Modular Access to N-Substituted cis -3,5-Diaminopiperidines

Aurélie Blond, Paul Dockerty, Raquel Alvarez, Serge Turcaud, Thomas

Lecourt, Laurent Micouin

- To cite this version:

Aurélie Blond, Paul Dockerty, Raquel Alvarez, Serge Turcaud, Thomas Lecourt, et al.. Modular Access to N-Substituted cis -3,5-Diaminopiperidines. Journal of Organic Chemistry, 2013, 78 (23), pp.12236-12242. 10.1021/jo401994y . hal-02186757

HAL Id: hal-02186757

https://hal.science/hal-02186757

Submitted on 17 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modular access to \mathbf{N}-substituted cis-3,5-diaminopiperidines

Aurélie Blond, Paul Dockerty, Raquel Álvarez, Serge Turcaud, Thomas Lecourt, Laurent Micouin*
UMR8601, CNRS-Paris Descartes University, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints Pères, 75006 Paris, France

laurent.micouin@ parisdescartes.fr

A sequence of oxidative cleavage/reductive amination/hydrogenolysis enables the preparation of \mathbf{N}-substituted cis-3,5-diaminopiperidines from a readily available bicyclic hydrazine. This new synthetic route provides a simple and general access to RNAfriendly fragments with a good chemical diversity.

The design of small molecular RNA ligands is a growing field ${ }^{1}$ since the recent understanding of the key role of RNA in many cellular regulation processes. ${ }^{2}$ Among the different strategies used to design such ligands, one of the most successful is to build libraries from a "RNA friendly" small molecular scaffold. ${ }^{3}$ This approach has been recently illustrated by the group of Hermann, who showed that the cis-3,5-diaminopiperidine moiety $\mathbf{1}$ can lead either to antibacterial compounds $\mathbf{2}$ targeting the 16 S bacterial ribosomal RNA^{4} or binders of Hepatitis C Virus internal ribosome entry site (IRES) $\mathbf{3}$ with anti-viral properties (Figure 1). ${ }^{5}$

1

2

3

4

FIGURE 1. Selected examples of diaminopiperidines

As a structural mimetic of 2-deoxystreptamine (DOS), the central core of aminoglycosides, the meso cis-3,5-diaminopiperidine scaffold is indeed a very simple and cleverly designed building block, which enables the preparation of libraries by functionalization of the piperidine nitrogen atom. However, as recognized by the authors themselves, ${ }^{5}$ the access to the protected building block 4, obtained in 3 steps from 2-chloro-3,5-dinitropyridine in 38% yield, is hampered by a problematic high-pressure hydrogenation step. Furthermore, the selective functionalization of the piperidine nitrogen in the presence of the two NHBoc functional groups can also be expected to be problematic under certain experimental conditions. Herein, we describe a general approach for the preparation of diversely Nsubstituted cis-3,5-diaminopiperidines that can overcome these synthetic limitations.

In our ongoing work on the fragment-based design of small molecular RNA binders, we have shown that bicyclic hydrazine $\mathbf{5}$ is a powerful building block for the preparation of substituted cis-1,3-diaminocyclopentanes. ${ }^{6}$ As a Diels-Alder adduct, this heterocycle is routinely prepared on a large scale $(30-40 \mathrm{~g})$, and obtained in a quantitative yield by a simple precipitation. ${ }^{7}$ The large availability of this starting material prompted us to investigate the access to cis-3,5-diaminopiperidines by an oxidative cleavage-reductive amination sequence ${ }^{8}$ that would deliver a direct precursor of compounds $\mathbf{1}$ after hydrogenolysis (Scheme 1).

SCHEME 1. Synthetic pathways for the preparation of compounds $7^{\text {a }}$

7e 30%

7g 57\%

7h 28\%

$7 \mathbf{3 8 \%}$

7j 67\%

7k 39\%

71 49\%

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (0.8%), NMO (1.2 equiv), THF/ $\mathrm{H}_{2} \mathrm{O} 90: 10$, $18 \mathrm{~h}, 86 \%$. (b) (i) NaIO_{4} (2.3 equiv), $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ or NaIO_{4} (1.4 equiv), $\mathrm{SiO}_{2} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) $\mathrm{RNH}_{2}, \mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3-22 \mathrm{~h}$. (c) (i) $\mathrm{O}_{3}, \mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. (ii) RNH_{2}, $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 3-22 \mathrm{~h}$. * Obtained with pathway B.

The preparation of triazabicyclo[3,2,1]octane 7a (Scheme 1) was first investigated using a two-step approach. Dihydroxylation of compound $\mathbf{5}$ led to bicyclic hydrazine $\mathbf{6}$ in 86% yield.

