D Cornaz
email: denis.cornaz@dauphine.fr

Y Magnouche
email: youcef.magnouche@dauphine.fr

A R Mahjoub
email: ridha.mahjoub@dauphine.fr

S Martin

The multi-terminal vertex separator problem: Polyhedral analysis and Branch-and-Cut

Keywords: Vertex separator problem, integer programming, polytope, facet, Branch-and-Cut algorithm, complexity, separation algorithm

In this paper we consider a variant of the k-separator problem. Given a graph G = (V ∪ T, E) with V ∪ T the set of vertices, where T is a set of k terminals, the multi-terminal vertex separator problem consists in partitioning V ∪ T into k + 1 subsets {S, V 1 , . . . , V k } such that there is no edge between two different subsets V i and V j , each V i contains exactly one terminal and the size of S is minimum. In this paper, we first show that the problem is NPhard. Then we give two integer programming formulations for the problem. For one of these formulations, we investigate the related polyhedron and discuss its polyhedral structure. We describe some valid inequalities and characterize when these inequalities define facets. We also derive separation algorithms for these inequalities. Using these results, we develop a Branchand-Cut algorithm for the problem, along with an extensive computational study.

Introduction

Let G = (V ∪ T, E) be a simple graph with V ∪ T the set of vertices, where T is a set of k distinguished vertices called terminals, and E the set of edges. A multi-terminal vertex separator in G is a subset of vertices such that the graph induced by (V ∪ T) \ S consists of k disjoint components, each with exactly one terminal. The multi-terminal vertex separator problem (MTVSP for short), consists in finding a multi-terminal vertex separator in G of minimum size. The MTVSP can also be seen as the problem of finding a vertex subset S ⊆ V of minimum size such that each path between each pair of terminals intersects S. Indeed, if S intersects all paths between each pair of terminals, then S is a muti-terminal vertex separator, and the graph induced by (V ∪ T) \ S may be built so that it consists of k components. Moreover, each component contains exactly one terminal. In the case where k = 2, the MTVSP can be solved in polynomial time [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF].

The MTVSP has applications in different areas like VLSI conception, linear algebra, connectivity problems and parallel algorithms. It has also applications in network security. Consider for instance a connected graph G = (V ∪ T, E), representing a telecommunication network where V represents a set of routers, T a set of customers and an edge between two vertices expresses the possibility of transferring data between each other. Suppose that a cost is associated with each vertex. And we search to set up a monitoring system on routers in order to monitor all data exchanged between customers. The set of routers on which the monitoring system is set up is a multi-terminal vertex separator.

In the literature the MTVSP is also called the vertex multi-terminal cut problem and the node multi-way cuts problem [START_REF] Garg | Multiway cuts in node weighted graphs[END_REF][26] [START_REF] Xiao | Simple and improved parameterized algorithms for multiterminal cuts[END_REF]. In [START_REF] Cunningham | The optimal multiterminal cut problem[END_REF] Cunningham considers the edge version of the MTVSP that consists, given a graph G = (V ∪ T, E), and a cost vector c ∈ R E + , in finding a set of edges E ⊆ E of minimum cost such that (V ∪ T, E \ E) has |T | = k components and no two terminals are in the same component. He implicitly introduces the MTVSP and shows that it is as hard as the edge version, which is known to be NP-hard.

The MTVSP is a variant of the vertex k-separator problem which in turn consists, given a graph G = (V, E), in partitioning V into k + 1 subsets {S, V 1 , . . . , V k } in such a way that |S| is minimum and there is no edge between two subsets V i and V j . Many variants of this problem have been considered in the literature [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF][START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF][START_REF] Ben-Ameur | The k-separator problem[END_REF][START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF][START_REF] Biha | An exact algorithm for solving the vertex separator problem[END_REF][START_REF] Cornaz | Mathematical formulations for the balanced vertex kseparator problem[END_REF][START_REF] Souza | The vertex separator problem: algorithms and computations[END_REF][START_REF] Lee | Partitioning a graph into small pieces with applications to path transversal[END_REF][START_REF] Naves | The graphs with the max-mader-flow-minmultiway-cut property[END_REF]. In [START_REF] Balas | The vertex separator problem: a polyhedral investigation[END_REF][START_REF] Souza | The vertex separator problem: algorithms and computations[END_REF], the authors discuss the vertex separator problem that consists, given a simple graph G = (V, E) and a positive integer β(|V |), in partitioning V into three subsets A, B and C such that no vertex in A is adjacent to a vertex in B, max{|A|, |B|} ≤ β(|V |) and |C| is minimum. They study the facial structure of the associated polytope and develop a Branch-and-Cut algorithm. In [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF], another variant of the k-separator problem is considered. Given a simple graph G = (V, E) and two terminals a, b ∈ V , the problem here is to partition V into three subsets A, B and C such that a ∈ A, b ∈ B, there is no edge connecting A and B and the size of the cut induced by C is minimum. It is shown that this problem can be reduced to a minimum cut problem in an auxiliary graph and then can be solved in polynomial time. In [START_REF] Naves | The graphs with the max-mader-flow-minmultiway-cut property[END_REF], the authors give a linear system for the MTVSP and characterize the class of graphs for which the system is totally dual integral. Another variant called the balanced vertex k-separator problem is considered in [START_REF] Cornaz | Mathematical formulations for the balanced vertex kseparator problem[END_REF]. Given a graph G = (V, E) and a constant q ∈ N, the problem consists in partitioning V into k + 1 subsets {S, V 1 , . . . , V k } in such a way that |S| is minimum and |V i | -|V j | ≤ q, for all i, j ∈ {1, . . . , k}. The authors propose compact and extended formulations for the problem and develop a Branch-and-Price algorithm. In [START_REF] Ben-Ameur | The k-separator problem[END_REF], [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF] and [START_REF] Lee | Partitioning a graph into small pieces with applications to path transversal[END_REF], the the authors consider the k-vertex separator problem that consists, given a graph G = (V, E), a constant k ∈ N and weights on the vertices, in finding a minimum weight (size) subset of vertices whose removal leads to a graph where the size of each connected component is less than or equal to k. In [START_REF] Ben-Ameur | The k-separator problem[END_REF] and [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF], the authors show that this problem can be solved in polynomial time for some classes of graphs and present approximation algorithms. In [START_REF] Lee | Partitioning a graph into small pieces with applications to path transversal[END_REF], the authors present some approximation algorithms for both the vertex and the edge version of the k-separator problem. They also study the k-Path Transversal problem, where the goal is to remove the minimum number of vertices such that there is no simple path of length k.

In this paper, we show that the MTVSP is NP-hard, we propose two linear programming formulations for the problem and discuss their linear relaxations. We study the properties of the associated polytope, and perform a facial investigation of the basic inequalities. We introduce further valid inequalities and discuss necessary conditions and sufficient conditions for these inequalities to define facets. We also propose a heuristic for the MTVSP problem and analyze their performance guarantee. Several preprocessing operations on the graph are given. Using all these results we develop a Branch-and-Cut algorithm for the multi-terminal vertex separator problem.

The paper is organized as follows, In Section 2 we discuss the complexity aspect of the MTVSP. In Section 3 we give the integer programming formulations for the problem and analyze their linear relaxations. Section 4 is devoted to the polyhedral analysis of the MTVSP and description of some valid inequalities. In Section 5 we discuss some graph reduction operations. In Section 6 we describe separation routines for the inequalities described in Section 4 and develop a Branch-and-Cut algorithm for the MTVSP. Our computational results are presented in Section 7, and finally some concluding remarks are given in Section 8. The rest of this section is devoted to more definitions and notations.

We consider simple graphs. We denote a graph by G = (V ∪ T, E), where V ∪ T is the set of vertices, T is the set of terminals in G and E is the set of edges. We let n = |V |, k = |T | and m = |E|. In the rest of this paper, and for sake of convenience, we will refer to the multi-terminal vertex separator as separator.

If W ⊂ V , we denote by G[W] the subgraph of G induced by W . Given a vertex v ∈ V ∪ T , we denote by N (v) ⊆ (V ∪ T) \ {v} the set of vertices adjacent to v and by d(v) the size of N (v) called degree of v in G.
Given a subset W ⊆ (V ∪ T), we denote by N (W) ⊆ (V ∪ T) \ W the set of vertices adjacent to at least one vertex in W . For v ∈ V , we let δ(v) denote the set of edges incident to v and δ(W) the set of edges having exactly one vertex in

W . If x ∈ R V ∪T , we let x(W) = v∈W x v . Given a subgraph H of G,
we denote by V (H), T (H) and E(H) its sets of nodes, terminals and edges, respectively. Given an inequality ax ≤ b, where a ∈ R V ∪T , the support graph of ax ≤ b is the subgraph induced by the vertices corresponding to variables having a non-zero coefficient in the inequality. A path P is a set of p distinct vertices v 1 , v 2 , . . . , v p such that for all i ∈ {1, . . . , p -1}, v i v i+1 is an edge. Vertices v 2 , . . . , v p-1 are called the internal vertices of P . Given a path P between two terminals t, t ∈ T such that P ∩ T = {t, t }, the set of internal vertices of P will be called a terminal path and denoted by P tt . A terminal path is minimal if it does not strictly contain a terminal path. In Figure 1, terminal path P t i t j is not minimal, it contains P tt . (In all Figures in this paper, the terminals are represented by triangles) For a multi-terminal vertex separator S ⊆ V , let x S ∈ {0, 1} V be the vector given by

x v = 1 if v ∈ S and x v = 0 otherwise. x S is called the incidence vector of S.
In what follows we consider the following assumptions.

Assumption 1-There is no edge between two terminals, otherwise the problem has no solution. Assumption 2-For every two different terminals t, t ∈ T , we have N (t) ∩ N (t) = ∅. Otherwise all vertices in N (t)∩N (t) must belong to the separator. In this case we can remove these vertices from the graph. Assumption 3-For each vertex v ∈ V, there is at least one terminal path containing v. Otherwise v cannot belong to a minimal separator. In this case we can delete it from the graph. Checking if a node v belongs to a terminal path can be done in polynomial time. This consists in computing, in a transformed directed graph, a minimum weight flow of value 2 between v and an artificial sink connected to all the terminals of T , where the capacities and the weights of the edges are all equal to 1. Assumption 4-Graph G is connected. Otherwise, we consider the MTVSP on each component of the graph.

Remark that, it is possible to consider an integer weight w(v) on each vertices v ∈ V . In this case, if there exists a vertex v with w(v) = 0, then we can add v in the separator and delete it from the graph. If w(v) ≥ 1 then we can replace v by a clique K w(v) of size w(v) such that each vertex of K w(v) is adjacent to each vertex of N (v). This transformation can be used if the weight is integer and bounded by a constant.

