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Abstract

The challenges of understanding the impacts of air pollution require detailed information on the state of air

quality. While many modeling approaches attempt to treat this problem, physically-based deterministic methods

are often overlooked due to their costly computational requirements and complicated implementation. In this

work we extend a non-intrusive reduced basis data assimilation method (known as PBDW state estimation) to

large pollutant dispersion case studies relying on equations involved in chemical transport models for air quality

modeling. This, with the goal of rendering methods based on parameterized partial differential equations (PDE)

feasible in air quality modeling applications requiring quasi-real-time approximation and correction of model error

in imperfect models. Reduced basis methods (RBM) aim to compute a cheap and accurate approximation of a

physical state using approximation spaces made of a suitable sample of solutions to the model. One of the keys

of these techniques is the decomposition of the computational work into an expensive one-time offline stage and

a low-cost parameter-dependent online stage. Traditional RBMs require modifying the assembly routines of the

computational code, an intrusive procedure which may be impossible in cases of operational model codes. We

propose a less intrusive reduced order method using data assimilation for measured pollution concentrations,

adapted for consideration of the scale and specific application to exterior pollutant dispersion as can be found

in urban air quality studies. Common statistical techniques of data assimilation in use in these applications

require large historical data sets, or time-consuming iterative methods. The method proposed here avoids both

disadvantages. In a case study presented in this work, the method allows to correct for unmodeled physics and

treat cases of unknown parameter values, all while significantly reducing online computational time.

Keywords: Reduced Basis method, Model order reduction, Parameterized partial differential equations,

dispersion modeling, Variational data assimilation.
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1. Introduction

With the urbanization of world populations and estimations of millions of deaths caused yearly by air pollution

[1], air quality modeling is of increasing interest. The need for improved approximation and model reduction is

particularly pertinent in these applications, modeling complex and not-fully-known physics. Our focus here is on

a new technique combining Model Order Reduction (MOR) and variational data assimilation, which is generally

still developmental in the context of air quality modeling, but can provide insight into these complex flux by

allowing more practical and feasible study, in terms of computational costs and from imperfect input data and

models. In this paper we propose an extension of a new Reduced Basis Data Assimilation technique, previously

applied to small-scale experimental problems, applied to a problem of pollutant dispersion in order to treat the

practical problems associated to MOR and data assimilation of these flux involved in many sophisticated methods

of urban air quality modeling.

Many air quality modeling techniques exist, from statistical and empirical, to deterministic methods [2].

Within the category of deterministic models, approaches vary in sophistication from simple box models [3], to

Gaussian plume models, to physically-based Lagrangian methods [4] and Eulerian CFD models [5, 6, 7]. The more

sophisticated models, when applied with precise information on the environment and emissions, and if correctly

calibrated, can provide very detailed information on spatial and time-varying pollutant concentrations, as well

as the physical phenomena affecting air quality. These models commonly rely on PDE dispersion modeling,

which will be our focus here. However, these models can be computationally expensive to solve. Additionally,

given the complexity of real-world applications, we cannot assume that even a highly informed and sophisticated

deterministic (or non-deterministic for that matter) model can exactly represent all the physical phenomena at

play. Therefore, the combination of model order reduction methods and data assimilation methods is of great

interest to these complicated and pertinent applications.

In various data assimilation methods, the goal is to use the a priori information encoded in the best model

possible, and available data, to find the most precise approximation of the physical system. A common concept

in meteorological forecasting, data assimilation requires a set of observations of the state, a mathematical model,

and a data assimilation scheme. Many data assimilation methods involve the minimization of a cost function, such

as least-squares type, designed to compute the mismatch between the model approximation and the observations.

Common techniques include Bayesian techniques [8], in which the cost function minimizes the expected value

of the mismatch and depends on the conditional probability of the random variable u (which corresponds to

the state estimate in deterministic models) given the observation data. This probability is commonly estimated

using an iterative gradient method, and requires more significant historical data sets. The Best Linear Unbiased

Estimator [9] method also minimizes the expected value of the mismatch, relying on knowledge of error covariance

matrices, which also demands large quantities of historical data and iterative implementation. The Kalman Filter

[10] recursively computes corrected state estimation using data and the model estimate from a previous time

step, for real-time data assimilation, however also relies on error covariance from historical data, and each step
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requires the construction of a gain filter matrix, which could limit the possibility of real-time calculation. Kriging

[11] is a group of interpolation methods relying strongly on the contribution of the data set, in which weights of

the interpolation depend on a formula derived by minimizing the variance of the prediction error requiring the

covariance matrix based on a large data set. A common drawback of these statistical methods is the necessity

of a historical dataset and a strong dependence of the state estimate on observational data. Variational data

assimilation techniques rely more heavily on the model, and impose it as a constraint on the cost function. For

example, the adjoint method [12, 13] is a typical method to treat the reconstruction of a physical state involving

the minimization of a cost function to optimize the parameters of the model with respect to the measurement

data. A sensitivity analysis of the adjoint problem for air quality models can be found in [14]. The standard

adjoint method, however, relies solely on model precision and uses data to correct the inputs, not the state. 4D-

Var can include a term which corrects model error in the state. Both methods have the disadvantage of requiring

the iterative computation of the forward and adjoint problems, and in the case of a non-linear wind field as a

parameter the computation of the adjoint solution is non-trivial. In [15], a Proper Orthogonal Decomposition

(POD) representation of an ensemble of forward problem state estimations is computed around an initial guess

input parameter vector, and used to approximate the model outputs in the cost function. This renders the cost

function quadratic and solvable by non-iterative means. This method avoids the adjoint problem, however still

requires the computation of numerous model estimates, and relies solely on model precision, using data to correct

the inputs in the context of source identification.

These methods require the forward resolution of the model for many parameter values, which can prove costly;

MOR methods can offer highly advantageous reduction of computational effort without significant loss of precision.

A common approach to rapidly compute reliable approximations of solutions to complex parameter-dependent

problems is by projection-based reduction methods, such as reduced basis methods (RBM) [16]. These methods

aim to reduce the complexity of the model using the information given by a well-chosen set of particular solutions

to the problem. A basis (called the reduced basis) of a low-dimensional subspace of the space representing all the

solutions to the parametrized problem, is constructed from these particular solutions. The equations of the full

model are projected onto the reduced basis space by a Galerkin method. Examples of reduced basis methods used

in the adjoint problem framework can be found in [17, 18, 19], and specifically in the case of air quality modeling

in [20, 21]. RBMs used for 4D-Var data assimilation on an advection-diffusion model are presented in [22].

