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Sébastien Seguy
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ABSTRACT
In this paper, the dynamic response of a harmonically forced

Linear Oscillator (LO) strongly coupled to a Nonlinear Energy
Sink (NES) is investigated theoretically and experimentally. The
system studied comprises a linear oscillator subject to an im-
posed displacement with an embedded, purely cubic, NES. The
behavior of the system is analyzed in the vicinity of 1 : 1 res-
onance. The complexification averaging technique is used to
obtain modulation equations and the associated fixed points.
These modulation equations are analyzed using asymptotic ex-
pansion to study the regimes related as relaxation oscillation of
the slow flow called Strongly Modulated Response (SMR). The
zones where SMR occur are computed using a mapping proce-
dure. The Slow Invariant Manifolds (SIM) is used to derive a
proper optimization procedure. It is shown that there exist an op-
timal zone in the parameter plane forcing amplitude–nonlinear
stiffness, where SMR occurs without having a high amplitude
detached resonance tongue. An experimental setup exhibits a
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strong mass asymmetry (mass ratio ≈ 1%). The cubic stiffness
is realized geometrically with two linear spring that extend ax-
ially and are free to rotate. Using the previous optimized stiff-
ness of the NES, different frequency response curves and asso-
ciated zones of SMR are obtained for various forcing amplitude.
Good agreement between theoretical and experimental results is
observed. The reported experimental results confirm the design
procedure, and the possible application of NES for vibration mit-
igation under periodic forcing.

INTRODUCTION
In the past decade, it has been demonstrated that addition of

small mass, strongly nonlinear attachment to a linear system may
give rise, under transient loading, to localization and irreversible
transfer of energy, also called pumping. It has been demonstrated
that pumping phenomenon can be explained by studying the non-
linear normal modes of the undamped system [1,2]. More recent
study have introduced suitable asymptotic procedure based on
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the invariant manifold approach to include damping force [3].
Addition of a Nonlinear Energy Sink (NES) changes drastically
the dynamic response of the whole system, and may be benefit
for vibration mitigation. Energy pumping under transient load-
ing has been widely studied theoretically [4–7] and experimen-
tally [7–9]. In addition to transient loading, system with NES
under periodic forcing have also been studied. Steady state re-
sponse (response with almost constant amplitude) were studied
in [10,11] for a grounded NES. Complexification averaging (CX-
A) technique [12] to derive equation of modulation and compute
the fixed points was used. Theses regimes have also been studied
analytically and experimentally for an embedded NES in [13].
It has been demonstrated that in addition to weak quasiperiodic
response, which are related to Hopf bifurcation of the slow flow,
system with NES can exhibit more complex mechanism for vi-
bration mitigation. These regimes are related to relaxation oscil-
lations and are not related to fixed point of the system. When the
system exhibit this later type of response (often called Strongly
Modulated Response (SMR)), the amplitude of modulation is
comparable to the amplitude of the response itself. SMR regimes
has been studied in details in [14, 15]. A design methodology of
NES has been proposed in [16] and the result where compared to
numerical simulations. The goal of the present paper is to bring
experimental developments of energy pumping under periodic
forcing and also a design procedure of the NES. The first section
is devoted to the theoretical treatment of the equation of motion.
An analytic approach is used and the results are compared to nu-
merical simulations. Using these results, a design procedure is
presented in section 2. In section 3, the experimental results are
presented and compared to the theoretical results.

THEORETICAL DEVELOPMENTS
The theoretical development presented herein are based

on [14, 16]. The system studied in this paper comprises a base
excited Linear Oscillator (LO) strongly coupled to a NES (see
Fig. 1) and is described by the following set of equation of mo-
tion:

m1
d2x1

dt2 + c1
dx1

dt
+ c2

(
dx1

dt
− dx2

dt

)
+ k1x1+

k2 (x1− x2)
3 = k1xe + c1

dxe

dt
(1)

m2
d2x2

dt2 + c2

(
dx2

dt
− dx1

dt

)
+ k2 (x2− x1)

3 = 0 (2)

Where x1, x2, m1, c1, k1 and m2, c2, k2 are the displacement,
mass, damping and stiffness of the LO and the NES respectively.

