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Introduction and main results

Let g ≥ 1 be an integer and let R g (Γ g ) denote the C-algebra of modular forms of degree g for the symplectic group Sp 2g (Z) (see Section 2 for a precise definition). It is a normal and integral domain of finite type over C, closely related to the moduli space of principally polarized abelian varieties over C. But even generators of these algebras are only known for small values of g: g = 1 is usually credited to Klein [Kle90,FK65] and Poincaré [Poi05,Poi11], g = 2 to Igusa [START_REF] Igusa | On Siegel modular forms of genus two[END_REF] and g = 3 to Tsuyumine [Tsu86]. In the latter, Tsuyumine gives 34 generators and asks if they form a minimal set of generators. We answer by the negative and prove in the present paper that there exists a subset of 19 of them which is still generating the algebra and which is minimal (Theorem 3.1). As a by-product we also exhibit a (possibly incomplete) set of 55 relations and use them to obtain a homogeneous system of parameters for this algebra (Theorem 3.3).

Unlike Tsuyumine, we extensively use algebra softwares since we base our strategy on evaluation/interpolation which leads to computing ranks and invert large dimensional matrices. Still, a naive application would have forced us to work with complex numbers, which would have been bad for efficiency but also to certificate our computations. Hence, in order to perform exact arithmetic computations, we make a detour through the beautiful geometry of smooth plane quartics and Weber's formula [Web76] which allows us to express values (of quotients) of the theta constants and ultimately modular forms as rational numbers (up to a fourth root of unity). The strategy could be interesting for future investigations for g = 4 as those theta constants can be computed in a similar way [Çel19].

We then move on to a second task in the continuation of the famous Klein's formula, see [Kle90, Eq. 118, p. 462] and [START_REF] Lachaud | Jacobians among abelian threefolds: a formula of Klein and a question of Serre[END_REF]MV13,Ich18a]. This formula relates a certain modular form of weight 18, namely χ 18 , to the square of the discriminant of plane quartics. A complete dictionary between modular forms and invariants was only known for g = 1 and g = 2. For g = 3, these formulas can come with two flavors: restricting to the the image of the hyperelliptic locus in the Jacobian locus, one gets expressions of the modular forms in terms of Shioda invariants for binary octics, see [Tsu86] and [LG19]; considering the generic case, one gets expressions in terms of Dixmier-Ohno invariants for ternary quartics, see Proposition 4.3. Extra care was taken in making these formulas as normalized as possible using the background of [START_REF] Lachaud | Jacobians among abelian threefolds: a formula of Klein and a question of Serre[END_REF] and also to eliminate as much as possible parasite coefficients coming from relations between the invariants. As a striking example, the modular form χ 28 is equal to -2 171 • 3 3 I 3 27 I 3 (the exponent of 2 is large because the normalization chosen by Dixmier for I 27 is not optimal at 2). We finally give formulas in the opposite direction and express all Dixmier-Ohno invariants as quotients of modular forms by powers of I 27 , see Proposition 4.5. We hope that such formulas may eventually lead to a set of generators for the ring of invariants of ternary quartics with good arithmetic properties. Indeed, theta constants have intrinsically good "reduction properties modulo primes" (in the sense that they often have a primitive Fourier expansion) and may help guessing such a set of generators.

The full list of expressions for the 19 Siegel modular forms either in terms of the theta constants or in terms of curve invariants, the expressions of Dixmier-Ohno invariants in terms of Siegel modular forms and the 55 relations in the algebra, are available at [START_REF] Lercier | Siegel modular forms of degree three and invariants of ternary quartics[END_REF].

Review of Tsuyumine's construction of Siegel modular forms

We recall here the definition of the 34 generators for the C-algebra of modular forms of degree 3 built by Tsuyumine. Surprisingly, they all are polynomials in theta constants with rational coefficients: one knows that when g ≥ 5, there exists modular forms which are not in the algebra generated by theta constants [START_REF] Manni | On the not integrally closed subrings of the ring of the Thetanullwerte[END_REF], while answer for g = 4 is still pending [START_REF] Oura | Towards the Siegel ring in genus four[END_REF]. We take special care of the multiplicative constant involved in each expression.

2.1. Theta functions and theta constants. Let g ≥ 1 be an integer and

H g = {τ ∈ M g (C), t τ = τ, Im τ > 0}.
Definition 2.1. The theta function with characteristics

[ ε 1 ε 2 ] ∈ M 2,g (Z) is given, for z ∈ C g and τ ∈ H g , by θ [ ε 1 ε 2 ](z, τ ) = n ∈ Z g exp( iπ (n + ε 1 /2) τ t (n + ε 1 /2) ) exp( 2iπ (n + ε 1 /2) t (z + ε 2 /2) ).
The theta constant (with characteristic

[ ε 1 ε 2 ]) is the function of τ defined as θ [ ε 1 ε 2 ](τ ) = θ [ ε 1 ε 2 ](0, τ ). Proposition 2.2. Let z ∈ C g , τ ∈ H g , [ ε 1 ε 2 ] ∈ M 2,g (Z), then θ [ ε 1 ε 2 ](-z, τ ) = θ -ε 1 -ε 2 (z, τ ) , (2.1) and ∀ δ 1 δ 2 ∈ M 2,g (2 Z), θ ε 1 +δ 1 ε 2 +δ 2 (z, τ ) = exp(iπ ε 1 t δ 2 /2) θ [ ε 1 ε 2 ](z, τ ) . (2.2) Combining these two equations shows that z → θ [ ε 1 ε 2 ](z, τ ) is even if ε 1 t ε 2 ≡ 0 (mod 2)
, and odd otherwise. The characteristics [ ε 1 ε 2 ] are then said to be even and odd, respectively. In the following, we only make use of theta constants with characteristics with coefficients in {0, 1} because of Eq. (2.2).

To lighten notations, we number the theta constants as, for instance, done in [KLL + 18]. We write θ n := θ δ 0 δ 1 ... δ g-1 ε 0 ε 1 ... ε g-1 where 0 ≤ n < 2 2g is the integer whose binary expansion is "δ 0 δ 1 • • • δ g-1 ε 0 ε 1 . . . ε g-1 " (with the convention θ 2 2 g := θ 0 ). In genus 3, there are 36 even theta constants (the odd ones are all 0). We give in Table 1 the correspondence between their numbering as done in [Tsu86, pp.789-790] and our binary numbering. 