Complexity analysis

In [START_REF] Garg | Multiway cuts in directed and node weighted graphs[END_REF], Garg et al. show that the MTVSP is NP-hard. In this section we give a simpler proof of this result using a polynomial reduction from the vertex cover problem (VCP). Given a graph H = (U, E), the VCP consists in finding a minimum cardinality subset of vertices R ⊆ U such that each edge of E is incident to at least one vertex of R. The VCP is a well-known NP-hard problem.

Theorem 2.1. The M T V SP is NP-hard.

Proof . Consider the VCP on a graph

H = (U, E). Let G = (V 1 ∪ V 2 ∪ V 3 ∪
T, E) be the graph obtained from H as follows • add three vertices t 1 , t 2 and t 3 in T .

• for each vertex u ∈ U , add

-three vertices v u 1 in V 1 , v u 2 in V 2 and v u 3 in V 3 . -three edges t 1 v u 1 , t 2 v u 2 and t 3 v u 3 in E. -two edges v u 1 v u 3 and v u 2 v u 3 in E.
• for each edge uw ∈ E , add two edges v u 1 v w 2 and v w 1 v u 2 in E. Proposition 2.1. Given a separator S of G and a vertex u ∈ U , either

|{v u 1 , v u 2 , v u 3 } ∩ S| ≥ 2, v u 3 ∈ S or both.
Proof . Let us assume the contrary. We distinguish two cases

1. {v u 1 , v u 2 , v u 3 } ∩ S is empty. It then follows that {v u 2 , v u 3 } is a terminal path, not intersecting S, 2. v u 3 / ∈ S and, say, v u 2 / ∈ S. Then {v u 2 , v u 3 } is a terminal path between t 2 and t 3 not intersecting S.
The two cases contradict the fact that S is a separator.

Let R be a vertex cover in H and S a separator in G. Let R S be the set of vertices

R S = {u ∈ U : |S ∩ {v u 1 , v u 2 , v u 3 }| ≥ 2}, and let S R ⊆ V 1 ∪ V 2 ∪ V 3 be defined as follows. For each vertex u ∈ U , if u ∈ R then we add the two vertices v u 1 , v u 2 in S R , otherwise we add v u 3 in S R .
Proposition 2.2. The set R S is a vertex cover in H and S R is a separator in G.

Proof . Suppose that R S is not a vertex cover in H. Then, there exists uw ∈ E such that R S ∩ {u, w} = ∅. From the construction of R S and Proposition 2.1 it follows that

{v u 1 , v u 2 , v w 1 , v w 2 } ∩ S = ∅ and {v u 3 , v w 3 } ⊆ S.
As a consequence, {v u 1 , v w 2 } is a terminal path, between t 1 and t 2 , not intersecting S, and thus S is not a separator, a contradiction. Now, suppose that S R is not a separator of G. Then, there is a terminal path not intersecting S R in G. We distinguish two cases.

• There exists an edge uw ∈ E such that the terminal path {v u 1 , v w 2 } or {v w 1 , v u 2 }, between t 1 and t 2 , does not intersect S R . From the definition of S R , it follows that {u, w} ∩ R = ∅, a contradiction with the fact that R is a vertex cover of H.

• There exists a vertex u ∈ U such that the terminal path {v u 1 , v u 3 }, between t 1 and t 3 , or {v u 2 , v u 3 }, between t 2 and t 3 , does not intersect S R . This implies that either

{v u 1 , v u 3 } ∩ S R = ∅ or {v u 2 , v u 3 } ∩ S R = ∅, which is impossible.
Proposition 2.3. If S is a separator in G with a minimum size, then S R S has the same size as S .

Proof . Since S is a separator in G with a minimum size, it follows that for all u ∈ U , |S ∩ {v u 1 , v u 2 , v u 3 }| ≤ 2. For otherwise, one can delete one of these node, namely v u 3 , and still having a separator. In consequence, from the definition of R S , we have

|S ∩ {v u 1 , v u 2 , v u 3 }| = 2 for all u ∈ R S . And for all u ∈ U \ R S , |S ∩ {v u 1 , v u 2 , v u 3 }| = 1. For otherwise, if |S ∩ {v u 1 , v u 2 , v u 3 }| = ∅, the remaining graph after deleting S would contain the terminal path v u 1 , v u 3 , contradicting the fact that S is a separator. |S | = 2|R S | + |U \ R S |. On the other hand, from the construction of S R S , if u ∈ R S , then v u 1 , v u 2 ∈ S R S and if not, v u 3 ∈ S R S . Hence |S R S | = 2|R S | + |U \ R S |, which is equal to |S |.
Proposition 2.4. If S is a separator in G with a minimum size, then S is of size q + |U | where q is the size of the vertex cover R S in H.

Proof . First note that two nodes among {v u 1 , v u 2 , v u 3 } suffice to cut all the terminal paths going through these nodes. Hence as S is a separator with a minimum size in G, for all u ∈ U , 1 ≤ |S ∩ {v u 1 , v u 2 , v u 3 }| ≤ 2. By Proposition 2.2, R S is a vertex cover in H of size q and S R S is a separator in G. Moreover, from Proposition 2.3, S R S has the same size as S . From its construction, the size of

S R S is 2q + (|U | -q) = q + |U |. Hence, that of S is q + |U |. Proposition 2.5. If R is a vertex cover in H of minimum size, then S R is a separator in G of minimum size. And if S is a separator in G of minimum size, then R S is a vertex cover in H of minimum size. Proof . Suppose that R is a vertex cover of minimum size q in H but S R is not of minimum size in G. Note that, from the construction of S R , S R is of size q + |U |. Let S ⊆ V 1 ∪ V 2 ∪ V 3 be a separator in G of minimum size. From Proposition 2.4, |S | = q + |U
| where q is the size of R S . Since |U | + q < q + |U |, it follows that q < q and hence R is not of minimum size in H, a contradiction. Now, suppose that S is a separator in G of minimum size q + |U | but R S , which is of size q, is not of minimum size in H. Let R ⊆ U be a vertex cover in H of minimum size q . Then, S R is a separator in G of size q + |U |. Since q < q, it follows that S is not of minimum size in G, a contradiction. From Proposition 2.5, finding a vertex cover in H of minimum size is equivalent to finding a minimum size three terminal vertex separator in G. Since the vertex cover problem is NP-hard, the 3 -T V SP so is. And consequently the MTVSP is NP-hard.

In [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF], authors prove that the vertex cover problem is NP-hard to approximate to within a factor of 1.3606. From Proposition 2.5, we have the following.

Corollary 2.1. The multi-terminal vertex separator problem is NP-hard to approximate to within a factor of 1.3606.

Formulations

In this section we propose two 0 -1 linear formulations for the MTVSP. The first one is a compact formulation with a polynomial number of variables and constraints, and uses double indices. The second has a polynomial number of variables but an exponential number of inequalities.

Double index formulation

Let x ∈ {0, 1} (V ∪T)×T such that

x vt = 1 if vertex v belongs to subset V t , ∀v ∈ V, ∀t ∈ T, 0 otherwise.
The MTVSP is equivalent to the following integer linear program F 1 , min |V | -v∈V t∈T

x vt

x ut + t ∈T \{t}

x vt ≤ 1 ∀uv ∈ E, ∀t ∈ T, (1)
t∈T

x vt ≤ 1 ∀v ∈ V, (2)
x tt = 0 ∀t ∈ T, ∀t ∈ T \ {t}, (3)
x tt = 1 ∀t ∈ T, (4) x vt ∈ {0, 1} ∀v ∈ V, ∀t ∈ T. (5)
For each pair of terminals {t, t } ⊆ T , inequalities (1) ensure that there is no edge connecting V t and V t . Inequalities (2) guarantee that each vertex of V belongs to at most one subset of vertices. Equalities (3) and (4) ensure that each terminal t belongs to exactly one subset of vertices, namely V t . Note that, by inequalities (1) and equations (4), x vt = 0 for all t ∈ T , t ∈ T \ {t} and v ∈ N (t).

Natural formulation

Let Γ be the set of all terminal paths between the terminals in G. Let x ∈ {0, 1} V such that

x v = 1 if vertex v belongs to the separator, ∀v ∈ V, 0 otherwise.
The MTVSP is equivalent to the following integer linear program F 2 , min

v∈V x v v∈P tt x v ≥ 1 ∀P tt ∈ Γ, (6)
x v ∈ {0, 1} ∀v ∈ V. (7)
Inequalities [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF] guarantee that at least one vertex of each terminal path belongs to the separator.

Comparing the LP-Relaxations

We first present a numerical comparison of the LP-Relaxation values of the two above formulations with the optimal value for some DIMACS instances [1]. The columns in Table 1 represent the name of the instance, the optimal value of the LP-Relaxation (Z F 1) of formulation F 1 , the optimal value of the LP-Relaxation (Z F 2) of formulation F 2 and the value of the optimal separator, respectively. It appears from Table 1 that the LP-Relaxation of the first formulation is better than the second one. This is shown below.

Instances k Z F 1 Z F 2 OPT
Proposition 3.1. Every feasible solution of the LP-Relaxation of F 1 has a corresponding feasible solution of the LP-Relaxation of F 2 with the same objective value.

Proof . Let x ∈ [0, 1] V ×T be a feasible solution of the LP-Relaxation of F 1 . Let Z be its objective value. For v ∈ V , let y ∈ R V such that y v = 1 - t∈T x vt .
y v = v∈V (1 - t∈T x vt) = Z. This ends the proof.
As a consequence of Proposition 3.1, we have the following.

Corollary 3.1. Z F 2 ≤ Z F 1 .
Note that the first formulation (|V | + |T |).|T | variables and the second one has only |V | variables. Also note that inequalities [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF], which are in an exponential number, can be separated in polynomial time. Since the second formulation has less variables and may use a few number of inequalities of type [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF] in the Branch-and-Cut algorithm, we will consider it for our analysis. Preliminary experiments have shown that F 2 is more efficient for big sized instances (For the instance R 1300 in Table 3, F 1 has 13100 variables and uses 3329920 non trivial inequalities, whereas F 2 has only 1300 variables and uses 122 non trivial inequalities in the Branch-and-Cut algorithm).

Polyhedral analysis

Let P (G, T) be the convex hull of the solutions of formulation F 2 , that is,

P (G, T) = conv{x ∈ {0, 1} V | x satisfies (6)}.
In this section, we will discuss P (G, T), we will give its dimension, identify several classes of valid inequalities and describe necessary and sufficient conditions for these inequalities to be facet defining.

