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We propose an original method to reduce a radiation dominated heat transfer problem. To that end, the Amalgam Reduced Order Modal Model (AROMM) method, which preserves the integrity of the geometry, is coupled to the classical radiosity method. The treated application is a complex titanium piece heated by two radiant panels placed in a furnace. The AROMM method reduces by a factor 100 the computation time needed to obtain the solution, while keeping an average error below 0.1%. These very good performances open the way for control or identication procedure in a reasonable time for these kind of applications.

Introduction

Industrial applications involving thermal phenomena in enclosures are frequently encountered : climatic chambers, honeycomb structures, industrial furnaces, ... For realistic congurations, as none of the three modes of heat transfer can be neglected, the problem is complex and a numerical approach is mandatory. Numerical resolution of heat conduction problems in solids is carried out using classical numerical methods, such as nite elements. However, for complex geometries needing a ne meshing, the time required to solve the problem can become unbearably long. It is especially true if the model is implied in a control or identication loop. To that end, reduced models have been developed [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method. application to a brake disc rotating[END_REF] [START_REF] Carmona | Spatio-temporal identication of heat ux density using reduced models. application to a brake pad[END_REF]. Reduced modal models correspond to a generalization of the Fourier time space separation method :

T (M, t) ≈ N i=1 x i (t) V i (M ) . (1) 
From the knowledge of the reduced base V i , the unknowns become the excitation states x i , and the dimension of the problem might be greatly reduced. Modal methods do not degrade the geometry, and give access to the entire temperature eld.

Dierent methods are based on this principle : the most popular is the proper orthogonal decomposition method (POD) which requires the knowledge of thermal elds from experimental or numerical data [START_REF] Atwell | Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations[END_REF], [START_REF] Zhang | A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems[END_REF], [START_REF] Ghosh | Error estimation in POD-based dynamic reduced-order thermal modeling of data centers[END_REF], [START_REF] He | Fast simulation methods for dynamic heat transfer through building envelope based on model-order-reduction[END_REF]. The Modal Identication Method (MIM) directly identies the modal model without determining modes. It is particularly adapted to inverse problems [START_REF] Rouizi | Model reduction through identication -Application to some diusion -convection problems in heat transfer, with an extension towards control strategies[END_REF] [START_REF] Videcoq | Parametric investigation of linear quadratic gaussian and model predictive control approaches for thermal regulation of a high precision geometric measurement machine[END_REF]. Finally, in the Amalgam Reduced Order Modal Model (AROMM) method, a modal base is calculated by solving an eigenvalue problem adapted to the considered physical problem. The reduced model is obtained by reducing the initial base by the amalgam method. Initially developed for linear problems [START_REF] Sicard | Analyse modale des échanges thermiques dans le bâtiment[END_REF] [START_REF] Gao | Reduced linear state model of hollow blocks walls, validation using hot box measurements[END_REF], this method has since been extended to nonlinear problems [START_REF] Quéméner | A specic reduction method for branch modal formulation : Application to highly non linear conguration[END_REF] [START_REF] Videcoq | Online temperature prediction using a branch eigenmode reduced model applied to cutting process[END_REF].

Numerical modeling for natural convection phenomena in enclosures is more delicate, since the entire volume of the cavity is meshed. The grid is rened near the walls to properly capture the dynamics in the boundary layers, leading to a signicant increase of the number of degrees of freedom. To limit this number, the simplest solution is to only simulate the solid parts. The internal uid is then simply modeled by a single temperature and it exchanges a convective heat ux with the walls via a convective coecient, which is either known from correlations or experimentally. A more sophisticated solution is to employ reduced modal models [START_REF] Tallet | Pod approach to determine in real-time the temperature distribution in a cavity[END_REF] to simulate the uid ow. They indeed capture the main characteristics of the ow while highly decreasing the computational complexity.