One of the drawbacks of standard variational data assimilation methods is that it is intrusive from a compu-

tational point of view, requiring the development of an adjoint calculation code, despite efforts to automatically

differentiate a given software. In some cases this could mean relatively small modification of the original calcula-

tion code, while in others more significant modifications could be required. For example, when the wind field is

a varying parameter in the model, the implementation of the adjoint method would require the reconstruction of

the wind field at each iteration during the approximation of the optimal parameter (i.e. for each approximation

of the adjoint solution). For these reasons, less intrusive options can be valuable. The method used in [15] is less
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intrusive, however has not been applied with reduced order models and is designed with the goal of source and

parameter identification rather than improving the representation of pollutant concentrations.

The Parameterized-Background Data-Weak (PBDW) state estimation method [23, 24] can represent the

physics of the state using a sophisticated model, and applies non-intrusive and non-iterative real-time varia-

tional data assimilation employing RBMs, with correction of model error, and not requiring a large database of

observations. The PBDW relies on the knowledge of some particular solutions to the parameterized model, and

some measurements over the physical state to be approximated. The weak formulation of the PBDW method

is based on least-squares approximation, as is the case of the adjoint inverse method and many variational data

assimilation methods. In this paper we will apply this non-intrusive reduced basis method of data assimilation

for parameterized PDEs modeling particulate matter dispersion. Given a parameterized model for a physical

system, which we will refer to as the ”best-knowledge” (bk) model, and a number of measurements of the state we

wish to approximate, we employ the PBDW method to achieve the best possible approximation by a formulation

actionable in real-time. Our decision to treat the wind field as a parameter of a pollutant transport model is of

particular advantage in the context of dispersion modeling, by which we avoid online solution of the wind field.

In order to extend the PBDW to air quality problems modeling complex dispersion phenomena involved in air

quality modeling problems, we propose placement of observatational sensors by a technique adapted to RBM-

based data assimilation, using a double-Greedy algorithm derivied from the Generalized Empirical Interpolation

Method (GEIM) [25, 26]. The GEIM is another non-intrusive and non-iterative method combining MOR and

data assimilation, in which an empirical interpolation is constructed from knowledge of particular solutions and

measurement data. We will also introduce a modified H1-norm in the PBDW formulation in order to address

dimensionality problems induced by large-scale calculation domains inherent to urban dispersion modeling and

small pollutant sensor sizes.

In section 2 we will present the application in particulate dispersion modeling, in section 3 the mathematical

formulation of the PBDW method, and in section 4 we will discuss important factors in the numerical implemen-

tation of the PBDW method. In section 5 we will show through numerical application that the PBDW method

succeeds in the reconstruction of a concentration field on the case study considered for well-chosen sensor loca-

tions. We will also show a comparison of the PBDW state estimation to the GEIM method, demonstrating that

the PBDW method outperforms the GEIM method when model error is present. We finally give computational

times required for state estimation on this case study, showing the significant advantages of the RB technique in

the PBDW method, and compare the process to that of the adjoint method for the current case study and a more

complicated urban domain in section 5.3
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2. A Case study in Dispersion modeling

The application studied in this work represents a simplified outdoor urban scenario of particulate air pollution.

In this section we will first explain the geometry of the test domain considered for this case study, then describe

our best-knowledge mathematical model, and finally set the reduced basis framework to this model.

2.1. Physical problem formulation

Let us consider a physical system described by a PDE, and denote p the parameter configuration of the physical

system, encoding information such as operation conditions (e.g. emissions or frequency), environmental factors

(e.g. temperature), or physical components. Let p ∈ D, where D is the set of all parameters of interest, and a

bounded domain Ω ⊂ Rd. We will assume a solution space X , a Hilbert space, such that H1
0 (Ω) ⊂ X ⊂ H1(Ω),

and associated inner product (·, ·)X . We will denote X ′ its dual space.

We study here a simple two-dimensional domain of dimensions 75m × 120m, seen in Figure 1. The domain

represents a neighborhood with a house, a building, and pollution source of a street. These choices were made

to give a simplified case study representing a residential area with particulate pollution as would be produced by

road traffic.

Figure 1: Two-dimensional test domain with boundaries corresponding to the velocity field (left) and particulate pollution source

representing a street (right), residential character represented by a house and a building.

We chose a particulate pollutant PM2.5 (particulate matter of diameter d ≤ 2.5µm) in this study, which on the

short term can be considered to have negligible reaction. We set wind velocities (in a fixed direction (1, 1)T ) up

to force 1 as the varying parameter in the best-knowledge parameter space Dbk ⊂ D, and set source intensity

representing varying traffic of 1× 10−3 and 1× 10−2 mg
m3·s .
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In order to compromise between accuracy, numerical stability, and computational time in the wind field

provided to the pollutant transport model, we use pseudo-steady-state CFD wind fields, solutions to Reynolds-

Averaged Navier-Stokes with k − ε turbulence by Code Saturne [27] (a general purpose finite-volume CFD soft-

ware). While other turbulence models such as RNG k− ε may show improved modeling of flow around buildings

in recirculation zones [28, 29], we chose the standard k − ε for it’s universal applicability, good numeric stability,

and availability in general purpose CFD software. This study could, of course, be done with different turbulence

models and CFD software (e.g. LES or DNS software [30]) in future work, as the versatility of the non-intrusive

method is among its strongest advantages. The grid resolution near obstacles was fixed with consideration of

y+ values. Time stepping was done with a reference time step value of 0.1s in Code Saturne, which was found

in practice to be a good compromise between numerical stability and computation time. Boundary conditions

on explicitly outflow boundaries are set to homogeneous Neumann conditions, and on all other boundaries we

impose an inflow in direction (1, 1)T . The CFD model can be coupled with transport equations, or precalculated

for a decoupled procedure. In our study we chose to decouple the computation of the wind fields, and then used

the velocity and turbulent viscosity fields in the dispersion model. This allowed us to use a larger domain for

wind field calculation with a buffer zone between the obstacles and outflow boundaries of 15L, where L is some

characteristic length of the obstacle.

