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semiconductors have allowed to realize a great variety of power devices : Schottky diodes, bipolar devices, MOSFET, JFET… [1] - [START_REF] Stefani | Device Research. Conf[END_REF]. Among these wide band gap materials, silicon carbide is the most advanced from a technological point of view: Schottky diodes are already commercially available and JFET will be soon. Due to their superior material properties, diamond and GaN should be even better than SiC. Applications for these wide band gap materials are high voltage devices but also high temperature devices.

In this paper, we have calculated theoretical characteristics such as breakdown voltage, taking into account multiplication of electrons, holes and multiplication in SCR, specific-on resistance, taking into account physical model of mobility when available in literature, maximum electric field, temperature of thermal runaway…for Silicon, Silicon carbide, GaN and diamond using an ideal planar semi infinite diode. Therefore the equations are resolved in the vertical direction only, with no edge effects. These results are compared with published experimental results and discussed.

DETAILS OF CALCULATIONS

2.1 PRELIMINARY CALCULATIONS One important parameter for high voltage and high temperature capabilities of devices is the intrinsic carrier concentration n i . The lower n i is, the lower are leakage currents. Moreover, the temperature of thermal runaway of devices is defined as the temperature for which the intrinsic concentration becomes equal to the doping level of the active layer.

The intrinsic concentration n i is calculated using the well-known formulas of semiconductors and taking into account the temperature (T) dependence of the semiconductor bandgap E g as:
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for all SiC polytypes and diamond [START_REF] Harris | Properties of silicon carbide[END_REF], [START_REF] Watanabe | Monte Carlo simulations of electron transport properties of diamond in high electric fields using full band structures[END_REF], for values of λ, see Table I 
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The effective density-of-state-mass for electrons is given by: ( )
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k is Boltzmann constant, ∆ so is the spin-orbit splitting energy, and ∆ cf is the crystalfield splitting energy, m dpi is the geometrical mean of the effective mass in longitudinal (m || ) and transversal (m ⊥ ) direction in each of the 3 considered valence band (i = 1 for light holes, i = 2 for heavy holes and i = 3 for the split-off band), m 1 , m 2 and m 3 are electron effective mass in the three main directions of the conduction band valley.

For silicon, we have used temperature dependence of bandgap [START_REF] Bludau | [END_REF] and effective density of state mass given in [8].

However, some of these fundamental parameters are not known in some of wide bandgap semiconductors, therefore Table I summarizes the parameters we have used.

Taking into account all these parameters, intrinsic concentrations have been calculated as a function of temperature and is plotted in Figure 1.

In regard to silicon, n i is several decades lower in SiC or GaN band gap and further more lower in diamond, up to very high temperature. It is important to note that except for silicon the temperature dependence of effective mass is not known. Moreover, the temperature dependence of the bandgap for other semiconductors has not been demonstrated in a so widely range, so the high temperature values are an extrapolation. Finally, at temperature higher than 1000-1200 K, these semiconductors begin to be not very physically stable (for example, sublimation of silicon in SiC polytypes…).

THEORETICAL BREAKDOWN VOLTAGE

Main parameters to calculate the breakdown voltage and critical electric field are ionization coefficients of electrons and holes. According to the theoretical model of the lucky electron developed by Shockley [19], these coefficients are expressed as :

n,p n,p n,p b a exp F   α = ⋅ -    
where F is the electric field in the structure, a n,p and b np are constant but may depend on temperature. This formulation is in agreement with the empirical law of Chynoweth [20]. That is why this model is widely used for many semiconductors. Table II summarizes retained values for ionization coefficients at room temperature. No temperature variations have been considered, due to a lack of data for the majority of these materials. However, the temperature dependence of breakdown voltage in Si [21] or in SiC [START_REF] Loh | Temperature dependence of Hole Impact Ionization Coefficient in 4HSiC Photodiodes[END_REF] is not so high. It is important to note that only ionisation coefficient of holes in 6H and 4H-SiC have been determined in [START_REF] Raghunathan | [END_REF]. Values of electrons are obtained with the same ratio of 40 determined in 4H-SiC in [24]. In 3C-SiC, ionisation coefficients have been determined for holes and we assume that electron ionisation coefficients are the same [25]. For silicon, model of van Overstraeten -de Man have been used, as described in [26].