The addition of radiative phenomena exacerbates the diculty. The heat radiation is indeed characterized by its spectral dependence, its integration into space, as well as its strong nonlinearity in temperature. When the temperature dierences are small, the radiation is modeled by a linearized global coecient [START_REF] Harish | Reduced order modeling and parameter identication of a building energy system model through an optimization routine[END_REF]. For simple congurations, analytic relations that express the radiative uxes exchanged between surfaces might be used [START_REF] Yoo | Verication of radiation heat transfer analysis in kstar pfc and vacuum vessel during baking[END_REF]. Otherwise, numerical techniques adapted to heat radiation have been developed. The radiosity method is the reference for gray and diuse surfaces. First studies focused on very simple geometries : the view factors remain easy to calculate and the number of degrees of freedom is low. For simple cavities, both convection in the uid and heat radiation between the surfaces were considered [START_REF] Bouaa | Non-boussinesq convection in a square cavity with surface thermal radiation[END_REF]. In other works the phenomenon of conduction in the walls has been added [START_REF] Ait-Taleb | Numerical simulation of coupled heat transfers by conduction, natural convection and radiation in hollow structures heated from below or above[END_REF] [START_REF] Antar | Conjugate conduction-natural convection heat transfer in a hollow building block[END_REF]. In the 1980s, nite element formulations specic to radiation problems have been developed [START_REF] Bathe | Finite element formulation and solution of nonlinear heat transfer[END_REF] [20] [START_REF] Minkowycz | The sparrow galerkin solution of radiation exchange and transition to nite element[END_REF]. In particular, high order nite elements were used for the calculation of radiative uxes [START_REF] Gould | Radiation heat transfer between diuse-gray surfaces using higher order nite elements[END_REF] [START_REF] Yi | Research of the higher-order nite element arithmetic for radiation exchange[END_REF]. Other methods exist : Recently the Control Volume -Lattice Boltzmann Method has been introduced by [START_REF] Bouzgarrou | Analyses of unsteady conductionradiation heat transfer using unstructured lattice boltzmann method[END_REF], and ANSYS R proposes a specic radiation module using a Hybrid Finite Element Boundary Integral Method [START_REF] Silvestro | Hybrid nite element boundary integral method[END_REF].

The development of these powerful tools has paved the way to design issues involving radiative transfer. The objective of design is to nd the value of a physical quantity that optimizes a process. This is mostly done by iterative procedures which integrate the above mentioned methods. As an example, [START_REF] Chopade | Estimation of power of heaters in a radiant furnace for uniform thermal conditions on 3-d irregular shaped objects[END_REF] presents a technique to nd the best distribution of heating sources in an oven, in order to obtain the temperature of the heated object as homogeneous as possible. Other functions can be minimized, such as nding the lowest possible wall temperature [START_REF] Castro | Design of radiative enclosures by using topology optimization[END_REF]. As in conduction or convection problems, reduced models could be employed to decrease the computation time needed to solve these optimization processes. As the access to the whole temperature eld is imperative for the resolution of radiative dominated problems, modal reduction techniques are appropriate. However, to date, we have not found any study using modal reduction for radiation problems. This article presents an adaptation of the Amalgam Reduced Order Modal Model (AROMM) method for heat radiation and conduction problems in an enclosure.

The paper is structured as follows. In Section 2, the physical description of the considered problem is presented, with a classical nite element formulation. Section 3 investigates the reduced method allowing to solve this problem. Section 4 is dedicated to results and discussion about reduced model. Section 5 oers a conclusion to the paper.

Resolution by the nite element method of a thermal problem in an enclosure

Physical problem

A titanium object with a complex shape is placed on a stand in an industrial furnace. This object is heated by two radiant tubes surrounded by parabolic reectors located at the top of the furnace (see Fig. 1). The dierent thermophysical properties of these elements are given in Table 1.

The purpose of this study is to compute the temperature distribution in the titanium object for several exterior boundary conditions and dierent radiant tubes temperatures. For each scenario, we assume that : the furnace exchanges heat with the outside. This is modeled by an equivalent global exchange coecient h ext . The outside temperature is supposed to be constant at T ext = The initial condition is the ambiant temperature T 0 = 293.15K, and the simulation duration to reach the steady state is 5 × 10 4 s. Considering the high temperature of the tubes, the heating of the titanium piece is mainly driven by radiative transfer. The complex geometry creates masks, and a ne detailed resolution of the radiative ux is mandatory to correctly represent the temperature evolution.