For our case study, we consider a simple stationary advection-diffusion PDE as our best-knowledge parametrized

transport model Pbk: Find cbk(p) ∈ X such that
ρ~v(p) · ∇cbk(p)− div

(
εtot(x)∇cbk(p)

)
= ρFsrc(p) in Ω,

cbk(p) = 0 on ΓD = {x ∈ ∂Ω |~v(x) · ~n < 0},

εtot∇cbk(p) · ~n = 0 on ΓN = ∂Ω \ ΓD,

(1)

where ρ = 1.225 kg
m3 is the density of the air, ~v is the wind field, Fsrc the pollutant source term. Considering

turbulent (or eddy) diffusion εturb = νF

sc
, where νF is the turbulent viscosity and sc = 0.7 the dimensionless

Schmidt number, the total diffusion is thus εtot = εmol + εturb, with εmol = 1.72× 10−5m2

s the molecular diffusion

in air. The (strict) inflow boundary is denoted by ΓD = Γin and ΓN = Γwall ∪ Γout represents non-inflow

boundaries.

c = c0 on ΓD = {x ∈ ∂Ω|~v(x) · ~n < 0}

−εturb(x) ∂c∂z = −εturb(x)∇c · ~n = 0 on ΓN = ∂Ω \ ΓD
(2)

Problem (1) is solved in FreeFem++ [31] by the finite element method over Nh degrees of freedom, combined

with a SUPG stabilization method [32, 33] to avoid numerical instabilities known to affect transport problems

solved by finite element methods. The resolution Nh of the finite element problem is sufficiently fine to assume

that the concentration field cbk(p) = cbkh (p) is assumed to commit minimal discretization error (with respect to

the errors we will see by model reduction).
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The use of this simple dispersion model and our own calculation code has the advantage of treating the

predominant physical effects involved in AQMs, while allowing us full control over the experiment to study the

results of the method with knowledge of the true solution. This case study aims to provide a proof of concept,

and is not fully compatible with real-world pollution data. We will thus work with synthetic data (as seen in e.g.

[15]) , taken as the sensor function outputs over a trial state estimate, for both the model in equation 1 and in

section 5.1. Using synthetic data allows us to better study the results of the mathematical method by comparing

to fully-resolved true solutions, as opposed to sparse data measurements.

2.2. Reduced basis background

Reduced basis methods exploit the parametrized structure of our problem and construct a low-dimensional

approximation space representing the manifold of solutions, Mbk = {cbk(p) ∈ X | p ∈ Dbk}, to the parameter-

ized model Pbk in equation (1). A key factor of the reduced basis methods is the small Kolmogorov n-width

[34]. The n-width measures to what extent the manifold Mbk, the set of solutions to problem (1), can be ap-

proximated by an n-dimensional subspace of X [35]. If the manifold Mbk can be sufficiently approximated by

a low-dimensional space, we can identify parameter values SN = (p1, . . . ,pN ) ∈ Dbk such that the particular

solutions
(
cbk(p1), . . . , cbk(pN )

)
will generate a RB approximation space. We find our state approximations in

this low-dimensional space, essentially replacing a large-dimensional finite element space of dimension Nh, with

a RB space generated by N << Nh particular solutions to Pbk. Thus for any parameter value p ∈ Dbk, the

solution can be approximated by a linear combination of these particular solutions:

cbkN (p) '
N∑
i=1

αi(p)cbk(pi). (3)

The parameters generating reduced basis spaces can be chosen by multiple methods, and we chose to focus on

Greedy algorithms. We present a weak-Greedy algorithm (Algorithm 1 in appendix) employed in the construction

of reduced basis spaces from the best-knowledge model Pbk over the bk parameter space Dbk. We refer to [36]

for a justification of this construction where quasi optimality of the procedure is proven.

This RB approximation space will be henceforth referred to as the Background space ZN , representing solutions to

the best-knowledge model Pbk in the PBDW method, and we will construct our Background spaces as a sequence

of nested RB spaces

Z1 ⊂ · · · ⊂ ZN ⊂ · · · ⊂ X .

In order to achieve stable implementation of RBMs, it is common practice to improve the basis of the RB

space by a Gram-Schmidt orthonormalization method. We introduce new orthonormal basis functions {ζi}Ni=1

and denote our background RB space as

ZN = span{ζi}Ni=1 = span{cbk(pi)}Ni=1 ⊂ X . (4)
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To minimize the appoximation error associated to discretization error (on the reduced N -dimensional space),

we need to construct a suitably precise RB space ZN such that, for a tolerance εZ ,

∀p ∈ Dbk, inf
w∈ZN

‖cbk(p)− w‖X ≤ εZ . (5)

This RB space representing the solution manifold to Pbk described by equation (1) could be used in the

implementation of RBMs in the framework of an inverse problem. Here we wish to take advantage of the simple

and non-intrusive character of the PBDW method as an alternative to this integration of MOR into a classical

inverse technique.

3. PBDW Formulation

The goal of the Parameterized-Background Data-Weak formulation (PBDW) is to estimate the true state

ctrue(p) ∈ X (or desired output quantity `out(ctrue(p)) ∈ R, where we assume `out linear and continuous, for

example the average value over a domain of interest.) using the best-knowledge model Pbk and M observations

associated to the parameter configuration p.

The RB Background space is built from Pbk, as in section 2.2. Information on the sensors is then used to build

an Update space of low dimension representing the information gathered by the sensors.

A recent PhD thesis [37] gives detailed analysis of PBDW error and stability, as well as discussion of treat-

ment in the case of noisy data. The case of noisy data, which was first studied in the PBDW formulation in

[24], is treated with a probabilistic distribution, for example independent normal distributions, with an added

regularization term over the observations (similarly to the 3D-var formulation), dependent on the variance of the

distribution, in the minimization statement. In this study we will not treat the case of noisy data, as a proposed

extension for this case has been well documented in [37]. In addition, we could consider that concentration sen-

sors are not just noisy: relative errors may be large, but are small on a log scale, which is more pertinent to

concentration measurements involved in dispersion or air quality modeling.

3.1. Data-informed Update

We assume that we have M sensors, which we will mathematically represent as follows (for example):

ϕm = exp
(
−(x− xm)2

2r2

)
such that

∫
Ω
ϕm(x) dΩ = 1, 1 ≤ m ≤M (6)

where xm ∈ Rd is the center of the mth sensor, of radius r. The underlying idea of such sensor modeling is that

a sensor, especially a gas sensor (as well as PM sensors), is a complex system with spatial extension. Such a

sensor does not sense pointwise, but rather performs some averaging around the sensor location. To evaluate

the information these sensors can gather from a physical state v ∈ X , we define the following linear functionals
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`m ∈ X ′

`m(v) =
∫

Ω
ϕm(x) v(x)dΩ 1 ≤ m ≤M. (7)

We want to use these sensors to construct an additional approximation space UM ⊂ X of low dimension,

the Update space. We consider that UM represents the information which the sensors can provide, and its

basis functions, denoted qm, 1 ≤ m ≤ M , represent the functionals `m. Let us thus define the Riesz operator

RX : X ′ → X such that

(v,RX `)X = `(v) ∀v ∈ X . (8)

We then introduce the Update basis functions qm = RX `m ∈ X such that

(v, qm)X = `m(v) ∀v ∈ X . (9)

The construction of this space takes place offline, as it can be relatively computationally expensive, although

often less than the construction of the background space.

