ ∗

GTA`,0 −KC0 GT B̃`,0 P −GT −G ∗
0 0 G̃ −ε`In

 ≺ 0 (43)

The matrices G, G̃ and K are the block diagonal matrices defined by G = diag(G1, G2),
G̃ = [G1 −G2] and K = diag(K1,K2). The other matrices are defined by:

∆̃T
` = [∆` 0n 0n] A`,0 =

[
H`,1 −H`,2

−H`,2 H`,1

]
B̃`,0 =

[
0 H`,4 H`,3

0 H`,3 H`,4

]
C0 =

[
C 0
0 C

] (44)

with

H`,1 =
1

2
(Ā`+ | Ā` |) H`,2 =

1

2
(Ā`− | Ā` |)

H`,3 =
1

2
(∆` −∆` ∗ S`) H`,4 =

1

2
(∆` + ∆` ∗ S`)

(45)

After solving the LMI (43), the observer gains are defined by:

L = (GT )−1K L =

[
L1 0
0 L2

]
(46)

Before giving the proof, some materials, borrowed from (Boyd, El Ghaoui, Feron,
& Balakrishnan, 1994), are given in the following three lemmas.

Lemma 4.3 (Schur complement). For any symmetric negative definite matrix C, the
inequality A−BC−1BT ≺ 0 is equivalent to(

A B
∗ C

)
≺ 0 (47)
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Lemma 4.4 (Congruence). For any full row rank matrix M , the matrix inequality
C ≺ 0 is equivalent to MTCM ≺ 0.

Lemma 4.5. For any matrix ∆k satisfying ∆T
k ∆k ≺ I and any matrices M and

N of appropriate dimensions, the following inequality holds M∆kN
T + N∆T

kM �
+εMMT + ε−1NNT for any real positive scalar ε.

Proof. With definitions (45), the state reconstruction error ek+1 (37) are rewritten:

ek+1 =

p∑
`=1

µ`,k
[
(Ā` + ∆`,k)xk − L1(yk − C x̂k)

−H`,1x̂k −H`,2x̂k +H`,4 | x̂k | +H`,3 | x̂k |
]

=

p∑
`=1

µ`,k[∆`,k xk + (H`,1 − L1C)ek −H`,2ek +H`,3 | x̂k | +H`,4 | x̂k |
]
(48)

and similarly for ek+1:

ek+1 =

p∑
`=1

µ`,k
[
− (Ā` + ∆`,k)xk + L2(yk − C x̂k)

+
[
H`,2x̂k +H`,1x̂k + H`,3 | x̂k | +H`,4 | x̂k |

]
=

p∑
`=1

µ`,k[−∆`,k xk + (H`,1 − L2C)ek −H`,2ek +H`,3 | x̂k | +H`,4 | x̂k |
]
(49)

The two deviations defined in (48) and (49) are gathered in the following augmented
state estimation error: eTk = [eTk eTk ] and ruled by the following discrete time system:

ek+1 =

p∑
`=1

µ`,k
[
(A`,0 − LC0) ek +B`,k ωk

]
(50)

where the matrices A`,0, C0 and L are defined by (44) and (46) and where the input
vector ωk and B`,0 are defined by:

B`,k =

[
∆`,k H`,4 H`,3

−∆`,k H`,3 H`,4

]
ωk =

 xk
| x̂k |
| x̂k |

 (51)

As widely known, the L2-gain of the system (50) from its input w to its state e is
bounded by γ > 0, if there exists a positive definite Lyapunov function V (ek) such
that fγ(ek, ωk) = V (ek+1) − V (ek) + eTk ek − γ2ωTk ωk < 0 along the trajectory of the
system (Boyd et al., 1994). Let us define a quadratic Lyapunov function V (ek) = eTk Pek
with P � 0. Then along the state trajectory of (50), the function fγ(ek, ωk) is defined
by fγ(ek, ωk) = ẽTkMkẽk, with ẽTk =

[
eTk ωTk

]
and

Mk =

[
I2n − P + ÃTk PÃk ÃTk PB̃k

B̃T
k PÃk B̃T

k PB̃k − γ2Im

]
(52)
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where the matrix Ãk is defined by Ãk =
∑p

`=1 µ`,k(A`,0−LC0) and B̃k =
∑p

`=1 µ`,kB`,k.
Let us now prove that if the LMI (43) is satisfied, then V (ek+1) − V (ek) + eTk ek −

γ2ωTk ωk < 0, implying that the state estimation error is stable and that the L2-gain
from w to e is minimized.