Oxidative cleavage followed by a double reductive amination with 4-methoxybenzylamine led to the expected product $7 \mathbf{7 a}$ in 82% yield. An alternative strategy is to conduct an ozonolysis of compound 5, followed by the reductive amination. Using this procedure, compound 7a was obtained in 76% overall yield. Beside a better yield, this pathway avoids the use of osmium salts and aqueous conditions for the oxidative cleavage. In both cases, all attempts to isolate in good yield the bis-aldehyde intermediate failed. The scope of this double amination reaction is rather large, as exemplified in scheme 1. Aliphatic (7a-e) or aromatic (7f-j) amines, but also diamines ($\mathbf{7 m}$) provide moderate to good yields for this transformation. Interestingly, this method enables the introduction of a stereogenic center α to the piperidine nitrogen without racemization (compounds $\mathbf{7 k}, \mathbf{l}$). ${ }^{9}$

As the double reductive amination cannot be conducted with amides, access to acylated triazabicyclo[3,2,1]octanes was investigated. Compound $7 \mathbf{n}$, prepared in 54% yield from $\mathbf{5}$ using pathway B was deprotected to provide compound $\mathbf{8}$. This bicyclic heterocycle can be functionalized by acylation, peptidic coupling or carbamoylation (Scheme 2).

SCHEME 2. Synthetic pathways for the preparation of acylated triazabicyclo[3,2,1]octanes ${ }^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (1\%), 1,3-dimethylbarbituric acid (3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 5 h. (b) RCOCl (1.5 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (3 equiv), 1,2-dichloroethane, reflux. (c) $\mathrm{Boc}_{2} \mathrm{O}$ (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$ h. (d) Boc-Lys(Z)-OH (1.1 equiv), EDC (1.5 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (7 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5 \mathrm{~h}$.

The reductive cleavage and deprotection of bicyclic compounds was conducted under hydrogen atmosphere using Pd or Pt. Experimental conditions had to be tuned in order to avoid catalyst poisoning by some final polyamines or the over-reduction of heteroaromatic rings. In most of the cases, the final diamines could be obtained in good to quantitative yields (Scheme 3).

SCHEME 3. Preparation of \mathbf{N}-substituted diaminopiperidines ${ }^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: (a) Method A $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} 10 \%$, MeOH. Method B H, $\mathrm{Pd} / \mathrm{C} 10 \%$, Pd black, MeOH. Method $\mathbf{C} \mathrm{H}_{2}$, Pd/C 10\%, Pd black, MeOH.HCl. Method $\mathrm{DH}_{2}, \mathrm{PtO}_{2}, \mathrm{AcOH}$.

Finally, our strategy can also provide a simple access to the building block 4 in 58% from compound 13a (scheme 4). This synthetic route allows the preparation of Hermann's intermediate 4 from cyclopentadiene in six steps and 44% overall yield with only two column
purification steps. Although this route is longer than the three-step synthesis of Hermann, the overall yield is in the same range and it avoids the high-pressure hydrogenation step.

SCHEME 4. Preparation Hermann's building block $4^{\text {a }}$

[^0]In summary, we have established a simple and general access to N -substituted cis-3,5diaminopiperidines in 3 to 5 steps starting from a readily available precursor. The functional group tolerance of the key reductive amination step enables the introduction of a broad chemical diversity. We have also shown that Hermann's key intermediate can be obtained using this strategy, without any high pressure reduction step. The access to polypiperidine skeleton such as 13i through an iterative synthesis is also noteworthy.

Experimental section

The preparation of 7a is representative (Pathway A, using NaIO_{4} on silica)

To a vigorously stirred suspension of silica (3.1 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(49 \mathrm{~mL})$ was added a 0.65 molar aqueous solution of $\mathrm{NaIO}_{4}(3 \mathrm{~mL}, 1.95 \mathrm{mmol})$ dropwise. Diol $6^{6 \mathrm{~d}, \mathrm{f}}(574 \mathrm{mg}, 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(47 \mathrm{~mL})$ was then added and the reaction was monitored by TLC until disappearance of the initial product. The reaction mixture was filtered on a sintered glass packed with
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. 4-methoxybenzylamine ($217 \mathrm{mg}, 1.58$ mmol) was added, followed by $\mathrm{NaBH}(\mathrm{OAc})_{3}(915 \mathrm{mg}, 4.32 \mathrm{mmol})$ and acetic acid (0.15 mL). After stirring for 16 hours at room temperature, the reaction was quenched with saturated aqueous NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were dried over MgSO_{4}, filtered, and concentrated. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Ethyl acetate 95:5) afforded 7a (592 mg, $1.18 \mathrm{mmol}, 82 \%$).