3.2. PBDW problem statement

The PBDW aims at approximating the true physical state ctrue(p) for some configuration p by

cN,M = zN + ηM . (10)

where the first right-hand-side term zN is in ZN and corresponds to some RB approximation of the best-knowledge

solution cbk(p), and the second right hand side term ηM is in UM and is a correction term associated with the

M observations. We pose the PBDW approximation as the solution to the following minimization problem. Find

(cN,M ∈ X , zN ∈ ZN , ηM ∈ UM ) such that

(cN,M , zN , ηM )X = arginf
c̃N,M∈X
z̃N∈ZN

η̃M∈UM

{
‖η̃M‖2X

∣∣∣∣ c̃N,M = z̃N + η̃M

(c̃N,M , φ)X = (ctrue, φ)X ,∀φ ∈ UM

}
. (11)

The minimization over the Update term ηM ∈ UM (proven to be equivalent to minimizing over ηM ∈ X in [23])

translates to requiring the PBDW approximation to remain close to the manifoldMbk represented by ZN , ensuring

that the approximation maintains a physical sense with respect to the physics of the model Pbk. The constraints

on the minimization impose the two-part Background-Update PBDW solution, and the measured values at sensor

locations. This minimization problem can be expressed by a Lagrangian and the derivation of Euler-Lagrange

equations. Simplifying the Euler-Lagrange equations, the PBDW estimation statement can be written, for a given

parameter configuration p ∈ D, as the following saddle problem [23, 24]. Find (ηM ∈ UM , zN ∈ ZN ) such that:(ηM , q)X + (zN , q)X = (ctrue(p), q)X ∀q ∈ UM ,

(ηM , p)X = 0 ∀p ∈ ZN .
(12)
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We recall here that given the definition of the Update basis functions qm ∈ X in equation (9), the right-hand-side

of this formulation is assumed to be (ctrue(p), qm)X = yobsm (p), with yobsm (p) = `m(ctrue(p))X , 1 ≤ m ≤M .

The corresponding algebraic formulation to problem (12) is : find ( ~ηM ∈ RM , ~zN ∈ RN ) such that A B

BT 0

~ηM
~zN

 =

~yobs
0

 (13)

where (~yobs)m = yobsm , Am,m′ = (qm, qm′) and Bm,n = (ζn, qm) for 1 ≤ m,m′ ≤ M and 1 ≤ n ≤ N . The PBDW

approximation can then be rewritten as

cN,M =
M∑
m=1

( ~ηM )mqm +
N∑
n=1

( ~zN )n ζn.

RBMs are often considered particularly well-suited to problems in which the quantity of interest is not the full

reconstruction of the solution, but the evaluation of an output functional over the solution, allowing for complete

independence from the calculation mesh in the online stage. The desired output functional can be evaluated

without reconstructing the full solution:

`out(cN,M ) =
M∑
m=1

( ~ηM )m`out (qm) +
N∑
n=1

( ~zN )n `out(ζn).

This saddle problem (12) is not a function of the original PDE, making the method non-intrusive. Once the back-

ground RB space has been constructed from particular solutions to the Pbk model, the procedure is independent

of the Pbk computational code provided the mesh information is available.

The key to most model reduction methods is a decomposition of the computational effort into offline and

online stages. The majority of the workload is computed only once in advance, offline, while only parameter-

dependent computations are completed during the online stage, which is much more efficient. The construction

of the background space ZN , Update space UM , as well as the matrices A and B, also takes place during the

offline stage — as computation time of these procedures depends on the mesh with Nh degrees of freedom —

allowing for an efficient online phase. Thus, when observation data is collected, the linear system can generally

be solved online in at most O((N + M)3) operations. The output quantity over the basis functions of the two

approximation spaces can be precalculated, allowing for evaluation of the output of the PBDW approximation in

O(N +M) operations, without fully reconstructing the PBDW approximation from the basis functions {ζn}Nn=1

and {qm}Mm=1, a procedure in O(Nh) operations. However depending on the visualization method, reconstruction

of full solutions can be very efficient, making RBMs equally suitable for the general case.

3.3. PBDW error and stability considerations

The well-posedness of the PBDW problem depends on the construction of the Background and Update spaces.

In fact we can define the inf-sup stability constant depending on the two approximation spaces.

βN,M = inf
w∈ZN

sup
v∈UM

< w, v >X
‖w‖X ‖v‖X

. (14)
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βN,M is a non-increasing function of N and a non-decreasing function of M , with βN,M = 0 for N > M .

In [23] an a priori error estimation is derived for the formulation as a function of the stability constant and

the best-fit of the approximation spaces.

‖ctrue − cN,M‖X ≤
(

1 + 1
βN,M

)
inf

q∈UM
inf

z∈ZN
‖ctrue − z − q‖X . (15)

Given the strong dependence of the PBDW approximation error on the stability constant, we need to build

the approximation spaces in a manner to maximize the stability of the formulation.

If we have the option of choosing the M best measurements, we want to:

(a) Maximize the stability constant βN,M for each M with respect to the Background Space ZN

(b) Minimize the best-fit error in the secondary approximation by the Update space UM :

inf
q∈UM∩ZN⊥

‖ΠZN⊥c
true − q‖X (16)

If we consider that the Pbk model provides most of the information about the solution, the primary approxi-

mation will be taken from the Background space ZN , as imposed by equation (11). The Update term η will be

taken from outside the Background space, as stated in equation (12). The best-fit error in the Update space is

thus given by the projection of the portion of the true state not approximated by the Background space onto the

Update space orthogonal to the Background space.

This can be attempted through optimal construction of the Update space employing a Greedy-type selection

of sensor functions (among a set of possible locations) to improve the space with respect to (a) or (b). The former

can be done for example using an algorithm to maximize βN,M under a certain tolerance, reverting otherwise to

minimization of the best-fit error, as in [37]. The latter can be done using for example a double-greedy procedure

in order to minimize the GEIM [25, 26] interpolation error, which selects Background RB basis functions and

Update sensor basis functions simultaneously. The sensor placement optimization found in [15] is based on the

sensitivity of the flow to varying input parameters, designed specifically for parameter identification. To the

contrary, here the sensor placement optimization is designed to better represent the concentration field based on

our best knowledge of the states, and combined with the choice of Riesz representation, maximizes the ability of

the Update space to correct error in the state estimates.

4. Numerical Implementation of the PBDW method

In this section we will discuss problem-specific details of the implementation of the PBDW method.