Heat capacity Thermal conductivity Emissivity Thickness

c [J.m -3 .K -1 ] k [W.m -1 .K -1 ] ε e [m]

Finite element formulation of the problem 2.2.1. Adaptating the heat equation for thin shells in an enclosure

Considering the above characteristics, the maximum Biot Number is

Bi = h e 2 k ≤ 0.072 (with e = 0.5 cm, k = 16.3 W.m -1 .K -1 and h max = 4εσT 3 max 500 W.m -2 .K -1
), validating a shell model hypothesis [28] [29]. In a shell model, the temperature eld depends only on local coordinates (η, ζ) of a plane Ω, which corresponds to the main surface of the original 3D domain (see Fig. 2). Both faces Ω (+) and Ω (-) , characterized by normal vectors of opposite signs (Fig. 3.a), receive a heat ux ϕ. The weak formulation of the heat equation yields :

Ω e c ∂T ∂t f dΩ = - Ω e k ∇T • ∇f dΩ + Ω (+) ϕ f dΩ + Ω (-) ϕ f dΩ , (2) 
where f ∈ H 1 (Ω) (H 1 (Ω) being the Hilbert space such that f and its derivatives are square-85 integrable functions) is the test function of the variational formulation on Ω.

Faces Ω (+) and Ω (-) can be rearranged based on their location, outside or inside the enclosure (Fig. 3.b).

For external surfaces Ω ext , a simple global exchange coecient models furnace insulation :

Ωext ϕ f dΩ = Ωext h ext (T ext -T ) f dΩ . (3) 
For interior surfaces Ω int , the heat ux is divided into distinct convective and radiative phenomena :
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Ω int ϕ f dΩ = Ω int h int (T int (T ) -T ) f dΩ + Ω int ϕ rad f dΩ , (4) 
where T int (T ) is the unique air temperature inside the furnace. Assuming that the heat capacity of the internal uid is negligible compared to that of the walls, a simple heat balance provides the expression of indoor temperature :

T int (T ) = Ω int h int T dΩ Ω int h int dΩ . (5) 
Equation ( 2) nally becomes :

Ω e c ∂T ∂t f dΩ = - Ω e k ∇T • ∇f dΩ - Ω int h int T f dΩ + Ω int h int T int (T ) f dΩ - Ωext h ext T f dΩ + Ωext h ext T ext f dΩ + Ω int ϕ rad f dΩ , (6) 
where T int is dened by relation (5).

Modeling the radiative heat ux with the radiosity method

In this problem, diuse-gray bodies exchanging radiative heat ux are placed in a nonparticipating media. The radiative heat ux exchanged by a surface depends, in a complex way, on the temperature distribution of the surrounding surfaces. This ux can be obtained by the net-radiation method [START_REF] Ait-Taleb | Numerical simulation of coupled heat transfers by conduction, natural convection and radiation in hollow structures heated from below or above[END_REF] [START_REF] Antar | Thermal radiation role in conjugate heat transfer across a multiple-cavity building block[END_REF]. The considered surface is rst discretized in N p elementary surfaces Ω e j , on which the radiative ux is considered constant, ϕ rad = ϕ j . These elementary surfaces are named `patches'.

The N p 2 view factors F ij , which are the proportion of ux leaving a patch Ω e i towards another elementary surface Ω e j , are then computed with the polar-plane-based method [START_REF] Wallace | A twopass solution to the rendering equation : a synthesis of ray tracing and radiosity methods[END_REF] [32], which is an adaptation of the hemicube method [START_REF] Cohen | The hemi-cube : A radiosity solution for complex environments[END_REF]. An hemisphere centered on Ω e i (Fig. 4) is discretized in N q quadrangles. Their size is dened so that the value of the elementary view factors towards Ω e j is constant. This avoids to compute and keep track of the elementary view factors. The hemisphere is then projected on a plan parallel to Ω e i . Surface Ω e j is nally projected on this plan. The view factor is retrieved from the sum of the quadrangles covered by this projection.