Dibenzyl 3-(4-methoxybenzyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7a: colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 7{ }^{\circ} \mathrm{C}$, $\left.\delta\right) 1.85(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.06 (br s, 2H), $3.41(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.11(\mathrm{AB}$ system, $\Delta \delta=0.07$, $J=12.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75^{\circ} \mathrm{C}, \delta\right) 36.1,54.9,55.6,56.4,60.2,67.4,114.1,127.9,128.2,128.7$, 130.1, 136.8, 157.0, 159.0; HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5} 502.2342$, found 502.2331

Dibenzyl 3-(3,4-dimethoxyphenethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7d: $84 \mathrm{mg}, 62 \%$, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 72{ }^{\circ} \mathrm{C}, \delta\right) 1.86(\mathrm{~s}, 2 \mathrm{H}), 2.24$ (d, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.61(\mathrm{~m}, 4 \mathrm{H}), 3.17$ (br s, 2H), 3.72 (s, 3H), 3.75 (s, 3H), 4.38 (br s, $2 \mathrm{H}), 5.12(\mathrm{~s}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.34$ (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 32.7,36.2,55.2,56.3,56.5,58.4,67.3$, 113.4, 113.9, 121.0, 127.9, 128.2, 128.5, 133.6, 137.0, 148.0, 149.6, 157.2; HRMS (ESITOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6} 546.2604$, found 546.2588

Dibenzyl 3-(4-(4-chlorobenzamido)-3-hydroxyphenyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7f: $80 \mathrm{mg}, 70 \%$, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right)$ 2.00-2.16 (m, 2H), $2.96(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 5.10-5.25(\mathrm{~m}, 4 \mathrm{H}), 6.33(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.50(\mathrm{~m}, 11 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 9.28(\mathrm{~s}, 1 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 36.0,52.1,57.4$,
69.0, 104.1, 106.8, 119.1, 127.0, 129.2, 129.5, 130.2, 130.3, 131.3, 135.4, 138.2, 138.2, 150.5, 152.4, 158.3, 166.3; HRMS (ESI-TOF)[M+Na] ${ }^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{ClNa} 649.1830$, found 649.1827

Dibenzyl 3-(isoquinolin-5-yl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7h: 247 $\mathrm{mg}, 28 \%$, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 2.00-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.16$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{br} \mathrm{d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{br} \mathrm{d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, 4.97-5.29 (m, 4H), 7.05-7.47 (m, 11H), $7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right)$ $36.1,55.6,56.7,67.6,116.6,121.7,123.6,127.8,128.2,128.6,130.0,131.8,136.6,142.9$, 147.3, 153.0, 157.3; HRMS (ESI-TOF)[M+Na] ${ }^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na} 531.2008$, found 531.2003

Dibenzyl 3-(9,9'-spirobi[fluoren]-2-yl)-3,6,7-triazabicyclo[3.2.1]octane-6, 7-dicarboxylate 7j: $192 \mathrm{mg}, 67 \%$, white amorphous solid; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 1.88-1.94$ (m, 1H), 1.99 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.76-5.15$ $(\mathrm{m}, 4 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 7{ }^{\circ} \mathrm{C}, \delta\right) 35.7,52.1,57.2,67.8,68.9,109.9,115.4,120.9,122.1,122.2$, $122.8,124.9,125.0,125.3,125.4,127.9,129.2,129.6,129.8,130.2,133.8,138.1,143.1$, 143.2, 143.8, 149.8, 150.8, 151.7, 152.2, 158.1; HRMS (ESI-Orbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4} 696.2857$, found 696.2820

Tetrabenzyl 3,3'-((3S,5R)-1-(3,4-dimethoxyphenethyl)piperidine-3,5-diyl)bis(3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate) 7 m : $136 \mathrm{mg}, 73 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75^{\circ} \mathrm{C}, \delta\right) 1.01(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 4 \mathrm{H})$, $2.30-2.53(\mathrm{~m}, 8 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.81(\mathrm{br} \mathrm{d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-3.15(\mathrm{~m}, 4 \mathrm{H})$,
3.73 (s, 6H), 4.34 (br s, 4H), $5.13(\mathrm{AB}$ system, $\Delta \delta=0.06, J=12.6 \mathrm{~Hz}, 8 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 20 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$, $\left.75^{\circ} \mathrm{C}, \delta\right) 31.2,34.3,37.7,53.3,57.2,57.8,57.9,58.0,60.4,61.5,68.7,114.9,115.5,122.5$, 129.3, 129.6, 130.2, 135.2, 138.4, 149.4, 151.0, 158.8; HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{57} \mathrm{H}_{66} \mathrm{~N}_{7} \mathrm{O}_{10} 1008.4871$, found 1008.4862

The preparation of 7 e is representative (Pathway A , using NaIO_{4} in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$)

To a solution of $6(233 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(70: 30,7.7 \mathrm{~mL})$ was added NaIO_{4} $(288 \mathrm{mg}, 1.35 \mathrm{mmol})$. The solution was stirred for one hour at room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and filtered through a celite pad. The filtrate was concentrated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. 5-methoxytryptamine ($111 \mathrm{mg}, 0.58 \mathrm{mmol}$) was added and the reductive amination was conducted according to the preparation of $7 \mathbf{7 a}$. Flash chromatography (Cyclohexane/Ethyl acetate 65:35) afforded $7 \mathrm{e}(96 \mathrm{mg}, 0.17 \mathrm{mmol}, 30 \%)$.