Using these coefficients, the multiplication coefficients in the p-type region M p , in the ntype region M n and in the space charge region MSCR are calculated using the following formula:
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The global multiplication factor is given by:

n n p p p n ZCE SCR ph 0 M J (x ) M J (x ) M J M J (V ) + + =
where J n (x p ), J p (x p ), J SCR and J ph (V 0 ) are respectively the generated photocurrent density of electrons at the edge x p of the P region, the generated photocurrent density of holes at the edge x n of the N region, the generated photocurrent in the space charge region, and the dark current at zero bias. Their expressions are given in [START_REF] Isoird | Study of high voltage abilities of Silicon Carbide power devices by OBIC and electrical measurements[END_REF].

For a couple of values W B , N D of epilayer thickness and doping level, and for a given applied voltage, the electric field profile is calculated in the structure as a function of depth z. For each profile of F, the ionization coefficients, all previous ionization integrals and the multiplication factor M are calculated. Voltage is step by step incremented and value of V br is considered when M is multiplied by 1000 between two steps of voltage. The maximum electric field F c is the value of the electric field at the metallurgical junction for V br when avalanche multiplication occurs. W B is chosen so that the epilayer is not completely depleted even at breakdown (i.e. it is the case of a non punch through diode) so W B > W NPT .

Once the breakdown voltage and maximum electric field F c have been calculated, the width of the non-punch through n-type diode W NPT can be calculated with:

br br NPT c D V 2V W 2 F q N = ⋅ = ε
where ε is the dielectric permittivity of the semiconductor. That is the lower depth of the epilayer to block V br , for a given doping level.

2.3 THEORETICAL SPECIFIC ON -RESISTANCE After that, the specific on-resistance ρ on (expressed in Ωcm²) is given by:

on NPT W ρ = ρ
where ρ is the bulk resistivity, depending on temperature and doping level of the material. The calculation of ρ needs to calculate the carrier drift mobility and the carrier concentration, which is not equal to the doping level due to the high activation energy of the dopants in wide band gap semiconductors. In Si, we assume that all dopants are ionized above room temperature. So we need the activation energies (see Table III) of the commonly used dopants in each semiconductor. For n-type materials: nitrogen in 6H-SiC [START_REF] Suttrop | [END_REF], [30] and 4H-SiC [31], Si in 2H-GaN [32], phosphorus in diamond [33]; for p-type materials aluminum in SiC [34] and boron in diamond [35]. Then the electron concentration is given by the resolution of the electroneutrality equation [36]. The electron drift mobility is the sum of contribution of the different scattering mechanisms -see [37], [START_REF] Raynaud | Propriétés physiques et électroniques du carbure de silicium[END_REF] for the complete description of the method -and can be calculated as a function of temperature and doping level for hexagonal silicon carbide. Because of a lack of theoretical data, electron mobility vs. doping level in 2H-GaN has been established by fitting experimental data of Ref. [START_REF] Chin | [END_REF]. In the case of diamond, theoretical mobility has been calculated using data in Ref. [40] and Ref. [41]. For silicon, model of Masetti et al. [42] has been used for carrier mobility dependence. For cubic SiC, model of mobility described in Ref [43] has been used.

RESULTS ABOUT BREAKDOWN VOLTAGE

It is therefore possible to plot N D vs. V br (Figure 2) , F c vs. N D for the lower W value (Figure 3Figure ) and also W NPT vs. V br (Figure 4).

