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Abstract

We propose an original method to reduce a radiation dominated heat transfer problem. To that
end, the Amalgam Reduced Order Modal Model (AROMM) method, which preserves the integrity
of the geometry, is coupled to the classical radiosity method. The treated application is a complex
titanium piece heated by two radiant panels placed in a furnace. The AROMM method reduces by
a factor 100 the computation time needed to obtain the solution, while keeping an average error
below 0.1%. These very good performances open the way for control or identi�cation procedure in
a reasonable time for these kind of applications.

Keywords: Reduced model, modal reduction, finite elements, radiosity, thermal

radiation, industrial furnace

∗. Corresponding author. Tel. :+33 1 69 47 79 36
Email address: b.gaume@iut.univ-evry.fr (B. Gaume)

Preprint submitted to International Journal of Heat and Mass Transfer

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0017931019320423
Manuscript_7d9c35526c09ddc5623bcb3cb467d273

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0017931019320423
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0017931019320423


1. Introduction

Industrial applications involving thermal phenomena in enclosures are frequently encountered :
climatic chambers, honeycomb structures, industrial furnaces, ... For realistic con�gurations, as
none of the three modes of heat transfer can be neglected, the problem is complex and a numerical
approach is mandatory.5

Numerical resolution of heat conduction problems in solids is carried out using classical numeri-
cal methods, such as �nite elements. However, for complex geometries needing a �ne meshing, the
time required to solve the problem can become unbearably long. It is especially true if the model
is implied in a control or identi�cation loop. To that end, reduced models have been developed
[1] [2]. Reduced modal models correspond to a generalization of the Fourier time space separation
method :

T (M, t) ≈
Ñ∑
i=1

x̃i (t) Ṽi (M) . (1)

From the knowledge of the reduced base Ṽi, the unknowns become the excitation states x̃i,
and the dimension of the problem might be greatly reduced. Modal methods do not degrade the
geometry, and give access to the entire temperature �eld.

Di�erent methods are based on this principle : the most popular is the proper orthogonal
decomposition method (POD) which requires the knowledge of thermal �elds from experimental or10

numerical data [3], [4], [5], [6]. The Modal Identi�cation Method (MIM) directly identi�es the modal
model without determining modes. It is particularly adapted to inverse problems [7] [8]. Finally,
in the Amalgam Reduced Order Modal Model (AROMM) method, a modal base is calculated by
solving an eigenvalue problem adapted to the considered physical problem. The reduced model
is obtained by reducing the initial base by the amalgam method. Initially developed for linear15

problems [9] [10], this method has since been extended to nonlinear problems [11] [12].

Numerical modeling for natural convection phenomena in enclosures is more delicate, since
the entire volume of the cavity is meshed. The grid is re�ned near the walls to properly capture
the dynamics in the boundary layers, leading to a signi�cant increase of the number of degrees of
freedom. To limit this number, the simplest solution is to only simulate the solid parts. The internal20

�uid is then simply modeled by a single temperature and it exchanges a convective heat �ux with
the walls via a convective coe�cient, which is either known from correlations or experimentally.
A more sophisticated solution is to employ reduced modal models [13] to simulate the �uid �ow.
They indeed capture the main characteristics of the �ow while highly decreasing the computational
complexity.25

The addition of radiative phenomena exacerbates the di�culty. The heat radiation is indeed
characterized by its spectral dependence, its integration into space, as well as its strong nonlinearity
in temperature. When the temperature di�erences are small, the radiation is modeled by a linearized
global coe�cient [14]. For simple con�gurations, analytic relations that express the radiative �uxes
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exchanged between surfaces might be used [15]. Otherwise, numerical techniques adapted to heat30

radiation have been developed. The radiosity method is the reference for gray and di�use surfaces.
First studies focused on very simple geometries : the view factors remain easy to calculate and the
number of degrees of freedom is low. For simple cavities, both convection in the �uid and heat
radiation between the surfaces were considered [16]. In other works the phenomenon of conduction
in the walls has been added [17] [18]. In the 1980s, �nite element formulations speci�c to radiation35

problems have been developed [19] [20] [21]. In particular, high order �nite elements were used for
the calculation of radiative �uxes [22] [23]. Other methods exist : Recently the Control Volume -
Lattice Boltzmann Method has been introduced by [24], and ANSYS R© proposes a speci�c radiation
module using a Hybrid Finite Element Boundary Integral Method [25].