Dibenzyl 3-(2-(5-methoxy-1H-indol-3-yl)ethyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7dicarboxylate 7e: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75^{\circ} \mathrm{C}, \delta\right) 1.88(\mathrm{~s}, 2 \mathrm{H}), 2.28$ (br s, 2H), 2.61-2.74 (m, 4H), 3.11 (br s, 2H), 3.76 (s, 3H), $4.40(b r ~ s, 2 H), 5.13(\mathrm{~s}, 4 \mathrm{H}), 6.72$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 10 \mathrm{H})$, $10.4(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75{ }^{\circ} \mathrm{C}, \delta\right) 22.8,36.2,55.1,56.2,56.6,57.3$, $67.3,101.3,111.4,112.3,112.8,123.6,127.9,128.2,128.7,132.2,137.0,153.7,157.1 ;$ HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5} 555.2608$, found 555.2594

Dibenzyl 3-(1H-indol-5-yl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7g: 102 mg , 57%, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75{ }^{\circ} \mathrm{C}, \delta\right) 1.92-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 4 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 12 \mathrm{H}), 10.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75^{\circ} \mathrm{C}$, б) $35.3,52.6,56.4,67.4,101.2,106.3,112.0,113.1,125.7,127.8,128.1,128.7,128.8,131.7$,
136.8, 144.1, 157.1; HRMS (ESI-TOF)[M+H] ${ }^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}$ 497.2189, found 497.2185

Dibenzyl 3-(3,4,5-trimethoxyphenyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate
7i: $135 \mathrm{mg}, 38 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 75^{\circ} \mathrm{C}, \delta\right)$ 2.03-2.10 (m, 2H), $2.90(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 4 \mathrm{H}), 6.02(\mathrm{~s}$, $2 \mathrm{H}), 7.32$ (br s, 10 H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 34.6,50.9,55.9,56.5,60.6$, 67.5, 93.5, 127.7, 128.2, 128.7, 131.7, 136.7, 146.9, 153.8, 157.0 ; HRMS (ESITOF) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na} 570.2216$, found 570.2218

Dibenzyl 3-((R)-1-methoxy-1-oxo-3-phenylpropan-2-yl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7k: $106 \mathrm{mg}, 39 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right)$ $1.86(\mathrm{~s}, 2 \mathrm{H}) ; 2.45-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=13.5 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $5.12(\mathrm{~s}, 4 \mathrm{H}), 7.08-7.40(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 35.4,35.9,49.8$, $51.2,54.0,56.3,56.6,67.3,67.4,67.7,126.7,127.9,128.3,128.7,128.7,129.2,136.9,138.4$, 157.1, 171.4; HRMS (ESI-TOF)[M+Na] ${ }^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na} 566.2267$, found 566.2267; $[\alpha]_{\mathrm{D}}{ }^{20}+21.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$

Dibenzyl 3-((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 71: $147 \mathrm{mg}, 49 \%$, colorless oil. NMR and MS data are similar to enantiomer $\mathbf{7 k}$ $[\alpha]_{\mathrm{D}}{ }^{20}-19.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$

The preparation of 7b is representative (Pathway B)

Ozone was bubbled into a solution of $\mathbf{5}^{\mathbf{7}}(753 \mathrm{mg}, 2.07 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ until it became light blue, at which point argon was bubbled to remove excess ozone. The ozonide was quenched by $\mathrm{Me}_{2} \mathrm{~S}(1.5 \mathrm{~mL})$, and the reaction was warmed to room temperature, concentrated and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL}$). Benzylamine ($244 \mathrm{mg}, 2.28$
mmol) was added and the reductive amination was conducted according to the preparation of 7a. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Ethyl acetate $98: 2$ up to $\left.95: 5\right)$ afforded $7 \mathbf{7 b}(481 \mathrm{mg}, 1.02$ mmol, 49 \%).

Dibenzyl 3-benzyl-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7b: colorless oil;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 1.87(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.50$ (s, 2H), 4.37 (br s, 2H), 5.05-5.18 (m, 4H), 7.20-7.35 (m, 15H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 36.2,55.1,56.4,60.8,67.4,127.3,127.9,128.2,128.5,128.7,128.9$, 136.8, 138.5, 157.0; HRMS (ESI-Orbitrap)[M+H] ${ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} 472.2236$, found 472.2221

Dibenzyl 3-(3,4-dimethoxybenzyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7c: $218 \mathrm{mg}, 76 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 1.80-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (d, $J=10.2 \mathrm{~Hz}$), $3.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.41$ (br s, 2H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 4.99-5.18 (m, 4H), $6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 37.7,56.6,57.7,57.8,57.9,61.9,68.8$, 114.3, 115.3, 122.7, 129.4, 129.7, 130.2, 132.8, 138.3, 150.2, 151.1, 158.4; HRMS (ESIOrbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6} 532.2447$, found 532.2419

