

## Rhodium(II)-Alkynyl Carbenoids Insertion into Si–H bonds: An Entry to Propargylic Geminal Bis(silanes)

Thibaut Courant, Rahul Kumar, Serge Turcaud, Laurent Micouin

### ▶ To cite this version:

Thibaut Courant, Rahul Kumar, Serge Turcaud, Laurent Micouin. Rhodium(II)-Alkynyl Carbenoids Insertion into Si–H bonds: An Entry to Propargylic Geminal Bis(silanes). Organic Letters, 2016, 18 (19), pp.4818-4820. 10.1021/acs.orglett.6b02264 . hal-02186746

## HAL Id: hal-02186746 https://hal.science/hal-02186746

Submitted on 17 Jul 2019

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Rhodium(II)-Alkynyl Carbenoids Insertion into Si-H bonds : An entry to propargylic geminal bis(silanes)

Thibaut Courant, Rahul Kumar, Serge Turcaud, Laurent Micouin\*

Laboratoire de Chimie et Biochimie Pharmacologique et Toxicologique, UMR 8601 CNRS-Université Paris-Descartes, Faculté des sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006 Paris, France.

Supporting Information Placeholder





Transition metal carbenoids are very versatile intermediates in organic synthesis.<sup>1</sup> Among them, rhodium carbenes derived from diazocompounds and rhodium(II) catalysts have been reported to participate in multiple transformations.<sup>2</sup> According to the well-established classification popularized by Davies, the reactivity of these species strongly relies on the nature of the substituents adjacent to the carbene center (Figure 1).<sup>3</sup>



Figure 1. Classes of Rhodium carbenoid intermediates and carbenes investigated in this study.

"Donor" groups (vinyl, aryl, alkynyl, heteroaryl) are expected to make the carbenoid more stable and chemoselective, whereas "acceptor" groups (carbonyl, sulfonyl, cyano, etc.) increase the reactivity of these species by enhancing their electrophilic character. A wide range of reactions starting from diazocompounds bearing a combination of these substituents have been reported, with a recent emphasis on the use of donor-acceptor carbenes for selective intermolecular insertion reactions.<sup>4</sup> Surprisingly, although alkynyl group is described in reviews to behave as a donor substituent for carbenoids intermediates, the use of alkynyldiazocompounds in Rh(II) catalyzed insertion reactions has never been described and only a single example of cyclopropanation

based on such a reagent has been reported.<sup>5</sup> Similarly, despite the stability provided to diazocompounds by a trimethylsilyl group, the reactivity studies of Rh(II)  $\alpha$ silylated carbenoids generated from this class of reagents are rare.<sup>6</sup> We recently described a general access to  $\alpha$ silvlated alkynylhydrazones from mixed dimethylalkynylaluminum reagents and trimethylsilyl (TMS) diazomethane (Scheme 1).<sup>7</sup> We report herein that these derivatives can lead to the corresponding diazo compounds and serve as new precursors for Rh(II)catalyzed Si-H insertion reactions,<sup>8</sup> leading to propargylic bis(silanes). Although the reactivity of allylic bis(silanes) has been described,9 the reactivity of their propargylic analogues has received only little attention up to now.<sup>1</sup>



**Scheme 1.** Previous report on the synthesis of  $\alpha$ -silylated alkynyl hydrazones and first example of diazo preparation (ref. 7).

Our initial report on the preparation of diazo 8a from hydrazone 7a using manganese dioxide (MnO<sub>2</sub>) showed

that the purification of compound **8** could be difficult. We therefore envisaged carrying out the insertion reaction immediately after the oxidation step, in a one pot procedure as reported by Shaw,<sup>11</sup> or in a sequential manner, with or without filtration between the two steps. For this purpose we first investigated the oxidation step in various solvents and found that this reaction proceeds smoothly at -15 °C within two hours in solvents such as dichloroethane (DCE), toluene, and pentane (Table 1). A slow degradation of the starting material could be noticed when the oxidation was conducted at lower temperature, and the use of acetonitrile only led to degradation.