If (43) is satisfied, then using the Lemma 4.3, the following matrix inequality is also
satisfied for ` = 1, . . . , p I2n−P ∗ ∗

0 −γ2I3n ∗
GTA`,0−KC0 GT B̃`,0 P−GT−G

+ε−1
`

 0
0

G̃T

 0
0

G̃T

T

+ε`

 0

∆̃`

0

 0

∆̃`

0

T

≺0

(53)
From (2) it follows that ∆`,k can be written as ∆`,k = ∆̃`,k∆` with ∆̃T

`,k∆̃`,k � In.

Invoking Lemma 4.5, if (53) is satisfied, then the following matrix inequality holds: I2n−P ∗ ∗
0 −γ2I3n ∗

GTA`,0−KC0 GT B̃`,0 P−GT−G

+ S


 0

0

G̃T

 ∆̃`,k

 0

∆̃`

0

T
 ≺ 0 (54)

Using (44) and (51), and noticing that GTB`,k = GT B̃`,0 + G̃T ∆̃`,k∆̃
T
` , it follows that

(54) is equivalent to M̃`,k ≺ 0, where M̃`,k is defined by

M̃`,k =

 I2n−P ∗ ∗
0 −γ2I3n ∗

GTA`,0−KC0 GTB`,k P−GT−G

 (55)

Since the function µ`,k satisfy the property (2), M̃`,k ≺ 0 implies
∑p

`=1 µ`,kM̃`,k =

M̃k ≺ 0, where M̃k is defined by

M̃k =

I2n−P ∗ ∗
0 −γ2I3n ∗

GT Ãk GT B̃k P−GT−G

 (56)

Using Lemma 4.4, M̃k ≺ 0 implies that T Tk M̃kTk ≺ 0, for any full row rank Tk. If Tk
is defined by

Tk =

I2n 0
0 I3n

Ãk B̃k

 (57)

it readily follows that T Tk M̃kTk =Mk, where Mk is defined in (52). Summing up, if
the LMI (43) are satisfied, then Mk ≺ 0 and fγ(ek, ωk) = V (ek+1)− V (ek) + eTk ek −
γ2ωTk ωk < 0, which achieves the proof.

Remark 5. In Theorem 4.2, the matrix inequality is not an LMI in the L2 gain γ,
since γ2 appears in (43). Nevertheless, it can obviously be turned into a LMI problem
by defining the LMI variable γ̄ = γ2 and by minimizing γ̄ under the LMI (43). Since
the parameter γ reflects the attenuation of the term ωk on the estimation error ek,
minimizing γ leads to a minimal interval width and allows better precision.
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Remark 6. The presented result may be improved by introducing additional de-
gree of freedom in the LMI optimization to reduce the conservatism implied by a
quadratic Lyapunov function. For that purpose, a multiple Lyapunov function Vk =
eTk (

∑r
i=1 µi(zk)Pi) ek may be used like in (Guerra & Vermeiren, 2004). Some other

relaxation schemes may also be used to obtain relaxed sufficient LMI conditions. For
instance, in (Tuan, Apkarian, Narikiyo, & Yamamoto, 2001) some appropriate fac-
torization are used and in (Kruszewski, Wang, & Guerra, 2008) the decreasing of the
Lyapunov function is sought between two non consecutive sample times.

5. Extension to the case of uncertain polytopic systems with
unmeasurable premise variables

In the present paper, the premise variables were assumed to be measurable, but using
the sector nonlinear transformation to obtain a PLM from a nonlinear model may lead
to PLM with premise variables depending on unmeasurable state variables.

One should note that, on the one hand, the approach proposed in the previous
section is based on the minimization of the L2 gain from an uncertainty-like term ωk
to the state estimation error and, on the other hand, this uncertainty-like approach has
already been used to deal with polytopic systems with unmeasurable premise variables
(Ichalal, Marx, Ragot, & Maquin, 2010). Combining these two facts, it is be possible
to propose an interval observer for uncertain polytopic systems with unmeasurable
premise variables.