The radiosity method relates the mean ux ϕ i exchanged by patch Ω e i to the set of mean temperatures T j , with j ∈ [1, N p ] :

∀j ∈ [1, N p ] Np i=1 δ ji ε i - 1 ε i -1 F ji ϕ i = - Np i=1 (δ ji -F ji ) σT 4 i , (7) 
where δ ji is the Kronecker delta. This sign convention ensures that exchanged ux ϕ i is negative if the surface S i emits more ux than it absorbs. Relation (7) can be written in matrix form :

A ϕ = B T 4 . (8) 
The mean ux exchanged by a patch ϕ j expresses as :

ϕ j = Np i=1 r ji T 4 i , (9) 
where r ji are the elements of R rad [N p , N p ] = A -1 B.

Variational formulation with radiative heat ux

The variational expression of the exchanged radiative ux is derived from Eqs. ( 4) and [START_REF] Sicard | Analyse modale des échanges thermiques dans le bâtiment[END_REF] :

Ω int ϕ rad f dΩ = Np j=1 Ω e j ϕ rad f dΩ = Np j=1 ϕ j Ω e j f dΩ = Np j=1 Np i=1 r ji T 4 i Ω e j f dΩ . (10) 
The addition of this term to the variational formulation Eq. ( 6) leads to :
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Ω e c ∂T ∂t f dΩ = - Ω e k ∇T • ∇f dΩ - Ω int h int T f dΩ - Ωext h ext T f dΩ + Ω int h int T int f dΩ + Ωext h ext T ext f dΩ + Np j=1 Np i=1 r ji T 4 i Ω e j f dΩ . (11) 

Numerical resolution

The spatial discretization of the problem dened by Eqs. ( 5) and ( 11) through Lagrange nite elements brings out the following matrix problem (hereafter called detailed model) :

C dT dt = [K + H int + H ext ] T + U cpl T int (T) + U 0 + R rad T 4 . ( 12 
)
Vector T contains the temperature value at the N discretization points, and U 0 is a vector representing the external known solicitations (the received external heat ux Ω h ext T ext ). exchange with the air inside the furnace, at temperature T int (T). This latter term is computed thanks to the discretization of Eq. ( 5) :

T int (T) = D T . ( 13 
)
Vector T of dimension [N p ] contains mean temperatures of every patch Ω e i and is easily estimated by :

T = U R T . (14) 
Matrix U R of dimension [N p × N ] is the average operator which allows to computes the mean temperature on the N p patches from the temperature at the N nodes of the mesh. Finally, radiation matrix R rad [N × N p ] allots the mean heat ux density from the N p patches to the N nodes. This matrix is computed with the following relation

R rad = (U R ) T S R rad ,
where S is a diagonal matrix of dimension [N p × N p ] such that S ii contains the surface of the patch i. The components of vector T 4 contains the components of the vector T to the power 4.

Results

All calculations were performed on a laptop with a 6-core Intel R Xeon R E-2176M @ 2.7GHz and 64GB of RAM. The discretization used for all the calculations is a meshing of N = 12 167 nodes which dene N t = 24 202 triangular elements. Table 3 details the meshing component by component. The mesh has only been rened on the radiant tubes, the source of luminance, so that the direction of the emitted ux is well dened, and also on the platinum object, which is the critical parameter. The determination of the patches is an open question. In this study, the patches coincide with the triangles of the mesh. As inner surfaces are doubled (they radiate via their two faces Ω (+) and Ω (-) , see Fig. 3), N p = 44 838 patches Ω e j emerge. First step is to perform the preliminary calculation needed by radiation. The computation time needed to get the N p 2 view factors is t

F ij CP U ≈ 1h.
The computation of A -1 B lasts t rad CP U ≈ 8h. These two calculations are performed only once and are therefore reused for each simulation.

The temporal discretization of equation ( 12) is done with a semi-implicit second-order scheme with variable time steps [START_REF] Wang | Variable step-size implicit-explicit linear multistep methods for time-dependent PDEs[END_REF].