τ → M.τ := (Aτ + B) (Cτ + D) -1 for M = ( A B C D )
, and this results in the following action of Γ g on theta constants.

Proposition 2.3 (Transformation formula [Igu72, Chap. 5, Th. 2] [Cos11, Prop. 3.1.24]). Let τ ∈ H g , [ ε 1 ε 2 ] ∈ M 2,g (R) and M ∈ Γ g , then θ [ ε 1 ε 2 ](M.τ ) = ζ M det(Cτ + D) exp( -iπ σ/4) θ δ 1 δ 2 (τ ) (2.3) with ζ M an eighth root of unity depending only on M , δ 1 δ 2 = M. [ ε 1 ε 2 ]
where the action of M on a characteristic is defined by

[ ε 1 ε 2 ] → M. [ ε 1 ε 2 ] = (ε 1 ε 2 ) M + ( t A C) ∆ ( t B D) ∆ and σ = ε 1 A t B t ε 1 + 2 ε 1 B t C t ε 2 + ε 2 C t D t ε 2 + ( 2 ε 1 A + 2 ε 2 C + ( t A C) ∆ ) t ( t B D) ∆ .
Here, " " denotes the concatenation of two row vectors, and "(.) ∆ " denotes the row vector equal to the diagonal of the square matrix given in argument.

2.2. Siegel modular forms. Let Γ g ( ) denote the principal congruence subgroup of level , i.e. {M ∈ Γ g | M ≡ 1 2g mod }, and let Γ g ( , 2 ) denote the congruence subgroup {M ∈ Γ g ( )

| ( t A C) ∆ ≡ ( t B D) ∆ ≡ 0 mod 2 }.
For a congruence subgroup Γ ⊂ Γ g , let R g,h (Γ) be the C-vector space of analytic Siegel modular forms of weight h and degree g for Γ, consisting of complex holomorphic functions f on

H g satisfying for all M ∈ Γ, f (M.τ ) = det(Cτ + D) h • f (τ )
(for g = 1, one also requires that f is holomorphic at "infinity" but we will not look at this case here). We also denote the C-algebra of Siegel modular forms of degree g for Γ by R g (Γ) := R g,h (Γ) . The modular group acts on R g,h (Γ g ) by

f → M.f := det(Cτ + D) -h • f (M.τ ) .
In particular, f ∈ R g,h (Γ) if and only if M.f = f for all M ∈ Γ.

A strategy to build modular forms for Γ 3 is first to construct a form F ∈ R 3 (Γ 3 (2)), and then average over the finite quotient Γ g /Γ g (2) to get a modular form f ∈ R 3 (Γ 3 ), namely

f = M ∈Γ 3 /Γ 3 (2) M.F .
(2.4)

All forms F are polynomials in the theta constants, and are of even weight. Hence, given an F , a careful application of the transformation formula (Prop. 2.3) gives all summands, where we do not care about the choice of the square root as it is raised to an even power.

Tsuyumine gives some of the building blocks F s in terms of maximal syzygetic sets of even characteristics [Tsu86, Sec. 21]. Multiplying the theta constants in a given set is an element of R 3 (Γ(2)). The quotient Γ 3 /Γ 3 (2) acts transitively on these 135 sets numbered from ((1)) to ((135)) by Tsuyumine. Among them, 33 are actually used to defines a set of generators for R 3 (Γ 3 ). We give their expressions in Table 2.

#

θ-monomial ((1)) θ3 θ28 θ31 θ33 θ34 θ61 θ62 θ64 ((2)) -θ1 θ2 θ28 θ31 θ32 θ35 θ61 θ62 ((3)) -θ3 θ8 θ20 θ31 θ33 θ42 θ54 θ61 ((4)) θ1 θ10 θ20 θ31 θ35 θ40 θ54 θ61 ((5)) θ2 θ8 θ21 θ31 θ32 θ42 θ55 θ61 ((18)) -θ1 θ4 θ17 θ20 θ40 θ45 θ56 θ61 ((31)) θ3 θ4 θ7 θ24 θ27 θ28 θ31 θ64 ((32)) -θ1 θ2 θ5 θ6 θ24 θ27 θ28 θ31 ((34)) θ1 θ5 θ10 θ14 θ16 θ20 θ27 θ31 ((36)) -θ4 θ10 θ14 θ17 θ21 θ27 θ31 θ64 ((37)) -θ4 θ7 θ28 θ31 θ32 θ35 θ56 θ59 # θ-monomial ((38)) θ5 θ6 θ28 θ31 θ33 θ34 θ56 θ59 ((39)) -θ7 θ8 θ16 θ31 θ32 θ47 θ55 θ56 ((43)) θ7 θ12 θ20 θ31 θ35 θ40 θ48 θ59 ((45)) θ7 θ24 θ31 θ40 θ47 θ48 θ55 θ64 ((47)) -θ14 θ17 θ31 θ33 θ47 θ48 θ62 θ64 ((51)) -θ1 θ6 θ24 θ31 θ40 θ47 θ49 θ54 ((54)) -θ3 θ12 θ16 θ31 θ34 θ45 θ49 θ62 ((55)) θ3 θ24 θ27 θ32 θ35 θ56 θ59 θ64 ((73)) θ8 θ16 θ24 θ32 θ40 θ48 θ56 θ64 ((85)) θ1 θ16 θ17 θ32 θ33 θ48 θ49 θ64 ((89)) -θ2 θ3 θ4 θ5 θ48 θ49 θ54 θ55 # θ-monomial ((90)) θ1 θ6 θ7 θ48 θ49 θ54 θ55 θ64 ((99))

-θ5 θ8 θ17 θ28 θ34 θ47 θ54 θ59 ((103)) θ4 θ8 θ12 θ16 θ20 θ24 θ28 θ64 ((111)) θ1 θ4 θ5 θ16 θ17 θ20 θ21 θ64 ((115)) -θ8 θ20 θ28 θ34 θ42 θ54 θ62 θ64 ((118)) -θ3 θ10 θ21 θ28 θ33 θ40 θ55 θ62 ((119)) -θ1 θ20 θ21 θ34 θ35 θ54 θ55 θ64 ((131)) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ64 ((132)) -θ4 θ5 θ6 θ7 θ32 θ33 θ34 θ35 ((133)) θ2 θ8 θ10 θ32 θ34 θ40 θ42 θ64 ((135)) θ1 θ2 θ3 θ32 θ33 θ34 θ35 θ64

Table 2: Tsuyumine's maximal syzygetic sequences Then Tsuyumine considers 34 F s written as combinations of

• χ 18 = θ i even θ i ,
• a rational function of the 36 non-zero θ 4 i , • the monomials ((i)) defined in Table 2 , and • the squares of the gcd between two such ((i)).