Dimension and trivial inequalities

We first establish the dimension of P (G, T).

Theorem 4.1. P (G, T) is full dimensional.

Proof .

We need to exhibit n + 1 separators such that their incidence vectors are affinely independent.

Let S 0 = V . Clearly S 0 is a separator of G. For each v ∈ V , let S v = V \ {v}.
By Assumption (2), v is not adjacent to two terminals. It then follows that S v is a separator. This constitutes a set of n + 1 separators of G. Moreover, their incidence vectors are affinely independent.

Now we characterize when inequalities x v ≤ 1 and

x v ≥ 0 for all v ∈ V define facet of P (G, T). Theorem 4.2. For v ∈ V , inequality x v ≤ 1 defines a facet of P (G, T).
Proof . We need to exhibit n separators containing v such that their incidence vectors are affinely independent. Let S 0 = V , and for each vertex u ∈ V \ {v}, let S u = V \ {u}. Clearly, these sets are separators in G. Moreover, their incidence vectors are affinely independent.

Theorem 4.3. For v ∈ V , inequality x v ≥ 0 defines facet of P (G, T) if and only if v does not belong to a terminal path P tt containing exactly two internal vertices.

Proof . (⇒) Suppose there exists a terminal path P tt containing exactly two internal vertices u and v. Then we have the valid inequalities x u + x v ≥ 1 and x u ≤ 1. Inequality x v ≥ 0 can be obtained as a linear combination of these inequalities, and cannot define a facet. (⇐) Let S 0 = V \ {v} and S u = S 0 \ {u} for all u ∈ V \ {v}. Since v does not belong to a terminal path of two vertices, these sets are separators of G. Moreover their incidence vectors are affinely independent.

Path inequalities

Theorem 4.4. Inequality (6), associated with a terminal path P tt , defines a facet of P (G, T) if and only if

(a) P tt is minimal. (b) No vertex v ∈ V \ P tt is adjacent to a terminal t ∈ T \ {t, t } and to two vertices of P tt .
Proof . (⇒)

(a) If P tt is not minimal, then there exists a nonterminal vertex v ∈ P tt such that P tt \{v} contains a terminal path say P t 1 t 1 . Note that t 1 and t 1 may coincide with t and t , respectively. Inequality (6) can then be obtained by summing inequality (6) associated with P t 1 t 1 and inequalities x u ≥ 0 associated with each vertex u ∈ P tt \P t 1 t 1 . Hence, inequalities (6) cannot define a facet. (b) Suppose P tt = {v 1 , . . . , v l }. Suppose there exists v ∈ V \ P tt which is adjacent to t ∈ T \ {t, t } and to two vertices v i and v j of P tt with 1 ≤ i ≤ j ≤ l. Let P tt = {v 1 , . . . , v i , v} and P t t = {v, v j , . . . , v l } Thus we have the following valid inequalities, x(P tt) ≥ 1, x(P tt) ≥ 1, x(P t t) ≥ 1 and x u ≥ 0 for all u ∈ P tt \ (P tt ∪ P t t). By summing these inequalities, dividing by 2 and rounding up the right hand side, we obtain the valid inequality x(P tt) + x v ≥ 2. Inequality (6), associated with terminal path P tt , can then be obtained from the above inequality and inequality x v ≤ 1, and cannot therefore be facet defining.

(⇐) Denote by ax ≥ α inequality [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF]. Let bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will show that there exists ρ such that b = ρa. For v ∈ P tt , let

S v = (V \ P tt) ∪ {v}. Figure 3.(a)
represents the set S v . By Condition (a), each terminal path either contains v or a vertex from V \ P tt . Thus S v is a separator of G. Moreover, ax Sv = α. By symmetry, we have ax Su = ax Sv , and hence bx Su = bx Sv for every u, v ∈ P tt . Therefore b(u) = b(v) = ρ for all u, v ∈ P tt and some scalar ρ ∈ R.

For w ∈ V \ P tt such that N (w) ∩ (T \ {t, t }) = ∅, let u ∈ P tt be a vertex such that • u is adjacent to t if w is adjacent to t , • u is adjacent to t if w is adjacent to t, • u is either adjacent to t or to t , if N (w) ∩ {t, t } = ∅. Set S u w = S u \ {w}. (Figure 3.(b) displays the set S u w .
) Clearly, all paths between t and t intersects S u w . It follows that S u w is a separator of G. Moreover, the incidence vector of S u w satisfies inequality (6) with equality. Hence bx Su = bx S u w , and thus b(w) = 0. We then obtain that b(w) = 0 for all

w ∈ V \ P tt such that N (w) ∩ (T \ {t, t }) = ∅.
For w ∈ V \ P tt such that N (w) ∩ (T \ {t, t }) = ∅, let u ∈ P tt be a vertex adjacent to w. If there is no vertex in P tt adjacent to w, then u is arbitrarily chosen in P tt . From Condition (b), w is adjacent to at most one vertex u in P tt . Set S u w = S u \ {w}. Recall that S u = (V \ P tt) ∪ {u}. Since u belongs to S u w and by Assumption (2) of Section 1, w is not adjacent to another terminal, we have that S u w is a separator of G. Moreover, the incidence vector of S u w satisfies inequality (6) with equality. Hence bx Su = bx S u w , and thus b(w) = 0. We then obtain that b(w) = 0 for all w ∈ V \ P tt such that N (w) ∩ (T \ {t, t }) = ∅. Therefore, we have that b = ρa, which ends the proof.

In what follows we describe further classes of valid inequalities of P (G, T) and discuss their facial structure. A star tree H = (V (H) ∪ T (H), E(H)) of G is a tree where the leaves are terminal nodes, and all the other nodes of H are nonterminal and, except for the root node, they are of degree two. The star tree H with q terminals t 1 , . . . , t q , can also be seen as the concatenation of q paths P t i , i = 1, . . . , q between the root v r and t i , i = 1, . . . , q. The paths P t 1 , . . . , P tq will be called branches. A star tree with 2 terminals is nothing but a terminal path. Figure 4 displays a star tree with 11 branches.

Star tree inequalities

Theorem 4.5. If H = (V (H) ∪ T (H), E(H)) is a star tree of G with q terminals and root v r , then the inequality

x(V (H) \ {v r }) + (q -1)x vr ≥ q -1 (8)
is valid for P (G, T).

Proof . Let S be a separator of G. If v r belongs to S, then x vr = 1 and the inequality is satisfied by x S . If v r is not in S, then S must contain at least q -1 nodes of V (H) \ {v r } in order to cut all the terminal paths of H.

Claim 4.1. If there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H) and to an internal vertex in each branch of H, then the following inequality

x(V (H) \ {v r }) + (q -1)x vr + x w ≥ q (9)
is valid for P (G, T).

Proof . Consider a separator S. As in the proof of Theorem 4.5, we have that either v r ∈ S or at least q -1 vertices of V (H) \ {v r } belong to S. Therefore, if w ∈ S, then inequality (9) is satisfied by x S . If this is not the case, then S must contain all the nodes of N (w) ∩ V (H). Otherwise, there would exist a terminal path between t and a terminal in

T (H) not intersecting S. As |N (w) ∩ V (H)| ≥ q, inequality (9) is again satisfied. Claim 4.2. If there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H)
, and to two different vertices u 1 , u 2 ∈ P t , for some t ∈ T (H), then the following inequality

x(V (H) \ {v r }) + (q -1)x vr + x w ≥ q (10)
is valid for P (G, T).

Proof . Since u 1 and u 2 are different, we can suppose that u 1 = v r . Given a separator S of G, S must contain a vertex v ∈ P tt ⊆ P t ∪ {w}, where P tt is the terminal path between t and t not containing v r . If v r ∈ S, then inequality (10) is satisfied by x S . If v r is not in S, then S contains q -1 vertices from V (H) \ {v r }. Since w is adjacent to t and to two vertices of P t , S must contain another vertex from (V (H) ∪ {w}) \ {v r }. And hence the inequality (10) is satisfied by x S .

Theorem 4.6. Given a star tree (c) There is no vertex of V \ V (H) adjacent to a terminal of T \ T (H), and to two vertices of the same branch. (d) There is no vertex of V \ V (H) adjacent to a terminal of T \ T (H) and to an internal vertex of each branch of H. (e) Each branch of H has at least one internal vertex. We distinguish two cases. Case 1. u ∈ P t \ {v r } and v ∈ P t \ {v r } for two different terminals t, t ∈ T (H). We claim that, the following inequality

H = (V (H)∪T (H), E(H)) of G, inequality (8
Proof . (⇒) (a) If a vertex u ∈ P t \ {v r }, for some t ∈ T (H), is adjacent to a terminal t ∈ T \ T (H),
x(V (H) \ {v r }) + (q -2)x vr ≥ q -1 (11)
is valid for P (G, T) and dominates inequality (8) associated with H. Indeed, given a separator S of G, if v r belongs to S, then S must contain another vertex w ∈ P tt , where P tt is the terminal path between t and t not containing v r . Then the inequality is satisfied by x S . If v r is not in S, then S must contain at least q -1 nodes of V (H) \ {v r } in order to cut all the terminal paths of H. And the inequality is again satisfied. As inequality [START_REF] Chen | An improved parameterized algorithm for the minimum node multiway cut problem[END_REF] dominates inequality [START_REF] Ben-Ameur | The k-separator problem[END_REF], the latter cannot be facet defining. It will be shown later, in Section 4.5, that inequality (11) can be obtained as a lifted inequality from the star tree inequality (8). Case 2. u, v ∈ P t for some t ∈ T (H). Let P uv ⊂ P t be the set of the internal vertices of the path between u and v, in the branch P t .

Note that P uv = ∅. Then ((V (H) \ P uv) ∪ T (H), E(H) ∪ {uv}) is also a star tree. Then, the following inequality

x(V (H) \ (P uv ∪ {v r })) + (q -1)x vr ≥ q -1 is a star tree inequality that is valid for P (G, T). However this inequality dominates inequality (8) associated with H. Therefore, the latter cannot be facet defining. (c) Suppose there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H), and to two different vertices u 1 , u 2 ∈ P t , for some t ∈ T (H). From Claim 4.2, the following inequality

x(V (H) \ {v r }) + (q -1)x vr + x w ≥ q (12)
is valid for P (G, T). Hence, inequality (8) can be obtained by summing inequality [START_REF] Cornaz | Mathematical formulations for the balanced vertex kseparator problem[END_REF] and -x w ≥ -1. Thus inequality (8) cannot be facet defining. (d) Suppose there is a vertex w ∈ V \ V (H) adjacent to a terminal t ∈ T \ T (H) and to an internal vertex in each branch of H. From Claim 4.1 the following inequality

x(V (H) \ {v r }) + (q -1)x vr + x w ≥ q (13)
is valid for P (G, T). Inequality (8) can be obtained by summing inequality (13) and x(w) ≤ 1. Therefore, inequality (8) cannot be facet defining. (e) Suppose there exists a branch P t with no internal vertices. Let H be the star tree obtained from H by deleting a branch P t with at least one internal vertex. Inequality (8) can be obtained by summing the star tree inequality associated with H together with the terminal path inequality associated with P t ∪ P t .