The development of these powerful tools has paved the way to design issues involving radiative40

transfer. The objective of design is to �nd the value of a physical quantity that optimizes a process.
This is mostly done by iterative procedures which integrate the above mentioned methods. As an
example, [26] presents a technique to �nd the best distribution of heating sources in an oven, in
order to obtain the temperature of the heated object as homogeneous as possible. Other functions
can be minimized, such as �nding the lowest possible wall temperature [27]. As in conduction or45

convection problems, reduced models could be employed to decrease the computation time needed
to solve these optimization processes. As the access to the whole temperature �eld is imperative
for the resolution of radiative dominated problems, modal reduction techniques are appropriate.
However, to date, we have not found any study using modal reduction for radiation problems. This
article presents an adaptation of the Amalgam Reduced Order Modal Model (AROMM) method50

for heat radiation and conduction problems in an enclosure.

The paper is structured as follows. In Section 2, the physical description of the considered
problem is presented, with a classical �nite element formulation. Section 3 investigates the reduced
method allowing to solve this problem. Section 4 is dedicated to results and discussion about
reduced model. Section 5 o�ers a conclusion to the paper.55

2. Resolution by the �nite element method of a thermal problem in an enclosure

2.1. Physical problem

A titanium object with a complex shape is placed on a stand in an industrial furnace. This
object is heated by two radiant tubes surrounded by parabolic re�ectors located at the top of the
furnace (see Fig. 1). The di�erent thermophysical properties of these elements are given in Table60

1.

The purpose of this study is to compute the temperature distribution in the titanium object for
several exterior boundary conditions and di�erent radiant tubes temperatures. For each scenario,
we assume that :

� the furnace exchanges heat with the outside. This is modeled by an equivalent global65

exchange coe�cient hext. The outside temperature is supposed to be constant at Text =
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Heat capacity Thermal conductivity Emissivity Thickness
c [J.m−3.K−1] k [W.m−1.K−1] ε e [m]

Piece 2.35× 106 21.9 0.8 0.001
Stand 3.95× 106 16.3 0.95 0.005
Wall 0.18× 106 45 0.95 0.01
Tube 3.4× 106 45 0.95 0.01

Re�ector 3.95× 106 16.3 0.3 0.001

Table 1: Thermophysical characteristics of the di�erent components

293.15K ;
� the convective exchanges between the interior surfaces of the furnace are represented by a

constant coe�cient hint = 5W.m−2.K−1 ;
� the radiant tubes are considered to be at constant temperature Ttube.70

Table 2 presents the parameter values for the di�erent scenarios.

hext[W.m
−2.K−1] Ttube[K]

Scenario 1 5 673.15
Scenario 2 1 973.15
Scenario 3 0.5 1273.15

Table 2: Variable boundary conditions

The initial condition is the ambiant temperature T0 = 293.15K, and the simulation duration to
reach the steady state is 5 × 104 s. Considering the high temperature of the tubes, the heating of
the titanium piece is mainly driven by radiative transfer. The complex geometry creates masks, and
a �ne detailed resolution of the radiative �ux is mandatory to correctly represent the temperature75

evolution.

2.2. Finite element formulation of the problem

2.2.1. Adaptating the heat equation for thin shells in an enclosure

Considering the above characteristics, the maximum Biot Number is Bi =
h e

2 k
≤ 0.072 (with

e = 0.5 cm, k = 16.3W.m−1.K−1 and hmax = 4εσT 3
max ' 500W.m−2.K−1), validating a shell model80

hypothesis [28] [29]. In a shell model, the temperature �eld depends only on local coordinates (η, ζ)
of a plane Ω, which corresponds to the main surface of the original 3D domain (see Fig. 2). Both
faces Ω(+) and Ω(−), characterized by normal vectors of opposite signs (Fig. 3.a), receive a heat �ux
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ϕ. The weak formulation of the heat equation yields :∫
Ω

e c
∂T

∂t
f dΩ = −

∫
Ω

e k ~∇T · ~∇f dΩ +

∫
Ω(+)

ϕf dΩ +

∫
Ω(−)

ϕf dΩ , (2)

where f ∈ H1 (Ω) (H1 (Ω) being the Hilbert space such that f and its derivatives are square-85

integrable functions) is the test function of the variational formulation on Ω.