## Table 1. Optimization of Metal-Catalyzed Carbene Si-H insertion<sup>a</sup>

| N <sup>NH</sup> 2 | 1) MnO <sub>2</sub> (8 equiv)<br>MgSO <sub>4</sub> , solvent<br>- 15 °C, 2 h<br>2) Et <sub>3</sub> SiH<br>catalyst (2 mol %)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SiEt <sub>3</sub><br>SiMe <sub>3</sub><br>Ph<br>10a                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ➢ SiMe₃ 7a        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| solvent           | catalyst                                                                                                                          | temp<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time<br>(h)                                                                                                                                                                                                                                                                                                                                                                                   | yield <sup>b</sup><br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DCE               | Rh2(OAc)4                                                                                                                         | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DCE               | Rh2(OAc)4                                                                                                                         | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DCE               | Rh2(OAc)4                                                                                                                         | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DCE               | Rh2DOSP4                                                                                                                          | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | Traces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DCE               | CuCl                                                                                                                              | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DCE               | Cu(OTf)2                                                                                                                          | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DCE               | Cu(OTf)2                                                                                                                          | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DCE               | Rh2(OAc)4                                                                                                                         | - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Toluene           | Rh2(OAc)4                                                                                                                         | - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Toluene           | Rh2(OAc)4                                                                                                                         | - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                             | 42 <sup>g</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Toluene           | Rh2(OAc)4                                                                                                                         | - 78 to rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 + 16                                                                                                                                                                                                                                                                                                                                                                                        | 54 <sup>h</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Toluene           | Rh2(esp)2                                                                                                                         | - 78 to rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 + 16                                                                                                                                                                                                                                                                                                                                                                                        | 61 <sup><i>h</i></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Toluene           | Rh2(TFA)2                                                                                                                         | - 78 to rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 +16                                                                                                                                                                                                                                                                                                                                                                                         | n.d. <sup>h</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pentane           | Rh2(esp)2                                                                                                                         | - 78 to rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 +16                                                                                                                                                                                                                                                                                                                                                                                         | 25 <sup>h</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | NH2<br>SiMe3<br>7a<br>solvent<br>DCE<br>DCE<br>DCE<br>DCE<br>DCE<br>DCE<br>DCE<br>DCE<br>Toluene<br>Toluene<br>Toluene<br>Toluene | NH21) MnO2 (8 eq<br>MgSO4, solvertZa2) Et3SiH<br>catalyst (2solventcatalystDCERh2(OAc)4<br>DCEDCERh2(OAc)4<br>DCEDCERh2(OAc)4<br>DCEDCERh2(OAc)4<br>COAc)4DCERh2(OAc)4<br>COAc)4DCERh2(OAc)4<br>COAc)4DCERh2(OAc)4<br>COAc)4DCERh2(OAc)4<br>CU(OTf)2DCERh2(OAc)4<br>CU(OTf)2DCERh2(OAc)4<br>COAc)4TolueneRh2(OAc)4<br>COAc)4TolueneRh2(OAc)4<br>COAc)4TolueneRh2(OAc)4<br>COAc)4TolueneRh2(OAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4TolueneRh2(CAc)4<br>COAc)4 | NH21) MnO2 (8 equiv)<br>MgSO4, solvent<br>$-15 °C, 2 h$ 7a2) Et_3SiH<br>catalyst (2 mol %)solventcatalysttemp<br>(°C)DCERh2(OAc)4rtDCERh2(OAc)4rtDCERh2(OAc)4rtDCERh2(OAc)4rtDCERh2(OAc)4rtDCERh2(OAc)4rtDCERh2(OAc)4rtDCERh2(OAc)4rtDCECu(OTf)2rtDCERh2(OAc)4- 30TolueneRh2(OAc)4- 30TolueneRh2(OAc)4- 78 to rtTolueneRh2(OAc)4- 78 to rtTolueneRh2(FA)2- 78 to rtPentaneRh2(esp)2- 78 to rt | $\begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ N \\ N \\ N \\ SiMe_3 \end{array} \end{array} \begin{array}{c} \begin{array}{c} 1 \\ MgSO_4, solvent \\ -15 \ ^\circ C, 2 \ h \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 2 \\ 2 \\ 2 \\ Et_3 \\ SiH \\ catalyst (2 \ mol \ \%) \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ Ph \\ 10a \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ 10a \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ |

<sup>*a*</sup>The reaction was carried out with **7a** (0.2 mmol). <sup>*b*</sup>Isolated yield from **7a**. <sup>*c*</sup>The two steps were carried out in one pot, at 0.025 M, with one equiv of Et<sub>3</sub>SiH. <sup>*d*</sup>The two steps were carried out in one pot, at 0.01 M, with one equiv of Et<sub>3</sub>SiH. <sup>*e*</sup>The two steps were carried out in one pot, at 0.01 M, with ten equiv of Et<sub>3</sub>SiH. <sup>*f*</sup>The two steps were carried out in the same pot, but in a sequential manner with removal of the Mn salts by filtration, at 0.01M, with ten equiv of Et<sub>3</sub>SiH. <sup>*g*</sup>Slow addition of the diazo compound for 3 h. <sup>*h*</sup><sub>3</sub>h at – 78 °C then 16 h at rt.

The optimisation of the reaction sequence was first investigated on hydrazine **7a** using Rh<sub>2</sub>(OAc)<sub>4</sub> as a catalyst. The reaction proceeded in a one-pot fashion at 0.025M (entry 1) or 0.01M concentration (entry 2), with one equivalent of triethylsilane. The yield could be improved

if an excess (10 equiv) of silane was used (entry 3). Only traces of insertion product could be detected using the chiral catalyst Rh2DOSP4 (entry 4)12 and the use of copper (entries 5-7) or palladium (entry 8) salts proved to be less efficient Better results were obtained when removing solid residues by filtration between the oxidation and the insertion steps (entry 9) and by conducting the second step at lower temperature. Finally, best results were obtained using Rh2(esp)2 as a catalyst and conducting the insertion step at -78 °C in toluene (entry 13).

Interestingly, no sign of isomeric insertion product arising from a possible [1,3]-metallotropic shift of the alkynyl metal carbenoid was observed.<sup>13</sup> This high selectivity might be explained by a stabilizing effect of the carbonmetal bond by the vicinal TMS group.

The scope of the reaction was then investigated (Scheme 2)

Scheme 2. Scope of Rh(II)-Catalyzed Insertion into Si-H Bonds



<sup>*a*</sup> The reaction was carried out with one equiv of PhMe<sub>2</sub>SiH (0.2 mmol)

In all the cases, hydrazones 7a-i, were prepared according to our previously reported method7 and were converted smoothly to the corresponding disilanes 10 or 11 in a sequential two-step fashion in yields over two steps from 34 to 63 %. The optimized reaction conditions were found to be suitable for various aromatic derivatives including substrates bearing electro-donating groups (7b) or electro-withdrawing (7c) giving desired disilanes 10b and 10c in 48% and 51% yields respectively. The introduction of 1-naphthyl- (10d), 1,1'-biphenyl (10e) or 3thiophenyl (10f) groups on the alkylnyl moiety did not change the outcome of the reaction and these disilanes were obtained in 63%, 53% and 57% yields, showing tolerance of the reaction against aromatic group modifications. Interestingly, this two-step process was found to be very chemoselective as no Büchner-type reaction byproduct could be observed while using aromatic substrates.<sup>14</sup> Alkyl-substituted  $\alpha$ -alkynylhydrazones reactivities were also investigated and substrates containing linear-chains 7g and 7h led to the desired disilanes 10g and 10h in 36% and 51% vields respectively. However,  $\alpha$ -alkynylcyclopropyl- $\alpha$ -TMS-hydrazone 7i was found to be a difficult substrate in our hands and only 34% of the volatile disilane 10i could be obtained. We next examined the possibility to extend our method to the insertion of Rh-carbenoid into various Si-H bonds.<sup>8</sup> We were pleased to find that phenyldimethylsilane reacted smoothly with various aromatic and aliphatic  $\alpha$ -alkynyl- $\alpha$ -TMShydrazones **7a**,**b**, **7d** and **7h** and gave the corresponding disilanes in good yields. In these cases, best results were obtained using only one equivalent of the silane. A complex mixture was obtained when Chatgilialoglu reagent (tris(trimethylsilyl)silane)<sup>15</sup> was used.