As we can see from Figure 2 and Figure 3 the ionization coefficient used for diamond is obviously not appropriated because resulting V br is lower than that expected from experimental results [44]. So in all next figures, data from [44] will be used for diamond. Fit of curves from Figure 2 show that breakdown voltage as a function of doping level can be expressed as a power of N D :

1 B D 1 br N A V - = ⋅
where A 1 and B 1 are given in Table IV. Fit of the curves from Figure 3 shows that the maximum electric field also varies as a power of the doping level following:

2 B c 2 D F A N = ⋅
where A 2 and B 2 are given in Table V. Fit of the curves from Figure 4 shows that the maximum electric field also varies as a power of the doping level following:

3 B NPT 3 br W A V = ⋅
where A 3 and B 3 are given in Table VI.

Finally it is of interest to plot breakdown voltage as a function of the thermal runaway temperature at which the intrinsic carrier concentration becomes equal to the higher doping level that gives the considered breakdown voltage. This temperature is therefore higher in wider band gap materials, but is not dependent on the activation energy of dopants. This temperature is represented in Figure 5 as a function of breakdown voltage. Cubic and wurtzite GaN and wurtzite SiC are very close in terms of thermal limitation of blocking capabilities.

Cubic SiC are able to support lower temperature but remains ~500°C above silicon. For diamond, parameters used shows no temperature limitation from the semiconductor (theoretical temperature ~1800°C) for V br > 100 kV. However, precise ionization coefficients remain to be experimentally determined for diamond. For wurtzite silicon carbide, ionization coefficients of holes have been found to decrease linearly with temperature between 250 and 550 K [START_REF] Raghunathan | [END_REF]. So our breakdown voltage values may be underestimated at high temperature. However, it is possible that Konstantinov ionization coefficients of electrons in 4H-SiC are underestimated [45].

RESULTS ABOUT FORWARD/REVERSE COMPARISON

Figure 6 and Figure 7 show the resulting ρ on values as a function of breakdown voltage at 300 K and 600 K respectively. Values of ρ on have been calculated with the same minimum width than at 300K, due to the temperature independent ionization coefficient that we have used. It is obvious that for a given V br , the on-resistance is three orders of magnitude lower in SiC than in Si. This is due to the high maximum electric field that can be sustained by the material. Indeed it allows to reduce the epilayer width and so ρ on for a given V br .

Surprisingly, diamond R on -V br characteristic at room temperature is not superior to SiC or GaN ones. This is due to the very high activation energy of phosphorus (0.57 eV), which gives a very low concentration of carriers at room temperature. For example, at a doping level of 10 17 cm -3 , less than 0.03% of dopants are ionized at room temperature. But it can also be due to the relatively low electron mobility (1030 cm²V -1 s -1 at low doping level). This explains the difference with the results exposed by Saito et al. [46] who used an electron drift mobility of 3800 cm²V -1 s -1 , without taking into account the incomplete ionization of dopants. So n-type diamond unipolar devices have no interest for applications with breakdown voltage lower than 50 kV at room temperature. On the contrary, at high temperature (600 K), due to the ionization of dopants, it is clear from Figure 7 than diamond becomes really superior to other semiconductors for voltage as low as ~1 kV. At 600 K, the specific onresistance is increased by a factor 10 in silicon devices for V br = 1 kV. 2H-GaN is very interesting, even superior to 4H-SiC, but its thermal conductivity is about 3 times lower than those of SiC. So that for high temperature applications, 4H-SiC remains more interesting.

For p-type diamond, due to the lower activation energy of boron (0.37 eV) than phosphorus in n-type, the ionization ration of dopants ~20 times higher in p-type than in ntype diamond. Assuming that hole mobility equals electron mobility, ρ on should be ~20 times lower in p-type diamond.

Experimental results have been also reported on Figure 6 for comparison with theoretical results. Only devices without forward threshold voltage can be easily compared in terms of the on-state losses, i.e. bipolar transistors (BJT) [53], Junction Field Effect Transistors (JFET) [48] and SIT [50], MOSFET [49]. Other experimental devices such as Schottky diodes [51], and Junction Barrier diodes (JBS) [47] [55] have been plotted, but in these devices the on-state losses are not summed up in the dynamic on-state resistance. Bipolar devices such bipolar diodes or IGBT have not been summarized in this graph because in these devices, high minority carrier injection in forward bias allows to reduce the voltage drop due to the on-resistance in regards to device, so that comparing ρ on have no sense.