(⇐) Suppose that conditions (a)-(e) hold. Denote by ax ≥ α inequality [START_REF] Ben-Ameur | The k-separator problem[END_REF].

Let bx ≥ β be an inequality that defines a facet of P (G, T). Suppose that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. We will prove that there exists ρ such that b = ρa. By condition (e), it follows that each branch P t , t ∈ T (H), contains at least one internal node. For a terminal t ∈ T (H), a ring of V (H) \ P t is a subset of q -1 vertices containing exactly one nonterminal vertex from each branch different from 5.(b) and Figure 5.(c). By conditions (a) and (b), each terminal path either contains a vertex from each path of Q i with i = 1, 2 or it contains a vertex of V \ V (H). Hence S 1 and S 2 are two separators of G. Moreover, incidence vectors x S 1 and x S 2 satisfy inequality (8) with equality. Hence bx S 1 = bx S 2 , implying that b(u 1) = b(u 2). As t, u 1 and u 2 are arbitrarily chosen, we have that

P t . Hence if Q t is a ring of V (H) \ P t then for all t ∈ T (H) \ {t}, |(P t \ {v r , t }) ∩ Q t | = 1, see Figure 5.(a). Consider two different vertices u 1 , u 2 ∈ V (H) \ {v r }. Let Q 1 , Q 2 be two rings such that u 1 ∈ Q 1 , u 2 ∈ Q 2 and Q 1 \ {u 1 } = Q 2 \ {u 2 }. Let S 1 = (V \ V (H)) ∪ Q 1 and S 2 = (V \ V (H)) ∪ Q 2 . See Figure
b(u) = b(v) = ρ
for all u, v ∈ V (H) \ {v r } and a scalar ρ ∈ R. Set S 0 = (V \ V (H)) ∪ {v r }. By conditions (a) and (b) each terminal path contains v r or a vertex from V \ V (H). Thus, S 0 is a separator of G. See Figure 6.(a) for an illustration. Also we have ax S 0 = α. Hence, bx

S 1 = bx S 0 , yielding b(v r) = v∈Q t 1 b(v) = (q -1)ρ.
Now consider a vertex w ∈ V \ V (H) adjacent to a terminal in T \ T (H). We distinguish two cases.

Case 1. w is not adjacent to the root vertex v r . By condition (c), w is adjacent to at most one vertex of each branch and by condition (d), there exists at least one branch P t such that no internal vertex of P t is adjacent to w. Consider the ring

Q of H such that N (w)∩V (H) ⊆ Q and each vertex of Q \ (N (w) ∩ V (H)) is adjacent to a terminal of T (H) \ {t}. Let S = (V \ V (H)) ∪ Q and S w = S \ {w}.
(See Figure 6.(b) for an illustration). Since Q is a ring, S is a separator of G, as defined before. Set S w is also a separator of G. Otherwise, since S is a separator and N (w) ⊆ S , w would be adjacent to two terminals. Contradicting Assumption 2 of Section 1. Case 2. w is adjacent to the root vertex v r . Then let S w = S 0 \ {w}. Set S w is a separator of G. Indeed by condition (c), since w is adjacent to v r , w cannot be adjacent to vertices of V (H) \ {v r }. Therefore, every terminal path between a terminal of T \ T (H) and a terminal of T intersects S w

In both cases, S w is a separator in G, and its incidence vector satisfies inequality [START_REF] Ben-Ameur | The k-separator problem[END_REF] with equality. Hence ax Sw = ax S 0 , therefore bx Sw = bx S 0 . This implies that b(w) = 0, and therefore b(u) = 0 for all u ∈ V \ V (H) adjacent to a terminal in T \ T (H).

For a vertex w ∈ V \ V (H) not adjacent to a terminal in

T \ T (H), let Q be a ring of H such that Q ⊆ N (T (H)). Let S w = (V \ (V (H) ∪ {w})) ∪ Q.
Clearly, S w is a separator in G and its incidence vector satisfies inequality (8) with equality. Hence, ax S w = ax S 0 , and therefore bx S w = bx S 0 . In consequence b(w) = 0 and then b(u) = 0 for all u ∈ V \ V (H) not adjacent to a terminal in T \ T (H). Hence, we have that

b(u) = 0 for all u ∈ V \ V (H).
Altogether, we have that b = ρa, and the proof is complete. A graph

Clique star inequalities

Q = (V (Q) ∪ T (Q), E(Q))
is called a clique star if Q consists of a clique K q on q vertices of V (Q), q terminals t 1 , . . . , t q (that is T (Q) = {t 1 , . . . , t q }) and q disjoint paths P t 1 , . . . P tq such that each path P t i is between a different vertex of K q and t i . The paths P t are called branches. Figure 7 displays a clique star with 7 branches. In what follows we will suppose that q ≥ 3, otherwise the clique star is either a terminal path or a branch.

Theorem 4.7. Given a clique star Q = (V (Q) ∪ T (Q), E(Q)) of G, the following inequality x(V (Q)) ≥ q -1 (14
)
is valid for P (G, T).

Proof . Let S be a separator of G. If S ∩ K q = ∅, then clearly S must contain at least q -1 vertices of V (Q) to cut all the terminal paths of Q. So suppose that S ∩ K q = {v 1 , . . . , v l }, l ≤ q -2. (If l ≥ q -1, then inequality (14) is satisfied by x S). Note that each vertex v i ∈ K q is an extremity of branch P t i . Hence q -l terminals remain to separate. For this at least q -l-1 vertices from V (Q) \ K q are needed to cut all the terminal paths between the remaining terminals. Hence (14) is satisfied by x S .

Lifted star tree inequalities

In what follows we are going to describe a lifting procedure for the star tree inequalities. This will permit to extend these inequalities to a more general class of valid inequalities. Let G = (V ∪ T, E) be a simple graph. Consider a star tree H of G. Let a branch clique W ⊆ (V (H) \ {v r }) be a clique such that for each pair of vertices u, v ∈ W , u and v belong to different branches of H. Observe that each branch clique yields a clique star in the graph. (See Figure 8 for an illustration where three branch cliques are displayed).

x(V (H) \ {v r }) + (q -1 -α Π)x vr ≥ q -1 (15
)
is valid for P (G, T).

Proof . Let S be a separator of G. We distinguish two cases. If v r ∈ S, then for each clique star Q W i associated with the branch clique W i , x S (V (Q W i)) ≥ |W i | -1 by the clique star inequality [START_REF] Cunningham | The optimal multiterminal cut problem[END_REF]. By summing these inequalities, we obtain that

x S (p i=1 V (Q W i)) ≥ α Π . As p i=1 V (Q W i) ⊂ V (H) \ {v r }, it follows that x S (V (H) \ {v r }) ≥ α Π .
As v r ∈ S, we have that x S satisfies inequality [START_REF] Cygan | On multiway cut parameterized above lower bounds[END_REF]. If v r / ∈ S, then x S (V (H)) ≥ q -1 by the star tree inequality. And thus x S also satisfies inequality [START_REF] Cygan | On multiway cut parameterized above lower bounds[END_REF].

Terminal tree inequalities

A terminal tree H = (V (H) ∪ T (H), E(H)) is a tree such that the terminals of T (H) are the leaves of H. (See Figure 4.6 for an illustration). A leaf branch P t of a terminal tree H is a path between a terminal t and a vertex of V (H) of degree greater than or equal to 3, and where all internal vertices are of degree 2. For v ∈ V (H), let d H (v) be the degree of v in H. If |T (H)| ≤ 3, the terminal tree is either a star tree or a terminal path. Theorem 4.9. Let G = (V ∪ T, E) be a graph and H be a terminal tree of G. Let q = |T (H)|. Then the following inequality is valid for P (G, T),

v∈V (H) (d H (v) -1)x v ≥ q -1. (16
)
Proof . The proof is by induction on q. If q ≤ 3, inequality (16) is nothing but a star tree inequality (8) associated with H, and then it is valid. So let us suppose q ≥ 3, and that for each terminal tree with less than q terminals, the associated inequality (16) is valid for P (G, T). Since q ≥ 3, there must exists a vertex u belonging to two leaf branches P t and P t . Let us consider the terminal tree H 1 (resp. H 2) obtained from H by removing the vertices of P t \ {u} (resp. P t \ {u}). Thus, H 1 and H 2 have each one q -1 leaves and q -1 terminals. By the induction hypotheses, the terminal tree inequalities (16) associated with

H 1 and H 2 v∈V (H)\(Pt∪P t) (d H (v) -1)x v + v∈P t \{u} (d H (v) -1)x v + (d H (u) -2)x u ≥ q -2, v∈V (H)\(Pt∪P t) (d H (v) -1)x v + v∈Pt\{u} (d H (v) -1)x v + (d H (u) -2)x u ≥ q -2.
are valid for P (G, T). Observe that d H (v) = 2 for all v ∈ (P t ∪ P t) \ {u}.

By summing these inequalities together with the inequality x(P t ∪ P t) ≥ 1 induced by the terminal path P t ∪ P t , and inequality x u ≥ 0, we obtain the inequality

v∈V (H)\(Pt∪P t) 2(d H (v) -1)x v + v∈Pt∪P t 2(d H (v) -1)x v ≥ 2q -3. (17
)
By dividing by 2 and rounding up the right hand side, we obtain inequality [START_REF] Souza | The vertex separator problem: algorithms and computations[END_REF].

Remark 4.1. If the terminal tree contains some terminals that are not leaves, then the associated inequality (16) is dominated by other terminal tree inequality.

Remark 4.2. The star tree inequalities are a spacial case of termina tree inequalities that can be separated in polynomial-time (see Subsection 6.1) while for the terminal tree inequalities, the complexity of the separation problem is open.

Lifted terminal tree inequalities

Let R be a terminal tree of G. For a vertex v, let F v be the union of leaf branches incident to v. Clearly, F v is a star tree in R. Let Π Fv be a set of vertex disjoint branch cliques in F v (see, lifted star tree inequalities, Subsection 4.5).