Even if this interesting but tedious problem is not fully solved, the present section
presents a preliminary study for the design of an interval observer for uncertain PLM
with unmeasurable premise variables defined by

xk+1 = Ak xk +B uk, xk ∈ Rn, uk ∈ Rnu

Ak =

p∑
`=1

µ`,k
(
Ā` + ∆`,k

)
yk = C xk, yk ∈ Rny

(58)

where µ`,k depends on xk.
In order to take into account the dependence of the premise variables on the esti-

mated state, the observer is slightly modified from (34) to become:

x̂k+1 =

p∑
`=1

µ̂
`,k

1

2

[(
Ā`+ | Ā` |

)
x̂k +

(
Ā`− | Ā` |

)
x̂k +B uk

− (∆` + ∆` ∗ S`) | x̂k | − (∆` −∆` ∗ S`) | x̂k |
]

+ L1(yk − Cx̂k) (59a)

x̂k+1 =

p∑
`=1

µ̂`,k
1

2

[(
Ā`− | Ā` |

)
x̂k +

(
Ā`+ | Ā` |

)
x̂k +B uk

+ (∆` −∆` ∗ S`) | x̂k | + (∆` + ∆` ∗ S`) | x̂k |
]

+ L2(yk − Cx̂k) (59b)

where µ̂
`,k

and µ̂`,k depend respectively on x̂k and x̂k. Clearly, the activation functions

of the model and of the observer depend on different variables. Following (Ichalal et
al., 2010), to facilitate the comparison of the states of the system and those of the
observer, and thus to write the state estimation errors, the system model (58) can be
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exactly rewritten under the two following equivalent forms (60, 61):
xk+1 =

p∑
`=1

µ̂
`,k

(
Ā` + ∆`,k

)
xk +B uk + νk

νk =

p∑
`=1

(µ`,k − µ̂`,k)
(
Ā` + ∆`,k

)
xk

(60)


xk+1 =

p∑
`=1

µ̂`,k
(
Ā` + ∆`,k

)
xk +B uk + νk

νk =

p∑
`=1

(µ`,k − µ̂`,k)
(
Ā` + ∆`,k

)
xk

(61)

In the previous equations, the perturbation-like terms νk and νk are respectively given

by νk =

p∑
`=1

(
µ`,k − µ̂`,k

) (
Ā` + ∆`,k

)
xk and νk =

p∑
`=1

(
µ`,k − µ̂`,k

) (
Ā` + ∆`,k

)
xk.

With definitions (59a) and (60), the state reconstruction error ek+1 are rewritten:

ek+1 =

p∑
`=1

µ̂
`,k

[
(Ā` + ∆`,k)xk − L1(yk − C x̂k)

−H`,1x̂k −H`,2x̂k +H`,4 | x̂k | +H`,3 | x̂k |
]
− νk

=

p∑
`=1

µ̂
`,k

[∆`,k xk + (H`,1 − L1C)ek −H`,2ek +H`,3 | x̂k | +H`,4 | x̂k |
]
− νk

(62)
and similarly, with (59b) and (61), ek+1 is defined by:

ek+1 =

p∑
`=1

µ̂`,k
[
− (Ā` + ∆`,k)xk + L2(yk − C x̂k)

+
[
H`,2x̂k +H`,1x̂k + H`,3 | x̂k | +H`,4 | x̂k |

]
+ νk

=

p∑
`=1

µ̂`,k[−∆`,k xk + (H`,1 − L2C)ek −H`,2ek +H`,3 | x̂k | +H`,4 | x̂k |
]

+ νk

(63)
Finally, the augmented state error eTk = [eTk eTk ] is generated by the equation:

ek+1 =

p∑
`=1

µ̂
`,k

p∑
`=1

µ̂`,k
[
(A`,0 − LC0) ek +B`,k ωk

]
(64)

where the matrices A`,0, C0 and L are defined by (44) and (46) and where the input
vector ωk and B`,0 are defined by:

B`,k =

[
∆`,k H`,4 H`,3 −I 0
−∆`,k H`,3 H`,4 0 I

]
ωTk =

[
xTk | x̂k |T | x̂k |T νTk νTk

]
(65)

The structure of this last equation is very close to the one of (51), therefore the
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Theorem 4.2 can be easily be adapted for PLM with unmeasured premise variables
by using (65) in the LMI conditions of the Theorem 4.2 leading to the computation
of the observer gains.

6. Example

The example of Section 3.3 is continued with the same system matrices (27) and
an output defined by C = [1 0 0]. The LMI conditions (43) are solved using the
appropriate functions of MATLAB’s YALMIP toolbox. The obtained values are the
following (the values of ε1 and ε2 are given in Table 1).