Using the map from modular forms to invariants of binary octics introduced by Igusa [Igu67], he proves the following result.

Theorem 2.4 (Tsuyumine [Tsu86, Sec. 20]1 ). The graded algebra R 3 (Γ 3 ) is generated by the 34 modular forms defined in Table 3. Its Hilbert-Poincaré series is generated by the rational function

( 1 + T 2 ) N (T ) (1 -T 4 ) (1 -T 12 ) 2 (1 -T 14 ) (1 -T 18 ) (1 -T 20 ) (1 -T 30 ) , (2.5) 
where

N (T ) = 1 -T 2 + T 4 + T 10 + 3 T 16 -T 18 + 3 T 20 + 2 T 22 + 2 T 24 + 3 T 26 + 4 T 28 + 2 T 30 + 7 T 32 + 3 T 34 + 7 T 36 + 5 T 38 + 9 T 40 + 6 T 42 + 10 T 44 + 8 T 46 + 10 T 48 + 9 T 50 + 12 T 52 + 7 T 54 + 14 T 56 + 7 T 58 + 12 T 60 + 9 T 62 + 10 T 64 + 8 T 66 + 10 T 68 + 6 T 70 + 9 T 72 + 5 T 74 + 7 T 76 + 3 T 78 + 7 T 80 + 2 T 82 + 4 T 84 + 3 T 86 + 2 T 88 + 2 T 90 + 3 T 92 -T 94 + 3 T 96 + T 102 + T 108 -T 110 + T 112 .
The modular forms f defined in Table 3 are all polynomials in the theta constants whose primitive part has all its coefficients equal ±1 and whose content is

c(f ) = #Γ 3 /Γ 3 (2) #{summands of f } = 2 9 • 3 4 • 5 • 7 #{summands of f } ∈ Z .
In order to get simpler expressions when restricting to the hyperelliptic locus or on the decomposable one, Tsuyumine multiplies each f by an additional normalization constant (2 nd column

Name [Tsu86] Coeff. F ∈ R3(Γ(2)) #sum. χ18 1/(2 9 • 3 4 • 5 • 7) θ i even θi χ28 1/(2 10 • 3 2 • 5 • 7) χ 2 18 / ((131)) 2 α4 1/(2 13 • 3 • 7) gcd( ((131)), ((132)) ) 2 α6 1/(2 6 • 3 • 7) θ 4 64 • ((131)) α10 -1/(2 4 • 3 2 • 5 • 11) (θ16 θ20 θ32 θ34 θ48 θ54) 2 • ((131)) α12 1/(2 8 • 3 5 • 5) (θ2 θ21 θ24 θ49 θ62 θ64) 4 α 12 3/2 8 ((85)) 2 • ((119)) 2 / ( θ1 θ64 ) 4 α16 -3 2 /2 9 ((85)) 2 • ((119)) • ((131)) α18 -3 2 /2 5 θ 4 64 ((85)) 2 • ((119)) • ((131)) α20 3/(2 9 • 5) ((( 85 
)) 2 • ((119)) 2 • ((131)) 2 / (θ1 θ64) 4 α24 3 2 /2 3 θ 4 64 ((85)) 2 • ((119)) 2 • ((131)) 2 / θ 4 1 α30 3 4 /(2 8 • 5) ((( 85 
)) 3 • ((119)) 3 • ((131)) 3 / (θ1 θ 2 64 ) 4 β14 1/(2 5 • 3 • 7) θ 8 31 χ18/( ((5)) • ((54)) ) β16 1/(2 6 • 3) ((31)) • ((43)) • ((47)) • ((51)) β22 -1/(2 4 • 3) (θ27 θ31 θ54 θ55 θ59 θ62) 4 χ18 / ( ((2)) • ((54)) ) β 22 2 4 χ18 ((119)) 2 • ((133)) 2 / ( θ 4 34 θ 4 64 ((18)) • ((34)) ) β26 -1/2 2 ((32)) • ((36)) • ((37)) • ((45)) • ((90)) • ((111)) • ((135)) / θ 4 64 β28 -1/2 2 ((32)) • ((36)) • ((37)) • ((45)) • ((90)) • ((111)) • ((135)) β32 1/2 2 χ18 ((85)) 2 • ((89)) 2 • ((90)) • ((111)) • ((135)) / ( θ 4 48 θ 4 49 θ 4 64 ((4)) • ((99)) ) β34 1/(2 3 • 3) θ 8 31 χ18 ((90)) 2 • ((111)) 2 • ((135)) 2 / ( θ 4 64 θ 4 1 ((3)) • ((31)) ) γ20 1/(2 7 • 3) θ 4 31 χ18 ((135)) / ((1)) γ24 1/2 7 θ 8 31 χ 2 18 / ( ((4)) • ((5)) • ((47)) • ((54)) ) γ26 1/2 6 (θ31 θ28) 4 χ18 ((38)) • ((135)) / ((1)) γ32 1/(2 3 • 3) (θ16 θ20 θ31 θ49 θ54 θ56 θ59) 4 χ18 ((135)) / ((1)) c 32 -1/2 3 θ 4 33 χ18 ((90)) 2 • ((111)) 2 • ((135)) / ( (θ1 θ64) 4 ((1)) ) γ36 -1/2 4 (θ28 θ31) 4 χ18 ((38)) • ((90)) • ((111)) • ((135)) 2 / ( θ 4 1 ((1)) ) γ38 1/2 4 θ 16 31 χ 2 18 ((31)) • ((39)) • ((43)) / ( θ 4 7 ((4)) • ((5)) • ((47)) • ((54)) ) c 38 1/2 2 θ 4 31 χ18 ((38)) 2 • ((90)) • ((111)) • ((135)) 2 / ( θ 4 1 ((1)) ) γ42 1/2 3 χ18 (((38)) • ((85)) 2 • ((90)) • ((111)) • ((119)) 2 • ((135)) / ( (θ1 θ64) 4 ((1)) ) γ44 1/2 4 χ 2 18 θ 8 31 ((45)) 2 • ((55)) 2 • ((103)) 2 / ( (θ24 θ64) 4 ((4)) • ((5)) • ((47)) • ((54)) ) δ30 2 7 /3 (θ28 θ31) 4 χ18 ((47)) • ((115)) • ((118)) / ((1)) δ36 1/2 3 (θ28 θ31 θ64) 4 χ18 ((31)) • ((38)) • ((118)) • ((135)) / ((1)) δ46 -1/2 (θ28 θ31) 4 χ18 ((31)) • ((38)) • ((90)) • ((111)) • ((118)) • ((135)) 2 / ((1)) c48 1/2 θ 4 28 χ18 ((31)) 2 • ((38)) • ((90)) • ((111)) • ((118)) • ((135)) 2 / ((1))
Table 3: Tsuyumine's generators (the index is their weight), Tsuyumine's normalization constant, the form F and the number of summands of the polynomial in the theta constants of Table 3). For instance, as defined by Tsuyumine,