Faces Ω(+) and Ω(−) can be rearranged based on their location, outside or inside the enclosure
(Fig. 3.b).

For external surfaces Ωext, a simple global exchange coe�cient models furnace insulation :∫
Ωext

ϕf dΩ =

∫
Ωext

hext (Text − T ) f dΩ . (3)

For interior surfaces Ωint, the heat �ux is divided into distinct convective and radiative pheno-
mena :90 ∫

Ωint

ϕf dΩ =

∫
Ωint

hint (Tint (T )− T ) f dΩ +

∫
Ωint

ϕrad f dΩ , (4)

where Tint (T ) is the unique air temperature inside the furnace. Assuming that the heat capacity
of the internal �uid is negligible compared to that of the walls, a simple heat balance provides the
expression of indoor temperature :

Tint (T ) =

∫
Ωint

hint TdΩ∫
Ωint

hint dΩ
. (5)

Equation (2) �nally becomes :

∫
Ω

e c
∂T

∂t
f dΩ =−

∫
Ω

e k ~∇T · ~∇f dΩ

−
∫

Ωint

hint T f dΩ +

∫
Ωint

hint Tint (T ) f dΩ

−
∫

Ωext

hext T f dΩ +

∫
Ωext

hext Text f dΩ

+

∫
Ωint

ϕrad f dΩ ,

(6)
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where Tint is de�ned by relation (5).95

2.2.2. Modeling the radiative heat �ux with the radiosity method

In this problem, di�use-gray bodies exchanging radiative heat �ux are placed in a nonpartici-
pating media. The radiative heat �ux exchanged by a surface depends, in a complex way, on the
temperature distribution of the surrounding surfaces. This �ux can be obtained by the net-radiation
method [17] [30]. The considered surface is �rst discretized in Np elementary surfaces Ωe

j , on which100

the radiative �ux is considered constant, ϕrad = ϕj. These elementary surfaces are named `patches'.

The Np
2 view factors Fij, which are the proportion of �ux leaving a patch Ωe

i towards another
elementary surface Ωe

j , are then computed with the polar-plane-based method [31] [32], which is an
adaptation of the hemicube method [33]. An hemisphere centered on Ωe

i (Fig. 4) is discretized in
N q quadrangles. Their size is de�ned so that the value of the elementary view factors towards Ωe

j105

is constant. This avoids to compute and keep track of the elementary view factors. The hemisphere
is then projected on a plan parallel to Ωe

i . Surface Ωe
j is �nally projected on this plan. The view

factor is retrieved from the sum of the quadrangles covered by this projection.

The radiosity method relates the mean �ux ϕi exchanged by patch Ωe
i to the set of mean

temperatures T j, with j ∈ [1, Np] :110

∀j ∈ [1, Np]

Np∑
i=1

[
δji
εi
−
(

1

εi
− 1

)
Fji

]
ϕi = −

Np∑
i=1

(δji − Fji)σT
4

i , (7)

where δji is the Kronecker delta. This sign convention ensures that exchanged �ux ϕi is negative if
the surface Si emits more �ux than it absorbs. Relation (7) can be written in matrix form :

Aϕ = BT
4
. (8)

The mean �ux exchanged by a patch ϕj expresses as :

ϕj =

Np∑
i=1

rjiT
4

i , (9)

where rji are the elements of Rrad [Np, Np] = A−1 B.
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2.2.3. Variational formulation with radiative heat �ux

The variational expression of the exchanged radiative �ux is derived from Eqs. (4) and (9) :∫
Ωint

ϕrad f dΩ =

Np∑
j=1

∫
Ωe

j

ϕrad f dΩ

=

Np∑
j=1

ϕj

∫
Ωe

j

f dΩ

=

Np∑
j=1

Np∑
i=1

(
rjiT

4

i

)∫
Ωe

j

f dΩ .