The goal of this application is to test the feasibility of the PBDW method to represent the complex physical

phenomena involved in air quality modeling. In fact RBMs are notoriously ill-suited to problems of transport
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by convection or to problems with too many varying parameters. For this reason we focus this study on the

dispersion of pollutants in an outdoor urban setting, and with the addition of a reaction term represent the most

predominant terms in physically-based AQMs. We aim to demonstrate that the modeling of dispersion-reaction

by an imperfect model is feasible with the PBDW method, which will suggest that an extension to operational

CFD-based AQMs may be possible thants to the strategic treatment of the velocity field as a parameter in the

bk problem and the non-intrusive data assimilation allowing to correct for unmodeled physics.

In real-world air quality applications, sensors are often limited in number; we want to respect this constraint

in the methodology considered here, and consider a relatively small number of sensors over the domain (we’ll

consider up to 20) testing various sensor locations. We will consider PBDW results in the (academic) case of a

perfect Pbk model, and in the case of unmodeled physics such as a reaction term or a true solution calculated

with a different computational model.

4.1. Background RB space

The construction of a RB Background space ZN for our 2D case study was done using the weak Greedy

algorithm 1 on a training set of particular solutions for varying parameters of wind velocity pv and source

intensity ps in the parameter set Dbk = {(pv,ps) ∈ [0.1; 1.3ms ]× [1× 10−3; 1× 10−2mg
m3 ]}.

A sign of a good reduced basis is the estimation of a small Kolmogorov n-width by rapid decay of projection

errors of these training solutions onto the N -dimensional RB space. In figure 2 we see the mean and maximal

relative projection errors in H1 norm as a function of N

ErrGreedymean = 1
Nbtrial

Nbtrial∑
i=1

‖cbk(pi)−ΠZN cbk(pi)‖H1

‖cbk(pi)‖H1
, (17)

as well as mean relative projection errors over the calculation domain, corresponding to a pointwise mean on the

calculation mesh over the following error formula.

ErrGreedyΩ (pi) = |c
bk(pi)−ΠZN cbk(pi)|
‖cbk(pi)‖L∞

∈ X (18)

This serves as a representation of the approximation quality of the reduced basis space ZN for the solution space

Mbk.

12



Figure 2: Relative mean and maximal projection errors in H1 norm of the training solutions during the greedy construction of the

RB space, as a function of N following equation (17) (top left) ; Relative mean projection error of the training solutions over the

Greedy RB space, pointwise over domain Ω from equation (18) for RB dimensions N = 1 (top right), N = 5 (bottom left), and

N = 10 (bottom right). The lowest contour curve represents 1% error.

We can see that the discretization error of the RB Background space rapidly converges to under 1%. Given

the complexity of reducing convection-dominated problems and the uncertainty involved in real-world modeling

of dispersion, we consider this wholly satisfactory. An additional 1% error (with respect to the Pbk model) from

the dimensional reduction of the approximation space from a finite element space to a RB space would thus be

considered negligible. We will note from the RB discretization error maps over the domain that for RB dimension

N = 10, we have nearly eliminated the error, excepting small but unavoidable ”shocks” from varying convection

fields. We can thus hope to fix our online basis size at N ∼ 5, which we will consider further in section 5.1.

4.2. Sensor locations and Update Space

We will compare two cases of sensor locations in this case study: the case of sensor locations chosen randomly,

and the case of sensor locations chosen by a weak Greedy method as in the GEIM.

The GEIM simultaneously defines the set of so-called generating functions (e.g. the Background basis func-

tions) ξi ∈ Mbk and the associated linear forms (i.e. the sensor functions). The first chosen generating function
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ξ1 is the ”largest” bk solution by X -norm, and the associated sensor function `1 (chosen among the set of available

sensor locations Σ) is the sensor which gives the most ”information” on cbk(p1). We then define the interpolation

operator

IM (cbk) =
M∑
j=1

βjξj such that `i
(
IM (cbk)

)
= `(cbk) ∀1 ≤ i ≤M (19)

Ideally we want to choose the linear forms `i and basis functions ξi ∈ Mbk in an optimal manner. We can

consider a Greedy algorithm similar to algorithm 1, selecting each new generating function to maximize the

interpolation error. We defined a double-Greedy algorithm based on this interpolation error in order to select

sensor placements specifically adapted to RBM-based data assimilation.

In figure 3 we can see a set of sensor locations chosen randomly, as well as the set Σ of possible sensor locations

chosen for this application and those selected by the GEIM-based double-Greedy algorithm.

Figure 3: Sensors locations chosen randomly (left) and chosen by a Greedy algorithm (right).

In figure 4 we see the values of the stability constant βN,M from equation (14), with ‖ · ‖X = ‖ · ‖H1 , for

various N -values as a function of M , for each sensor set. This figure represents the stability of the PBDW system

induced by choice of sensor locations.
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Figure 4: PBDW inf-sup stability constant βN,M in H1 norm, equation (14), for the associated PBDW linear systems (13) as a

function of the number of data points M , for various Background RB dimensions N . Sensors chosen randomly (left) and chosen by

a Greedy algorithm (right).

The PBDW systems were constructed from equation (13) using the RB Background space discussed in sec-

tion 4.1 and an Update spaces built from these respective sensor locations (placed randomly or by the Greedy

algorithm). As βN,M is a non-decreasing function of M , we see improvement in the stability constants for larger

numbers of data points, for each fixed Background RB dimension N . We note that in general for N ' M the

formulation is less stable, as evidenced by very low values of βN,M and discussed in [26]. Given this knowledge,

we make the choice to disregard PBDW results for N 'M (as we will see in section 5.1).

If we compare the stability constants for randomly chosen sensor locations to those for sensor locations chosen

via Greedy, we can see that in our case study we’ve improved by multiple orders for some M and N values, and

at least by a factor of 2 for smaller Background dimensions.

Given the relatively small size of standard concentration sensors which provide observational data in real-world

applications, with respect to the large domain of study, we aim to respect this constraint in the development of

the methodology and testing on pollution dispersion studies. In order to extend the PBDW under this constraint

while maintaining a mathematically sound definition and realistically smooth output concentration field, wechose

to modify the norm used in the definition of the Update basis functions by Riesz representation in equation (9).

We introduce the following H̃1 scalar product for u, v ∈ H1.

〈u, v〉H̃1(Ω) = 〈u, v〉L2 + L2
g〈∇u,∇v〉L2 , (20)

where Lg = 75 is a characteristic length of the domain. This scalar product serves to enlarge the support of

the Update basis functions and to smooth the Update contribution, in order to provide improved approximation

properties to the Update approximation space (see (16)). The induced H̃1 norm is used in the variational

formulation (12) for equivalence.
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5. State Estimation Results

In this section we will present the numerical results of the PBDW method on the 2D case study presented

in section 2. We will present the PBDW state estimation results over the full domain and over a domain of

interest, considering the variations in sensor choice discussed in paragraph 4.2. Above we presented analysis of

stability of the system, and in this section we will present the state estimation results of the associated PBDW

systems, along with error bounds for parametric variation only (the case of a perfect Pbk model), and for little to

significant model error. We will also compare the results of the PBDW method to those obtained by the GEIM,

both non-intrusive reduced order data assimilation methods, in precision and computational time.