FIGURE 1: SCHEMA OF THE SYSTEM

The imposed harmonic displacement xe is expressed as follow:

xe = GcosΩ̃t (3)

Fixed points
After rescalling, system (1,2) is reduced to a more conve-

nient form:

ẍ1 + ελ1ẋ1 + ελ2 (ẋ1− ẋ2)+ x1 + εK (x1− x2)
3 =

εF cosΩτ− ε
2
λ1Fω sinΩτ (4)

ε ẍ2 + ελ2 (ẋ2− ẋ1)+ εK (x2− x1)
3 = 0 (5)

Where the dots denotes differentiation with respect to τ and
the following paramters are defined:τ = ω1t, ω1 =

√
k1/m1, ε =

m2/m1, λ1 = c1/m2ω1, Ω = Ω̃/ω1,λ2 = c2/m2ω1, ω2 =√
k2/m2, K = ω2

2/ω2
1 , F = G/ε .

New variables are introduced as follow:

v = x1 + εx2, w = x1− x2 (6)

As the system is studied in the vicinity of the 1 : 1 resonance
where both oscillators oscillates at the excitation frequency Ω, it
convenient to introduce the following complex variables [12]:

φ1eiΩτ = v̇+ iΩv, φ2eiΩτ = ẇ+ iΩw (7)

Introducing Eq (6,7) into (4,5), and keeping only terms con-
taining eiΩτ yields to the following slow modulated system:

ϕ̇1 +
iΩ
2

ϕ1 +
ελ1

2(1+ ε)
(ϕ1 + εϕ2)−

i(ϕ1 + εϕ2)

2Ω(1+ ε)

−εF
2
− iε2λ1FΩ

2
= 0 (8)
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ϕ̇2 +
iΩ
2

ϕ2 +
ελ1

2(1+ ε)
(ϕ1 + εϕ2)−

i(ϕ1 + εϕ2)

2Ω(1+ ε)

+
λ2 (1+ ε)

2
ϕ2−

3iK (1+ ε)

8Ω3 ϕ
2
2 |ϕ2|−

εF
2
− iε2λ1FΩ

2
= 0

(9)

A detuning parameter σ representing the nearness of the ex-
citation frequency to the natural frequency of the LO is intro-
duced as follow:

Ω = 1+ εσ (10)

Fixed points of Eq (8,9) correspond to periodic solutions of
system (4,5). They are computed by equating the derivatives to
zero, yielding a system of complex algebraic equations. After al-
gebraic operations, this system is expressed in a more convenient
form:

ϕ̇1 = ϕ̇2 = 0 ⇒ ϕ1(τ) = ϕ10, ϕ2(τ) = ϕ20

ϕ10 =

iεϕ20

(1+ ε)(1+ εσ)
−

ε2λ1ϕ20

1+ ε
+ εF + iε2λ1F (1+ εσ)

i(1+ εσ)+
ελ1

1+ ε
−

i
(1+ ε)(1+ εσ)

(11)

α3Z3
20 +α2Z2

20 +α1Z20 +α0 = 0, Z20 = |ϕ20|2 (12)

Coefficients αi (i = 1..3) are not given here due to their
length. To study the stability of these fixed points, small per-
turbations are introduced:

ϕ1 = ϕ10 +ρ1, ϕ2 = ϕ20 +ρ2 (13)

Keeping only linear terms with respect to ρi (i = 1..2), tak-
ing the complex conjugate, and putting the resulting system into
matrix form, the stability of the fixed points is then deduced by
looking at the root of the characteristic equation. If one of the
root have a positive real part, the fixed point is unstable, and is
stable otherwise.

Asymptotic analysis
As the case of small mass ratio (ε << 1) is studied here,

Eq (8,9) is analyzed using a perturbation method. Multiple scales
expansion is introduced as follows:

ϕi = ϕi (τ0,τ1, . . .) ,
d

dτ
=

∂

∂τ0
+ ε

∂

∂τ1
+ . . . ,

τ
k = ε

k
τ, k = 0,1, . . . (14)

Substituting Eq (10) and (14) into Eq (8,9) and equating co-
efficients of like power of ε yields:

ε
0 :

∂

∂τ0
ϕ1 = 0

∂

∂τ0
ϕ2 +

λ2

2
ϕ2 +

i
2
(ϕ2−ϕ1)−

3iK
8

ϕ
2
2 |ϕ2|= 0 (15)

ε
1 :