(10)

The addition of this term to the variational formulation Eq. (6) leads to :115

∫
Ω

e c
∂T

∂t
f dΩ =−

∫
Ω

e k ~∇T · ~∇f dΩ

−
∫

Ωint

hintT f dΩ−
∫

Ωext

hext T f dΩ

+

∫
Ω int

hint Tint f dΩ +

∫
Ωext

hext Text f dΩ

+

Np∑
j=1

Np∑
i=1

(
rjiT

4

i

)∫
Ωe

j

f dΩ .

(11)

2.3. Numerical resolution

The spatial discretization of the problem de�ned by Eqs. (5) and (11) through Lagrange �nite
elements brings out the following matrix problem (hereafter called detailed model) :

C
dT

dt
= [K + Hint + Hext]T + Ucpl Tint (T) + U0 + RradT

4
. (12)

Vector T contains the temperature value at the N discretization points, and U0 is a vector repre-
senting the external known solicitations (the received external heat �ux

∫
Ω
hextText). C, K, Hint,

Hext are [N ×N ] symmetric sparse matrices : C is the thermal inertia matrix, K the conductivity
matrix and Hint and Hext are accommodation matrices. Vector Ucpl represents the convective
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Nt Np (< SΩe
i
>) (m2)

Piece 2 891 5 782 5.02× 10−4

Stand 1 562 3 124 1.15× 10−3

Wall 3 566 3 566 2.80× 10−3

Tubes 11 144 22 288 3.90× 10−5

Re�ectors 5 039 10 078 2.60× 10−3

Total 24 202 44 838

Table 3: Number of triangular elements (Nt) and number of patches (Np) of the di�erent components

exchange with the air inside the furnace, at temperature Tint (T). This latter term is computed
thanks to the discretization of Eq. (5) :

Tint (T) = DT . (13)

Vector T of dimension [Np] contains mean temperatures of every patch Ωe
i and is easily estimated

by :
T = URT . (14)

Matrix UR of dimension [Np ×N ] is the average operator which allows to computes the mean
temperature on the Np patches from the temperature at the N nodes of the mesh.
Finally, radiation matrix Rrad [N ×Np] allots the mean heat �ux density from the Np patches to
the N nodes. This matrix is computed with the following relation

Rrad = (UR)T SRrad ,

where S is a diagonal matrix of dimension [Np ×Np] such that Sii contains the surface of the patch

i. The components of vector T
4
contains the components of the vector T to the power 4.120

2.4. Results

All calculations were performed on a laptop with a 6-core Intel R© Xeon R© E-2176M @ 2.7GHz
and 64GB of RAM. The discretization used for all the calculations is a meshing of N = 12 167
nodes which de�ne Nt = 24 202 triangular elements. Table 3 details the meshing component by
component. The mesh has only been re�ned on the radiant tubes, the source of luminance, so125

that the direction of the emitted �ux is well de�ned, and also on the platinum object, which is
the critical parameter. The determination of the patches is an open question. In this study, the
patches coincide with the triangles of the mesh. As inner surfaces are doubled (they radiate via
their two faces Ω(+) and Ω(−), see Fig. 3), Np = 44 838 patches Ωe

j emerge. First step is to perform
the preliminary calculation needed by radiation. The computation time needed to get the Np

2 view130

factors is t
Fij

CPU ≈ 1h. The computation of A−1B lasts tradCPU ≈ 8h. These two calculations are
performed only once and are therefore reused for each simulation.
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The temporal discretization of equation (12) is done with a semi-implicit second-order scheme
with variable time steps [34].

The numerical simulation of 5× 104 s requires a CPU time that is dependent on nonlinearities,135

as it varies between 4 and 6 hours.