Theorem 4.10. The following inequality

v∈V (R) (d R (v) -1 -α Π Fv)x v ≥ q -1 if valid for P (G, T).
Proof . The proof is similar to the one of Theorem 4.8.

Terminal cycle inequalities

A terminal cycle J = (V (J) ∪ T (J), E(J)), where T (J) is a set of q terminals, is a graph given by a cycle of q vertices and q disjoint edges between the vertices of the cycle and the terminals of T (J). We suppose that |T (J)| ≥ 2. Let C = V (J) be the set of nonterminal vertices of J. (See Figure 10 displaying a terminal cycle where q = 5). Theorem 4.11. If J = (V (J) ∪ T (J), E(J)) is a terminal cycle of G, then the following inequality is valid for P (G, T),

x(C) ≥ q 2 . (18
)
Proof . Let S be a separator in G. Suppose that there exists an edge uv ∈ C such that S ∩ {u, v} = ∅. Since u and v are connected to two different terminals, there would exist a terminal path not intersecting S, a contradiction. So, for each edge e ∈ C, at least one vertex of e belongs to S. Thus the result follows.

Theorem 4.12. Given a terminal cycle J = (V (J) ∪ T (J), E(J)) of G, with |T (J)| = q, inequality (18) defines a facet of P (G, T) if and only if the following hold:

(a) q is odd. Proof . Let t 1 , . . . , t q be the terminals of T (J), v 1 , . . . , v q the nodes of C and e i = v i t i , for i = 1, . . . , q. For i = 1, . . . , q -1, let P t i denote the terminal path (t i , v i , v i+1 , t i+1). (⇒) (a) If q is even, the terminal cycle inequality associated with J can be obtained by summing the terminal path inequalities associated with {P t 1 , P t 3 , . . . , P t q-1 }. Thus inequality (18) cannot be facet defining. (b) Assume that C is odd. If G[C] contains a chord uv, then, J can be decomposed into two terminal cycles J 1 and J 2 with a common edge uv, with q 1 and q 2 terminals, respectively. Suppose, without loss of generality, that J 1 has an odd number of terminals and J 2 has an even one. Also, we may suppose that v = v 1 and v 1 , . . . , v q 2 are the non terminal nodes of J 2 . Let P be the set of the q 2 2 -1 disjoint terminal paths {v 2 , v 3 }, {v 4 , v 5 }, . . . , {v q 2 -2 , v q 2 -1 }. The terminal cycle inequality associated with J can then be obtained by summing the terminal cycle inequality related to J 1 and the terminal path inequalities related to the terminal paths of P. (c) Suppose there exists a vertex w ∈ V \ C adjacent to a terminal t such that each vertex cover of C of size q 2 contains at most |C | -1 vertices of C . Then, each vertex cover of C of size q 2 does not intersect a one terminal path (t, u, w, t) where u ∈ C is not in the vertex cover and t is the terminal adjacent to u. When (18) is saturated by x S where S is a separator, then S must contain w. Hence (18) cannot define a facet. (d) Suppose there exists a vertex w ∈ V \ C not adjacent to a terminal, and adjacent to the vertices of a set C ⊆ C, such that each vertex cover of C of size q 2 contains at most |C | -2 vertices of C . Observe that for every two nodes u, u of C , (t, u, w, u , t) is a terminal path, where t (resp. t) is the terminal adjacent to u (resp. u). If [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF] is saturated by x S where S is a separator, then S must contain w. Hence (18) cannot define a facet.

(⇐) Suppose that all the conditions (a)-(d) are satisfied. Denote by ax ≥ α inequality [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF] and let bx ≥ β be an inequality that defines a facet of P (G, T) such that {x ∈ P (G, T) : ax = α} ⊆ {x ∈ P (G, T) : bx = β}. Since P (G, T) is full dimensional, we need to prove that there exists ρ such that b = ρa.

Let S 1 = (V \ C) ∪ {v 1 , v 3 , . . . , v q } and S 2 = (S 1 \ {v 1 }) ∪ {v 2 }. As C is chordless and q is odd, from Assumption 2 of Section 1 we have that S 1 and S 2 are separators of G, and their incidence vectors satisfy [START_REF] Dinur | On the hardness of approximating minimum vertex cover[END_REF] Consequently, we have that b = ρa and the proof is complete.

Extended terminal cycle inequalities

An extended terminal cycle J = (V (J) ∪ T (J), E(J)) is a general form of a terminal cycle configuration such that each vertex of the cycle C is connected to zero, one or several terminals by means of paths, which will be called branches (See Figure 11 for an illustration). We suppose that |T (J)| ≥ 2. We note that the internal nodes of the branches are of degree 2. Let V 1 ⊆ V (J) be the set of vertices of degree greater than or equal to 3 and V 2 ⊆ V (J) be the set of vertices of degree equal to 2. For each Then we have the following Theorem 4.13. The inequality

vertex v ∈ V (J), let d J (v) be the degree of v in J. Let β(J) = v∈V 1 (d J (v)-3).
v∈V 2 x v + v∈V 1 (d J (v) -2)x v ≥ |V 1 | 2 + β(J) (19)
is valid for P (G, T).

Proof . The proof is by induction on β(J). If β(J) = 0, then the proof is similar to that of Theorem 4.11. So suppose that β(J) ≥ 1, and that inequality (19) is valid for every extended terminal cycle with β(J) ≤ s.

We will show that it remains valid when β(J) = s + 1. So suppose that β(J) = s + 1. Since β(J) ≥ 1, there must exist two branches P t and P t with a common vertex u ∈ C. Let J 1 (resp. J 2) be the extended terminal cycles obtained from J by removing the vertices of P t \{u} (resp. P t \{u}). Remark that β(J 1) = β(J 2) = s. From the induction hypothesis, the following inequalities are valid for P (G, T).

v∈V 2 \P t x v + v∈V 1 (d J (v) -2)x v -x u ≥ |V 1 | 2 + β(J) -1, v∈V 2 \Pt x v + v∈V 1 (d J (v) -2)x v -x u ≥ |V 1 | 2 + β(J) -1.
By summing these inequalities together with x(P t ∪ P t) ≥ 1 and x(u) ≥ 0, dividing the resulting inequality by 2 and rounding up the right hand side, we obtain inequality [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Reduction operations

In this section, we are going to describe some graph reduction operations. These can be used in a preprocessing phase in order to reduce the graph and then accelerate the resolution of the problem.

Deletion of a subgraph connected to two terminals

Let H be a subgraph of G such that there exist two terminals t, t ∈ T adjacent to some vertices in V (H), and no vertex in V (H)∪T (H) is adjacent to vertices of (V ∪T)\(V (H)∪T (H)∪{t, t }). See Figure 12 for an illustration.

Let V + (H) = V (H) ∪ T (H).
[V + (H)∪ {t, t }] (G[(V ∪ T) \ V + (H)]). Then S 1 ∪ S 2 is a minimum size separator in G.
As a consequence of Lemma 5.1, graph G can be decomposed into G[V + (H)∪ {t, t }] and G \ H, and the minimum separator in G can be computed from those of G[V + (H) ∪ {t, t }] and G \ H.

Contraction of a subgraph connected to two vertices

Let H be a subgraph of G such that T (H) = ∅ and there exist two vertices u, v ∈ V \ V (H) adjacent to V (H), and no vertex in V (H) is adjacent to vertices of (V ∪ T) \ (V (H) ∪ {u, v}). Let G be the graph obtained from G by deleting the vertices of H and adding an edge between u and v. See Figure 13 for an illustration.

Deletion of useless components

Consider two subgraphs H 1 and

H 2 of G such that V = V (H 1) ∪ V (H 2), V (H 1) ∩ V (H 2) =
{v} and T (H 1) = T . See Figure 14 for an illustration. Proof. Remark that there is no terminal path intersecting V (H 2)\{v}. Thus, no minimal separator intersects V (H 2) \ {v}.

It is easily seen that the three operations given by Lemmas 5.1, 5.2 and 5.3 can be performed in polynomial time. These operations are used within our Branch-and-Cut algorithm that we present in the next section.

Branch-and-Cut Algorithm

In this section, we describe a Branch-and-Cut algorithm for the MTVSP. Our aim is to address the algorithmic applications of the theoretical results presented in the previous sections and describe some strategic choices made in order to solve that problem. So, let us assume that we are given a graph G = (V ∪ T, E). We suppose that all the operations 5.1,5.2 and 5.3 have been performed in a preprocessing phase, and thus none of these operations can be applied for G.

We now describe the framework of our algorithm. To start the optimization, we consider the linear program given by the terminal path inequalities associated with the terminal paths P * tt of minimum length (in terms of number of edges), between each pair of terminals t, t ∈ T of graph G together with the trivial inequalities, that is min

v∈V x v x(P * tt) ≥ 1 ∀t, t ∈ T, x v ≤ 1 ∀v ∈ V, x v ≥ 0 ∀v ∈ V.
Note that, for each pair of terminals, there may exist several terminal paths of minimum length (in terms of number of edges) but we add only one terminal path inequality associated with it.

The optimal solution x * ∈ R V of this relaxation of the MTVSP is feasible for the problem if x * is an integer vector that satisfies all the terminal path inequalities. Usually, the solution x * is not feasible for the MTVSP, and thus, in each iteration of the Branch-and-Cut algorithm, it is necessary to generate further inequalities that are valid for the MTVSP but violated by the current solution x * . For this, one has to solve the so-called separation problem. This consists, given a class of inequalities, in deciding whether the current solution x * satisfies all the inequalities of this class, and if not, in finding an inequality that is violated by x * . An algorithm solving this problem is called a separation algorithm. The Branch-and-Cut algorithm uses the inequalities previously described.

We remark that all inequalities are global (i.e. valid for all the Branchand-Cut tree) and several inequalities may be added at each iteration. Our strategy is to try to detect violated inequalities at each node of the Branchand-Cut tree in order to obtain the best possible lower bound and thus limit the number of generated nodes.

Separation Procedures

Now, we describe the separation procedures used in our Branch-and-Cut algorithm. We first show that the separation of the terminal path inequalities and the star tree inequalities can be done in polynomial time. Theorem 6.1. Inequalities (6) can be separated in polynomial time.