χ 28 := 2 -10 • 3 -2 • 5 -1 • 7 -1 M ∈Γg/Γg(2) M.(χ 2 18 / ((131)) 2 ) ,
and, so, the 135 summands are each a (monic) monomial in the theta constants time ±(2

-10 • 3 -2 • 5 -1 • 7 -1 ) • c(χ 28 ) = ±1/30.
Having in mind possible applications of our results to fields of positive characteristics, we replace the multiplication by Tsuyumine's constant by a multiplication by 1/c(f ). In this way, f is a sum of (monic) monomials in the theta constants with coefficients ±1. To avoid confusion with Tsuyumine's notation, our modular forms will be denoted with bold font. Typically, χ 28 := 30 χ 28 , α 4 := 112 α 4 , α 6 := α 6 , α 10 := 165 α 10 , etc.

Still driven by the link with the hyperelliptic locus, Tsuyumine adds to c 32 (resp. c 38 and c 48 ) some polynomials in modular forms of smaller weights and denote the result γ 32 (resp. γ 38 and δ 48 ). Theorem 2.4 as stated in [Tsu86] considers modular forms γ 32 , γ 38 and δ 48 , instead of c 32 , c 38 and c 48 . The two theorems are obviously equivalent. Here, we choose instead to define γ 32 := c 32 /6, γ 38 := c 38 and δ 48 := c 48 .

Remark 2.5. Some of the modular forms in Table 3 have a large number of summands. If it would be cumbersome to store them, evaluating them is relatively quick as it basically consists in permuting theta constants up to some eighth roots of unity according to Eq. (2.3). Following Tsuyumine, the sum is computed in two steps. Let Θ be the conjugate subgroup of Γ 3 (1, 2) that stabilizes θ 61 (Γ 3 (1, 2) stabilizes θ 64 ). Tsuyumine gives explicit coset representatives for Γ 3 /Θ (36 elements) and Θ/Γ 3 (2) (8! elements) and splits the sum in Eq. (2.4) as

f = M ∈Γ 3 /Θ M . M ∈Θ/Γ 3 (2) M .F
We use this approach in order to perform the computation of the summands 2 , provided the precomputation of the eighth roots of unity ζ M and ζ M on a fixed chosen matrix in H 3 .

3.

A minimal set of generators for the algebra of modular forms of degree 3 3.1. Fundamental set of modular forms. Since we know the dimensions of each R 3,h (Γ 3 ) from the generating functions of Theorem 2.4, it is a matter of linear algebra to check that a given subset of Tsuyumine's generators is enough for generating the full algebra. However, it is difficult to perform these linear computations on the formal expressions in terms of the theta constants, since there exist numerous algebraic relations between the later. Therefore we favour an interpolation/evaluation strategy.

Suppose that we want to prove that a given form f of weight h can be obtained from a given set {f 1 , . . . , f m }. This set produces F 1 , . . . , F n , homogeneous polynomials in the f i of weight h. If n < d = dim R 3,h (Γ 3 ), then all forms of weight h cannot be obtained. Assume that n ≥ d. Then, if we can find (τ i ) i=1,...,d ∈ H d g such that the matrix (F i (τ j )) 1≤i,j≤d is of rank d, we know that f can be written in terms of the f i , and even find such a relation. Equivalently, we will actually find a polynomial relation between f /θ h 64 and the f i /θ w i 64 where w i denotes the weight of f i .

By Remark 2.5, the evaluation of a form f (τ )/θ h 64 (τ ) boils down to the computation of quotients (θ i /θ 64 )(τ ). A naive approach would be to use an arbitrary matrix τ ∈ H 3 . But then the theta constants would in general be transcendental complex numbers which would make the computations much more costly and the final result hard to certify. We therefore prefer to consider a matrix τ coming from a complex torus Jac C attached to a smooth plane quartic C given by 7 general lines in P 2 . Indeed (see for instance [Web76, Rit04, NR17]), we can consider these 7 lines as an Aronhold system of 7 bitangents for a (unique) plane quartic C. Then, one can easily recover the equations of the 21 other bitangents and give an expression of the quotients 2 There are two small typos in [Tsu86, pp. 842-846], the (3, 6)-th coefficients of "M 1 " must be -1 instead of 1, and the (2, 2)-th coefficients of "M 27 " must be 1 instead of 0. This modification makes M 1 and M 27 symplectic.

(θ i /θ 64 ) 4 (τ ) in terms of the coefficients of the linear forms defining the bitangents. Note that the Riemann matrix τ is not explicitly known here (it is not even our final τ yet) and depends not only on C but also on the choice of a symplectic basis for H 1 (C, Z). But when each of the bitangents in the Aronhold system is defined over Q, all computations can be performed over Q and (θ i /θ 64 ) 4 (τ ) is a rational number.