∂

∂τ1
ϕ1 +

i
2
(ϕ1−ϕ2)+ iσϕ1 +

λ1

2
ϕ1−

F
2
= 0

∂

∂τ1
ϕ2 +

i
2
(ϕ1−ϕ2)+

iσ
2
(ϕ1 +ϕ2)+

λ1

2
ϕ1 +

λ2

2
ϕ2

− 3iK (1−3σ)

8
ϕ

2
2 |ϕ2|−

F
2
= 0 (16)

The first equation of (15) gives:

∂ϕ1

∂τ0
= 0⇒ ϕ1 = ϕ1 (τ1, . . .) (17)

Substituting Eq (17) into the second equation of (15), fixed
points Φ(τ1) depends only on time scale τ1 and obey algebraic
equation:

λ2

2
Φ+

i
2

Φ− i
2

ϕ1−
3iK

8
Φ

2 |Φ|= 0 (18)

Equation (18) is solved by taking Φ(τ1) = N2eiδ2 :

|φ1|2 = λ
2
2 Z2 +Z2−

3K
2

Z2
2 +

9K2

16
Z3

2

Z2 (τ1) = N2 (τ1)
2 (19)
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FIGURE 2: EXEMPLE OF SIM FOR K = 100, λ2 = 0.2.

Number of solutions of Eq. (19) depends only on the pa-
rameter λ2. The roots of the derivative of the right hand side of
Eq. (19) are computed to find the critical value of λ2:

Z2,i =
4
(

2±
√

1−3λ 2
2

)
9K

i = 1,2 (20)

Therefore, if λ2 < 1/
√

3, two roots and a pair of saddle-
node bifurcation exists and does not exist otherwise. In fact,
equation (19) represent the Slow Invariant Manifold (SIM) of the
problem. In the case λ2 > 1/

√
3, the SIM is monotonous. On the

opposite, if λ2 < 1/
√

3, the SIM admits extrema and thus permits
to divide the SIM in two stable and one unstable branches. An il-
lustration of the SIM is given in Fig. 2 for K = 100 and λ2 = 0.2.
It is well know that such a structure of SIM may give rise to re-
laxation oscillations. To investigate this possibility, the behavior
of Eq. (16) on the SIM is analyzed.

Introducing Eq. (18) into the first equation of (16) yields:

∂

∂τ1

[
2i
(
−λ2

2
Φ− i

2
Φ+

3iK
8

Φ
2 |Φ|

)]
+2i

(
i
2
+σ i+

λ1

2

)(
−λ2

2
Φ− i

2
Φ+

3iK
8

Φ
2 |Φ|

)
− i

2
Φ− F

2
= 0 (21)

Expressing Φ(τ1) in polar coordinate, the equations govern-
ing the evolution of N2 and δ2 with respect to time scale τ1 are
obtained:

∂N2

∂τ1
=

f1 (N2,δ2)

g(N2)

∂δ2

∂τ1
=

f2 (N2,δ2)

g(N2)
(22)

where

f1 (N2,δ2) =−9λ1K2N5
2 +24λ1KN3

2 −12FKN2
2 cosδ2

−16
(
λ2 +λ1 +λ

2
2 λ1
)

N2 +16F cosδ2 +16λ2F sinδ2 (23)

f2 (N2,δ2) =
(
−54K2

σ −27K2)N4
2 +(96Kσ +12K−24λ2λ1K)N2

2

+36KFN2 sinδ2−16λ
2
2 −32σ −32σλ

2
2

+
16λ2F cosδ2−16F sinδ2

N2
(24)

g(N2) = 54K2N4
2 −96KN2

2 +32+32λ
2
2 (25)

It has been demonstrated [15] that Eq. (22) admits two types
of fixed point. The first type are referred as ordinary fixed points
and are found for f1 = f2 = 0 and g 6= 0. Whereas the others are
referred as folded singularities and are found for f1 = f2 = g= 0.
The system f1 = f2 = 0 is written into matrix form:

[
a11 a12
a21 a22

](
sinδ2
cosδ2

)
=

(
b1
b2

)
(26)

with

a11 =16λ2F, a12 =−12FKN2
2 +16F,

a21 =
36FKN2

2 −16F
N2

, a22 =
16λ2F

N2
,

b1 =9λ1K2N5
2 −24λ1KN3

2 +16N2
(
λ1 +λ2 +λ

2
2 λ1
)
,

b2 =
[
27K2N5

2 (1+2σ)−12KN3
2 (1−2λ1λ2 +8σ)