The numerical simulation of 5 × 10 4 s requires a CPU time that is dependent on nonlinearities, as it varies between 4 and 6 hours.

Figure 5 presents temperature elds at t = 3 000 s for the three scenarios, characterized by very dierent heat source temperature. The rst remark concerns the temperature range. As the maximum temperature goes from 673.15 K to 973.15 K (scenario 1 and 2), the minimum temperature increases only of 55 K. But when another increase of 300 K is applied on the radiant tubes temperature (scenario 3), minimum temperature gains more than 150 K, underlining the non-linear eect of radiation. The second remark concerns the shape of the temperature elds. As the heat transfer by radiation is predominant, mask eect plays a signicant role. This is particularly apparent on the titanium object. For scenario 3, its top surface is at almost 800 K, while the bottom one, which is not directly exposed to the radiant tubes, is around 600 K. Finally, even if the temperature contour on the titanium item barely changes from one simulation to another, its temperature amplitude is obviously dependent on the applied scenario. This preliminary study shows that the radiation has to be modeled in all its complexity to give signicant results. This ne modeling results in an important CPU time, which forbids parametric study, hence the need for reduced models considering radiation.

Modal method

In modal methods, the temperature eld T (M, t) is searched as a weighted sum of elementary functions V i called modes :

T (M, t) = ∞ i=1 x i (t) V i (M ) . ( 15 
)
Weighting coecients x i (t) are now the unknowns, called excitation states. Virtually, the sum does not reach innity. When the modes are obtained after spatial discretization, the number of modes numerically accessible corresponds to the number of mesh points N .

Dierent modal approaches exist. In this study, modes are eigenfunctions of the Laplace operator, with Neumann Boundary conditions :

-

Ω e k ∇V i • ∇f dΩ = z i Ω e c V i f dΩ , (16) 
where z i is the associated eigenvalue, homogeneous to the inverse of a time.

Orthogonality relationships play a fundamental role in modal methods. They ensure that the decomposition ( 15) is unique. Modes dened by Eq. ( 16) verify the following relations :

∀i, j ∈ [1, N ] , Ω e c V i V j dΩ = δ ij , ( 17 
) ∀i, j ∈ [1, N ] , Ω e k ∇V i • ∇V j dΩ = z i δ ij . (18) 

Reduction step

The purpose of the modal reduction is to approach the thermal eld with a reduced base z i , V i , of dimension N << N :

T (M, t) = N i=1 x i (t) V i (M ) . ( 19 
)
This is performed by the amalgam reduction method. In this method, dominant modes are selected. The remaining modes, called minors, are aggregated to the dominant ones, instead of being discarded. The resulting reduced modes, named amalgamated modes, are then a linear combination of the original modes :

∀i ∈ 1, ... Ñ V i (M ) = V i,0 + N i p=1 α ip V ip . ( 20 
)
The specicity of the amalgam method is to keep every mode of the original base. To ensure the orthogonality of the reduced basis, each original eigenvector V i is used only once. The distribution of the original modes V i in the reduced basis V i , and the determination of the weighting coecient α ip are obtained by minimizing in the modal space an energy dierence on a reference simulation (more details can be found in [START_REF] Quéméner | A specic reduction method for branch modal formulation : Application to highly non linear conguration[END_REF]). The reference simulation shall trigger the relevant modes, and should be readily computed. In the case of a radiative problem, all surfaces are considered as black-bodies in the reference simulation. The computation is greatly simplied, as A becomes the identity matrix in Eq. ( 8).