Proof . Let x * ∈ [0, 1] V . For a terminal t ∈ T , add a super terminal t s to T adjacent to all terminals of T \ {t}. Let x * T ∈ R T such that x * T (t i) = 0 for all t i ∈ T . Let y * ∈ [0, 1] E be the vector such that y * (uv) = x * (u)+x * (v) 2 for all uv ∈ E and u, v ∈ V , and y * (ut i) =

x * (u)+x * T (t i) 2
for all ut i ∈ E, u ∈ V and t i ∈ T . Finding a shortest path, between t and any terminal of T \ {t}, in graph G w.r.t x * is equivalent to finding a shortest path P t in graph G w.r.t y * between t and t s . Consider the path P among the paths P t , t ∈ T \ {t}, of a minimum weight, say z. If z < 1, then inequality (6), associated with P , is violated. Otherwise, all inequalities (6) are satisfied.

Since Dijkstra algorithm solves the shortest path problem in O(|m| + |n + k|log(|n + k|)) [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF], the above algorithm discussed for separating inequalities [START_REF] Barbehenn | A note on the complexity of dijkstra's algorithm for graphs with weighted vertices[END_REF], runs in O(k(|m| + |n + k|log(|n + k|))). Theorem 6.2. The star tree inequalities (8) can be separated in polynomial time.

Proof . We will show that the separation problem for the star tree inequalities can be reduced to a minimum cost flow problem. Let

x * ∈ [0, 1] V . For a vertex v ∈ V , let D v = (V ∪ T , A) be the graph obtained from G as follows 1-T = T ∪ {t s }, where t s is a new super terminal. 2-add a vertex v in V .
3-for each vertex u ∈ V \ {v}, add two vertices u 1 and u 2 in V , and the arc (u 1 , u 2) in A . 4-for each edge uw ∈ E such that u = v and w = v, add two arcs (u 2 , w 1) and (w 2 , u 1) in A . 5-for all u ∈ N (v) \ T , add an arc (v , u 1) to A , and for all t ∈ N (v) ∩ T , add an arc (v , t) in A . 6-for all t ∈ T , and u ∈ N (t) \ {v}, add an arc (u 2 , t) to A . 7-for all t ∈ T , add an arc (t, t s) in A . For an integer value q ∈ [3, . . . , |T |], we look for a flow of value q of minimum cost, between v and t s in D v . Let A be the set of arcs used by this flow and z the cost of this flow. We let W ⊆ V be the set of vertices u of V such that (u 1 , u 2) ∈ A. It can be easily seen that if z + (q -1)x * v < q -1, then the star tree inequality associated with the star tree given by W is violated.

The minimum cost flow problem can be solved in O((n + k) 4 CU), where U denotes the maximum value among the flow value and arc capacities and C the largest arc cost [START_REF] Kovács | Minimum-cost flow algorithms: an experimental evaluation[END_REF]. The separation of the star tree inequalities thus runs in O(k(n + k) 4 CU) time.

The polynomial algorithm for separating the star tree inequalities, discussed above, may be time consuming. In what follows we devise a heuristic to speed up the separation. The idea of the heuristic is to construct a start tree using shortest paths between a root node and terminals. The heuristic works as follows. We construct a graph G obtained from G by adding a super terminal t s adjacent to all terminals of T . Then for each integer q ∈ [3, . . . , k] and each vertex v ∈ V , we perform the following procedure. We set S = {v} and the weight of each vertex u ∈ V \ {v} to x * u and those of {t s , v} ∪ T to 0. Then we look for a shortest path P v between t s and v. If P v does not exist, then we stop. Otherwise, we update S, V and T as S = S ∪ (P v \ {t s }), V = V \ (P v \ {v}) and T = T \ (P v \ {t s }). If the star tree associated with S has q branches then we stop. Otherwise we look for a new shortest path between t s and v, and so on. If set S represents a star tree of G of root vertex v and q branches, and if x * (S \ (T ∪ {v})) + (q -1)x * v < q -1, then the star tree inequality associated with S is violated. This heuristic is given in Algorithm 1.

Algorithm 1: Separation heuristic for the star tree inequalities.

Data: G = (V ∪ T, E), v ∈ V , q ∈ {3, . . . , k} and a vector If S is a star tree of root v and q branches then check if the associated star tree inequality is violated by x * ; 20 end

x * ∈ [0, 1] V Result: Star tree inequality violated by x * 1 begin 2 S = {v}; c v = 0; 3 for u ∈ V \{v} do 4 c u = x * u ; 5 end 6 for t ∈ T ∪ {t s } do 7 c t = 0; 8 end 9 for i = 1, . . . , q do 10 P i ← shortest path in (V ∪ T ∪ {t s }, E) w.
Since Dijkstra algorithm solves the shortest path problem in O((n

+ k) 2) [28], Algorithm 1 runs in O(k(n + k) 2). It follows that the heuristic runs in O(nk(n + k) 2) time.
Now we turn our attention to the separation of the clique star inequalities. This is also performed using a heuristic algorithm. The idea of the heuristic is to generate a set L(G) of cliques in graph G, and for all clique K q of q vertices, we construct a clique star using shortest paths between each vertex of K q and terminals.

The heuristic works as follows. We initialize the list L(G) with all cliques in G of size 3. Then, for a fixed number of iterations l ∈ {1, . . . , k}, for each clique K ∈ L(G) and for all v ∈ N (K), we check if K ∪ {v} is a clique and if so, we add it to L(G). Let G be the graph obtained from G by adding a super terminal t s adjacent to all terminals of T . During the separation procedure, for each clique K q ∈ L(G) of q vertices, we perform the following procedure G . We set S = K q and the weight of each vertex v ∈ V to x * v and those of {t s } ∪ T to 0. Then for a vertex v ∈ K q , we look for a shortest path P v between t s and v in G \ (K q \ {v}). If P v does not exist, then we stop. Otherwise, we update S, V and T as S = S ∪ (P v \ {t s }), V = V \ (P v \ {v}) and T = T \ (P v \ {t s }). If the clique star associated with S has q branches then we stop. Otherwise we look for a new shortest path between t s and another vertex v of K q in G \ (K q \ {v }), and so on. If set S represents a clique star of G of clique K q and q branches, and if x * (S) < q -1, then the clique star inequality associated with S is violated. This heuristic is given in Algorithm 2.

Algorithm 2: Separation heuristic for the clique star inequalities.

Data: G = (V ∪ T, E), a clique K q ∈ L(G) of q vertices and a vector x * ∈ [0, 1] V Result: Clique star inequality violated by x * 1 begin If S is a clique star of clique K q and q branches then check if the associated clique star inequality is violated by x * ;

2 S = K q ; 3 for v ∈ V do 4 c v = x * v ; 5 end 6 for t ∈ T ∪ {t s } do 7 c t = 0; 8 end 9 for v ∈ K q do 10 P v ← shortest path in graph ((V \ K q) ∪ {v} ∪ T ∪ {t s }, E) w.

end

Since Dijkstra algorithm solves the shortest path problem in O((n + k)2) [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF], the heuristic runs in O((n + k) 3) time. Now we discuss the separation of the terminal tree inequalities. For this we devised the following heuristic. Let x * ∈ [0, 1] V . Let y * ∈ [0, 1] E be the vector such that y * (uv) = x * (u)+x * (v) R by deleting the leaf vertices that are not terminals. R may have terminals of degree greater than or equal to 2. This means that R is not minimal, but the associated terminal tree inequality remains valid for P (G, T). Then we check whether the corresponding terminal tree inequality is violated. For determining the minimum spanning tree we use Kruskal algorithm that runs in O(mlog(m)) [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF]. Thus our algorithm can be implemented in O(mlog(m)) time. The graph in Figure 16 illustrates the deletion of all non-terminal leaves. Since Dijkstra algorithm solves the shortest path problem in O((n + k) 2) [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF], the heuristic runs in O(km(n + k) 2) time.

Heuristics and performance guarantee

In [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF], the authors show that the multi-terminal vertex separator problem can be solved in polynomial time when the graph has two terminals. In what follows, we will use this result to develop a heuristic with performance guarantee for the problem.

Isolating terminal heuristic

In [START_REF] Dahlhaus | The complexity of multiterminal cuts[END_REF], the authors propose a heuristic for the multi-terminal cut problem (the edge version of the MTVSP). They show that the solution given by the heuristic is of a size guaranteed to be no more than 2(k-1) k times the optimal size. This heuristic can be adapted for the MTVSP. For a terminal t ∈ T , an isolating terminal set S t ⊆ V is a set of vertices intersecting all terminal paths between t and all terminals of T \ {t}. We denote by ST t the super terminal where all terminals T \{t} are merged. The idea of the heuristic is to construct a separator of G, from the union of all minimum isolating terminal sets of G. It works as follows. For each terminal t ∈ T , we compute the separator S t of minimum size ω(S t), intersecting all terminal paths between t and the super terminal ST t . This can be done in polynomial time [START_REF] Ben-Ameur | On the minimum cut separator problem[END_REF]. Let S t * be the separator, among those computed before, of maximum size. Then we return S = t∈T \{t * } S t . This heuristic is given in Algorithm 5. Set S is a separator in G since, for all t ∈ T , S contains a subset of vertices in V intersecting all terminal paths between t and all terminals of T \ {t}. Theorem 6.3. The isolating terminal heuristic constructs a multi-terminal vertex separator whose size ω * is guaranteed to be no more than (k -1) times the optimal size.

Proof . Let S be the separator given by the isolating terminal heuristic and S t ⊆ S be the set of vertices of minimum size ω(S t), intersecting all terminal paths between t and all terminals of T \{t}. Let S be a separator of minimum size ω in G. For a terminal t ∈ T , let S t ⊆ S be a set of vertices having a minimum size ω t , intersecting all terminal paths between t and all terminals in T \ {t}. Clearly, ω(S t) ≤ ω t . Moreover, each vertex of S can belong to each separator S t for each terminal t ∈ T . Thus,

t∈T ω t ≤ kω. Therefore ω * ≤ (k -1) t∈T ω(S t) k ≤ k -1 k t∈T ω t ≤ k k -1 k ω ≤ (k -1)ω
and the result follows.

Corollary 6.1. When k = 3, the isolating terminal heuristic is a 2-approximation algorithm for the MTVSP.

Remark 6.1. The star tree is an example on which the isolating terminal heuristic can give a solution of size equal to (k-1) times the optimal size. Thus the bound given above is tight.