For purposes of analyzing results and numerically calculating the error bound in equation (15), we will consider

the following relative best-fit error onto what we will refer to as the PBDW approximation space ZN⊕(UM∩ZN⊥):

‖ctrue −ΠZN⊕(UM∩ZN⊥)c
true‖X

‖ctrue‖X
. (21)

5.1. PBDW applied to a case study in exterior dispersion modeling

The two-dimensional case study on the domain represented in figure 1 was considered for varying parameters

in Dbk introduced in section 4. In figure 5 we can see concentration fields for lowest and highest wind velocity

and emission rates.

Figure 5: Concentration fields (logarithmic scale) from the Pbk model (1) over velocity fields and different pollutant source intensities.

(pv ,ps) = (0.1 m
s
, 1× 10−3 mg

m3 ) (left), and (pv ,ps) = (1.3 m
s
, 1× 10−2 mg

m3 ) (right).
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In the following we will consider three sets of 6 trial solutions to test the method. Each of the trials corresponds

to velocity parameters pv, and to varying intensity of the pollutant sources ps. The values of the trial parameters

lie within Dbk but are different from the values used in the training set for the RB space: Dtrial = {(pv,ps) ∈

{0.15, 0.6, 1.28}ms × {3 × 10−3, 7 × 10−3}mgm3 } ⊂ Dbk \ Dtraining. One set consists of solutions to equation (1)

representing the (unrealistic) case of a perfect Pbk model, with the goal of demonstrating the error inherent to

the MOR approach of the PBDW method. The remaining trial sets consist of solutions to an advection-diffusion-

reaction problem:

ρ~v · ∇c− div((εmol + εturb)∇c) + ρRc = ρFsrc, (22)

with linear reaction terms of coefficients R = 0.001 and R = 0.0001. These sets are used to demonstrate how

the method handles two levels of model error, with an average error over 8% (and up to 17%) and 1%, respectively.

In figure 6 we compare the FEM solution to PBDW state estimates for trial solutions with significant model

error: we can see the trial solution corresponding to maximal error, ctrial(pmax), with

pmax = argmax
p∈Dtrial

‖ctrial(p)− cN,M (p)‖H1

‖ctrial(p)‖H1
(23)

compared with the PBDW approximations from randomly-chosen sensor locations and Greedy sensors.

We see reasonable reconstruction of the physical state with both sensor sets. While the Greedy sensors add a

very small phantom concentration in some regions, this error is negligible. The Greedy system has more accurately

reconstructed the concentration peak near the source, however both PBDW approximations underestimate the

peak. The under-representation of the concentration remains relatively small.

Figure 6: Approximation of the concentration for p = pmax. Trial solution with model error simulated by a reaction term of R = 0.001.

FEM solution ctrue (left), PBDW approximation using synthetic data, with random sensors (middle), PBDW approximation with

greedy selected sensors (right). We set M = 13 and N = 6 here.

In figure 7 we can see relative mean best-fit errors from equation (21), measure in the H1 norm, over our set

of trial solutions with significant model error. We notice that in the case of a perfect model, for each N -value

the relative best-fit error is nearly constant with respect to M . This implies that our Update basis functions
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qm do not provide new information outside the span of the background approximation space ZN . This effect

is to be expected, as the trial solutions were computed with the same model as the reduced basis, which is

meant to approximate the associated solution space. However, we see improvement of the best-fit error in the

case of an imperfect model. The added Update basis functions enlarge the span of the PBDW approximation

space ZN ⊕ (UM ∩ ZN⊥) to capture information on the trial solutions from the shifted model not spanned by

the background space. We also note that additional background basis functions do not greatly improve the

approximation, as the trial solutions do not lie on the same solution manifold.
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Figure 7: Relative mean best-fit error, equation (21), for the set of trial solutions over p ∈ Dtrial, as a function of M in H1-norm.

No model error (left), and model error with an added reaction term of R = 0.001 (right). Sensors chosen by a Greedy algorithm.

In figure 8 we see relative mean PBDW approximation errors mapped over the domain for the case of significant

model error given by.

ErrPBDWΩ (pi) = |c
trial(pi)− cN,M (pi)|
‖ctrial(pi)‖L∞

∈ X . (24)
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Figure 8: Relative mean pointwise PBDW approximation error maps, equation (24) over trial set p ∈ Dtrial with model error by an

added reaction term of R = 0.001, for N = 2 (left), N = 6 (right), and for M = 8 (top) and M = 15 (bottom). Randomly-chosen

sensor locations. The lowest contour line shows 1% error.

We see significant improvement between N = 2 and N = 6, but smaller improvements when adding more

data points. In this simple test, M = 8 is sufficient data for the PBDW system to approximate the state

over the N = 6 Background functions, and adding more Update basis functions does not greatly improve the

approximation, which we attribute to sensor placement.
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Figure 9: Relative mean (equation (25), left) and maximal (equation (26), right) PBDW approximation error in H1-norm as a function

of Background RB dimension N , for various numbers of data points M , over p ∈ Dtrial with no model error. Randomly-chosen

sensor locations.
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Figure 10: Relative mean (equation (25), left column) and maximal (equation (26), right column) PBDW approximation error in

H1-norm as a function of Background RB dimension N , for various numbers of data points M , over p ∈ Dtrial, model error with an

added reaction term of R = 0.001. Randomly-chosen sensor locations.

We define mean and maximal PBDW approximation errors in the H1-norm:

ErrPBDWmean = 1
Nbtrial

Nbtrial∑
i=1

‖ctrial(pi)− cN,M (pi)‖H1

‖ctrial(pi)‖H1
(25)

ErrPBDWmax = max
p∈Dtrial

‖ctrial(p)− cN,M (p)‖H1

‖ctrial(p)‖H1
(26)

In figures 9 and 10 we see relative mean and maximal error curves for the PBDW approximation with randomly

sensor locations for two trial sets, showing of the quality of the PBDW state estimation in the H1 norm, using

randomly-chosen sensor locations. We can see that with no model error with N = 6 Background functions we

achieve ∼ 2% mean error (and ∼ 3% maximal error on the worst trial solution), and ∼ 4% (and under 8% maximal

error on the worst trial solution) error with significant model error. In applications of air quality modeling input

errors are commonly much larger, in the range of 30−70% if not higher, much of which stemming from the factors

represented here (transport, diffusion, reaction, and source representation). This study finds smaller errors but

of similar order and the possibility of correction a portion of this error would prove advantageous. We note that

the non-monotone error curves are to be expected: there is no mathematical argument for strictly decreasing

error, as the error depends not only on the best-fit of the PBDW approximation space, but also on the stability

and conditioning of the system. We can observe that the instability for N approaching M (seen in the stability

coefficient βM,N of equation (14)) has an amplified effect on the error in the case of more significant model error.