Since "donor-donor" carbenoids are seldom used in intermolecular reactions, we investigated the reactivity of carbenoids **5** in other insertion reactions (Scheme 3). As expected, the stabilizing effects of the alkynyl and silyl substituents lower the reactivity of the rhodium carbenoid in O-H, N-H and C-H insertion reactions. Rhodium- or copper-catalyzed cyclopropanation of alkenes or alkynes proved also to be unsuccessful. All these results outline the low electrophilicity of the carbenoids of type **5** that selectively react with Si-H bonds and suggest that stronger electron-withdrawing ligands are required to expand the reactivity scope of carbenoids derived from alkynyl silylated diazo compounds.

**Scheme 3.** Scope of Rh(II)-Catalyzed Intermoleculer Insertion Reactions.



In conclusion, we have shown that Rh(II)  $\alpha$ -silylated alkynyl carbenoids, prepared from the corresponding diazo, can insert in a selective manner into Si-H bonds. This unprecedented reaction provides a simple and general access to propargylic geminal bis(silanes) bearing two different silicon moieties at the propargylic carbon.<sup>16</sup> The reactivity of these new reagents is currently under investigation in our laboratory.

#### ASSOCIATED CONTENT

#### Supporting Information

General experimental procedures and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org

#### AUTHOR INFORMATION

#### **Corresponding Author**

\* E-mail: Laurent.micouin@parisdescartes.fr

#### Notes

the authors declare no competing financial interest.

#### ACKNOWLEDGMENT

Financial support from ANR (ANR blanc TribAl), CNRS and University Paris Descartes is acknowledged.

#### REFERENCES

(1) (a) Doyle, M. P.; Forbes, D. C. *Chem. Rev.* **1998**, *98*, *91*-935. (b) Davies, H. M. L.; Manning, J. R. *Nature*, **2008**, *451*, *417-424*. (c) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. *Chem. Rev.* **2010**, *10*, 704-724. (d) Zhao, X.; Zhang, Y.; Wang, J. *Chem. Commun.* **2012**, *48*, 10162-10173. (e) Kornecki, K. P.; Briones, J. F.; Boyarskikh, V.; Fullilove, F.; Autschbach, J.; Schrote, K.; Lancaster, K. M.; Davies, H. M. L.; Berry, J. F. *Science*, **2013**, *342*, 351-354. (f) Xiao, Q.; Zhang, Y.; Wang, J. *Acc. Chem. Res.* **2013**, *46*, 236-247. (g) Liu, Z.; Wang, J. *J. Org. Chem.* **2013**, *78*, 10024-10030. (h) Xia, Y.; Feng, S.; Liu, Z.; Zhang, Y.; Wang, J. *Angew. Chem. Int. Ed.* **2015**, *54*, 7891-7894.

(2) (a) Gillingham, D.; Fei, N. *Chem. Soc. Rev.* 2013, 42, 4918–4931. (b) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. *Chem. Rev.* 2015, 115, 9981–10080.

(3) (a) Davies, H. M. L.; Beckwith, R. E. J. *Chem. Rev.* 2003, 103, 2861-2903. (b) Davies, H. M. L.; Denton, J. R. *Chem. Soc. Rev.* 2009, 38, 3061-3071.

(4) (a) Hansen, J.; Autschbach, J.; H. M. L. Davies, *J. Org. Chem.* **2009**, *74*, 6555-6563. (b) Davies, H. M. L.; Morton, D. *Chem. Soc. Rev.* **2011**, *40*, 1857-1869.

(5) Davies, H. M. L.; Boebel, T. A. *Tetrahedron Lett.* 2000, *41*, 8189-8192

(6) (a) Aoyama, T.; Shiori, *Chem. Pharm. Bull.* **1989**, *37*, 2261-2262. (b) Mass, G.; Gimmy, M.; Alt, M. Organometallics, **1992**, *11*, 3813-3820.

(7) Kumar, R.; Turcaud, S.; Micouin, L. Org. Lett. 2014, 16, 6192-6195.