Figure 5 presents temperature �elds at t = 3 000 s for the three scenarios, characterized by very
di�erent heat source temperature. The �rst remark concerns the temperature range. As the maxi-
mum temperature goes from 673.15K to 973.15K (scenario 1 and 2), the minimum temperature
increases only of 55K. But when another increase of 300K is applied on the radiant tubes tempera-140

ture (scenario 3), minimum temperature gains more than 150K, underlining the non-linear e�ect of
radiation. The second remark concerns the shape of the temperature �elds. As the heat transfer by
radiation is predominant, mask e�ect plays a signi�cant role. This is particularly apparent on the
titanium object. For scenario 3, its top surface is at almost 800K, while the bottom one, which is
not directly exposed to the radiant tubes, is around 600K. Finally, even if the temperature contour145

on the titanium item barely changes from one simulation to another, its temperature amplitude is
obviously dependent on the applied scenario. This preliminary study shows that the radiation has
to be modeled in all its complexity to give signi�cant results. This �ne modeling results in an im-
portant CPU time, which forbids parametric study, hence the need for reduced models considering
radiation.150

3. Modal method

In modal methods, the temperature �eld T (M, t) is searched as a weighted sum of elementary
functions Vi called modes :

T (M, t) =
∞∑
i=1

xi(t) Vi(M) . (15)

Weighting coe�cients xi(t) are now the unknowns, called excitation states. Virtually, the sum does
not reach in�nity. When the modes are obtained after spatial discretization, the number of modes
numerically accessible corresponds to the number of mesh points N .

Di�erent modal approaches exist. In this study, modes are eigenfunctions of the Laplace opera-155

tor, with Neumann Boundary conditions :

−
∫

Ω

e k ~∇Vi · ~∇f dΩ = zi

∫
Ω

e c Vi f dΩ , (16)

where zi is the associated eigenvalue, homogeneous to the inverse of a time.

Orthogonality relationships play a fundamental role in modal methods. They ensure that the
decomposition (15) is unique. Modes de�ned by Eq. (16) verify the following relations :

∀i, j ∈ [1, N ] ,
∫

Ω
e c Vi Vj dΩ = δij, (17)

∀i, j ∈ [1, N ] ,
∫

Ω
e k ~∇Vi · ~∇Vj dΩ = zi δij. (18)
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3.1. Reduction step160

The purpose of the modal reduction is to approach the thermal �eld with a reduced base
(
z̃i, Ṽi

)
,

of dimension Ñ << N :

T̃ (M, t) =
Ñ∑
i=1

x̃i(t) Ṽi(M) . (19)

This is performed by the amalgam reduction method. In this method, dominant modes are
selected. The remaining modes, called minors, are aggregated to the dominant ones, instead of being
discarded. The resulting reduced modes, named amalgamated modes, are then a linear combination
of the original modes :

∀i ∈
{

1, ...Ñ
}

Ṽi(M) = Vi,0 +

Ni∑
p=1

αip Vip . (20)

The speci�city of the amalgam method is to keep every mode of the original base. To ensure the
orthogonality of the reduced basis, each original eigenvector Vi is used only once. The distribution
of the original modes Vi in the reduced basis Ṽi, and the determination of the weighting coe�cient165

αip are obtained by minimizing in the modal space an energy di�erence on a reference simulation
(more details can be found in [11]). The reference simulation shall trigger the relevant modes,
and should be readily computed. In the case of a radiative problem, all surfaces are considered as
black-bodies in the reference simulation. The computation is greatly simpli�ed, as A becomes the
identity matrix in Eq. (8).170

3.2. Modal formulation of the problem

3.2.1. Reduced formulation

The modal formulation is obtained by replacing temperature by its decomposition on the Neu-
mann modes in Eq. (11). Neumann modes are also used for test functions f . The following equation
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is obtained :175

Ñ∑
p=1

∫
Ω

e cṼp Ṽq dΩ
∂x̃p
∂t

=−
Ñ∑
p=1

∫
Ω

e k ~∇Ṽp · ~∇Ṽq dΩ x̃p

−
Ñ∑
p=1

 ∫
Ω int

hintṼp Ṽq dΩ +

∫
Ωext

hextṼp Ṽq dΩ

 x̃p

+
Ñ∑
p=1

 ∫
Ω int

hint Tint Ṽq dΩ +

∫
Ωext

hext Text Ṽq dΩ


+

Ñ∑
p=1

Np∑
j=1

Np∑
i=1

(
rjiT

4

i

)∫
Ωe

j

Ṽq dΩ .