This is consistent with equation (15).

In figures 11 and 12 we see relative mean and maximal error curves for the PBDW approximation with Greedy

sensor locations for each of two trial sets. We can see that with no model error with N = 6 Background functions

we achieve ∼ 1% mean error (and under 3% maximal error on the worst trial solution), and ∼ 3% error (and

6% maximal error on the worst trial solution) with significant model error. We note that we see more consistent

error results for varying N -values, with fewer peaks in the error, as compared to sensors chosen randomly. We
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can attribute this to the increased stability and conditioning of the PBDW linear system. We also note that while

we see only small improvement of the approximation error in the best case (of N - and M -values), we see global

improvement with the Greedy sensors. We could thus draw the preliminary conclusion that the Greedy-placed

sensors is no guarantee of improved precision in the PBDW approximation (here it depends on N - and M -values),

but seems to improve the stability of the system and consistency of the results, which would be a non-negligible

advantage in the online stage when precise a posteriori error analysis is not feasible.
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Figure 11: Relative mean (equation (25), left) and maximal (equation (26), right) PBDW approximation error in H1-norm as a

function of Background RB dimension N for various numbers of data points M , over p ∈ Dtrial with no model error. Sensor

locations chosen by a greedy procedure.
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Figure 12: Relative mean (equation (25), left) and maximal (equation (26), right) PBDW approximation error in H1-norm as a

function of Background RB dimension N for various numbers of data points M , over p ∈ Dtrial, model error with an added reaction

term of R = 0.001. Sensor locations chosen by a greedy procedure.

In figure 13 for Greedy sensors we see relative mean errors mapped over the domain in the case of no model

error. Here we see a bit more improvement between M = 8 and M = 15, which can be attributed to better-

placed sensors. However, the background space alone can represent these trial solutions, so as expected the most

improvement is provided by N .
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Figure 13: Relative mean pointwise PBDW approximation error maps, equation (24), for N = 2 (left), N = 6 (right), and for M = 8

(top) and M = 13 (bottom), over p ∈ Dtrial with no model error. The lowest contour line shows 1% error. Sensor locations chosen

by a greedy procedure.

In figure 14 we consider Greedy sensors for the case of significant model error. Here we see more significant

improvement with added data points. We again note that the correction by the Update basis functions can add

non-physical error to the approximation, however this is generally of negligible order. Again we see significant

improvement between N = 2 and N = 6. We see that with N = 6 and M = 15 the error is under 7% everywhere,

and often under 1%. Compare to the corresponding case with randomly placed sensors, where the approaches

and error surpasses 7% in a some areas.
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Figure 14: Relative mean pointwise PBDW approximation error maps, equation (24), for N = 2 (left), N = 6 (right), and for M = 8

(top) and M = 13 (bottom), over p ∈ Dtrial with model error by an added reaction term of R = 0.001. The lowest contour line

shows 1% error. Sensor locations chosen by a greedy procedure.

In RBM applications it is often unnecessary to reconstruct the approximated solution over the full domain

Ω; instead the solution of some output value on the solution over a smaller domain of interest Ωout ⊂ Ω is

approximated. This is highly compatible with air quality studies, as often the physical quantity of interest (QoI)

is a concentration peak in an area or the average concentration over a period of time in an area, such as a

playground or a school area. This renders RBMs much more advantageous (no online complexity is dependent on

the mesh dimension Nh). In this case study we considered the quantity of interest to be the average concentration

over a subdomain of interest, and achieved greatly reduced computational times (seen in table 2) for equivalent

precision.

In figure 15 we can see relative mean PBDW approximation errors and bounds over p ∈ Dtrial, comparing a set

without model error and a set with model error (an added reaction term of R = 0.0001). Plots show best-fit error

from equation (21), PBDW approximation error (i.e. the left-hand-side of equation (15)), and an a priori error

bound given by (the right-hand-side of) equation (15), all in relative mean with respect to ‖ctrial(pi)‖H1(Ωout)

over the trial set. We choose to fix the Background basis size at N = 6, as would be chosen in the online

implementation of this study. We notice that in this case with N chosen well after offline study of results, the

improvement by Greedy-placed sensors is less important, however we attribute this to the simplified case study.
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Figure 15: Relative mean PBDW results in H1-norm as a function of number of data points M for Background basis dimension

N = 6. Error bound from equation (15), PBDW approximation error, and best fit error from equation (21), over p ∈ Dtrial with

model error of R = 0.001. Randomly chosen sensors (left), and sensors chosen by Greedy (right).

5.2. Comparison of non-intrusive methods: PBDW or GEIM?

In this section we want to compare the results of the PBDW state estimation on this two-dimensional case

study to those optained by the GEIM interpolation method discussed in previous sections. The GEIM method is

implemented with M = N , equal number of basis functions and data points. Below we can see the results of the

two methods, both of which we implemented offline from the same set of training solutions and selection from the

same sensor grid, and applied to the same set of 6 trial solutions of varying parameters and with added model

error, described in section 5.1.
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Figure 16: Relative mean and maximal PBDW H1-errors as a function of number of data points M for PBDW Background basis

dimension N = 6, and GEIM H1 interpolation errors as a function of M = N , over p ∈ Dtrial. Model error by an added reaction

term R = 0.0001(left), and an added reaction term R = 0.001(right). Greedy sensor set used in both methods.

24



We can see that the GEIM method performs similarly, and even surpasses for M = 10, to the PBDW method

in the case of little model error. However in the case of significant model error and M > 10, the PBDW method

provides a significantly better estimation. In this particular case study, we seem to have more consistent error

results for varying M -values, an aspect that could be valuable in online studies without feasible a posteriori error

analysis.

Figure 17: Relative mean pointwise GEIM (left) and PBDW (right) approximation error maps for M = 10 and N = 6-M = 10,

respectively, over p ∈ Dtrial. Model error of R = 0.0001 (top) and R = 0.001 (bottom). Mapping of the errors is truncated at

1× 10−6, and the lowest contour line shows 1% error.

In figure 18 we compare relative mean error maps for the GEIM and PBDW approximations over trial sets

with little or significant model error. We consider the case of M = 10, the best case of the GEIM approximation

according to figure 16. We can see similar results for little model error, with only a small region over 1% error

in both approximations, while the GEIM approximation reduces a region of error with respect to the PBDW

estimation. In the case of significant model error, however, we see a clear advantage in the PBDW estimation,

with no peak near or above 15% and only a small misrepresentation of the source intensity.