+16N2
(
λ

2
2 +2σλ

2
2 +2σ

)]
/N2 (27)

Ordinary fixed points are found by solving Eq. (26) for sinδ2
and cosδ2, and assuming that the determinant does not vanish. It
can be noticed that det(a) = 8F2g/N2, so that, eliminating f1 and
g, the condition f2 = 0 is automatically satisfied by Eq. (26), thus
obtaining the expression of the folded singularities:
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∆i, j = γi± arccos
[
N2,i

(
16λ1−24λ1KN2

2,i +9λ1K2N4
2,i +16λ2

+16λ1λ
2
2
)
/
(

4F
√

9K2N4
2,i−24KN2

2,i +16+16λ 2
2

)]
,

γi = arcsin

 4λ2√
9K2N4

2,i−24KN2
2,i +16+16λ 2

2


(28)

A condition on the excitation amplitude for the existence of
folded singularities on the lower and upper fold is obtained from
Eq. (28):

∣∣∣∣∣∣
N2,i

(
16λ1−24λ1KN2

2,i +9λ1K2N4
2,i +16λ2 +16λ1λ 2

2

)
4F
√

9K2N4
2,i−24KN2

2,i +16+16λ 2
2

∣∣∣∣∣∣≤ 1

(29)
Yielding:

F ≥Fic =
N2,i

(
16λ1−24λ1KN2

2,i +9λ1K2N4
2,i +16λ2 +16λ1λ 2

2

)
4
√

9K2N4
2,i−24KN2

2,i +16+16λ 2
2

(30)
However, the condition on Eq. (30) is necessary but not suf-

ficient to guaranty the stability of SMR regimes. In effect, under
certain condition, the slow flow may be attracted to another stable
response. To access this possibility, a procedure of 1D mapping
has been developed in [15]. The principle consists in following
the slow flow during one cycle of relaxation, with initial condi-
tion in the interval [∆11,∆12].

The procedure is illustrated in Fig. 3 and consist in four step
described bellow:

1. A starting point is chosen on the lower fold (see Eq. (20))
with a phase inside the interval [∆11,∆12]. The landing
points on the upper fold are then computed using Eq. (18)
and the invariant property of the SIM (see Fig. 2 for the cor-
responding notation):

−1
2

λ2Φ2,1−
1
2

iΦ2,1 +
3
8

iKΦ
2
2,1 |Φ2,1|

=−1
2

λ2Φ2,u−
1
2

iΦ2,u +
3
8

iKΦ
2
2,u |Φ2,u| (31)

2. Equations (22) is integrated numerically with Φ2u as initial
conditions, until reaching the upper fold line.

FIGURE 3: ILLUSTRATION OF THE 1D MAPPING PRO-
CEDURE FOR PARAMETERS K = 100, σ = 1, F = 0.15,
ε = 0.01, λ1 = 0.1, λ2 = 0.2.

3. The landing point Φ2d on the lower fold is computed with
the same manner as in the first step.

4. Equations (22) is numerically integrated again until reaching
the lower fold line.

This procedure is repeated for various starting points inside
the interval [∆11,∆12]. Finally, if all the points, at the end of step
4, come back into this interval, the SMR cycle is stable. On the
other case, if the slow flow goes through the basin of attraction
of a stable fixed point, the SMR cycle is unstable.

NES OPTIMISATION
All the previous analytic treatments permit to investigate the

behavior of the system for vibration mitigation. A complete fre-
quency response function is presented in Fig. 4. Blue dots and
stars denote stables and unstable fixed points computed using
Eq (11,12). The two bold red vertical lines represent the zone
where SMR occurs (i.e. where energy pumping occurs) and are
computed using the mapping procedure. The green circles and
diamonds represent the root mean square (RMS) value of steady
state and SMR response obtained via numerical integration. Note
that all frequency response curves in this paper are expressed in
RMS value to represent the potential benefits of SMR. Analyti-
cal and numerical results are in full agreement. From Fig. 4, it is
easy to see that even if the frequency response curve is flattened,
there exists a high detached resonance tongue before the natural
frequency of the LO, which must absolutely be avoided.

