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A coupled system involving a nonlinear scalar PDE and a linear ODE is theoretically
investigated. This hypebolic system with relaxation models the propagation of nonlinear
waves in a waveguide connected to Helmholtz resonators, this device being an example
of a nonlinear acoustic metamaterial. In a previous paper [Sugimoto, J. Fluid. Mech.
1992], it has been shown that this device allows also the propagation of acoustic solitons.
In the present paper, the mathematical properties of the coupled system are analysed:
formation of singularity in finite time, existence of global smooth solutions for small data,
existence of entropy solutions in fractional BV spaces and uniqueness with a single family
of entropies. New results are also deduced about weakly coupled systems. Numerical
simulations illustrate these findings.
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1. Introduction

In a series of papers,36,37,38,39 Sugimoto and coauthors proposed a model to de-

scribe the propagation of nonlinear acoustic waves in a tube connected to a set of

Helmholtz resonators (Fig. 1). The original motivation of this work was to describe

the high-amplitude waves generated by high-speed trains in tunnels, and to propose

resonators as a mean to counterbalance the effect of shock waves. The Sugimoto’s

model writes as a coupled one-dimensional system of PDE and ODE (x ∈ R, t > 0):





∂tu+ ∂x

(
au+ b

u2

2

)
= −Ω2 ∂tp, (1.1a)

∂2t p+ ε ∂tp+ ω2
0 p = u, (1.1b)

1
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with the coefficients a > 0, b > 0, ε ≥ 0, the characteristic frequencies ω0 and Ω,

and the initial data

u(x, 0) = u0(x), p(x, 0) = p0(x), ∂tp(x, 0) = p1(x). (1.2)

Subsequently, the Sugimoto’s model has led to numerical, experimental and theo-

retical works.24,33,29 Enrichment of this model, in particular by taking into account

nonlinear attenuation mechanisms in (1.1b), have led to the first experimental ob-

servation of acoustic solitons.33

Besides its physical relevance, the Sugimoto’s model is of mathematical interest.

It can be put in the form of a first-order 3 × 3 diagonal hyperbolic system. For

systems of this form with N equations, the existence of solutions in BV spaces

is known by using N = 3 families of entropies.30 In the homogeneous scalar case

(N = 1), existence was proven in the fractional BVs spaces.5 A similar result

was subsequently obtained in the case of a 2 × 2 system issued from chemical

engineering.6 One objective here is to extend existence of BVs solutions to the case

of system (1.2). Another objective is to prove the formation of shocks and then, in

the framework of weak entropy solutions, to get uniqueness with only one family of

entropies.

The article is organized as follows. Sec. 2 recalls the physical modeling underlying

the system (1.1), which is rewritten as a first-order 3×3 diagonal hyperbolic system.

In Sec. 3, the breakdown of regular solutions for large initial data is investigated

(Theorems 3.1 and 3.2). Existence of global smooth solutions for small data is

expected physically. Therefore it is studied near equilibrium, based on the Shizuta-

Kawashima coupling condition.35 Numerical experiments illustrate the discussion.

In Sec. 4, Theorem 4.1 states the existence of a global weak entropy solution for

initial data in BVs. Contrary to existing results,30 one family of entropies is sufficient

to prove the uniqueness of the entropy solution. Sec. 5 makes a link with the theory

of weakly coupled systems, for which existence and uniqueness results are already

known.30 Theorem 5.2 extends these results to the case of BVs solutions. Lastly,

future directions of research are outlined in Sec. 6.

2. Problem statement

2.1. Sugimoto’s model

Let us consider an air-filled tube connected with a network of Helmholtz resonators

(Fig. 1). The cylindrical resonators are uniformly distributed along the tube. The

geometrical parameters are the radius of the guide R, the axial spacing between

resonators D, the radius of the neck r, the length of the neck L, the radius of

the cavity rh and the height of the cavity H , which may vary depending on the

resonator. Hence, the cross-sectional area of the guide is A = π R2 and the volume

of each resonator is V = π r2hH .

The physical parameters are the ratio of specific heats at constant pressure and

volume γ, the pressure at equilibrium p0, the density at equilibrium ρ0, and a phe-
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Fig. 1. sketch of the guide connected with Helmholtz resonators.

nomenological term modeling the losses in the necks of the resonators ǫ. The other

dissipation mechanisms are neglected: the sound diffusivity is negligible, and model-

ing the boundary layer in the tube involves fractional derivatives, which complicates

the analysis. It yields the linear sound speed a0 and the natural angular frequencies

ω0 and Ω:

a0 =

√
γ p0
ρ0

, ω0 = a0

√
B

LV
= a0

r

rh

1√
LH

, Ω =

√
V

2 ρ0 a0AD
. (2.1)

The following assumptions are made about the waves of angular frequency ω and

wavelength λ propagating in the tube:

• low-frequency regime (ω < ω∗ ≈ 1.84 a0

R ), so that only the plane mode

propagates and the 1D approximation is valid;8

• weak acoustic nonlinearity in the tube (small Mach number);13

• continuous distribution of resonators (wavelength λ≫ D);

• linear response of the resonators, no turbulence.

Under these assumptions, the system can be described by a one-dimensional config-

uration with a surfacic distribution of resonators, where the unknowns are the axial

velocity of the gas u and the excess pressure in the cavity (compared to the guide)

p. The right-going simple wave is then modeled by a coupled PDE-ODE system

initially proposed by Sugimoto in Ref. 36:




∂tu+ ∂x

(
a0u+

γ + 1

2

u2

2

)
= −Ω2 ∂tp, (2.2a)

∂2t p+ ǫ ∂tp+ ω2
0 p = ω2

0

γ p0
a0

u. (2.2b)

Defining the normalization parameter θ = ω2
0
γp0

a0

, the scaled coordinate t → t
√
θ

and the scaled parameters

a =
a0√
θ
, b =

γ + 1

2
√
θ
, ε :=

ǫ√
θ
, ω0 :=

ω0√
θ
, (2.3)
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then the system (2.2) recovers (1.1). The parameters satisfy a > 0, b > 0, c > 0,

ω0 > 0 and ε ≥ 0, and they may vary with the position x. It is noted that the

system originally proposed incorporates additional terms of attenuation.36 The full

system is given in Sec. 6.