Dibenzyl 3-allyl-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 7n: $955 \mathrm{mg}, 54 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 7{ }^{\circ} \mathrm{C}, \delta\right) 1.80-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 2.96 (br d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.38(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-$ $5.19(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{ddt}, J=6.1 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 7{ }^{\circ} \mathrm{C}$, $\left.\delta\right) 37.6,56.6,57.9,60.6,68.7,118.8,129.4,129.7,130.1$, 136.9, 138.4, 158.6; HRMS (ESI-Orbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} 422.2079$, found 422.2073

Dibenzyl 3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 8:

7n (900 mg, 2.13 mmol), N, N-dimethylbarbituric acid ($998 \mathrm{mg}, 6.39 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($25 \mathrm{mg}, 21 \mu \mathrm{~mol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.3 \mathrm{~mL})$ under argon atmosphere. The solution was refluxed for 5 hours, quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right)$ afforded $\mathbf{8}$ ($673 \mathrm{mg}, 1.76 \mathrm{mmol}, 83 \%$). yellow oil; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $1.91(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (br s, 1H), $2.70(\mathrm{br} \mathrm{d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 4 \mathrm{H}), 7.34(\mathrm{~s}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $37.5,50.4,58.5,69.5,129.5,129.7,130.0,137.3$, 158.0; HRMS (ESI-Orbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4} 382.1767$, found 382.1779

Dibenzyl
3-(2-(3,4-dimethoxyphenyl)acetyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-

dicarboxylate 9:

To a solution of $\mathbf{8}(41 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dry 1,2-dichloroethane (1.2 mL) was added triethylamine ($44 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) and 3,4-dimethoxyphenylacetylchloride ($28 \mu \mathrm{~L}, 0.16$ mmol). The solution was stirred for 1.5 hour at room temperature and then at $45^{\circ} \mathrm{C}$, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ afforded 9 (60 mg , quantitative).
colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 2.02-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{AB}$ system, $\Delta \delta=0.10, J=12.5 \mathrm{~Hz}$, $4 \mathrm{H}), 7.32(\mathrm{~s}, 10 \mathrm{H}), 8.51(\mathrm{~s}, 2 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 36.6$, 57.2, 69.3, 121.0, 129.1, 129.3, 129.8, 130.2, 137.8, 140.8, 150.2, 157.9, 168.4; HRMS (ESIOrbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{9} 576.1731$, found 576.1731

Dibenzyl 3-(3,5-dinitrobenzoyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 10:
To a solution of $\mathbf{8}(200 \mathrm{mg}, 0.52 \mathrm{mmol})$ in dry 1,2 -dichloroethane (5 mL) was added triethylamine ($216 \mu \mathrm{~L}, 1.57 \mathrm{mmol}$) and 3,5-dinitrobenzoylchloride ($183 \mathrm{mg}, 0.79 \mathrm{mmol}$). The
solution was stirred for six hours at $80^{\circ} \mathrm{C}$, quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Ethyl acetate $\left.90: 10\right)$ afforded $\mathbf{1 0}(280 \mathrm{mg}, 0.49$ mmol, 92 \%).
pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 7{ }^{\circ} \mathrm{C}, \delta\right) 1.93-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}$) ; 2.87 (br s, 1H), 3.23 (br s, 1H), 3.46 (s, 1H), 3.52 (s, 1H), 3.73 (s, 6H), 4.12 (br s, $1 \mathrm{H}), 4.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{AB}$ system, $\Delta \delta=0.04, J=12.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 36.0,41.1,56.8,57.7,57.8,69.1,114.6,115.8,123.1,129.4,129.8$, 129.9, 130.2, 138.0, 149.8, 150., 157.9, 172.8; HRMS (ESI-Orbitrap)[M+H] ${ }^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7} 560.2397$, found 560.2403

6,7-dibenzyl 3-tert-butyl 3,6,7-triazabicyclo[3.2.1]octane-3,6,7-tricarboxylate 11:

To a solution of $\mathbf{8}(81 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(32 \mu \mathrm{~L}, 233$ $\mu \mathrm{mol})$ and $\mathrm{Boc}_{2} \mathrm{O}(51 \mathrm{mg}, 0.23 \mathrm{mmol})$, and the mixture was stirred for 2 hours. The reaction was quenched with saturated aqueous NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1\right)$ afforded $\mathbf{1 1}(95 \mathrm{mg}, 0.2 \mathrm{mmol}, 93 \%)$.
colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~d}, \mathrm{~J}=$ 11.5 Hz, 1H), 2.98 (br s, 2H), 4.10 (br s, 2H), 4.45 (s, 2H), 5.09-5.17 (m, 4H), 7.34 (s, 10H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, (CD $)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}$, δ) 29.9, 35.9, 48.5, 56.7, 69.1, 81.0, 129.3, 129.7, 130.2, 138.0, 156.4; HRMS (ESI-Orbitrap)[M+H $]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{6} 482.2291$, found 482.2300