To study the condition of appearance of this detached reso-
nance curve, boundary of zones separating single and triple so-
lutions in Eq. (12), corresponding to saddle node bifurcation, are
analyzed. Saddle node bifurcation arises when a real root of the
characteristic polynomial quit the left half complex plane. Set-
ting the root equal to 0, the resulting equation is written in the
following form:
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FIGURE 4: ANALYTICAL (Blue) AND NUMERICAL (Green)
FREQUENCY RESPONSE FUNCTION FOR PARAMETERS
K = 100, σ = 1, F = 0.1, ε = 0.01, λ1 = 0.1, λ2 = 0.2.

v2Z2
20 + v1Z20 + v0 = 0 (32)

Coefficients vi are not given here due to their length. Elimi-
nating Z20 from Eq. (32) yields:

Z20 =
−v1±

√
v2

1−4v2v0

2v2
(33)

Substituting Eq. (33) into Eq. (12) and solving for F yields
to the boundary of zone separating simple to multiple solution in
the plane of parameters (F , σ ). An illustration is given in Fig. 5.

Fig. 5 highlights that there exist a narrow zone (F1c < F <
FSN) where energy pumping may be possible (F > F1c) and
where no high amplitude detached resonance curve exists. This
zone is optimal for passive control of vibration using a NES.
Taking arbitrary values for ε , λ1 and λ2, the boundary for op-
timal NES sizing are plotted in the plane of parameters (F , K) in
Fig. 6.

FIGURE 5: BOUNDARY OF THE SADDLE-NODE BIFUR-
CATION FOR PARAMETERS K = 100, σ = 1, ε = 0.01,
λ1 = 0.1, λ2 = 0.2.

FIGURE 6: CRITICAL FORCING AMPLITUDE AS A FUNC-
TION OF THE NONLINEAR STIFFNESS ε = 0.01, λ1 = 0.1,
λ2 = 0.2.

In Fig. 7, the evolution of the zone of SMR as a function of
the forcing amplitude F is plotted and shows that the closer the
working point is from the upper bound (FSN), the larger will be
the zone of SMR. In the next section the experimental setup de-
signed using the previous theoretical developments is presented.

EXPERIMENTAL DEVELOPMENTS
The experimental setup designed to investigate the behavior

of a nonlinear energy sink under harmonic forcing is depicted
in Fig. 8. It consists of a single degree of freedom oscillator
connected to the frame with a linear spring. On this linear system
is embedded a NES connected to the LO with an essential cubic
stiffness. Both oscillators are mounted on linear rail guides. The
whole set-up is embedded on a 10 kN elecrodynamic shaker. A
feedback position control of the electrodynamic shaker ensures a
constant excitation amplitude (especially during SMR response
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FIGURE 7: ZONE OF SMR AS A FUNCTION OF THE FORC-
ING AMPLITUDE FOR K = 1000, ε = 0.01, λ1 = 0.1, λ2 = 0.2.

FIGURE 8: GENERAL VIEW OF THE EXPERIMENTAL SET-
UP

regimes). Displacements of the LO is measured using a laser
displacement sensor, and the displacement of the NES using a
laser vibrometer.

Raw sensors signals are recorded using a numeric oscillo-
scope and a band pass filter is applied to correct biases and sup-
press high frequency noise.

The experimental tests consists of two sets of measurements
to obtain the frequency response curves for two different forc-
ing amplitudes. The frequency step is small in the vicinity of
the natural frequency of the LO to precisely identify the zone of
SMR.

The cubic stiffness restoring force is realized geometrically
with two linear springs that extend axially and are free to rotate.
The force – displacement relationship is as follows:

f = 2klw+
2w(P− l.kl)√

l2 +w2
≈ 2P

l
w+

kl−P
l3 w3 +O

(
u5
)
. (34)

Where kl and l are the stiffness and the length of the springs,
and P is the initial pretension. Special care is given to reduce the
preload in the springs to reduce the linear stiffness component to
a quasi zero value.

The moving mass of the LO and the NES are: m1 = 4178g
and mNES = 42g. As the mass of the NES is small, the inertia of
the springs is no more negligible and has been taken into account.
In a rough approximation, considering the spring as a beam, and
neglecting axial inertia, the kinetic energy of the NES is written
as follows:

TNES =
∫ l0

0
ρS

(
x
l0

ẏ
)2

dx+
1
2

m2ẏ2 (35)

Where ρS = mS/l0 is the mass density of the spring. Thus
the considered moving mass of the NES is m2 =mS/3+mNES/2.
The natural frequency and the viscous damping factor of the
main linear system is estimated by performing modal analysis
without the NES. The damping coefficient of the linear guide of
the NES is also been estimated by removing the nonlinear stiff-
ness, adding a linear spring and performing modal analysis. The
friction in the spring’s attachment is neglected. All the analyses
parameters are summarized below:

m1 = 4178g, m2 = 42+10 = 52g, f1 = 8.4Hz,

c1 = 3.97Ns/m, c2 = 0.36Ns/m.