In table 1 we see computational times for the classical FEM approximation of equation (1), with no data

assimilation or model error correction.

1In Code Saturne, in order to treat the nonlinearity of the fluid problem, the steady-state solution is compute as the limit of a

transient one, leading to an iterative procedure requiring sufficient solutions to reach a stabilized velocity field.
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CPU Times
Best-knowledge State Estimatation

Ω : 125m× 75m

FEM-SUPG cbk(p) 7.4h1+61s
Nh ∼ 323, 000 (fluid) (dispersion)

Table 1: Computational times of the standard FEM approximation of (the imperfect) equation (1), before applying any model order

reduction or data assimilation techniques. Average over the set of trial solutions considered here.

In table 2 we compare computation times of the PBDW state estimation and GEIM approximation. Both of

these methods rely on a training set of solutions to the best-knowledge problem, for which we set Ntrain = 40,

requiring approximately 296.6h of calculations. After calculating the training set, the offline stage of the PBDW

method, with M = 10 and N = 6, requires another 10.26 minutes, whereas the GEIM with M = 10 requires 42.7

minutes. Once the one-time offline stage has been completed, in the case of full reconstruction of the physical state

the PBDW method requires a computational time of 10 times less than that needed to approximate a single direct

best-knowledge dispersion solution, and even nearly 5000 times less if we recomputed a wind field. The GEIM

method saves even a few more seconds, given the smaller linear system size. This is for the reconstruction of the

concentration over the full domain, thus a finite element vector of dimension Nh. We also compare computational

times for the PBDW estimation and the GEIM approximation of an output quantity, considering the average

pollution concentration over a 10m × 20m subdomain Ωout. In the case of a QoI, rendering full reconstruction

of the physical state unnecessary, we see a reduction by nearly 30 times with respect to the already inexpensive

full state estimate for the PBDW method. The GEIM method requires equivalent time to compute the QoI,

leaving nearly negligible calculation times. These differences could be taken into consideration in the case of full

reconstruction of the pollution field, along with the precision and peaks in error results when determining which

MOR data assimilation method is most pertinent and advantageous to the application. However the improved

model error correction provided by the PBDW method for relatively equivalent calculation times gives a clear

advantage to PBDW state estimation.

CPU Times: Online Stage (average CPU times)
Non-intrusive reduced

order data assimilation State Estimate c(p) Quantity of Interest `out(c(p))

Ω : 125m× 75m Ωout : 20m× 10m

PBDW (M = 10, N = 6) 5.35s 0.18s

GEIM (M = 10) 3.32s 0.17s

Table 2: Computational times of the two MOR-data assimilation methods for state estimation over the full calculation domain and

estimation of a quantity of interest (average concentration over a subdomain) during the online stage. Average over the set of trial

solutions considered here.
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5.3. Computational savings compared to adjoint-based methods

We would also like to reference at this point the computational savings found over a larger three-dimensional

urban domain studied in [38] (chapter 7), of approximate size 800m× 800m× 30m. In order to demonstrate the

advantage of the PBDW method, we will consider a sort of best-case scenario in favor of adjoint-based methods:

the wind field will not need to be recalculated, and the associated parameter is a multiplicative coefficient for

a provided wind field. This leaves only the adjoint of the dispersion problem to be solved at each iteration of

the adjoint method, and ignores the question of intrusivity and non-linearity in the adjoint to a CFD wind field

model.

If we compare these variational methods to the common statistical interpolation methods of kriging, in the

latter method we’d find after precalculation an interpolation system of size M for each set of measurements, which

corresponds to the complexity of the GEIM method in table 2 at minimum. However these methods still require

a large training set of measurements (not to be confused with the PBDW training set of simulations), do not

account for physical phenomena represented by a sophisticated model, and often require numerous data points to

obtain acceptable results.

Figure 18: Schema comparing the PBDW method to adjoint-based inverse methods. 2D domain refers to the case study described in

section 2. 3D domain refers to the three-dimensional urban domain studied in [38] (chapter 7).
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6. Conclusions

In this paper we presented the PBDW state estimation method for non-intrusive real-time data assimilation,

and give an exploratory application of its extension to dispersion modeling over a large outdoor domain, repre-

senting the predominant terms present in CFD-based AQMs by an imperfect model. This method shows great

promise for extension to more complicated case studies in the AQM context. We discussed the advantages of the

PBDW method with respect to other data assimilation methods, such as inverse methods, and we discussed the

importance of sensor placement, giving a possible method of improving data points based on the physical quantity

to measure. We also provided a modified norm in the variational formulation in order to improve the quality of

the Update contribution given the dimensionality gap between calculation domain scale and sensor size. We then

presented the results of the PBDW state estimation in the case of a perfect Pbk model (and thus only parametric

variation), as well as the cases of an imperfect model. We found that in the case of significant model error the

PBDW method was able to approximate the physical state with an overall error of ∼ 3% and no more than 15%

peaks.

When compared to the GEIM approximation, results were similar between the two methods with little model

error, but the PBDW method proves advantageous in the case of significant model error. Computational times

of the two reduction methods are similar, however, the GEIM does have the slight advantage of a smaller linear

system. This advantage is outweighed however by the PBDW’s improved ability to correct model error. An

important conclusion of this paper is that the definition using (20) of the properly scaled Riesz representation in

(9) greatly affects the ability of the PBDW to correct model error.

We aimed in this study to demonstrate the feasibility of RBMs to represent dispersion phenomena in the

context of air quality data assimilation and modeling, and the ability of the PBDW to contribute to the use of

parameterized PDE models by reducing computational costs and accounting for unmodeled physics. The results

presented above are encouraging, and show that this method may prove very useful in operational air quality

studies relying on physically-based deterministic models, if adapted and implemented properly for the case of

study. The implementation on a more operational model and comparison to real measurements would be the next

step in the validation of this method for AQM applications.
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AppendixA. Greedy Algorithm

Algorithm 1 : Weak Greedy algorithm to construct ZN

1: Initialization: given

Ξtest = (p1, . . . ,pntrain) ∈ Dntrain , ntrain >> 1

2: Choose randomly p1 ∈ D

3: Set S1 = {p1} and X 1
h = span(cbkh (p1)).

4: for N = 2 to Nmax do

5: pN = argmax
p∈Ξtest

‖cbk
h (p)−PN−1c

bk
h (p)‖H1

‖cbk
h

(p)‖H1

(where PN−1 is the H1-orthogonal projection operator from Xh into XN−1
h )

6: SN = SN−1 ∪ pN
7: XNh = XN−1

h + span(cbkh (pN ))

8: end for
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