Dibenzyl 3-(6-(((benzyloxy)carbonyl)amino)-2-((tert-butoxycarbonyl)amino)hexanoyl)-3,6,7-triazabicyclo[3.2.1]octane-6,7-dicarboxylate 12:

To a solution of $\mathbf{8}(68 \mathrm{mg}, 0.18 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~mL})$ was added Boc-Lys(Z)-OH ($75 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(173 \mathrm{~mL}, 1.25 \mu \mathrm{~mol})$ and EDC ($51 \mathrm{mg}, 0.27 \mathrm{mmol}$). The solution was stirred for 5 hours, quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right)$ afforded $\mathbf{1 2}(107 \mathrm{mg}, 0.14 \mathrm{mmol}, 81 \%)$. colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70{ }^{\circ} \mathrm{C}, \delta\right) 1.17-1.62(\mathrm{~m}, 15 \mathrm{H}), 1.92-2.01(\mathrm{~m}$, $1 \mathrm{H}), 2.12(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.93-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.03(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, 6.05-6.50 (m, 1H), $6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.07-7.55(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70\right.$ ${ }^{\circ} \mathrm{C}$, δ) 23.1, 28.7, 29.6, 31.7, 34.6, 41.0, 51.1, 55.4, 65.7, 67.8, 78.6 , 127.8, 128.0, 128.1, 128.3, 128.7, 128.8, 136.6, 137.9, 155.6, 156.5, 173.2; HRMS (ESI-Orbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{9} 744.3608$, found $744.3596 ;[\alpha]_{\mathrm{D}}{ }^{20}-7.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$

General procedures for hydrogenolysis

A solution of bicyclic hydrazine in solvent (Methods A and B: MeOH, Method C: MeOH.HCl pH3, Method D: distilled acetic acid) was stirred in the presence of catalyst (A: 10% palladium on activated charcoal (0.2 equiv), \mathbf{B} and $\mathbf{C}: 10 \%$ palladium on activated charcoal (0.2 equiv) and palladium black (0.01 equiv), $\mathbf{D}: \mathrm{PtO}_{2}$ (0.15 equiv)) under hydrogen atmosphere (1 atm). If needed, 0.1 equiv of catalyst can be added after 24 hours to reach completion. The reaction mixture was filtered through a celite pad and concentrated to afford the final diamine.
(3S,5R)-1-(4-methoxybenzyl)piperidine-3,5-diamine 13a (Method A): 40 mg , quantitative, colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 0.84(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{t}$, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=10.4 \mathrm{~Hz}, J=4.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right) 43.3,48.1,55.8,61.5,63.0,114.8,130.4,131.9,160.6$; HRMS (ESI-Orbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O} 236.1762$, found 236.1756
(3S,5R)-1-(3,4-dimethoxyphenethyl)piperidine-3,5-diamine 13b (Method B): $62 \mathrm{mg}, 88 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 0.89(\mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.71(\mathrm{t}$, $J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \delta$) 33.1, 44.9, 47.6, 55.8, 55.9, 60.3, 62.3, 111.1, 111.9, 120.5, 132.8, 147.2, 148.7; HRMS (ESI-TOF)[M+H] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} 280.2025$, found 280.2029 (3S,5R)-1-(2-(5-methoxy-1H-indol-3-yl)ethyl)piperidine-3,5-diamine 13c (Method B): 29 mg , quantitative, colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 0.90(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ (br s, 4H), 1.75 (t, $J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.19$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.81$ (m, 2H), 2.95-3.07 (m, 4H), 3.13 (dd, $J=10.3 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right) 22.9$, 45.0, 47.7, 56.0, 58.9, 62.4, 100.6, 111.9, 112.1, 113.9, 122.4, 127.8, 131.4, 153.9; HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}$ 289.2028, found 289.2021