And the associated adimensionalized parameters used for
simulation:

ε = 1.2%, λ1 = 1.45, λ2 = 0.13.

The nominal excitation amplitude is fixed to define the stiff-
ness of the spring composing the NES, that is G = 0.25mm
(F = 0.02). The sizing curves corresponding to the physical pa-
rameters of the system are presented in Fig. 9.

The red horizontal line corresponds to the adimensionalized
nominal forcing amplitude, and the two black dots correspond to
the excitation amplitude presented herein, at the chosen stiffness,
that is K = 1874. The measured force-displacement relationship
as well as the cubic fitting are presented in Fig. 10.
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FIGURE 9: DESIGN CURVE CORRESPONDING TO PHYSI-
CAL PARAMETERS.

FIGURE 10: FORCE DISPLACEMENT RELATIONSHIP OF
THE DESIGNED NES.

The first experiments carried at the nominal forcing ampli-
tude (G = 0.25mm) is presented in Fig. 11. The analytical fre-
quency response function is presented in blue, and the experi-
mental one in green. The gray dashed and red line represents the
theoretical and experimental zone of SMR.

Experimentally, energy pumping through SMR is observed
for this forcing amplitude and time response is presented in
Fig. 12. It is clear that this regime is related to relaxation oscilla-
tion. For this forcing amplitude, no detached resonance curve is
observed.

Fig. 13 shows the obtained frequency response curve for
G = 0.325mm. Energy pumping still occurs, but high vibrations
amplitudes before the natural frequency are also observed. This
is in accordance with the analytical predictions in Fig. 9. The
width of SMR zone is also larger when the excitation amplitude
increases, as reported theoretically in Fig. 7.

Previous results highlights discrepancies between theoreti-
cal prediction and experimental measurements on the zone of

FIGURE 11: EXPERIMENTAL (Green) AND ANALYTICAL
(Blue) FRF FOR G = 0.25mm.

FIGURE 12: EXPERIMENTAL TME RESPONSE OF SMR
FOR G = 0.25mm, f = 8.5Hz

SMR. Numerical simulations, have revealed that this zone is sen-
sitive to the damping of both LO and NES, which can explain the
difference in the width of the zone. It is observed also that in the
both cases, SMR zones are shifted on the left. This is certainly
due to a nonlinearity induced in the linear spring anchorage of the
LO. However, the behavior observed experimentally shows that
energy pumping, under harmonic excitation, is possible without
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FIGURE 13: EXPERIMENTAL (Green) AND ANALYTICAL
(Blue) FRF FOR G = 0.325mm.

having high amplitude detached resonance tongue. Despite the
small mass ratio, the NES induced strong changes in the behav-
ior of the main linear system, and the qualitative behavior of the
system is fully explained by the theoretical study.

CONCLUSION
In this paper, the behavior of an harmonically excited linear

oscillator with an embedded NES is investigated theoretically
and experimentally. The analysis mainly focused on strongly
modulated response which results on strong energy exchange be-
tween LO and NES. Theoretical analysis permits to obtain an
optimal safe zone for vibration mitigation in the space of param-
eters (F , K). An experimental set-up has been build based on
previous theoretical analysis. The main characteristic of this ex-
perimental setup is the low mass ratio (ε = 1.2%). Frequency
response curves are presented for two different excitation ampli-
tudes. At both excitation amplitude, energy pumping by mean
of strongly modulated response has been observed. The exper-
iment also shows that it is possible to avoid the detached reso-
nance curve and always performing energy pumping, validating
the design methodology. Even if the comparison between theo-
retical and experimental results presents some discrepancies, and
the design of the experiment is quite simple, repeated trials (not

shown here) proved that the system is deterministic.
The use of NES under harmonic excitation could be useful

as safety device due to the lack of preferential linear frequency,
however the behavior is strongly influenced by damping, and
therefore, design with harnessing damping characteristics will be
examined in subsequent studies.
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