2.2. First-order hyperbolic system

Introducing the new variable ϕ := ∂tp, the Sugimoto’s system (1.1) is put in the

form of a first-order system





∂tu+ ∂x

(
au+ b

u2

2

)
= −Ω2 ϕ, (2.4a)

∂tϕ = u− εϕ− ω2
0 p, (2.4b)

∂tp = ϕ, (2.4c)

with initial data

u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x), p(x, 0) = p0(x). (2.5)

Compatibility between these initial data and those of the 2× 2 Sugimoto’s system

will be examined further in (3.3). Let us consider smooth solutions of (2.4). Mul-

tiplying (2.4a) by u, (2.4b) by Ω2 ϕ and (2.4c) by Ω2 ω2
0 p, adding the terms and

integrating with respect to x yields

d

dt

1

2

∫

R

(
u2 +Ω2ϕ2 +Ω2 ω2

0 p
2
)
dx = −

∫

R

εΩ2 ϕ2 dx. (2.6)

The energy in l.h.s. in (2.6) is convex. If ε > 0, the system is dissipative, whereas

ε = 0 describes a conservative system. For weak solutions of (2.8), the equality in

(2.6) becomes an inequality. Setting

U = (u, ϕ, p)⊤, F(U) =

(
au+ b

u2

2
, 0, 0

)⊤

, S =




0 −Ω2 0

1 −ε −ω2
0

0 1 0



 , (2.7)

the system (2.4) writes as a balance laws

∂tU+ ∂xF(U) = SU. (2.8)

The flux F in (2.7) is diagonal. The Jacobian matrix A(U) = ∇UF(U) has 2 real

eigenvalues:

• the eigenvalue a + b u is genuinely nonlinear with the eigenvector e1 =

(1, 0, 0)⊤;

• the eigenvalue 0 is linearly degenerate of multiplicity 2, with an eigenspace

generated by e2 = (0, 1, 0)⊤ and e3 = (0, 0, 1)⊤.
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Without the source term, the system is diagonal, hence u, ϕ and p are the Riemann

invariants. The eigenvalues of S are

Sp(S) =

{
0,

1

2

(
−ε+

(
ε2 − 4

(
Ω2 + ω2

0

))1/2)
,
1

2

(
−ε−

(
ε2 − 4

(
Ω2 + ω2

0

))1/2)
}
.

(2.9)

If ε 6= 2
√
Ω2 + ω2

0 , then S is diagonalizable.

2.3. Numerical methods

The numerical resolution of (2.8) is detailed in Ref. 24. It relies on a splitting

strategy. The non-homogeneous system (2.8) is split into a homogeneous hyperbolic

PDE

∂tU+ ∂xF(U) = 0

which is solved by a finite-volume scheme with flux limiters, and a linear ODE

∂tU = SU

which is solved exactly. The coupling between the successive resolutions is done by

the second-order Strang splitting.21 The choice of the numerical set-up (mesh size

∆x, variable time step ∆t) ensure reference solutions, not polluted by numerical

artefacts. The numerical value of a variable φ at xi = i∆x and at time tn = tn−1+∆t

is denoted φni .

To detect the emergence of a shock in the conservative case ε = 0, we use the fact

that energy in (2.6) is conserved in the case of smooth solutions. For this purpose,

we define a discrete counterpart of the energy in (2.6):

En =

√
∆x

2

∑

i

((uni )
2 +Ω2(ϕn

i )
2 +Ω2 ω2

0 (p
n
i )

2). (2.10)

As long as the solution is smooth, En remains constant. When a shock emerges,

then En decreases. Obviously, this numerical criterion is valid when the numerical

dissipation of the numerical scheme is sufficiently small, which will be the case here.

3. Formation of singularities

In the case of large data, we prove sufficient conditions for the breakdown of regular

solutions in finite time. For this purpose, the 2× 2 system (1.1) is first transformed

into a scalar equation with a source term (Sec. 3.1). Then one considers successively

the dissipative case ε > 0 (Sec. 3.2) and the conservative case ε = 0 (Sec. 3.3). In

the case of small data, global smooth solutions are expected: the Sugimoto’s model

has been defined to prevent from the occurence of shocks and to propagate acoustic

solitons.36 The Shizuta-Kawashima is invocated to study the possible existence of

global smooth solutions near equilibrium (Sec. 3.4). Numerical experiments are

proposed to illustrate these properties (Sec. 3.5).
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6 Stéphane Junca and Bruno Lombard

3.1. Burgers equation with memory

Equation (1.1b) is differentiated in terms of t. Using ϕ = ∂tp yields:





∂tu+ ∂x

(
au+ b

u2

2

)
= −Ω2 ϕ, (3.1a)

d2ϕ

dt2
+ ε

dϕ

dt
+ ω2

0ϕ = ∂tu ≡ σ, (3.1b)

with the initial data

u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x),
dϕ

dt
(x, 0) = ϕ1(x). (3.2)

Smooth solutions of (1.1) are solutions of (3.1), provided the initial data (3.2) satisfy

the compatibility condition

ϕ1(x) = u0(x) − ε ϕ0(x) − ω2
0 p0(x). (3.3)

Conversely, integrating (3.1b) with respect to t recovers (1.1) under the condition

(3.3). The explicit solution of (3.1b) is

ϕ(x, t) = ϕ0(x)J0(t) + ϕ1(x)J1(t) +

∫ t

0

J1(t− s)σ(x, s) ds, (3.4)

where J0 and J1 depend on the coefficients of (3.1b). Setting

∆2 = ε2 − (2ω0)
2, δ =

√
|∆|, (3.5)

calculations yield the following 4 cases:

• ε = 0, ω0 = 0:

J0(t) = 1, J1(t) = t. (3.6)

• 0 ≤ ε < 2ω0:

J0(t) = exp(−ε t/2)
(
cos(δt/2) +

ε

δ
sin(δt/2)

)
≡

ε→0
cosω0t,

J1(t) =
2

δ
exp(−ε t/2) sin(δt/2) ≡

ε→0

1

ω0
sinω0t.