N -(4-((3S,5R)-3,5-diaminopiperidin-1-yl)-2-hydroxyphenyl)benzamide 13d (Method A): $21 \mathrm{mg}, 95 \%$, orange oil; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 1.45(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J$ $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=11.9 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=11.9 \mathrm{~Hz}, J$ $=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.60(\mathrm{~m}$, $4 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$) 36.4, 46.3, 54.6, 105.1, 108.4, 118.8, 124.3, 127.2, 128.4, 131.6, 134.2, 149.5, 150.2, 167.3; HRMS (ESI-TOF)[M+H] ${ }^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}$ 327.1821, found 327.1821
(3S,5R)-1-(1H-indol-5-yl)piperidine-3,5-diamine 13e (Method B): $22 \mathrm{mg}, 79 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) $0.96(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.39 (br s, 4 H), $2.24(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=11.1 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=11.1 \mathrm{~Hz}, J=4.4$
$\mathrm{Hz}, 2 \mathrm{H}), 6.48$ (br s, 1H), 6.97 (dd, $J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$ 44.7, 47.8, 61.3, 102.3, 108.5, 111.5, 116.4, 124.7, 128.3, 131.4, 145.6; HRMS (ESITOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4}$ 231.1610, found 231.1606 (3S,5R)-1-(3,4,5-trimethoxyphenyl)piperidine-3,5-diamine 13 (Method A): $45 \mathrm{mg}, 88 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$) $1.06(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20(\mathrm{br} \mathrm{d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J=4.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 41.9,46.8$, 55.1, 57.5, 59.9, 95.0, 131.5, 148.2, 153.4; HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}$ 282.1818 , found 282.1815
(3S,5R)-1-(9,9'-spirobi[fluoren]-2-yl)piperidine-3,5-diamine 13g (Method D): 78 mg , 85%, yellow amorphous solid; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 1.58(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.44(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$) 22.4, 34.0, 46.1, 53.4, 65.9, 112.6, 117.1, 119.1, 119.8, 120.6, 123.3, 123.6, 126.5, 127.6, 135.1, 141.1, 141.6, 148.3, 148.9, 150.2, 150.6; HRMS (APCIOrbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{3} 430.2283$, found 430.2276
(S)-methyl 2-((3S,5R)-3,5-diaminopiperidin-1-yl)-3-phenylpropanoate 13h (Method B): $39 \mathrm{mg}, 98 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 0.85(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{br}$ $\mathrm{s}, 4 \mathrm{H}), 1.89(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-$ 2.99 (m, 4H), 3.04-3.15 (m, 2H), $3.50(\mathrm{dd}, J=7.9 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 7.15-7.35$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right) 35.6,44.8,47.7,47.9,51.1,56.3,61.2,69.1,126.4$, 128.3, 129.1, 138.1, 171.7; HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} 278.1869$, found 278.1864; $[\alpha]_{\mathrm{D}}{ }^{20}-19.0\left(c 1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$
(3S,3'R,3'S,5R,5'S,5'R)-1'-(3,4-dimethoxyphenethyl)-[1,3':5',1'-terpiperidine]-
3,3',5,5'-tetraamine 13i (Method C): 44 mg , quantitative, colorless oil; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 1.55-1.70(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.56(\mathrm{~m}, 6 \mathrm{H}), 2.60-2.69$ $(\mathrm{m}, 2 \mathrm{H}), 2.95-3.11(\mathrm{~m}, 6 \mathrm{H}), 3.15-3.26(\mathrm{~m}, 4 \mathrm{H}), 3.30-3.37(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, б) $28.7,32.3,34.5,48.0,48.1,52.8,53.5,55.2,56.7,60.0,60.8,113.5,114.0,122.2,132.4$, 149.4, 150.6; HRMS (ESI-TOF)[M+Na] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{Na} 498.3532$, found 498.3526 1-((3S,5R)-3,5-diaminopiperidin-1-yl)-2-(3,4-dimethoxyphenyl)ethanone 13j (Method B): $16 \mathrm{mg}, 76 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 1.43(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.95-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 38.2,41.0,47.0$, $47.5,48.0,52.4,56.7,113.4,114.0,122.5,128.9,149.8,150.9,173.2$; HRMS (ESIOrbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} 294.1817$, found 294.1815
(3S,5R)-tert-butyl 3,5-diaminopiperidine-1-carboxylate 13k (Method A, Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right.$ then $\mathrm{CH}_{2} \mathrm{Cl}_{2} /\left(\mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 30 \%\right.$ aq $\left.\left.90: 10\right) 90: 10\right)$: 17 $\mathrm{mg}, 67 \%$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right) 0.93(\mathrm{q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}$, 9H), 2.03-2.06 (m, 1H), $2.23(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=11.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}$, 2 H) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$) 27.3, 42.6, 46.8, 50.0, 50.6, 79.9, 154.9; HRMS (ESIOrbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2} 216.1712$, found 216.1713

Di-tert-butyl ((3S,5R)-1-(4-methoxybenzyl)piperidine-3,5-diyl)dicarbamate 14:

13a ($58 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\left(50: 50,5.2 \mathrm{~mL}\right.$). $\mathrm{Boc}_{2} \mathrm{O}(242 \mathrm{mg}, 1.11$ mmol) was added. The solution was stirred for 1 hour at room temperature, extracted with ethyl acetate and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated to afford $\mathbf{1 4}$ (115 mg , quantitative).
white amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 1.12(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.37(\mathrm{~s}, 18 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.91(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81\left(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}{ }_{2}\right.$ and $\left.\mathrm{H}_{6}{ }_{6}\right)$, 3.37-3.48 (m, 4H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 6.44($ broad s, 2 H$), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 70^{\circ} \mathrm{C}, \delta\right) 30.2,39.0,48.6,57.0,59.3,62.8,79.6$, $115.6,131.6,131.8,156.8,160.4$; HRMS (ESI-TOF) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5} 436.2812$, found 436.2809