Modal formulation of the problem

Reduced formulation

The modal formulation is obtained by replacing temperature by its decomposition on the Neumann modes in Eq. [START_REF] Quéméner | A specic reduction method for branch modal formulation : Application to highly non linear conguration[END_REF]. Neumann modes are also used for test functions f . The following equation

N p=1 Ω e c V p V q dΩ ∂ x p ∂t = - N p=1 Ω e k ∇ V p • ∇ V q dΩ x p - N p=1   Ω int h int V p V q dΩ + Ωext h ext V p V q dΩ   x p + N p=1   Ω int h int T int V q dΩ + Ωext h ext T ext V q dΩ   + N p=1 Np j=1 Np i=1 r ji T 4 i Ω e j V q dΩ . (21) 
The temperature of the air inside the enclosure, as well as T i , the mean temperature on the patch Ω e i , can also be expressed under a modal formulation :

T int = Ñ i=1 x i Ω int h int Ṽi dΩ Ω int h int dΩ , T i = Ñ j=1 x j Ω e i Ṽj dΩ Ω e i dΩ . (22) 
The modal formulation of T int in Eq. ( 22) is injected in Eq. ( 21). However, as T 4 i = T 4 i , it can not be done for T i . The repeated change of basis between modal and temperature space will deteriorate the expected gain in computation time.

Numerical resolution

The set of equations ( 21) and ( 22) can be written under matrix form :

180 V T C V d X dt = V T [K + H int + H ext + H cpl ] V X + V T U 0 + V T R rad T 4 , (23) with 
T = U R V X , (24) 
where V N × N is the matrix containing the N discrete reduced modes V p , and C, K, etc.

are nite element matrices dened in Eq. [START_REF] Videcoq | Online temperature prediction using a branch eigenmode reduced model applied to cutting process[END_REF]. Compact matrices like V T C V are dense and of dimension N × N .

Results and discussion

Reduced model creation

The creation of the reduced model demands preliminary computations. As for the nite element model, view factors have to be computed, and the inversion of matrix A in Eq. ( 8) has to be performed. This is done in 9 hours. The second step consists in the computation of the modal base (Eq. ( 16)), done in 4 minutes. Figure 6 depicts typical examples of Neumann eigenmodes. They can be seen as temperature elds, solution of the steady-state heat equation where the volume solicitation is proportional to the temperature. For homogeneous domain, these eigenmodes are basically a combination of trigonometric functions. As the order of the eigenmodes increases, its time constant decreases, yielding modes that vanish quickly. This occurs with an increase of the spatial frequency, as, for instance, shown by mode 599. Typically, with a simple truncation reduction procedure, this mode will be discarded, together with the spatial information it contains. With the amalgam procedure, this mode is kept, but its time behaviour will be imposed by another mode.

The amalgam procedure requires a reference eld. As stated above, this reference eld is obtained by a nite element simulation with all surfaces considered as black bodies. By doing so, the numerical problem is greatly simplied. Moreover, the reference simulation is performed over a very short period of 1 800s instead of 50 000s. With these two simplications, the reference simulation is done in about 2 minutes. The amalgam procedure in itself is performed in ten seconds. Figure 7 shows amalgamated modes. From the Neumann eigenmodes, the amalgam procedure built new modes related to the solicitations. This is evidenced by mode 3, where the temperature contour on the titanium object is similar to those shown in Fig. 5, while mode 12 provides a contribution to the parabolic reectors.

Reduced Model utilization

Figure 8 illustrates the performance of AROMM method in terms of accuracy. The modal temperature eld computed with a reduced model of order 200 (compared to the 12 167 nodes of the original model) is represented for scenario 3 at t = 3000 s, and should be confronted to Fig. 5 (c) (same scale and contours are used). Visually the agreement between these two elds is excellent. In particular, contours produced by the complex radiative heat transfer are remarkably well recovered. This is conrmed by the dierence eld |T -T | represented in the same gure. This eld is erratic, which is characteristic of modal reduction. The dierence does not exceed 26 K, which has to be related to the 1 200 K of radiant tubes. The average dierence of 3.3 K (which represents 0.2% of 1200 K) is very satisfactory. Note also that the maximum temperature reached by the titanium piece is particularly well predicted by the modal model with a dierence of prediction with the nite element model of less than 1.5 K.

A sensitivity analysis on the reduction order has been conducted. To quantify its results the following quantities are dened :

< ε >= 1 V 1 τ τ Ω |T -T |dΩ max τ,Ω (T ) -min τ,Ω (T ) , ε max = max τ,Ω |T -T | max τ,Ω (T ) -min τ,Ω (T ) ,
where τ is the simulation duration and V the volume of domain Ω.