Up to now, experimental results are always a little poorer than theoretical limits in SiC, that demonstrates that our estimations of theoretical limits are not so bad even with our incomplete knowledge of parameters. In GaN or diamond, theoretical limits will be probably translated towards lower on-resistance, and maybe towards higher breakdown values. There are surely larger evolution capabilities in GaN and diamond than in SiC now. The very high activation energies of dopants in diamond are a hard point to resolve. Some works have been done to decrease these activation energies for example with a deuteration treatment of boron doped diamond. Progress in the realization of ohmic contacts on n-type, in the etching of diamond will also lead to a decrease of the on-resistance and to the possibility of using quasi vertical structures. Relevant alternative ideas and concept are described in Ref. [START_REF]CVD Diamond for Electronic Devices and Sensors[END_REF].

A heterojunction AlGaN/GaN Field Effect Transistor have been realized [56] and have achieved a breakdown voltage of 1600 V, with a specific on-resistance of 3.9 mΩcm², which is a good result in regards to the maturity of this material technology. Lateral Schottky rectifiers have shown V br in the order of 6.5 kV together with a ρ on = 0.2 Ω.cm² [57].

For diamond, Schottky diodes have been realized with an exceptional breakdown voltage of 6.5 kV but with a very high specific on-resistance of 300 Ωcm² [44], that explained the representative point in out of range of the figure.

CONCLUSION

Numerical calculations of breakdown voltage, specific on-resistance and thermal run away temperature of unipolar devices have been presented, and compared with experimental published results. These calculations have been conducted taking into account the temperature dependence of physical properties of wide band gap materials, when they are known. It appears that i) published ionization coefficient in diamond are not in agreement with experimental results, ii) that p-type diamond becomes very interesting for high voltage devices at high temperature, at room temperature diamond is not superior to SiC for voltages less than 30-40 kV. In future, if the problem of n-type dopants in diamond can be resolved, then the onresistance can be lowered and diamond will take advantages on the other materials. iii) that experimental results with 4H-SiC devices are not so far from theoretical limits. These limits could be refined by taking into account temperature dependence of ionization coefficients (not known except in Si and SiC), but also by resolving the heat equation. Then the on-losses could be properly evaluated by taking into account self-heating, and cooling systems. Moreover, thermal study of power devices should allow to compare vertical and lateral devices, that is a complicated challenge. This is the next step of this work. V br (V) electrons holes a n (cm -1 ) b n (Vcm -1 ) a p (cm -1 ) b p (Vcm -1 ) 4H-SiC [24] 4.1×10 5 1,67×10 7 1,63×10 7 1,67×10 7 6H-SiC [START_REF] Raghunathan | [END_REF] 6.5×10 4 1,5×10 7 2,6×10 6 1,5×10 7 3C-SiC [25] 1.07×10 7 1.12×10 7 1.07×10 7 1.12×10 7 3C-GaN [27] 4.68×10 8 1.23×10 7 1.03×10 6 8.22×10 6 2H-GaN [27] 2.9×10 8 3.44×10 7 4.81×10 6 1.94×10 7 Diamond [2] 1.935×10 8 7.749×10 6 1.935×10 8 

FIGURE CAPTIONS

Figure 1 :

 1 Figure 1 : Intrinsic carrier concentration in various large bandgap semiconductor, displayed vs. reciprocal temperature.

Figure 2 :

 2 Figure 2: Maximal doping level vs. theoretical breakdown voltage for several wide bandgap materials. Ref. is [44].

Figure 3 :

 3 Figure 3: Maximum electric field vs. doping level for several wide bandgap materials. The position of the diamond curve is clearly false due to incorrect ionization coefficient.

Figure 4 :

 4 Figure 4: Non punch through width vs. theoretical breakdown voltage for several wide band gap materials.

Figure 5 :

 5 Figure 5: Run-away temperature as a function breakdown voltage.

Figure 6 :

 6 Figure 6: Theoretical resistance of the epilayer as a function of breakdown voltage at room temperature. Experimental results (stars) are extracted from [47] -[57] [44] [1]. Open square symbol represents an industrial component (JFET from SiCED).