Improved isolating terminal heuristic

This heuristic consists in looking for a separator S by applying the isolating terminal heuristic, and try to pull off one by one each vertex from S, and check if the remaining set is a separator. If not, we put it back in S. It would be more interesting to start by removing the vertices of small degrees. This heuristic is given in Algorithm 6.

in relation with the size of the graph, i.e., the higher the size of graph is, the higher the maximum degree of terminals is. In all our experiments, we have used the reduction operations described in the previous section to reduce the graph. As the separation algorithms generate less than 10 inequalities per family of inequalities and per iteration, we perform all of them for each separation phase. Moreover, we tested different separation orders, and we noticed that separating all inequalities, at each separation phase, gives the best results. Each instance is given by its name followed by an extension representing the number of nodes of the graph. Table 2 presents the results obtained for DIMACS instances associated to graphs having up to 500 nodes. The number of terminals is fixed to 6 for graphs with less than 99 nodes and 8 for the others. As we can remark in the table, all instances were solved by the Branch-and-Cut algorithm in less than 33 seconds. The bold values in the CPU BC column indicate the instances for which the Branch-and-Cut algorithm solves the instance faster than Cplex with the double indices formulation. We notice that in 50% of the instances, the Branch-and-Cut algorithm beats the Cplex. The valid inequalities (4),(7),(16) and (18) have been efficient for strengthening the for-mulation. Indeed 62% of the instances were solved by the Branch-and-Cut algorithm in the first node of the branching tree. We also notice that all the valid inequalities appear in the instances Queen8 8, Queen8 12, Queen10 10, Queen12 12, Queen14 14, Queen15 15, since the underlying graphs are holeless. However, no clique star inequality appears for instances Myciel5, My-ciel6 and Myciel7 since they are induced by triangle free graphs. Moreover, we can remark that the Branch-and-Cut algorithm generates a few number of valid inequalities. Only 4 instances over 24 were solved by the Branchand-Cut algorithm in more than 10 seconds. For these four instances, the number of star tree inequalities is greater than 340, in contrast with the other instances, where the number of star tree inequalities is less than 200. Table 3 presents the results obtained for random instances on graphs having up to 5000 nodes. The maximum degree of terminals is fixed to 7 for instances with less than 700 nodes, 10 for instances with the number of nodes between 800 and 1500 and to 15 for instances with 1800 nodes and more. As it appears, in 95.6% of instances, the Branch-and-Cut algorithm beats Cplex. Indeed, Cplex was faster than the Branch-and-Cut in only 1 instance (R 5 0) with a difference of 0.8 seconds. In the other instances, the slack between the CPU times increases exponentially. For instance, for R 100 the difference is 2.05 seconds and for R 1300 it is 5085.09 seconds. Also note that all instances were solved in the root of the branching tree by the Branch- Table 7 is for DIMACS graphs and Table 8 is for random graphs both give the results of the Branch-and-Cut algorithm without the additional valid inequalities, i.e., with only the terminal path inequalities. Observe that when the number of vertices is less than 1800, the CPU time is less than the one in Tables 2 and3. However, the number of nodes in the branching tree and the gap are higher. Indeed, the linear relaxation of the natural formulation is weak. For the instances with at least 1800 vertices, we notice that the CPU time, gap and number of nodes in the branching tree in Table 8 are higher than the corresponding ones in Table 3. Our inequalities have a great impact for large instances. The size of the branching tree has also been reduced.

Instances

Tables 9 and 10 present the results given by the improved isolated terminal heuristic for DIMACS and random instances, respectively. We can remark that the heuristic gives very good results in short time. In 93.6% of the instances, the solution given by the heuristic is optimal. For the other instances, the gap is very small. On the other hand, when the number of terminals is high, the CPU time of the heuristic becomes high. All DIMACS instances were solved in 0.2 seconds or less. putational results have also permitted to measure the importance of our separation heuristics. In particular the heuristic for separating star tree inequalities seemed more efficient than the exact polynomial algorithm. We have also proposed two heuristics for the problem, and analysed their performance guarantee. The improved isolating terminal heuristic has appeared to be very efficient since it could find the optimal solution for most of the instances.

Instances

Now several questions may arise. First, it would be interesting to characterize the graphs for which the terminal path, star tree, clique star, terminal cycle and terminal tree inequalities suffice to describe the multi-terminal vertex separator polytope. Indeed, as it appears from the computational results, using these inequalities, many instances have been solved in the root of the Branch-and-Cut tree. In [START_REF] Naves | The graphs with the max-mader-flow-minmultiway-cut property[END_REF], the authors characterize the class of graph for which the system given by (6) is TDI. It would be also interesting to describe graphs for which the system given by (6) together with classes of valid inequalities among those given in this paper is TDI. Finally, it would be of interest to develop an extended formulation for the problem and to compare a Branch-and-Price algorithm and the algorithm proposed in this paper.

Figure 1 :

 1 Figure 1: Minimal terminal path.

Figure 2 :

 2 Figure 2: Transformation from the graph H to the graph G.

Figure 2

 2 Figure 2 illustrates the above graph transformation, where the dotted edges are for the clarity of the graph.

Figure 3 :

 3 Figure 3: Two separators S v and S u w .

Figure 4 :

 4 Figure 4: A Star tree.

) defines a facet of P (G, T) if and only if the following hold (a) There is no vertex of V (H) adjacent to a terminal of T \ T (H). (b) The subgraph induced by V (H) in G contains no cycle.

Figure 5 :

 5 Figure 5: A ring Q t and two separators S 1 and S 2 .

Figure 6 :

 6 Figure 6: Two separators S 0 and S w .

Figure 7 :

 7 Figure 7: Clique star of 7 terminals.

Figure 8 :

 8 Figure 8: Star tree with clique branches.

Figure 9 :

 9 Figure 9: Terminal tree of 10 terminals.

Figure 10 :

 10 Figure 10: Terminal cycle of 5 terminals.

 (b) C is chordless. (c) For w ∈ V \ C adjacent to a terminal, there exists a vertex cover in C of size q 2 containing C , where C = N (w) ∩ C. (d) For all w ∈ V \ C not adjacent to a terminal, there exists a vertex cover of C of size q 2 containing at least |C | -1 vertices of C , where C = N (w) ∩ C.

 with equality. Hence bx S 1 = bx S 2 = β, which implies that b(v 1) = b(v 2). By symmetry we obtain that b(u) = b(v) = ρ for all u, v ∈ C, for some ρ ∈ R. Now let w ∈ V \C. Let C = N (w)∩C. If w is not adjacent to a terminal, by Condition (d), there exists a vertex cover U of C of size q 2 containing at least |C |-1 vertices of C . Let S w = ((V \C)∪U)\{w}. As w is not adjacent to a terminal, any terminal path containing w must pass through two vertices of N (w). Since |N (w) \ S w | ≤ 1, S w is a separator of G. The incidence vectors of S w ∪ {w} and S w both satisfy inequality (18) with equality. Therefore bx Sw∪{w} = bx Sw and thus b(w) = 0. If w is adjacent to a terminal, we can show along the same lines that b(w) = 0. Therefore b(v) = 0 for all v ∈ V \ C.

Figure 11 :

 11 Figure 11: Extended terminal cycle with β(J) = 2.

Figure 12 :

 12 Figure 12: Deleting a subgraph connected to two terminals.

Figure 13 :

 13 Figure 13: Contraction of a subgraph connected to two vertices..

Figure 14 :

 14 Figure 14: Deletion of useless components..

Figure 15

 15 Figure 15 illustrates the graph transformation. All arcs are given a capacity 1. For all u ∈ V \ {v}, arc (u 1 , u 2) has a weight x * u and all other arcs have weight 0.

Figure 15 :

 15 Figure 15: Transformation graph from G to D v

Figure 16 : 2 C←S ← C; 4 for v ∈ V do 5 c v = x * v ; 6 end 7 for 8 c t = 0; 9 end 10 for v ∈ C do 11 P 12 if P v = ∅ then 13 Stop algorithm. 14 end 15 else 16 S 17 V 18 T 20 end 21 If

 1624567891011121314151617182021 Figure 16: Deletion of non-terminal leaves.

Algorithm 5 : 5 S

 55 Isolating terminal heuristic. Data: Graph G = (V ∪ T, E) Result: Vertex separator 1 begin 2 S = ∅; 3 for t ∈ T do 4 Merge all terminals of T \ {t} into a new terminal t s ; t ← The minimum vertex separator of (V ∪ {t, t s }, E);

Table 1 :

 1 Comparing LP-Relaxations value of F 1 and F 2 with the optimal one.

	DSJR500	10	32 18.5	32
	Games120	10 30.34 18.5	31
	Miles250	15 32.18 27.5	35
	Myciel6	11 38.34 22.5	40
	Myciel7	17	57	31	57
	Queen8 12 11	38 21.5	38
	Queen14 14 18	65	35	65
	Queen16 16 16	59	32	59

 r.t c, between v and t s ;

	13	end
	14	else
	15	S ← S ∪ (P v \ {t s });
	18	end
	19	end
	20	

11 if P v = ∅ then 12 Stop. 16 V ← V \ (P v \ {v}); 17 T ← T \ (P v \ {t s });

Table 2 :

 2 Results from DIMACS instances.

		n	m k Tp	St Cs Tt Etc Nodes Gap CPU BC CPU Cplex
	Myciel5	47	258 6 48 189	0 28	0	7 35.20	7.96	0.50
	Queen8 8	64 1477 6 30 22 21	2	9	1 0.00	0.99	0.32
	Huck	74	624 6 64 51	3	5	1	23 19.20	3.39	1.51
	Jean	80	533 6 69 100	7	1	0	47 28.10	6.94	1.66
	David	87	835 6 31 147 25 26	3	26 28.50	8.58	4.24
	Myciel6	95	778 6 35 38	0 26	15	1 0.00	1.26	0.31
	Queen8 12	96 2762 6 33 36 35	1	18	1 0.00	1.45	1.41
	Queen10 10 100 2967 8 56 31 32	4	6	1 0.00	1.55	2.38
	Games120	120 1307 8 64 377 138	8	18	9 35.40	16.50	23.95
	DSJC125	125	764 8 105 70 12 64	12	1 0.00	2.33	3.87
	Miles250	128	804 8 103 127 16	4	2	29 28.10	5.75	0.42
	Miles500	128 2370 8 97 386 62	9	9	6 31.80	16.44	2.41
	Miles750	128 4256 8 63 60 49 13	15	1 0.00	3.62	2.87
	Miles1000	128 6462 8 53 30 24 10	12	1 0.00	2.03	6.38
	Anna	138 1022 8 92 344 55	0	1	74 16.60	17.99	0.72
	Queen12 12 144 5224 8 85 20 18	9	9	1 0.00	1.44	8.18
	Mulsol.i.2	188 3920 8 116 63 34	2	13	1 0.00	2.69	6.32
	Myciel7	191 2387 8 58 27	0 13	13	1 0.00	1.34	17.09
	Queen14 14 196 8399 8 56 19 15 12	11	1 0.00	1.24	22.52
	Mulsol.i.1	197 3952 8 71 11	5 10	3	1 0.00	0.58	5.61
	Zeroin.i.3	206 3576 8 28 47 48	1	2	1 0.00	2.03	5.49
	Queen16 16 256 12674 8 88 27 19	5	11	1 0.00	2.10	41.55
	School1	385 19129 8 109 16 15 12	5	1 0.00	1.08	103.00
	DSJR500	500 7140 8 29 374 331	3 141	4 40.00	32.35	19.80