To remove the fourth root of unity ambiguity that remains, we compute independently an approximation of a Riemann matrix τ for the curve C over C. We need to do it only at very low precision (a typical choice is 20 decimal digits) and this can be done efficiently either in maple (package algcurves by Deconinck et al. [DvH01]) or in magma (package riemann surfaces by Neurohr [Neu18]). Then, we can calculate an approximation of the theta constants at τ . We note that [NR17, Theorem 3.1] shows that the set θ 8 j /θ 8 i running through every even theta constants θ i , θ j depends only on C and not on the Riemann matrix. Indeed, the dependence on this matrix relies only on the quadratic form q 0 (in the notation of loc. cit.) whose contribution disappears in the eighth power. Therefore, there exist an integer i 0 and a permutation σ such that θ σ(i) (τ ) 8 θ i 0 (τ ) 8 = θ i (τ ) 8 θ 64 (τ ) 8 . Since we know θ σ(i) (τ )/θ 64 (τ ) with small precision and its eighth power exactly, it is possible to give the exact value of θ i (τ )/θ 64 (τ ).

Using extensively this method leads to a set of generators for R 3 (Γ 3 ). Moreover it is easy to prove, by the same algorithms, that this set is fundamental, i.e. one cannot remove any element and still generates the algebra R 3 (Γ 3 ).

Theorem 3.1. The 19 Siegel modular forms α 4 , α 6 , α 10 , α 12 , α 12 , β 14 , α 16 , β 16 , χ 18 , α 18 , α 20 , γ 20 , β 22 , β 22 , α 24 , γ 24 , γ 26 , χ 28 and α 30 define a fundamental set of generators for R 3 (Γ 3 ).

Remark 3.2. Note that [Run95] proved that R 3 (Γ 3 (2)) has a fundamental set of generators of 30 elements.

A word on the complexity. The proof mainly consists in checking for all the even weight h between 4 and 48 that there exists an evaluation matrix of rank dim R 3,h (Γ 3 ) for this set of 19 modular forms. It is a matter of few hours for the largest weight to perform this calculation in magma. Most of the time is spent on the evaluation of the 19 forms f i at a matrix τ j , which takes about 1 mn on a laptop. Additionally, we find the expressions of the remaining 15 modular forms given in Table 3. The first ones are

2 5 • 3 4 • 5 • 7 2 • 11 β26 = 7 α6 α 2
10 -3080 α 2 6 β14 -145530 α12 β14 + 194040 α 12 β14 -11760 α10 α16 -7040 α4 α6 β16 + 16660 α10 β16 -20824320 α 2 4 χ18 -4435200 α6 α20 + 2822512 α6 γ20 -55440 α4 β22 + 36960 α4 β 22 -105557760 γ26 ,

2 8 • 3 4 • 5 2 • 7 4 β28 = -105 α 2
4 α 2 10 -42000 α 2 4 α6 β14 + 66885 α4 α10 β14 + 129654 β 2 14 -96000 α 3 4 β16 + 77792400 α12 β16 + 207446400 α 12 β16 + 5399533440 α4 α6 χ18 -9996323400 α10 χ18 -4321800 α10 α18 + 320544000 α 2 4 α20 + 82576256 α 2 4 γ20 -12965400 α6 β22 -17287200 α6 β 22 -666792000 α4 α24 -700378560 α4 γ24 -442172001600 χ28 , 2 3 • 3 4 • 5 • 7 4 δ30 = -37044 β14 β16 + 23040 α 3 4 χ18 + 987840 α 2 6 χ18 + 47508930 α12 χ18 + 133358400 α 12 χ18 -1568 α4 α6 γ20 + 46305 α10 γ20 -246960 α6 γ24 + 282240 α4 γ26 ,

2 • 3 • 5 • 7 γ 32 = χ18 (α4 α10 -252 β14) .
The last ones, for instance γ 44 , δ 46 and δ 48 , tend to be heavily altered with the relations that exist between these 19 modular forms, and have huge coefficients (thousands of digits).

3.2. Module of relations between the generators. We now quickly deal with the relations defining the algebra R 3 (Γ 3 ). With the same techniques, involving modular forms up to weight 70 (see Remark 4.4 for speeding up the computations), we find a (possibly incomplete) list of 55 relations for our generators of R 3 (Γ 3 ) given by weighted polynomials of degree 32 to 58 (cf. Runge [Run93, Cor.6.3] shows that R 3 (Γ 3 ) is a Cohen-Macaulay algebra. There exists a strong link between a minimal free resolution of a Cohen-Macaulay algebra and its Hilbert series. Let us rewrite Equation (2.5) as a rational fraction with denominator d i (1-T d i ) where the degrees d i run through the weights of the fundamental set of generators. We obtain a numerator with 140 non-zero coefficients, the first and last ones of which are 1 -T 32 -T 34 -2 T 36 -4 T 38 -5 T 40 -5 T 42 -7 T 44 -6 T 46 -8 T 48 -5 T 50 -4 T 52 + 4 T 56 + 9 T 58 + 15 T 60 + 22 T 62 + 27 T 64 + 32 T 66 + 36 T 68 + 39 T 70 + 36 T 72 + 34 T 74 + 26 T 76 + . . . . . . -5 T 296 -8 T 298 -6 T 300 -7 T 302 -5 T 304 -5 T 306 -4 T 308 -2 T 310 -T 312 -T 314 + T 346 .

The coefficients of the numerator give information on the weights and numbers of relations. They are consistent with Table 4 up to weight 48. The drop from 6 (relations) to a coefficient 5 in weight 50 indicates that there is a first syzygy (i.e. a relation between the relations) of weight 50.

A homogeneous system of parameters.

Having these relations, one can also try to work out a homogeneous system of parameters (hsop) for R 3 (Γ 3 ). Recall that this is a set of elements (f i ) 1≤i≤m of the algebra, which are algebraically independent, and such that R 3 (Γ 3 ) is a C[f 1 , . . . , f m ]-module of finite type. Equation (2.5) suggests that a hsop of weight 4, 12, 12, 14, 18, 20 and 30 may exist. An easy Gröbner basis computation made in magma with the lexicographic order α 6 < α 10 < . . . < γ 26 < χ 28 shows that when we set to zero α 4 , α 12 , α 12 , β 14 , χ 18 , α 20 and α 30 in the 55 relations of Table 4, the remaining 12 Siegel modular forms of the generator set of Theorem 3.1 must be zero as well. As it is well known that the dimension of Proj(R 3 (Γ 3 )) is 6, this yields the following theorem.

Theorem 3.3. A homogeneous system of parameters for R 3 (Γ 3 ) is given by the 7 forms α 4 , α 12 , α 12 , β 14 , χ 18 , α 20 and α 30 .