(21)

The temperature of the air inside the enclosure, as well as T i, the mean temperature on the patch
Ωe
i , can also be expressed under a modal formulation :

Tint =

Ñ∑
i=1

xi
∫

Ωint

hint ṼidΩ∫
Ωint

hint dΩ
, T i =

Ñ∑
j=1

xj
∫
Ωe

i

ṼjdΩ∫
Ωe

i

dΩ
. (22)

The modal formulation of Tint in Eq. (22) is injected in Eq. (21). However, as T
4

i 6= T 4
i , it

can not be done for T i. The repeated change of basis between modal and temperature space will
deteriorate the expected gain in computation time.

3.3. Numerical resolution

The set of equations (21) and (22) can be written under matrix form :180

ṼT CṼ
dX̃

dt
= ṼT [K + Hint + Hext + Hcpl] ṼX̃ + ṼTU0 + ṼT RradT

4
, (23)

with
T = UR Ṽ X̃ , (24)

where Ṽ
[
Ñ × Ñ

]
is the matrix containing the Ñ discrete reduced modes Ṽp, and C, K, etc.

are �nite element matrices de�ned in Eq. (12). Compact matrices like ṼT CṼ are dense and of

dimension
[
Ñ × Ñ

]
.
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4. Results and discussion

4.1. Reduced model creation185

The creation of the reduced model demands preliminary computations. As for the �nite ele-
ment model, view factors have to be computed, and the inversion of matrix A in Eq. (8) has to be
performed. This is done in 9 hours. The second step consists in the computation of the modal base
(Eq. (16)), done in 4 minutes. Figure 6 depicts typical examples of Neumann eigenmodes. They
can be seen as temperature �elds, solution of the steady-state heat equation where the volume190

solicitation is proportional to the temperature. For homogeneous domain, these eigenmodes are
basically a combination of trigonometric functions. As the order of the eigenmodes increases, its
time constant decreases, yielding modes that vanish quickly. This occurs with an increase of the
spatial frequency, as, for instance, shown by mode 599. Typically, with a simple truncation reduc-
tion procedure, this mode will be discarded, together with the spatial information it contains. With195

the amalgam procedure, this mode is kept, but its time behaviour will be imposed by another mode.

The amalgam procedure requires a reference �eld. As stated above, this reference �eld is obtained
by a �nite element simulation with all surfaces considered as black bodies. By doing so, the numerical
problem is greatly simpli�ed. Moreover, the reference simulation is performed over a very short200

period of 1 800s instead of 50 000s. With these two simpli�cations, the reference simulation is done
in about 2 minutes. The amalgam procedure in itself is performed in ten seconds. Figure 7 shows
amalgamated modes. From the Neumann eigenmodes, the amalgam procedure built new modes
related to the solicitations. This is evidenced by mode 3, where the temperature contour on the
titanium object is similar to those shown in Fig. 5, while mode 12 provides a contribution to the205

parabolic re�ectors.

4.2. Reduced Model utilization

Figure 8 illustrates the performance of AROMM method in terms of accuracy. The modal
temperature �eld computed with a reduced model of order 200 (compared to the 12 167 nodes of
the original model) is represented for scenario 3 at t = 3000 s, and should be confronted to Fig. 5 (c)210

(same scale and contours are used). Visually the agreement between these two �elds is excellent. In
particular, contours produced by the complex radiative heat transfer are remarkably well recovered.
This is con�rmed by the di�erence �eld |T − T̃ | represented in the same �gure. This �eld is erratic,
which is characteristic of modal reduction. The di�erence does not exceed 26K, which has to be
related to the 1 200K of radiant tubes. The average di�erence of 3.3K (which represents 0.2% of215

1200K) is very satisfactory. Note also that the maximum temperature reached by the titanium
piece is particularly well predicted by the modal model with a di�erence of prediction with the
�nite element model of less than 1.5K.