(3.7)

• ε = 2ω0:

J0(t) =
(
1 +

ε

2
t
)
exp(−ε t/2), J1(t) = t exp(−ε t/2). (3.8)

• ε > 2ω0:

J0(t) =
1

2 δ
((ε+ δ) exp (−(ε− δ) t/2)− (ε− δ) exp (−(ε+ δ) t/2)) ,

J1(t) =
1

δ
(exp (−(ε− δ) t/2)− exp (−(ε+ δ) t/2)) .

(3.9)
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The solution (3.4) is injected into (3.1a). Integration by parts and the property

J1(0) = 0 allow to transform the 2× 2 system (1.1) into the nonlocal scalar PDE

∂tu+ ∂x

(
au+ b

u2

2

)
= ϕ0(x)K0(t) + (ϕ1(x) − u0(x)) K1(t) + Lu(x, t),

= ϕ0(x) (K0(t)− εK1(t))− ω2
0 p0(x)K1(t) + Lu(x, t)

(3.10)

where the compatibility condition (3.3) has been used, and with

K0(t) = −Ω2 J0(t), K1(t) = −Ω2 J1(t), K(t) = −Ω2 J
′

1(t),

Lu(x, t) =
∫ t

0

K(t − s)u(x, s) ds.
(3.11)

In the case where the resonators are initially at rest p0(x) = 0 and p1(x) = 0, then

(3.10) reduces to the scalar PDE with memory

∂tu+ ∂x

(
au+ b

u2

2

)
=

∫ t

0

K(t− s)u(x, s) ds. (3.12)

This is a Burgers equation with a non-local source term as in Ref. 7.

3.2. Dissipative case

Based on (3.10)-(3.11), some norms are introduced:

C0 = ‖ϕ′

0‖∞‖K0 − εK1‖∞ + ω2
0 ‖p

′

0‖∞‖K1‖∞,

C =

∫ +∞

0

|K(t)| dt,

C♯ =
C +

√
C2 + 4 b C0

2 b
≥ C.

(3.13)

In the dissipative case ε > 0, C in (3.13) can be computed analytically from (3.7)-

(3.9) and (3.11). Setting t∗ = 1
δ arctan

δ
ε , one obtains:

C =






2Ω2 ε

ε2 + 4 δ2

(
−1 +

4
√
1 + (δ/ε)2

1− exp (−(ε π)/(2 δ))
exp (−ε t∗/2)

)
if 0 < ε < 2ω0,

4Ω2

ε exp(1)
if ε = 2ω0,

4Ω2

ε+ δ

(
ε− δ

ε+ δ

)ε− δ

2 δ
if ε > 2ω0.

(3.14)

One introduces also the straightforward lemma.

Lemma 3.1. If m < −C♯, the inequality −bm2 +C0 +C|m| < 0 holds. Similarly,

M > C♯ implies −bM2 + C0 + C|M | < 0.

Sufficient conditions are now stated for the formation of singularity with smooth

initial data.
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Theorem 3.1 (Shock in finite time: case ε > 0). Let us assume that the

initial data (u0, ϕ0, p0) are smooth with compact support. If inf u
′

0(x) < −C♯ and

supu
′

0(x) ≤ C♯, then a shock appears in finite time.

Proof. Following the idea of Lax,19 we deduce from (3.10) the Riccati equation

satisfied by U = ∂xu with initial condition U0 = u
′

0:

∂tU + (a+ bu) ∂xU + b U2 = ϕ
′

0(x)(K0(t)− εK1(t)) − ω2
0 p

′

0(x)K1(t) + LU,

≡ k(x, t) + LU.
(3.15)

As long as the solution is smooth, equation (3.15) is rewritten along the character-

istics:

d

dt
U = −b U2 + k(x, t) + LU. (3.16)

The integration is now along characteristic curves, so that the operator L is modi-

fied; nevertheless, the notation L is kept for simplicity. In the case of the homoge-

neous Burgers equation, the Riccati ODE is simply

d

dt
U = −b U2,

which blows-up at time T ∗ = −1/(b U(0)) if U(0) < 0. When a linear dissipative

source term −λu is added to the Burgers equation, a similar analysis yields

d

dt
U = −b U2 − λU,

whose threshold is inf U0 < −λ/b. The analysis of (3.16) is more complex due to

the nonlocal source term LU , which can accelerate or moderate the blow-up of U .

Roughly speaking, the competition between the nonlinear part and the linear part

favors a blow-up if d
dtU < 0 is large enough. Let us prove it under the assumptions

of the theorem. At any x, equation (3.16) and the notations (3.13) give

d

dt
U ≤ −b U2 + C0 + C sup

(y,s)∈R×[0,t]

|U(y, s)|. (3.17)

One introduces the suprema m(t) = inf U(., t) = U(x0, t0) and M(t) = supU(., t).

The existence of x0 is ensured by the fact that the solution of (3.16) remains with

compact support at all time (Sec. 4.2). Under the two conditions

m(t0) < −C♯, |m(t0)| > M(t0), (3.18)

the Lemma 3.1 ensures that the r.h.s of (3.17) is negative at (x0, t0). Similarly,

|M | > C♯ implies that M(t) < C♯ for all time: C♯ is a barrier for M(t).16

It remains to prove (3.18) for all t. These two conditions are valid at t0 = 0 from

the assumptions of the theorem. Assuming that (3.18) is true at a given t0, U(x0, t)
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is decreasing at least locally for t < t0 and t ≃ t0. Thus, for h > 0 small enough,

m(t0 + h) ≤ U(x0, t0 + h) = U(x0, t0) + hU̇(x0, t0) +O(h2),

≤ m(t0) + hU̇(x0, t0) +O(h2),

≤ m(t0) + h
(
−bm(t0)

2 + C0 + C|m(t0)|
)
+O(h2).