A dictionary between modular forms and invariants of ternary quartics

In [Dix87], Dixmier gives a homogeneous system of parameters for the graded C-algebra I 3 of invariants of ternary quartic forms under the action of SL 3 (C). They are denoted I 3 , I 6 , I 9 , I 12 , I 15 , I 18 and I 27 . This list is completed by Ohno with six invariants, J 9 , J 12 , J 15 , J 18 and J 21 , into a list of 13 generators for I 3 , the so-called Dixmier-Ohno invariants Using the morphism ρ 3 defined in [Igu67], Tsuyumine in [Tsu86, pp. 847-864] relates each of the Siegel modular forms given in Table 3 with an invariant for the graded ring of binary octics under the action of SL 2 (C). He uses this key argument to prove Theorem 2.4. More generally, there is a way to canonically associate to a modular form an invariant. After briefly recalling the way to do so when g = 3, we establish a complete dictionary between R 3 (Γ 3 ) and I 3 . 4.1. Modular forms in terms of invariants. Let us recall from [LRZ10, 2.2] how to associate to f ∈ R 3,h (Γ 3 ) an element of I 3 . This morphism only depends on the choice of a universal basis of regular differentials ω which can be fixed "canonically" for smooth plane quartics (in the sense that it is a basis over Z). Let Q ∈ C[x 1 , x 2 , x 3 ] be a ternary quartic form such that C : Q = 0 is a smooth genus 3 curve. Let Ω = Ω 1 Ω 2 be the 6 × 3 period matrix of C defined by integrating ω C with respect to an arbitrary symplectic basis of H 1 (C, Z). We have τ = Ω -1

2 Ω 1 ∈ H 3 . The function

Q → Φ 3 (f )(Q) = (2iπ) 3 det Ω 2 h • f (τ ) (4.1)
is a homogeneous element of I 3 of degree 3h (confusing the polynomial with its polynomial function).

Remark 4.1. A similar construction can be worked out with invariants of binary octics (see [IKL + 19]). Up to a normalization constant, this is actually the same morphism as defined by [Igu67].

Chai's expansion principle [Cha86] shows that if the Fourier expansion of f has coefficients in a ring R ⊂ C, then Φ 3 (f ) is defined over R as well. When f is given by a polynomial in the theta constants with coefficients in Z, we can take R = Z. A particular case is given by the modular form χ 18 which is the product of the 36 theta constants. In [START_REF] Lachaud | Jacobians among abelian threefolds: a formula of Klein and a question of Serre[END_REF] (see also [Ich18b]) one shows the following precise form of Klein's formula [Kle90, Eq. 118, p. 462],

Φ 3 (χ 18 ) = -2 28 • D 2 27 = -2 28 • ( 2 40 I 27 ) 2 . (4.2)
Remark 4.2. The map (4.1) is obtained by pulling back geometric modular forms to invariants as described in [START_REF] Lachaud | Jacobians among abelian threefolds: a formula of Klein and a question of Serre[END_REF]. Within this background, it is for instance possible to speak about the reduction modulo a prime of modular forms and to consider the algebra that they generate.

In small characteristics, one still encounters similar accidents as in the case of invariants. We will not study this question further here, but for instance, our 19 generators are not linearly independent modulo 11 since β 16 + 9 α 16 + 3 α 10 α 6 = 0 mod 11.

We have seen in Section 3 that we have an evaluation/interpolation strategy to handle quotient of modular forms by a power of θ 64 . This strategy can also be used to find the relations with invariants. But now, we also need to take care of the transcendental factor µ := (2iπ) 3 /det Ω 2 . This is done in the following way.

(i) Assume that a relation Φ 3 (f 0 ) = I 0 is known for a modular form f 0 of weight h 0 . This is the case for χ 18 (cf. Eq. (4.2)) and we will start with this one, but switch to lower weights one (i.e. 4 with α 4 or even 2 with χ 18 /α 4 4 ) after a first round of the following steps (this simplifies the last step). (ii) Let now f be one of the generators from Theorem 3.1 of weight h and compute a basis j 1 , . . . , j d of invariants of degree 3h. We aim at finding a 1 , . . . , a d ∈ Q such that Φ 3 (f ) = a i j i . This is done by evaluation/interpolation at Riemann models until one gets a system of d linearly independent equations. More precisely, for a given Q = 0 and an associate τ ∈ H 3 : (a) Compute the values of (j 1 , . . . , j d ) at Q; (b) Using the same procedure as in Section 3, compute (f /θ 2h 64 )(τ ) and (f 0 /θ 2h 0 64 )(τ ); (c) Let p = lcm(h 0 , h). Since

(f /θ 2h 64 ) p/h (f 0 /θ 2h 0 64 ) p/h 0 = (µ h f ) p/h (µ h 0 f 0 ) p/h 0 = Φ 3 (f ) p/h Φ 3 (f 0 ) p/h 0 ,
we get the value of Φ 3 (f ) p/h . An approximate computation at low precision can then give the exact value.

The above strategy provides explicit expressions for Φ 3 (f ) where f is any modular form in the fundamental set defined in Theorem 3.1. Beside Klein's formula Φ 3 (χ 18 ) = -2 108 I 2 27 , one finds a surprisingly compact expression for χ 28 ,

Φ 3 (χ 28 ) = -2 171 • 3 3 I 3 27 I 3 .
If we do not not pay attention, the rational coefficients of these formulas tend to have prime factors greater than 7 in their denominators, especially for the forms of higher weight. We have eliminated all these "bad primes" using the relations that exist between the Dixmier-Ohno invariants. It is also a good way to reduce significantly the size of these expressions. All in all, we gain a factor of 3 in the amount of memory to store the results (cf. Table 5).

Form Leading coeff.