The main conclusions are summarized in Fig. 9. Figure 9 (a) represents < ε > and ε max as a function of the order of the modal model for the three scenarios. The CPU time required to solve the problem is also represented in Fig. 9 (b). For the three scenarios, even for highly reduced model (20 modes), results are decent, with ε max ≈ 10% and < ε > below 1%. However, despite those very good relative errors, the absolute errors are less satisfying : for scenario 3, the maximum error with a reduced model of order 20 reaches 100 K. Still, about an order of magnitude is found between the maximum and mean errors : the maximum error is localized in both time and space. Obviously, errors decrease monotonously as the model order increases. With 200 modes, < ε > is below 0.1% (≈ 1 K) while ε max is under 3%. The choice of the order is a question of compromise between accuracy and computation time. The latter logically increases with the order of the model. It still remains very small compared to the computation time required for the resolution by classical nite element model (several hours). With a reduced model of order 200, CPU time for scenario 3 is 4 minutes, which is almost a hundred time faster than the FE model which requires 6 hours. As the reduced model has proven its eciency on three scenarios characterized by dierent thermal solicitations (dierent global exchange coecients and dierent radiant tube temperature), it is suitable for parametric study, or control loops.

Conclusion

The purpose of this study was to demonstrate the feasibility and the relevance of reducing a thermal radiation problem for a realistic conguration, while keeping the complexity engendered by the radiation and the geometry. The employed method combines a modal reduction technique and the radiosity method. Indeed, modal methods give access to the whole temperature eld, which is mandatory in radiative dominated problems. In this study, we used a Neumann base reduced by the amalgam method. The computation of the modal model in itself is eortless (less than 7 minutes). However, some computations required by the radiosity method could not be avoided, such as the view factors determination or the inversion of the radiosity matrix. The overall entrance ticket for using a modal model with an accurately modeled radiation might seem expensive, as it requires nine hours of computation. However, this time has to be compared to a nite elements simulation which can demand up to six hours of CPU time. To be relevant to other methods, the resulting reduced model has to be used several times and not computed for a one-shot study. The modal reduced model has proven to be robust, as three different congurations were tested, each having dierent boundary conditions and dierent radiative solicitations. With a modal model of order 200, the relative maximal error was found to be less than 3% while the average error in time and space is below 0.1%. At that order, the computation eort is very low, as only 4 minutes are needed to solve a duration of 50 000 s, compared to the 6 hours required by the nite elements problem. The gain in computation time is of the order of 100 or more, whatever the conguration tested. These very satisfying performances open access to real time control or identication procedure with radiation. 
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 34 Figure 3: Decompositions of boundaries in a shell conguration
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 5 Figure 5: Temperature elds for the three scenarios at time 3 000 s. The left column represents the complete thermal scene, whereas the right column focuses on titanium item
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 89 Figure 8: Temperature and error elds for scenario 3 at t = 3 000 s

Table 1 :

 1 Thermophysical characteristics of the dierent components 293.15K ; the convective exchanges between the interior surfaces of the furnace are represented by a constant coecient h int = 5 W.m -2 .K -1 ; the radiant tubes are considered to be at constant temperature T tube .

	Piece	2.35 × 10 6	21.9	0.8	0.001
	Stand	3.95 × 10 6	16.3	0.95	0.005
	Wall	0.18 × 10 6	45	0.95	0.01
	Tube	3.4 × 10 6	45	0.95	0.01
	Reector	3.95 × 10 6	16.3	0.3	0.001
	Table 2 presents the parameter values for the dierent scenarios.	
			h ext [W.m -2 .K -1 ] T tube [K]	
		Scenario 1	5	673.15	
		Scenario 2	1	973.15	
		Scenario 3	0.5	1273.15	

Table 2 :

 2 Variable boundary conditions

Table 3 :

 3 Number of triangular elements (N t ) and number of patches (N p ) of the dierent components

is obtained :