Table 3 :

 3 Results from random instances.

		n	m k Tp St Cs Tt Etc Nodes Gap CPU BC CPU Cplex
	R 50	50	511 7 48 33 22 31	6	1 0.00	1.24	0.44
	R 70	70	993 7 44 18 14 19	4	1 0.00	0.64	0.78
	R 100	100	1985 7 45 13 13 12	5	1 0.00	1.02	3.07
	R 300	300	17792 7 67 8	7	8	2	1 0.00	2.31	55.67
	R 600	600	70673 7 23 10	9	9	5	1 0.00	4.04	298.02
	R 700	700	96432 7 48 7	6	5	1	1 0.00	3.96	360.79
	R 800	800 125978 10 95 26 23	0	13	1 0.00	20.98	1323.90
	R 900	900 159331 10 96 39 36	1	15	1 0.00	31.31	1959.60
	R 1000	1000 196771 10 86 35 34	0	16	1 0.00	34.35	2395.20
	R 1200	1200 283386 10 92 26 24	0	9	1 0.00	41.01	4595.10
	R 1300	1300 332861 10 47 30 30	0	15	1 0.00	56.91	5142.00
	R 1500	1500 442444 10 99 33 32	0	16	1 0.00	92.64	11735.00
	R 1800	1800 637307 15 110 44 40 40	17	1 0.00	379.95	-
	R 2000	2000 786639 15 108 37 32 35	16	1 0.00	468.78	-
	R 2100	2100 867430 15 214 34 31 28	15	1 0.00	641.02	-
	R 2300	2300 1041158 15 217 29 28 25	16	1 0.00	851.49	-
	R 3000	3000 1770773 15 215 33 30 19	12	1 0.00 1698.90	-
	R 3300	3300 2142370 15 112 38 37 11	18	1 0.00 2129.60	-
	R 3800	3800 2841805 15 217 28 27 26	13	1 0.00 2363.80	-
	R 4200	4200 3472117 15 222 37 35 30	22	1 0.00 3856.30	-
	R 4500	4500 3987339 15 217 41 40 31	15	1 0.00 5248.10	-
	R 4800	4800 4537794 15 218 31 22 31	10	1 0.00 4611.80	-
	R 5000	5000 4922710 15 110 27 26 27	16	1 0.00 4291.40	-

Table 7 :

 7 Results from DIMACS instances without the valid inequalities.

	Instances	n	m k Tp Nodes Gap % CPU BC
	Myciel5	47	258 6 161	44	35.2	0.06
	Queen8 8	64 1477 6 129	30	15.6	0.04
	Huck	74	624 6 86	16	19.2	0.01
	Jean	80	533 6 139	43	28.1	0.03
	David	87	835 6 154	45	28.5	0.04
	Myciel6	95	778 6 206	80	36.1	0.08
	Queen8 12	96 2762 6 176	56	38.0	0.08
	Queen10 10 100 2967 8 235	67	38.6	0.11
	Games120	120 1307 8 304	338	35.4	0.57
	DSJC125	125	764 8 311	204	39.1	0.31
	Miles250	128	804 8 148	57	28.1	0.05
	Miles500	128 2370 8 365	124	31.8	0.22
	Miles750	128 4256 8 372	148	37.5	0.30
	Miles1000	128 6462 8 327	86	37.5	0.21
	Anna	138 1022 8 354	91	16.6	0.13
	Queen12 12 144 5224 8 282	90	36.0	0.18
	Mulsol.i.2	188 3920 8 341	164	37.5	0.26
	Myciel7	191 2387 8 284	121	38.6	0.21
	Queen14 14 196 8399 8 279	89	41.3	0.24
	Mulsol.i.1	197 3952 8 183	56	38.8	0.11
	Zeroin.i.3	206 3576 8 257	65	35.7	0.12
	Queen16 16 256 12674 8 364	142	39.2	0.42
	School1	385 19129 8 359	198	38.8	0.53
	DSJR500	500 7140 8 697	2735	40.0	26.52

Table 8 :

 8 Results from random instances without the valid inequalities.

Table 9 :

 9 n m k Heur val Opt val CPU Heur Heur Gap % Results from DIMACS instances given by the improved isolated terminal heuristic.

	Myciel5	47	258 6	17	17	0.00	0.00
	Queen8 8	64 1477 6	16	16	0.01	0.00
	Huck	74	624 6	14	13	0.00	7.14
	Jean	80	533 6	16	16	0.00	0.00
	David	87	835 6	14	14	0.00	0.00
	Myciel6	95	778 6	18	18	0.00	0.00
	Queen8 12	96 2762 6	21	21	0.02	0.00
	Queen10 10 100 2967 8	22	22	0.03	0.00
	Games120	120 1307 8	24	24	0.01	0.00
	DSJC125	125	764 8	23	23	0.01	0.00
	Miles250	128	804 8	16	16	0.01	0.00
	Miles500	128 2370 8	24	22	0.03	8.33
	Miles750	128 4256 8	24	24	0.05	0.00
	Miles1000	128 6462 8	24	24	0.07	0.00
	Anna	138 1022 8	26	21	0.02	19.20
	Queen12 12 144 5224 8	25	25	0.06	0.00
	Mulsol.i.2	188 3920 8	28	28	0.04	0.00
	Myciel7	191 2387 8	22	22	0.03	0.00
	Queen14 14 196 8399 8	23	23	0.10	0.00
	Mulsol.i.1	197 3952 8	18	18	0.04	0.00
	Zeroin.i.3	206 3576 8	21	21	0.04	0.00
	Queen16 16 256 12674 8	28	28	0.15	0.00
	School1	385 19129 8	27	27	0.20	0.00
	DSJR500	500 7140 8	25	25	0.10	0.00

for all uv ∈ E, u, v ∈ V , and y * (ut) = x * (u) 2 for all ut ∈ E, u ∈ V and t ∈ T . We look for a spanning tree R of minimum weight in the graph G w.r.t y * . Let R be the tree obtained from

Acknowledgment

We are grateful to the anonymous referees for their constructive comments that permitted to correct some errors introduced in the first version, and improve the presentation of the paper.

We also devised a heuristic for separating the extended terminal cycle inequalities. The idea of the heuristic is to generate a cycle, and construct an extended terminal cycle using shortest paths between each vertex of the cycle and terminals. The heuristic works as follows. First, we look for a cycle C of minimum weight in the graph G[V] w.r.t x * . This can be done in polynomial time (|E| times the shortest path problem). We then construct a graph G from G by adding a super terminal t s adjacent to all terminals of T . We set S = C, the weight of each vertex v ∈ V to x * v and those of {t s } ∪ T to 0. For each vertex v ∈ C, we look for a shortest path P v between t s and v in the graph G \ (C \ {v}). If P v does not exist, then we stop. If P v exists note that, as t s is adjacent to all the terminals and the weights of the terminals and t s are all equal to 0, P v can be considered in such a way that it contains only one terminal of T , namely the one in P v just before t s . We update S, V and T as

If set S represents an extended terminal cycle of G, let q be the number of its branches. If x * (S \ T) < q 2 , then the extended terminal cycle inequality, associated with the extended terminal cycle induced by S, is violated. This procedure is given in Algorithm 4. Algorithm 6: Improved isolating terminal heuristic.

Data:

Computational Results

The Branch-and-Cut algorithm described in the previous section has been implemented in C++, using CPLEX to manage the Branch-and-Cut tree and also as a lp-solver, and all flow problems are solved using Lemon library [2]. The CPLEX cuts are desactivated. It was tested on an Intel Xeon E312xx machine at 2.39 GHz ×1 with 48GB RAM, running under Linux 64 bits. The maximum CPU run time has been fixed to 4 hours. We use two kinds of instances, the DIMACS graph coloring instances [1] and random graphs, generated using boost graph library [3] in C++. The terminals are new nodes added to the graphs. Each terminal is randomly connected to at least 2 vertices and at most a given deg T ∈ N vertices of V . The edges incident to the terminals are added respecting the assumptions (3) -(4), given in Section 1. In the tables below, the maximum degree of the terminals is fixed : the objective value of the solution given by the improved isolating terminal heuristic.

Opt val

: the optimal objective value.

CPU Heur

: the CPU time of the Heuristic, in seconds. Heur Gap % : the value of Heur val-Opt val Opt val .

In the first Tables 2 and3, we compare the Branch-and-Cut algorithm with CPLEX for the compact double index formulation. and-Cut algorithm. Indeed, for random instances our valid inequalities are enough for finding the optimal solutions without branching. Cplex, with the Double indices formulation, could not solve the instances with 1800 vertices and more. This can be explained by the out of memory due to the number of constraints in the double indices formulation when the number of edges is high. Also random graphs have no specific structure and this let the instance harder to solve. For example, for instance R 1800, the formulation has more than 9.5 millions of constraints. For both DIMACS and random graphs, the number of star tree inequalities, clique star inequalities and terminal tree inequalities is roughly the same.

In Tables 4, 5 and 6, we vary the density of the graph, the number of terminals and the maximum degree of the terminals. Tables 4 represents the results for random graphs, with different densities, 18%, 39% and 55%. We notice that in almost all the instances, the higher the density is, the higher CPU time is. Tables 5 represents the results for random graphs with different numbers of terminals. In almost all the instances, the higher number of terminals is, the higher the CPU time is. All instances are solved in the root node of the branching tree. Tables 6 represents the results for random graphs with different values of deg T (We recall that the terminals are randomly connected to at least 2 vertices and at most deg T vertices of V). We notice that the higher deg T is, the higher CPU time is. Also, the Branch-and-Cut algorithm could solve all instances in the root node of the branching tree.

Instances

Instances

Instances

Conclusion

In this paper we have considered the multi-terminal vertex separator problem. We have first shown that the problem is NP-hard. Then we have proposed two integer programming formulations for the problem. For one of them we have identified some valid inequalities and discussed their facial structure. Using this, we have developed a Branch-and-Cut algorithm for the problem and presented extensive computational results. These show the effectiveness of the valid inequalities used in the algorithm. The com-