Terms Digits

α 4 2 20 • 3 3 • 7 6 6 α 6 -2 28 • 3 4 • 5 -1 • 7 -1 19 12 α 10 -2 44 • 3 3 • 5 -4 • 7 -2 98 23 α 12 2 75 • 3 4 5 α 12p 2 52 • 3 2 • 5 -4 • 7 -3 200 26 β 14 2 81 • 3 4 11 8 α 16 2 66 • 3 4 • 5 -6 • 7 -3 703 35 β 16 2 83 • 3 4 • 5 -2 • 7 -2 29 16 χ 18 -2 108 1 1 α 18 -2 80 • 3 3 • 5 -5 • 7 -2 813 36 Form Leading coeff. Terms Digits α 20 2 75 • 3 2 • 5 -13 • 7 -6 1941 52 γ 20 2 122 • 3 4 2 3 β 22 -2 135 • 3 5 • 7 -1 7 6 β 22p 2 90 • 3 4 • 5 -14 • 7 -6 4000 56 α 24 2 89 • 3 2 • 5 -17 • 7 -7 6572 67 γ 24 2 96 • 3 3 • 5 -14 • 7 -7 6585 62 γ 26 -2 105 • 3 5 • 5 -17 • 7 -7 10750 67 χ 28 2 171 • 3 3 1 1 α 30 2 109 • 3 • 5 -21 • 7 -9 25630 86
Table 5: Polynomial expressions of the modular forms from Theorem 3.1 in terms of Dixmier-Ohno invariants: their content, their number of monomials, and the number of digits of the largest coefficient of their primitive part.

Remark 4.4. When we deal with the Jacobian of a curve with coefficients in Q, what is a matter of few integer arithmetic operations to evaluate modular forms from invariants is a matter of high precision floating point arithmetic over the complex with analytic computations of Riemann matrices. In practical calculations, such as the computations in Section 3.2, it is thus much better to use the former, since a calculation that would take the order of the minute ultimately requires only a few milliseconds.

4.2.

Invariants in terms of modular functions. Conversely, we can look for expressions of a generator set of invariants in terms of modular forms. Using [Tsu86, LG19], one obtains such a result for invariants of binary octics. We focus here on the case of Dixmier-Ohno invariants. Since the locus of plane quartic over C such that I 27 = 0 corresponds to the locus of nonhyperelliptic curve of genus 3 and then to principally polarized abelian threefolds C 3 /(τ Z 3 + Z 3 ) for which χ 18 (τ ) = 0 [Igu67, Lem. 10, 11], we see that any invariant in I 3 can be obtained as a quotient of a modular form by a power of I 27 . Proposition 4.5. Let I be a Dixmier-Ohno invariant of degree 3k. There exist a polynomial P I in the modular forms from Theorem 3.1, of weight 28 k, such that

I 3k 27 • I = Φ 3 ( P I ( α 4 , α 6 , . . . , α 30 ) ) .
The first ones4 are + (8594208 β16 β14 -10742760 γ20 α10 + 57294720 γ24 α6 -65479680 γ26 α4 + 363776 γ20 α6 α4) χ 3 18 + 558376560 χ28 γ20 χ 2 18 -5294205 χ 3 28 ) .

2 171 • 3 3 I 3 27 I3 = Φ3(-χ28) , 2 144 • 3 8 • 5 I 6 27 I6 = Φ3(χ 2 28 -2 4 • 3 2 χ 2 18 γ20) , 2 515 • 3 12 • 5 • 7 4 I 9 27 I9 = Φ3( (-
In this setting, one can also write I 27 27 I 27 = Φ 3 ((2 -108 χ 18 ) 14 ). Unlike the previous computations, one cannot obtain the above ones by a direct application of the evaluation/interpolation strategy as the degrees (and weights) are sometimes too large. For the invariant I 21 , for instance, one would potentially need to interpolate on a vector space of modular forms of weight 196, which is huge (its dimension is 869 945). The trick is to proceed by steps and first look for expressions of a small power of I 27 by the desired invariant I, not only in terms of modular forms, but also in terms of invariants I 3k of smaller degrees. For instance in the case of I 21 , Then, mechanically, through a sequence of substitutions of the invariants of smaller degrees by their expression in terms of the modular forms, we arrive to expressions for I 3k 27 I 3k purely in terms of modular forms. These formulas are very sparse, given their weight (see Table 5).

Remark 4.6. We are also able to eliminate the primes greater than 7 in the denominators of the coefficients in these formulas using the relations that exist between Siegel modular forms (cf. Section 3.2), with the notable exception of the primes 11 and 19 (cf. 

  [Ohn07, Els15]. Note that 2 40 • I 27 = D 27 where D 27 denotes the normalized discriminant of plane quartics in the sense of [GKZ94, p.426] or [Dem12, Prop.11].

Proposition 4. 3 . 3 -

 33 Let f be one modular form of weight h from Theorem 3.1. There exists an explicit polynomial P f of degree 3h in the Dixmier-Ohno invariants such that Φ 3 (f ) = P f ( I 3 , I 6 , . . . , I 27 ) .The first ones 3 areΦ3(α4) = 2 20 • 3 3 • 7 (486 I12 -155520 I 2 6 -423 J9 I3 + 117 I9 I3 + 14418 I6 I 2 3 + 8 I 4 3 ) , 5 • 7 Φ3(α6) = -2 28 • 3 4 (40415760 J18 -1224720 I18 -2664900 J 2 9 -8323560 J9 I9 + 2506140 I 2 9 -76982400 J12 I6 -1143538560 I12 I6 + 135992908800 I 3 6 -40041540 J15 I3 + 2143260 I15 I3 + 247160160 J9 I6 I3 + 289325520 I9 I6 I3 + 400950 J12 I 2 3 -6206220 I12 I 2 3 -7357573440 I 2 6 I 2 3 + 1527453 J9 I 3 266481 I9 I 3 3 -36764280 I6 I 4 3 -62720 I 6 3 ) , Φ3(α12) = 2 75 • 3 (495 I27 J9 -261 I27 I9 -14580 I27 I6 I3 + 32 I27 I 3 3 ) , Φ3(β14) = 2 81 • 3 4 (-540 I27 J15 -4860 I27 I15 + 285120 I27 J9 I6 -45360 I27 I9 I6 + 810 I27 J12 I3 +12204 I27 I12 I3 -18057600 I27 I 2 6 I3 -8541 I27 J9 I 2 3 +2961 I27 I9 I 2 3 +213912I27I6 I 3 3 -128 I27 I 5 3 ) , 7 Φ3(β22) = -2 135 • 3 5 (540 I 2 27 J12 -4590 I 2 27 I12 -151200 I 2

2

  63 • 3 21 • 5 21 • 7 10 • 11 I27 I21 = 2 51 • 3 15 • 5 18 • 7 9 • 11 I27 (-16156800 J12 J9 + 5680595070 I12 J9 + 109296000 J12 I9 -3076972650 I12 I9 -216169581600 J15 I6 + 439538400 I15 I6 -770217033600 J9 I 2 6 + 2235454502400 I9 I 2 6 + 8070768720 J18 I3 -622051920 I18 I3 -3928070295 J 2 9 I3 + 1754339490 J9 I9 I3 -182964375 I 2 9 I3 + 70135124400 J12 I6 I3 -611730004680 I12 I6 I3 -18401013388800 I 3 • 3 6 • 5 3 • 7 Φ3(-19003712 β16 -10671360 α16 -11116 α10 α6 -1844513 α12 α4) .