Di-tert-butyl (3S,5R)-piperidine-3,5-diyldicarbamate 4:

A solution of CAN ($351 \mathrm{mg}, 0.64 \mathrm{mmol}$) in water $(0.32 \mathrm{~mL})$ was added dropwise to a flask charged with silica (753 mg). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.1 \mathrm{~mL})$ was added and $\mathbf{1 4}(0.25 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL) was added to the stirred reaction mixture. The suspension was stirred for 1 hour at room temperature and filtered. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\left(\mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 30 \%\right.\right.$ aq 90:10) $95: 5$) of the residual afforded $4(45 \mathrm{mg}, 0.14 \mathrm{mmol}, 58 \%)$.
white amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right) 1.12(\mathrm{q}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, $18 \mathrm{H}), 1.90(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-$ $3.20(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right) 30.1,39.8,49.6$, 52.3, 79.4, 156.8; HRMS (ESI-Orbitrap) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} 316.2236$, found 316.2239

Acknowledgement: Financial support from CNRS, MRT (grant to A. B.) and Consejería de Educación de la Junta de Castilla y León (grant to R.A) is acknowledged. A. Hessani is acknowledged for mass spectroscopy analyses.

Supporting Information Available: copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra. Copies of chiral HPLC of compounds $\mathbf{7 k}$, $\mathbf{1}$. This material is free of charge via the Internet at http://pubs.acs.org

References

1) (a) Thomas, J. R.; Hergenrother, P. J. Chem. Rev. 2008, 108, 1172-1224.(b) Guan, L.; Disney, M. D. ACS Chem. Biol. 2012, 7, 73-86.
2) (a) Sharp, P. A. Cell 2009, 136, 577-580. (b) Cooper, T. A.; Wan, L.; Dreyfuss, G. Cell 2009, 136, 777-793. (c) Esteller, M. Nature Rev. Genet. 2011, 12, 861-874.
3) Velegapudi, S. P.; Pushechnikov, A.; Labuda, L. P.; French, J. M. Disney, M. D. ACS Chem. Biol. 2012, 7, 1902-1909
4) (a) Zhou, Y.; Gregor, V. E.; Sun, Z.; Ayida, B. K.; Winters, G. C.; Murphy, D.; Simonsen, K. B.; Vourloumis, D.; Fish, S.; Froelich, J. M.; Wall, D. Hermann, T. Antimicrob. Agents Chemother. 2005, 49, 4942-4949. (b) Zhou, Y.; Chow, C.; Murphy, D. E.; Sun, Z.; Bertolini, T.; Froelich, J. M.; Webber, S. E.; Hermann, T.; Wall, D. Biorg. Med. Chem. Lett. 2008, 18, 3369-3375.
5) Carnevali, M.; Parsons, J.; Wyles, D. L.; Hermann, T. ChemBioChem 2010, 11, 13641367.
6) (a) Chung, F.; Tisné, C.; Lecourt, T.; Dardel, F.; Micouin, L. Angew. Chem. Int. Ed. 2007, 46, 4489-4491. (b) Chung, F.; Tisné, C.; Lecourt, T.; Seijo, B.; Dardel, F.; Micouin, L. Chem. Eur. J. 2009, 15, 7109-7116. (c) Moumné, R.; Pasco, M.; Prost, E.; Lecourt, T.; Micouin, L.; Tisné, C. J. Am. Chem. Soc. 2010, 132, 13111-13113. (d) Pasco, M.; Moumné, R.; Lecourt, T.; L. Micouin, L. J. Org. Chem. 2011, 76, 51375142. (e) Lombès, T.; Moumné, R.; Larue, V.; Prost, E.; Catala, M.; Lecourt, T.; Dardel, F.; Micouin, L.; Tisné, C. Angew. Chem. Int. Ed. 2012, 51, 9530-9534. (f) Bégis, G.; Bonin, M.; Bournaud, C.; Dardel, F.; Maurice, F.; Micouin, L.; Tisne, C.; Pérez Luna, A. WO2006024784
7) Raasch, M. S. J. Org. Chem. 1975, 40, 161-172
8) For a similar approach for closely related systems, see: (a) Fray, A. H.; Augeri, D. J.; Kleinman, E. F.; J. Org. Chem. 1988, 53, 896-899. (b) Kiss, L.; Kazi, B.; Forró, E.; Fülöp F. Tetrahedron Lett. 2008, 49, 339-342. (c) Caputo, F.; Cattaneo, C.; Clerici, F.; Gelmi, M. L.; Pellegrino, S. J. Org. Chem. 2006, 71, 8467-8472.
9) See supporting information.

[^0]: ${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}$ (4.5 equiv), THF/NaOHaq, 1 h . (b) CAN (2.6 equiv), $\mathrm{SiO}_{2} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$.