(3.19)

Denoting ṁ the generalized right derivative of m:9

ṁ(t) = lim sup
h>0,h→0

m(t+ h)−m(t)

h
, (3.20)

then m satisfies

ṁ(t0) ≤ −bm(t0)
2 + C0 + C|m(t0)|. (3.21)

It follows m(t) ≤ y(t), where y satisfies
{
ẏ = −b y2 + C0 − Cy,

y(0) = y0 := m(0) < −C♯.
(3.22)

The solution of (3.22) is explicitly known and blows-up in finite time T ∗:

T ∗ = − − lnα√
C2 + 4 b C0

> 0, α =
C +

√
C2 + 4 b C0 + 2 b y0

C −
√
C2 + 4 b C0 + 2 b y0

, (3.23)

with 0 < α < 1. Since y is an upper solution of m, it follows that m blows up in

finite time. The lifetime of U = ∂xu is smaller or equal than T ∗.

Remark 3.1. If the second condition supu
′

0(x) ≤ C♯ is not fullfilled in Theorem

3.1, a global smooth solution may exist.

0.05 0.1 0.15 0.2 0.25
0 

4000 

8000 

12000 

eps

C
#

Sugimoto

dissipative Burgers

Fig. 2. Evolution of C♯ (3.13) in terms of the dissipation ε. The vertical dashed line denotes
ε = 2ω0. The parameters are given in Table 1.
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In the case of the scalar Burgers equation with linear dissipation



∂tu+ ∂x

(
a u+ b

u2

2

)
= −ε u,

u(x, 0) = u0(x),

(3.24)

shock occurs iff inf u
′

0(x) < −ε/b ≡ C♯. This minimal slope of the initial data

increases linearly with the dissipation parameter. In the case of Sugimoto’s system,

on the contrary, the shock limit C♯ in (3.14) does not evolve monotonically with ε.

It is recalled, nevertheless, that it is only a sufficient condition (and not necessary).

The evolution of C♯ with ε for both models is illustrated in Fig. 2.

3.3. Conservative case

Theorem 3.1 is now extended to the conservative case ε = 0 with ω0 6= 0. Any t > 0

can be written t = nπ/(2ω0) + r, with 0 ≤ r < π/(2ω0). From (3.7) and (3.11),

one obtains
∫ t

0

|K(τ)| dτ =
2Ω2

π

(
t− r +

π

2ω0
sinω0 r

)
,

and hence

‖L(., t)‖∞ ≤ C(1 + t), with C =
2Ω2

π
max

(
1,

π

2ω0

)
. (3.25)

Theorem 3.2 (Shock in finite time: case ε = 0). Let consider smooth initial

data (u0, ϕ0, p0) with compact support. There exist two constants C± > 0 depending

on (ϕ0, p0) such that if inf u
′

0 < −C− and supu
′

0 ≤ C+, then a shock appears in

finite time.

Proof. We follow the proof of Theorem 3.1 with the same notations. The main

modification is that C has to be replaced by C t in (3.22) since the norm of the

linear operator is now of order t, as seen in (3.25):

ẏ = −b y2 + C0 − C(1 + t) y. (3.26)

Contrary to the dissipative case, the ODE (3.26) has not separable variables yielding

an explicit solution. To prove the theorem, it suffices to get an upper solution

blowing up in finite time T ∗ < 1. Setting D = max(C0, 2C), these solutions satisfy

y < 0 and

ẏ ≤ f(y) := −b y2 +D (1 + |y|). (3.27)

Let z be the solution of ż = f(z) and z− be the negative root of f(z) = 0. If

z0 < z−, then z is an upper solution of y; it is also decreasing and its lifespan is

T (z0) =
∫ +∞

z0
dz

−b z2+D(1+|z|) → 0 when z0 → −∞. Thus, there exists a constant C−

such that for z0 ≤ −C−, then T (z0) < 1. Consequently, the solution y of (3.26)

with y0 ≤ −C− blows up before time 1. The constant C+ is chosen as in the proof

of Theorem 3.1 to keep the r.h.s. of (3.26) negative, which concludes the proof.
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3.4. Case of small solutions

If ε 6= 0, the hyperbolic system (2.4) is dissipative. In this case, Theorem 3.1 gives

sufficient conditions of singularity formation for large smooth initial data. But due

to the dissipation, global smooth solutions are also expected if the initial data are

smooth and sufficiently small.

The so-called Shizuta-Kawashima coupling condition, or [SK]-condition, pro-

vides sufficient conditions for the existence of small global smooth solutions near

equilibrium for partially dissipative hyperbolic system.35,1 This condition is easy

to characterize: no eigenvector of A must belong to ker(S). Application of this

characterization to (2.4) yields the following proposition.

Proposition 3.1. The [SK]-condition is fulfilled at all non-zero equilibrium

parametrized by pe 6= 0:

(ue, ϕe, pe)
⊤ = (ω2

0 pe, 0, pe)
⊤. (3.28)

On the contrary, the [SK] condition is not satisfied at rest:

(ue, ϕe, pe)
⊤ = (0, 0, 0)⊤. (3.29)

Proof. When ue 6= 0, ker(S) = {s (ω2
0, 0, 1)

⊤, s ∈ R} is a one-dimensional subspace

defined by ϕ = 0, u = ω2
0 p. The first eigenvector of A associated with the non-null

eigenvalue, e1 = (1, 0, 0) /∈ ker(S). The two-dimensional eigenspace associated to

the eigenvalue 0 of A clearly does not belong to the kernel of S.