Table 1 :

 1 Tsuyumine's numbering of even theta constants The modular group Γ

g := Sp 2g (Z) acts on H g by

Table 4

 4 

	).
	Weight 32 34 36 38 40 42 44 46 48 50 52 54 56 58
	Number 1 1 2 4 5 5 7 6 8 6 5 2 2 1

Table 4 :

 4 number of relations of a given weight in R 3 (Γ 3 )The relations of weight 32 and 34 are relatively small,

	0 = -25226544365568 β 2 16 + 50854572195840 β16 α16 -25092716544000 α 2 16 + 13916002383360 α18 β14
	-18410871153185280 χ18 β14 + 1109304189987840 γ20 α12p -1951854879744000 α20 α12p
	-413549252645760 γ20 α12 + 1463891159808000 α20 α12 + 474409172160 β22p α10 + 355806879120 β22 α10
	+ 8471592360 α12p α 2 10 -3882813165 α12 α 2 10 + 14993672601600 γ26 α6 -1800579432960 β14 α12p α6
	+ 559752621120 β14 α12 α6 + 14755739264 β16 α10 α6 -25299240960 α16 α10 α6 -4775514472960 γ20 α 2 6
	+ 10174277836800 α20 α 2 6 -43285228 α 2 10 α 2 6 + 7065470720 β14 α 3 6 + 779296133468160 χ28 α4
	-530133424128 β 2 14 α4 -2857212610560 β16 α12p α4 + 1510363895040 β16 α12 α4 -5020202880 α18 α10 α4
	+ 59052646477440 χ18 α10 α4 -104866460160 β22p α6 α4 -38488222080 β22 α6 α4 + 16149647360 β16 α 2 6 α4
	+ 642585968640 γ24 α 2 4 + 516363724800 α24 α 2 4 + 1529966592 β14 α10 α 2 4 -5609877504000 χ18 α6 α 2 4
	-130817347584 γ20 α 3 4 -154557849600 α20 α 3 4 -1036728 α 2 10 α 3 4 + 97574400 β14 α6 α 3 4 + 223027200 β16 α 4 4 ,
	0 = -113265734400 α18 β16 -107036119008000 χ18 β16 + 130691232000 α18 α16 + 123503214240000 χ18 α16
	+ 711613758240 γ20 β14 + 242595599400 β22 α 12 -121297799700 β 22 α12 -107820266400 γ24 α10
	+ 670881657600 χ28 α6 -399334320 β 2 14 α6 + 2662228800 β16 α 12 α6 + 3993343200 β16 α12 α6
	+ 80673600 α18 α10 α6 + 699198091200 χ18 α10 α6 -221852400 β 22 α 2 6 -665557200 β22 α 2 6
	+ 657308736 β16 β14 α4 -4978713600 α16 β14 α4 + 37811907302400 χ18 α 12 α4 + 16298463535200 χ18 α12 α4
	+ 5427686880 γ20 α10 α4 + 21254365440 γ24 α6 α4 -2545060 β14 α10 α6 α4 -194295615360 χ18 α 2 6 α4
	-2123573760 γ26 α 2 4 + 27165600 β14 α 12 α 2 4 -50935500 β14 α12 α 2 4 -7299040 β16 α10 α 2 4 + 9466800 α16 α10 α 2 4
	-1339238208 γ20 α6 α 2 4 + 5145 α 2 10 α6 α 2 4 + 5174400 β 22 α 3 4 -19404000 β22 α 3 4 -4011279360 χ18 α 4 4 .

Table 6 :

 6 Table5). We suspect that the reason behind this difficulty is that, similarly to the prime 11 (cf. Remark 4.2), one cannotDO inv. Leading coeff. -859 • 3 -20 • 5 -2 • 7 -4 • 11 -1 58 17 J 15 2 -859 • 3 -18 • 5 -3 • 7 -4 • 11 -1 58 17 I 18 2 -1030 • 3 -24 • 5 -2 • 7 -7 • 11 -2 • 19 -1 1321 237 J 18 2 -1030 • 3 -24 • 5 -3 • 7 -8 • 11 -3 • 19 -1 1321 238 I 21 2 -1202 • 3 -29 • 5 -6 • 7 -8 • 11 -3 • 19 -1 1382 242 J 21 2 -1201 • 3 -27 • 5 -6 • 7 -8 • 11 -3 • 19 -1 1382Polynomial expressions of the Dixmier-Ohno in terms of the 19 generators from Theorem 3.1: the content, the number of monomial, and the number of digits of the largest coefficient of the primitive parts. extend Theorem 3.1 mutatis mutandis to characteristic 19. Although we do not go further on the topic, it is possible to work directly in these characteristics and find specific formulas valid there.

			Terms Digits	DO inv. Leading coeff.	Terms Digits
	I 3 I 6 I 9 J 9 I 12 J 12	2 -171 • 3 -3 2 -344 • 3 -8 • 5 2 -515 • 3 -12 • 5 • 7 -4 2 -515 • 3 -12 • 5 -2 • 7 -4 2 -686 • 3 -16 • 5 -2 • 7 -4 2 -686 • 3 -16 • 5 • 7 -3	1 2 11 11 13 14	1 3 11 11 13 13	I 15	2 242
					I 27	2 -1512	1	1

See [Tsu89, p. 44] for the (1 -T 12 ) misprint in the denominator of Equation (2.5) in [Tsu86].

We make available the list of these 19 polynomials at [LR19, file "SiegelMFfromDO.txt"].

We make available the list of these 13 polynomials at [LR19, file "SiegelMFtoDO.txt"].
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