P =


24.946 2.444 −3.765 2.059 −3.029 −2.058
2.444 15.023 −9.182 −3.029 0.14 −2.775
−3.765 −9.182 68.412 −2.058 −2.775 22.288
2.059 −3.029 −2.058 24.946 2.444 −3.765
−3.029 0.14 −2.775 2.444 15.023 −9.182
−2.058 −2.775 22.288 −3.765 −9.182 68.412



G =


22.228 3.383 −4.417 0 0 0
3.383 14.88 −13.953 0 0 0
−4.417 −13.953 91.043 0 0 0

0 0 0 22.228 3.383 −4.417
0 0 0 3.383 14.88 −13.953
0 0 0 −4.417 −13.953 91.043

 (66)

K =


2.704 0
−0.528 0
−0.495 0

0 2.704
0 −0.528
0 −0.495

 L =


0.131 0
−0.075 0
−0.011 0

0 0.131
0 −0.075
0 −0.011


One should note that because of the terms tanh((u1,k − 0.32)/0.075) multiplying the
state variables in (27), the system is nonlinear and thus a state observer cannot be
constructed with the design proposed in (Ichalal et al., 2018). Thus, the present paper
clearly generalizes the results of (Ichalal et al., 2018) to a wider system class.

The Figure 1 depicts the evolution of the two inputs of the system and of the
weighting function µ1. The observer’s performance is shown in Figure 2. The three
upper graphs depict, for each state variable, the state envelope determined according
to the results of the Section 3. The three lower graphs depict, in red dotted lines, the
estimated upper and lower bounds of the system state, according to the results of the
Section 4. On these graphs, the black solid line is a possible state trajectory for a given
sequence of the parameter uncertainties. As it appears on the Figure 3, the interval
width of the estimated states provided by the observer (red dotted lines) is clearly
smaller than the interval width of the envelope (blue solid lines). It clearly illustrates
the role of the observer proposed in Section 4 in the reconstruction of the system
states. tThis is due to the fact that the observer takes into account the measurements
of the system output.

According to the Remark 4, the influence of the parameter γ̄ on the accuracy of
the estimation is studied in the Table 1. It can be clearly seen that when γ̄ is minimal
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Figure 2. State envelope of the system (top) and state estimate provided by the observer (bottom)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

rx̂1

rx1

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

rx̂2

rx2

0 50 100 150 200 250 300

0

0.05

0.1

rx̂3

rx3

Figure 3. Widths of the system state envelope (rxi in blue) and of the estimated state bounds (rx̂i
in red)

(here, when γ̄ = 0.5), the width of the estimated state bounds denoted rx̂i
is smaller

than when γ̄ is not optimal (for instance when γ̄ = 5). In Table 1, the widths of the
system envelope and of the estimated state bounds are averaged on 300 time samples.
This short sensitivity analysis shows that the observer design has degrees of freedom
that can be adjusted to an ad-hoc optimality criterion.

Table 1. Sensitivity of the radius of the intervals of the envelope and the estimate w.r.t. the parameter γ̄

γ̄ ε1 ε2 rx1
rx2

rx3
rx̂1

rx̂2
rx̂3

0.5 24 21 0.1933 0.14 0.0533 0.0133 0.0233 0.01
5.0 56 43 0.1933 0.14 0.0533 0.0200 0.0266 0.0133
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7. Conclusion

In this paper, the problem of state estimation for uncertain nonlinear system is ad-
dressed. Both nonlinearities and bounded uncertainties are taken into account with the
polytopic formalism in order to have a representation of the system that can be used
for state estimation. The state estimation is here understood in an interval setting.
Put in other words, lower and upper bounds are sought such that, for every possible
values of the uncertainties, the state variables lies between their respective lower and
upper bounds. A first solution, the so-called state envelope, has been provided and
proved to contain the state value. A more accurate solution has been brought by the
proposed interval observer and the optimization of its gains has been studied.

The interest of this approach relies in the fact that it can easily be extended. On the
one hand, the inclusion of uncertainties affecting all system matrices should be a direct
extension. On the other hand, one can consider to change the observer structure to
tackle the case of interval input and output measures. Finally, observer-based diagnosis
of uncertain PLM may also be an interesting development of the proposed observer
design.
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Räıssi, T., Efimov, D., & Zolghadri, A. (2012). Interval state estimation for a class of
nonlinear systems. IEEE Transactions on Automatic Control , 57 (1), 260-265.
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