On the contrary, if ue = 0, the Jacobian matrix writes A = a I where I is

the 3 × 3 identity matrix. The eigenspace of A encompasses the full space, so the

[SK]-condition is not satisfied by (3.29).

The [SK]-condition is only sufficient for partially dissipative systems.35 [SK] is

not a necessary condition to have global smooth solutions.28,41

3.5. Numerical experiments

R (m) D (m) r (m) L (m) rh (m) H (m)
0.025 0.1 0.01 0.02 0.0215 0.1

γ p0 (Pa) ρ0 (kg/m3) ǫ (s−1)

1.403 1.01 105 1.177 5000

a b ε Ω ω0

4.75 10−3 1.64 10−5 6.84 10−2 3.00 10−2 4.94 10−2

Table 1. Geometrical, physical and scaled parameters in Sugimoto’s model (2.4).
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The numerical values of the geometrical and physical parameters (Sec. 2.1) are

issued from Ref. 33. Based on (2.3), il follows the scaled parameters (2.4). The full

set of parameters is given in Table 1.

1 1.5 2 2.5 3

0 

0.02 

0.04 

0.06 

0.08 

x (m)

U
0

Fig. 3. Initial data u0(x) given in (3.30).

In Theorem 3.1, the sufficient condition for the formation of shock involves

different bounds for the maximum and minimum slopes. To place ourselves in the

hypotheses of the theorem, we use as initial data

u0(x) =

{
g(x− x0) if x < x0,

0 else,
with g(x) = Ax exp(−x/σ). (3.30)

The other initial conditions are null: ϕ0 = p0 ≡ 0. In (3.30), one chooses x0 = 4

m and σ = 0.427 m, which corresponds roughly to a wavelength λ = 4 m (Fig. 3).

The maximal and minimal slopes of the initial data (3.30) are deduced: supu
′

0(x) =

u
′

0(x0 − 2σ) = A/(exp(1))2 and inf u
′

0(x) = u
′

0(x0) = −A.
Fig. 4 illustrates the conservative case ε = 0, for which no bounds are explicitly

known about the slopes inf u
′

0(x) and supu
′

0(x) (Theorem 3.2). We represent u at

different instants as well as the temporal evolution of the discrete energy (2.10),

for two values of the amplitude: A = 100 and A = 5000. If A = 100, the discrete

energy E is constant, which indicates that no shock appears. If A = 5000 on the

contrary, the discrete energy drops from the first moments, then reaches a plateau.

It indicates the formation of a shock visible in at t = 200 s. Once the shock is

formed, a smooth soliton emerges and propagates without deformation.

The dissipative case is illustrated in Fig. 5. The discrete energy is no longer

shown, since it decreases independantly from the occurence of shocks, and thus it

does not give an indicator of singularity formation. The initial data yield C0 = 0

and C♯ = 1215.55 in (3.13). If A = 100, then supu
′

0(x) = 13.53 < C♯ but inf u
′

0(x) =

−100 > C♯: the sufficient condition of singularity formation is no more satisfied. No
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Fig. 4. Snapshots of u at various instants (top) and time evolution of the discrete energy (bottom)
in the conservative case ε = 0. Left row: A = 100, right row: A = 5000.

shock is observed (left row). If A = 5000, on the contrary, then supu
′

0(x) = 676 < C♯

and inf u
′

0(x) = −5000 < C♯: the assumptions of Theorem 3.1 are satisfied. Indeed,

a shock is observed during the first instants (right row).

4. Large global BVs solutions

4.1. Definitions and main result

Since shocks can occur, weak solutions are now considered.

Definition 4.1 (Weak entropy solutions). Let consider the system (2.8) with

initial data U0. A function U ∈ L∞
loc([0,+∞[×R,R3) is a weak solution if, for all

smooth vectorial test functions Φ ∈ C∞
c (R× [0,+∞[,R3) with compact support in
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Fig. 5. Snapshots of u at various instants in the dissipative case ε 6= 0. Left row: A = 100, right
row: A = 5000.

R× [0,+∞[, one has:
∫ +∞

0

∫

R

(
U · ∂tΦ+ F(U) · ∂xΦ+Φ⊤ · SU

)
dx dt+

∫

R

U0(x) ·Φ(x, 0)dx = 0.

(4.1)

Moreover, if U ∈ C0([0,+∞[, L1
loc(R,R

3) and satisfies for all convex entropy

η ∈ C2(R,R) with the associated entropy flux ψ′(u) = (a + b u) η′(u) and for

all nonnegative scalar test functions φ ∈ C∞
c (R× [0,+∞[,R+):

∫ +∞

0

∫

R

(
η(u) ∂tφ+ ψ(u) ∂xφ+ η′(u)Ω2 ϕφ

)
dx dt +

∫

R

η(u0(x))φ(x, 0) dx ≥ 0,

(4.2)

then U is called an entropy solution.

For weakly coupled systems, entropies are usually tested on each equation to

get uniqueness results,30 as recalled in the forthcoming Sec. 5. On the contrary, the

entropy condition in Definition 4.1 is only tested on the first equation (2.4a) of the

Sugimoto’s system. This choice is motivated by the fact that the only nonlinearity

(generating shock waves) occurs in the first equation. As seen further, using a single

family of entropies suffices to prove the uniqueness of the solution to (2.4). The

fractional spaces BVs, 0 < s < 1, are recalled:

Definition 4.2 (BVs function). Let TV s be the total variation, also called the

p−variation with p = 1/s:

TV s(u) = sup
n∈N, x0<x1<...<xn

∑

0≤i<n

|u(xi+1)− u(xi)|1/s. (4.3)

The BVs scalar functions on R are defined by BVs(R) = {u, TV s(u) < +∞}. A
vectorial function is in BVs if all its components belong to BVs. Equivalently, the

TV s variation can be taken with a vectorial norm instead of the absolute value.
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Now we state the main theorem of this paper, concerning the existence of BVs

solutions of the Sugimoto’s system.