(8) (a) Bagheri, V.; Doyle, M. P; Taunton, J.; Claxton, E. E. J. Org. Chem. **1988**, 53, 6158-6160. (b) Buck, R. T.; Doyle, M. P.; Drysdale, M. J.; Ferris, L.; Forbes, D. C.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Zhou, Q.-L. Tetrahedron Lett. **1996**, 37, 7631-7634. (c) Bulugahapitiya, P.; Landais, Y.; Parra-Rapado, L.; Planchenault, D.; Weber, V. A J. Org. Chem. **1997**, 62, 1630-1641. (d) Buck, R. T.; Coe, D. M.; Drysdale, M. J.; Moody, C. J.; Pearson, N. D. Tetrahedron Lett. **1998**, 39, 7181-7184. (e) Kitagaki, S.; Ki-

noshita, M.; Takeba, M.; Anada, M.; Hashimoto, S. *Tetrahedron: Asymmetry* **2000**, *11*, 3855–3859. (f) Ge, M.; Corey, E. J *Tetrahedron Lett.* **2006**, 47, 2319-2321. (g) Wu, J.; Panek, J. S. *J. Org. Chem.* 2011, **76**, 9900-9918. (h) Zhu, S.-F.; Zhou, Q.-L. *Acc. Chem. Res.* **2012**, *8*, 1365-1377.

(9) (a) Gao, L.; Zhang, Y.; Song, Z. Synlett **2013**, *24*, 139-144 and references cited. (b) Li, L.; Ye, X.; Wu, Y.; Song, Z.; Yin, Z.; Xu, Y. Org. Lett. **2013**, *15*, 1068-1071. (c) Lu, J.; Song, Z.; Zhang, Y.; Gan, Z.; Li, H. Angew. Chem. Int. Ed. **2012**, *51*, 5367-5370. (d) Song, Z.; Lei, Z.; Gao, L.; Wu, X.; Li, L. Org. Lett. **2010**, *12*, 5298-5301. (e) Williams, D. R.; Morales-Ramos, A. I.; Williams, C. M. Org. Lett. **2006**, *8*, 4393-4396. (f) Lautens, M.; Delanghe, P. H. M. Angew. Chem. Int. Ed. Engl. **1994**, 33, 2448-2450.

(10) M'Bazé Méva'a, L.; Pornet, J. Synt. Commun. 1996, 26, 3351-3358.

(11) Soldi, C.; Lamb, K. N.; Squitieri, R. A.; González-López, M.; Di Maso, M. J.; Shaw, J. T. *J. Am. Chem. Soc.* **2014**, *136*, 15142-15145.

(12) The very low conversion observed using Rh2DOSP2 might be due to a steric clash between the chiral ligands and the "out of plane" trimethylsilyl moiety.

(13) (a) Lee, D.; Kim, M. Org. Biomol. Chem. 2007, 5, 3418-3427. (b) Padwa, A. J. Organomet. Chem. 2000, 610, 88-101. (c) Padwa, A.; Austin, D. J.; Gareau, Y.; Kasir, J. M.; Xu, S. L. J. Am. Chem. Soc. 1993, 115, 2637-2647.

(14) (a) Buchner, E.; Curtius, T. *Ber. Dtsch. Chem. Ges.* **1885**, *18*, 2377-2379. (b) Doering, W. V. E.; Laber, G.; Vonderwahl, R.; Chamberlain, N. F.; Williams, R. B. *J. Am. Chem. Soc.* **1956**, *78*, 5448. (c) Xu, X.; Wang, X.; Zavalij, P. Y.; Doyle, M. P. Org. Lett. **2015**, *17*, 790-793. (d) Wyatt, E. E.; Galloway, W. R. D. J.; Spring, D. R. Synlett, **2011**, 1449-1453.

(15) Chatgilialoglu, C. J. Org. Chem. 1988, 53, 3641-3642.

(16) For selected syntheses and reactivity of geminal bis(silanes), see : (a) Liu, Z.; Tan, H; Fu, T.; Xia, Y.; Qiu, D.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. **2015**, *137*, 12800-12803. (b) Werner, V.; Klatt, T.; Fujii, M.; Markiewicz, J.; Apeloig, Y.; Knochel, P. Chem. Eur. J. **2014**, *20*, 8338–8342. (c) Das, M.; Manvar, A.; Jacolot, M.; Blangetti, M.; Jones, R. C.; O'Shea, D. F. Chem. Eur. J. **2015**, *21*, 8737–8740. (d) Mills, R. J.; Snieckus, V. J. Org. Chem. **1983**, *48*, 1565–1568 and ref. 9.