Figure 7 :

 7 Figure 7: Theoretical resistance of the epilayer as a function of breakdown voltage at 600 K.
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TABLE I :

 I Physical parameters for bandgap and effective mass temperature dependence in wide band semiconductors. 0 is the free electron mass. H is denomination of silicon carbide or GaN is related to the hexagonal structure of the material (wurtzite crystallographic structure), C is related to the cubic structure of the material (zinc blend crystallographic structure).

		6H-SiC	4H-SiC	3C-SiC	3C-GaN	2H-GaN	C
	m 1 /m 0	0.75 [9]	0.57 [9]	0.69 [9]	0.13 [10]	0.2 [6]	1.4 [13]
	m 2 /m 0	0.24 [9]	0.28 [9]	0.25 [9]	0.13 [10]	0.2 [6]	0.36 [13]
	m 3 /m 0	1.83 [9]	0.31 [9]	0.25 [9]	0.13 [10]	0.2 [6]	0.36 [13]
	m dp1 /m 0	0.80 [9]	0.82 [9]	1.11 [9]	0.19 [12]	0.29 [11]	0.36 [14]
	m dp2 /m 0	0.80 [9]	0.82 [9]	0.33 [9]	1.3 [12]	1.4 [11]	1.08 [14]
	m dp3 /m 0 ∆ so (meV) ∆ cf (meV)	0.79 [9] 8.5 [9] 53 [8]	0.78 [9] 8.6 [9] 72 [8]	0.51 [9] 14.5 [9] 0 [8]	0.33 [12] 20 [6] 0 [6]	0.6 [11] 8 [11] 40 [11]	0.15 [14] 6 [15] 0
	Mc	6	3	3	1	1	6
	m dos,p /m 0	1.2	1.2	1.4	0.97	1.28	1.11
	m dos,n /m 0	0.69	0.37	0.35	0.13	0.2	0.57
	Eg(300K) (eV)	2.925 [4] 3,165 [4]	2,2 [4]	3,203 [6]	3,393 [6]	5.47 [5]
	λ  (eV°K -1 )	3,3×10 -4 [16] 3,3×10 -4 5,8×10 -4 [17]			5,4×10 -5 [18]

m

TABLE II :

 II Ionization coefficients for electrons and holes at room temperature for different wide band gap semiconductors.

  7.749×106 

TABLE III :

 III Activation energies of main commonly used dopants in wide band gap semiconductors.

		4H-SiC	6H-SiC	2H-GaN diamond
	Donors (E d = ) 0.059 eV	0.082 eV	0.017 eV 0.57 eV
		0.102 eV	0.14 eV
	Acceptors	0.19 eV 0.2 eV	0.2 eV* 0.37 eV
	(E a = )		0.22 eV **

* assumed value. ** we assume that Al occupies the two different lattices sites in 6H-SiC.

TABLE IV :

 IV Theoretical values of A 1 and B 1 , according to the previous formula, in which V br is expressed in V, and N D in cm-3.

		A 1	B 1
	4H-SiC	3.77×10 20	1.389
	6H-SiC	1.76×10 21	1.519
	3C-SiC	6.98×10 19	1.344
	2H-GaN	1.88×10 20	1.257
	3C-GaN	1.31×10 20	1.379
	Si	2.67×10 18	1.405

TABLE V :

 V Theoretical values of A 2 and B 2 , according to the previous formula, in which F c is expressed in Vm -1 , and N D in cm -3 .

		A 2	B 2
	4H-SiC	1.66×10 6	0.138
	6H-SiC	6.14×10 5	0.170
	3C-SiC	1.87×10 6	0.122
	2H-GaN	7.94×10 6	0.100
	3C-GaN	1.21×10 6	0.137
	Si	2.08×10 5	0.143

TABLE VI :

 VI Theoretical values of A 3 and B 3 , according to the previous formula, in which W NPT is expressed in µm, and V br in V.

		A 3	B 3
	4H-SiC	1.75×10 -3	1.19
	6H-SiC	8.17×10 -4	1.25
	3C-SiC	4.09×10 -3	1.16
	2H-GaN	2.35×10 -3	1.13
	3C-GaN	2.88×10 -3	1.19
	Si	2.22×10 -2	1.20
	diamond	3.55×10 -4	1.167