Theorem 4.1 (Large BVs solutions). Let the initial data U0 = (u0, ϕ0, p0)
⊤

belong to BVs(R,R3), 0 < s < 1. Then the system (2.4) admits an unique global

weak entropy solution in

L∞
loc([0,+∞[,BVs(R,R3) ∩ Cs

loc([0,+∞[, L
1/s
loc (R,R

3).

Moreover, the solution satisfies the energy inequality:

d

dt

1

2

∫

R

(
u2 +Ω2 ϕ2 +Ω2 ω2

0 p
2
)
dx ≤ −

∫
εΩ2 ϕ2 dx. (4.4)

Remark 4.1 (BV solutions). For s = 1, the usual BV=BV1 solutions for scalar

conservation laws are recovered by the Sugimotos’ system where Cs has to be re-

placed by Lipschitz: if U0 belongs to BV(R,R3) then

U ∈ L∞
loc([0,+∞[,BV(R,R3) ∩ Liploc([0,+∞[, L1

loc(R,R
3).

Remark 4.2 (L∞ solutions). For s = 0, the functional space is BV0 = L∞. For

weakly coupled systems with initial data in L∞, results similar to 4.1 are already

known,30 as seen in Sec. 5. In this particular case, Theorem 4.1 yields a new result:

one whole family of scalar entropy η ∈ C2(R,R) depending only on u is sufficient

to prove uniqueness.

The rest of Sec. 4 is devoted to the proof of Theorem 4.1, which amounts to prove

the propagation of the BVs regularity in space for all positive time. The existence of

BVs solutions relies on a splitting scheme. The uniqueness follows from the classical

Kruzkov proof of doubling of variables. Such a result is known for weakly coupled

systems30 using as many families of entropy as the size of the system; we check

below that one single family of entropies is sufficient for the Sugimoto’s system,

which constitutes a slight improvement. Finally, it ends by the proof of the energy

inequality.

4.2. Splitting scheme

The BVs, BV and L∞ estimates are obtained by a splitting scheme which splits

the system (2.8) in two parts: first, the Burgers equation, second the differential

systems. These two parts are studied independently.

Let ∆t > 0, U0(x) = U0(x), U
n = (un, ϕn, pn)⊤ stands for the approximate

solution built by the splitting scheme at time tn = n∆t. The half-step value Un+1/2

is the solution of the homogeneous hyperbolic PDE




∂tU+ ∂xF(U) = 0, (x, t) ∈ R×]tn, tn+1],

U(x, tn) = Un.
(4.5)
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Then Un+1 is given by the solution of the ODE parametrized by x,






d

dt
U = SU, t ∈]tn, tn+1]

U(., tn) = Un+1/2.

(4.6)

The splitting scheme can be performed in various ways, for instance a wave front

tracking10 for Burgers and an approximate solution for the ODE. We choose here

the most precise splitting scheme. The hyperbolic part is only a Burgers equation

which is solved exactly. The linear ODE is solved explicitly:

(1) un+1/2 is the exact solution at time tn+∆t of the Burgers equation with initial

data un. The other components are constant: ϕn+1/2 = ϕn and pn+1/2 = pn;

(2) Un+1 = exp(tS)Un+1/2 is the exact solution of the ODE.

Burgers equation. It is well known that both the L∞ norm and the total variation

of the entropy solution u of the Burgers equation are non increasing.10 A similar

result has been obtained recently concerning the fractional total variation: TV s(u)

is non increasing with respect to time.5

Differential system. The ODE (4.6) writes






du

dt
= −Ω2 ϕ, (4.7a)

dϕ

dt
= u− ε ϕ− ω2

0 p, (4.7b)

dp

dt
= ϕ. (4.7c)

The Euclidean norm associated to this differential system is

|U|22 = u2 +Ω2 ϕ2 +Ω2 ω2
0 p

2. (4.8)

The L∞ norm and the total variation w.r.t. x are chosen in accordance with (4.8):

‖U(x)‖2,∞ = sup
x∈R

|U(x)|2,

TV s
2 (U) = sup

n∈N, x0<...<xn

∑

0≤i<n

|U(xi+1)−U(xi)|1/s2 .
(4.9)

Proposition 4.1 (Decaying energy and total variation). The solution of

(4.6) satisfies





1

2

d

dt
|U|22 = −εΩ2 ϕ2 ≤ 0, (4.10a)

TV s
2 (U(., t)) ≤ TV s

2 (U(., 0)). (4.10b)
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Proof. The derivation of (4.10a) is usual. It follows the same computation as for

the global space energy decay (2.6), except there is no space variable. Mutiplying

(4.7a) by u, (4.7b) by Ω2 ϕ, (4.7c) by Ω2 ω2
0 p and adding all the terms yields

1

2

d

dt

(
u2 +Ω2 ϕ2 +Ω2 ω2

0 p
2
)
= −εΩ2 ϕ2.

To study the total variation in space, let x < y. The differential system is linear

with respect to the initial data U(x, 0) − U(y, 0), thus U(x, t) − U(y, t) satisfies

also (4.6). Thus, the inequality |U(x, t)−U(y, t)|2 ≤ |U(x, 0)−U(y, 0)|2 is a direct

consequence of the pointwise decay of the energy (4.10a). Summing up the variation

and taking the supremum yields (4.10b).

Concerning the asymptotic behavior of the solution U(t) of the differential sys-

tem (4.7) with initial data (u0, ϕ0, p0)
⊤, the equilibrium are the constant states

(u, ϕ, p) = (ω2
0 p0, 0, p0)

⊤ which belong to ker(S). The matrix S is diagonalizable,

except for one value of ε (2.9). Using a basis diagonalizing S or the Jordan normal

form, one writes U0 = U1 +U2 where U1 belongs to ker(S) and U2 belongs to the

plane P in the range of S. Two cases occur:

(1) the dissipative case ε > 0. Then U(t) → U1 exponentially when t→ +∞.