A sensitivity analysis on the reduction order has been conducted. To quantify its results the
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following quantities are de�ned :

< ε >=
1

V

1

τ

∫
τ

∫
Ω
|T − T̃ |dΩ

max
τ,Ω

(T )−min
τ,Ω

(T )
, εmax =

max
τ,Ω
|T − T̃ |

max
τ,Ω

(T )−min
τ,Ω

(T )
,

where τ is the simulation duration and V the volume of domain Ω.

The main conclusions are summarized in Fig. 9. Figure 9 (a) represents < ε > and εmax as a220

function of the order of the modal model for the three scenarios. The CPU time required to solve
the problem is also represented in Fig. 9 (b). For the three scenarios, even for highly reduced model
(20 modes), results are decent, with εmax ≈ 10% and < ε > below 1%. However, despite those very
good relative errors, the absolute errors are less satisfying : for scenario 3, the maximum error with
a reduced model of order 20 reaches 100K. Still, about an order of magnitude is found between225

the maximum and mean errors : the maximum error is localized in both time and space. Obviously,
errors decrease monotonously as the model order increases. With 200 modes, < ε > is below 0.1%
(≈ 1K) while εmax is under 3%. The choice of the order is a question of compromise between
accuracy and computation time. The latter logically increases with the order of the model. It still
remains very small compared to the computation time required for the resolution by classical �nite230

element model (several hours). With a reduced model of order 200, CPU time for scenario 3 is
4 minutes, which is almost a hundred time faster than the FE model which requires 6 hours. As
the reduced model has proven its e�ciency on three scenarios characterized by di�erent thermal
solicitations (di�erent global exchange coe�cients and di�erent radiant tube temperature), it is
suitable for parametric study, or control loops.235

5. Conclusion

The purpose of this study was to demonstrate the feasibility and the relevance of reducing a
thermal radiation problem for a realistic con�guration, while keeping the complexity engendered by
the radiation and the geometry. The employed method combines a modal reduction technique and
the radiosity method. Indeed, modal methods give access to the whole temperature �eld, which is240

mandatory in radiative dominated problems. In this study, we used a Neumann base reduced by the
amalgam method. The computation of the modal model in itself is e�ortless (less than 7 minutes).
However, some computations required by the radiosity method could not be avoided, such as the
view factors determination or the inversion of the radiosity matrix. The overall entrance ticket for
using a modal model with an accurately modeled radiation might seem expensive, as it requires245

nine hours of computation. However, this time has to be compared to a �nite elements simulation
which can demand up to six hours of CPU time.
To be relevant to other methods, the resulting reduced model has to be used several times and not
computed for a one-shot study. The modal reduced model has proven to be robust, as three dif-
ferent con�gurations were tested, each having di�erent boundary conditions and di�erent radiative250

solicitations. With a modal model of order 200, the relative maximal error was found to be less
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than 3% while the average error in time and space is below 0.1%. At that order, the computation
e�ort is very low, as only 4 minutes are needed to solve a duration of 50 000 s, compared to the 6
hours required by the �nite elements problem. The gain in computation time is of the order of 100
or more, whatever the con�guration tested. These very satisfying performances open access to real255

time control or identi�cation procedure with radiation.
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Figure 1: The considered geometry
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Figure 2: Transformation of a 3D domain to a shell con�guration
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Figure 3: Decompositions of boundaries in a shell con�guration
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Figure 4: Projection using polar-plane-based method
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Figure 5: Temperature �elds for the three scenarios at time 3 000 s. The left column represents the complete thermal
scene, whereas the right column focuses on titanium item
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Figure 6: Examples of Neumann eigenmodes
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Figure 7: Examples of amalgamated modes
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(a) Reduced model (200 modes) (b) Reduced model (200 modes)

(c) Difference with FE Model (d) Difference with FE Model

Figure 8: Temperature and error �elds for scenario 3 at t = 3000 s
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Figure 9: Relative error and CPU time in function of the reduction order
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