(2) the conservative case ε = 0. Then U(t) − U1 is an harmonic oscillator in the

plane P .

4.3. BV estimate for the full system

Now, we are able to obtain uniform estimates of U on any strip [0, T ]× R for any

positive time T . Using the decrease of the norm and of the total variation in each

part of the splitting, it is tempting to expect the same decay for the whole splitting

scheme, but it is wrong. The reason is that the norms involved in the two steps

of the splitting are not the same. For the Burgers part of the splitting, the norm

max(‖u‖∞, ‖ϕ‖∞, ‖p‖∞) is not increasing, and for the ODE part this is the norm

‖U‖∞ related to the Euclidean norm (4.8) which is non increasing. The following

norm and total variation, well adapted to the Burgers’ part of the splitting scheme,

are now introduced:

|U| = max(|u|, |ϕ|, |p|),

‖U‖∞ = max(‖u‖∞, ‖ϕ‖∞, ‖p‖∞),

TV s(U) = max (TV s(u), TV s(ϕ), TV s(p)) .

(4.11)

Based on these norms, the following proposition provides bounds sufficient to prove

the convergence, as done in Ref. 10, 6.

Proposition 4.2 (L∞ and BVs estimates on (0, T )×R). There exists a positive

constant c such that for all n such that n∆ t ≤ T ,

‖Un‖∞ ≤ ‖U0‖∞ exp(c T ),

TV s(Un) ≤ TV s(U0) exp(c T ).
. (4.12)
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Proof. The two parts of the splitting are studied successively, by induction. First,

solving the Burgers equation and thanks to the maximum principle, one gets

‖un+1/2‖∞ ≤ ‖un‖∞. Morerover ϕn+1/2 = ϕn, pn+1/2 = pn are unchanged, so

that ‖Un+1/2‖∞ ≤ ‖Un‖∞. Second, solving exactly the differential linear system

(4.6) can increase the L∞ norm. Let c > 0 be the matrix norm of S related to the

vectorial norm ‖.‖∞:

c = sup
|U|=1

|SU| = ‖|S‖|∞,

then

|Un+1(x)| ≤ exp(c∆t) |Un+1/2(x)| ≤ exp(c∆t) ‖Un+1/2‖∞,
and hence:

‖Un+1‖∞ ≤ exp(c∆t) ‖Un+1/2‖∞ ≤ exp(c∆t) ‖Un‖∞.
This is enough to get the L∞ bound on [0, T ].

The TV bound is obtained in the same way. The total variation decays for the

entropy solution of the Burgers equation and the variables (ϕn, pn) are unchanged,

so

TV s(Un+1/2) ≤ TV s(Un).

The differential system (4.6) is linear, thus Vn+1
i = Un+1(xi+1)−Un+1(xi) satisfies

the same system and

|Un+1(xi+1)−Un+1(xi)| ≤ exp(c∆t) |Un+1/2(xi+1)−Un+1/2(xi)|.
Adding on i and taking the supremum yields

TV s(Un+1) ≤ exp(c∆t)TV s(Un+1/2) ≤ exp(c∆t)TV s(Un),

which concludes the proof.

These BV bounds provide the compactness in space, and hence the compactness

in space and time through a bound in LiptL
1
x. Then, passing to the limit, the same

bound is obtained for an entropy solution. The passage to the limit is classic, see

for instance Ref. 17, 26, 27, 32. In the case of fractional BVs, the Lipschitz estimate

in time is replaced by a Hölder estimate.5,6,11

4.4. Uniqueness with only Burgers’ entropies

The uniqueness is a consequence of two stability results w.r.t the L1 norm: first, the

Kruzkov stability for a scalar equation with a source term, second, the stability of

the solutions of a differential system. The general case for weakly coupled system

is discussed in Sec. 5. In the particular case of the system (2.8), let us consider two

initial data U0 and Ũ0 and the corresponding solutions U and Ũ.
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Using the entropies only for the first equation (2.4a), the Kruzkov method of

doubling of variables18,10 yields for a scalar equation with a source term:

∫

R

|u− ũ|(x, t)dx ≤
∫

R

|u0 − ũ0|(x) dx +

∫ T

0

∫

R

Ω2 |ϕ− ϕ̃|(x, t) dx dt. (4.13)

Next, substracting ϕ and ϕ̃ and also p and p̃ in the two last equations of the linear

system (2.4b)-(2.4c), we have directly for an explicit constant C > 0:
∫

R

(|ϕ− ϕ̃|+ |p− p̃|) (x, t) dx ≤
∫

R

(|ϕ0 − ϕ̃0|+ |p0 − p̃0|) (x, t) dx

+C

∫ T

0

∫

R

(|u− ũ|+ |ϕ− ϕ̃|+ |p− p̃|) (x, t) dx dt.
(4.14)

The two inequalities are added. Gronwall lemma provides the L1 stability.

4.5. Energy inequality

Now, we turn to prove inequality (4.4).

Proof. Let e = 1
2

(
u2 +Ω2 ϕ2 +Ω2 ω2

0 p
2
)
be the density of energy and E =

∫
R
e dx

be the total energy. The latter is written

En+1 − En = En+1/2 − En

︸ ︷︷ ︸
I1

+En+1 − En+1/2

︸ ︷︷ ︸
I2

.

During the first part of the splitting, the entropy inequality for the exact solution

of the Burgers equation satisfies in the sense of distributions

∂tu
2 + ∂xu

3/6 ≤ 0, u ∈ D′.

By integration in space, one obtains
∫
R

(
un+1/2

)2
dx ≤

∫
R
(un)2 dx. Since ϕ and

p are constant during this step, it follows I1 ≤ 0. During the second part of the

splitting, the solution of the differential system (4.7) satisfies

∂te = −εΩ2 ϕ2.

Integrating the latter equation over [tn, tn+1] and approximating the r.h.s. yields

en+1 − en+1/2 = −
∫ tn+∆t

tn

εΩ2 ϕ2 dt ≤ −∆t εΩ2
(
ϕn+1/2

)2
+O(∆t)2.

Integration in space provides an inequality about I2. Summing the contributions of

I1 and I2 gives

En+1 − En

∆t
≤ −

∫

R

εΩ2
(
ϕn+1/2

)2
dx+O(∆t). (4.15)

Passing to the limit, the inequality (4.4) is obtained.
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5. Weakly coupled systems in BVs

The system (2.4) studied along this paper is a particular case of weakly coupled

hyperbolic systems:
{
∂tui + ∂xfi(ui) = gi(U), (5.1a)

U(x, 0) = U0(x), (5.1b)

where i = 1, . . . , d, U = (u1, . . . , ud)
⊤, G(U) = (g1(U), . . . , gd(U))⊤ is a Lipschitz

function and U0 ∈ L∞. In the case of system (2.4), there is only one nonlinear flux

f1(u1) = u21/2, fi ≡ 0 for i > 1, and a linear source term.

Classical results about weakly coupled systems in L∞ are recalled. Then a new

result about the propagation of BVs regularity will be proven.

Definition 5.1 (Entropy solutions30). A function U in

L∞
loc(R× [0,+∞[,Rd) ∪C0([0,+∞[, L1

loc(R,R
d)

is said to be an entropy solution of (5.1b) with initial data U0 = (u0i , · · · , u0d)⊤
if for all diagonal convex entropy η(U) = (η1(u1), . . . , ηd(ud))

⊤, ηi convex for all

i, and for all diagonal nonnegative smooth function φ with compact support in

R× [0,+∞[, φ = (φ1, . . . , φd)
⊤, φi(x, t) ≥ 0, we have for all i = 1, . . . , d:

∫ +∞

0

∫

R

(
ηi(ui) ∂tφi + qi(ui) ∂xφi + η

′

(U) gi(U)φ
)
dx dt

+

∫

R

ηi(u
0
i (x))φi(x, 0) dx ≥ 0,

(5.2)

where q = (q1, · · · , qd)⊤ is the diagonal entropy-flux, with q′i = η′i f
′
i .

Theorem 5.1 (Existence and uniqueness for weakly coupled system30).

The system (5.1b) with the initial data U0 ∈ L∞(R,Rd) has one and only one

entropy solution U ∈ C0([0,+∞[, L1
loc(R,R

d)).

The reader is refered to Ref. 30 for the proof. The global existence is simply a

consequence of the global Lipschitz assumption on G. The extension to the multi-

dimensional case with degenerate viscosity has been done in Ref. 34, 15 with many

examples. In the case of system (2.4), weaker conditions than those of Theorem 5.1

were needed to prove existence and uniqueness of the entropy solution. In Sec. 4,

Theorem 4.1 has been proven indeed with only one family of entropy.

Theorem 5.2 (BVs entropy solution). If the initial data U0 belongs to

BVs(R,Rd) for 0 < s ≤ 1, then the unique entropy solution U of (5.1b) belongs to

L∞
loc([0,+∞[,BVs(R,Rd)) ∩ Lipsloc([0,+∞[, L

1/s
loc (R,R

d)).

Proof. We follow the same lines than for the proof of Theorem 4.1. The Lipschitz

regularity of G ensures linear estimates. Again, a splitting scheme is used. Let us

explain on the first small interval of time [0,∆t] how to proceed:
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(1) U1/2 is the exact solution of the d decoupled scalar conservation laws:
{
∂tui + ∂xfi(ui) = 0,

ui(x, 0) = u0i (x),
i = 1, . . . , d. (5.3)

(2) U1 is the exact solution of the nonlinear ODE:
{
∂tU = G(U),

U(x, 0) = U1/2(x).
(5.4)

The only point is to check that, for some constant c > 0,

TV s(U1(.,∆t)) ≤ exp(c∆t)TV s(U1/2(.,∆t)) ≤ exp(c∆t)TV s(U0(., 0)). (5.5)

For the first inequality, the Lipschitz stability w.r.t. to the initial data is used. Let

x < y be fixed, then for some c > 0 depending only on the G Lipschitz norm, one

has:

|U1(x,∆t)−U1(y,∆t)| ≤ exp(c∆t) |U1(x, 0)−U1(y, 0)|.

Thus TV s(U1(.,∆t)) ≤ exp(c p∆t)TV s(U1(., 0)) with p = 1/s. To conclude the

first inequality of (5.5), one notices the equality U1(., 0) = U1/2(.,∆t). The second

inequality of (5.5) is simply the TV s decay of all conservation laws.5 Iterating the

argument concludes the proof.

6. Conclusion

Some questions remain open and deserve further mathematical investigations:

• Is only one strictly convex entropy η sufficient to caracterize the unique entropy

solution of system (1.1)? This result has been proven for the first time by

Panov31 for homogeneous conservation laws with a convex flux.

• The inequality of energy (4.4) can be understood as an entropy inequality. This

entropy does not depend only on u but on the three components. Is the energy

inequality enough to caracterize the unique entropy solution of system (1.1)?

• The dissipative term in (1.1b) is purely phenomenological and it only accounts

for losses in the resonators. A more detailed modeling is needed to lead to a

quantitative agreement between simulations and experiments:33




∂tu+ ∂x

(
au+ b

u2

2

)
= c ∂

−1/2
t ∂xu− Ω2 ∂tp, (6.1a)

∂2t p+ ε ∂
3/2
t p+ ω2

0 p−m∂2t p
2 + n |∂tp| ∂tp = u. (6.1b)

The visco-thermal losses in the tube and in the resonators are modeled by

fractional derivatives in time (coefficients c and ε). The nonlinear attenuation

at the neck of the resonators is also taken into account (coefficient n). The

analysis of (6.1) requires further efforts.
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