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Deterministic control of coherent random light
is highly important for information transmission
through complex media. However, only a few sim-
ple speckle transformations can be achieved through
diffusers without prior characterization. As recently
shown, spiral wavefront modulation of the imping-
ing beam allows permuting intensity maxima and in-
trinsic ±1-charged optical vortices. Here, we study
this cyclic-group algebra when combining spiral phase
transforms of charge n, with D3- and D4-point-group
symmetry star-like amplitude modulations. This
combination allows statistical strengthening of per-
mutations and controlling the period to be 3 and 4,
respectively. Phase saddle-points are shown to com-
plete the cycle. These results offer new tools to ma-
nipulate critical points in speckles.

1 Introduction

The propagation of coherent light through scattering me-
dia yields random wavefields with typical intensity structures
called optical speckles. The control of light distribution in-
side and through complex media by wavefront modulation
of the impinging beam is of critical importance for applica-
tion ranging from bio-imaging [1] to telecommunications [2],
for instance by multiplexing information with orbital angular
momentum [3]. Information transmission through diffusers
is typically characterized in terms of field and intensity cor-
relations [4]. For diffusers exhibiting so-called ‘’memory ef-
fect”correlations, important invariants were identified under
specific spatial (tilt and shift) transformations [5, 6, 7, 8]. Ad-
ditionally, regardless of the wavefront of the impinging beam,
critical points in random wavefields exhibit many topological
correlations [9], which thus demand the development specific

tools to be analyzed. Optical vortices are especially important
critical points since they are centered on singular phase points
coinciding with nodal points of the intensity. They sponta-
neously appear in random wavefields [10], and thereby allow
efficient super-resolution microscopy [11, 12]. The present
work aims at exploring the possibility to manipulate topolog-
ical correlations between critical points in random wavefields
under symmetry control and spiral wavefront modulation, in
a Fourier plane of the impinging beam.

Critical points are characterized by their topological charge
and their Poincaré number [13]. They may typically be con-
trolled by applying phase or amplitude masks in a Fourier
plane. Any smooth and regular transform of the wavefield
(either in phase or amplitude) induces changes preserving
both the topological charge and the Poincaré number [9, 14].
Noteworthy, these conservation rules account for the topo-
logical stability of isolated vortices of charge 1 in speckles
since the creation or annihilation of vortices can only occur
by pairs [14, 11]. As opposed to smooth phase transforms,
the addition of a spiral phase mask in a Fourier plane is a
singular transform and results in a change of the total orbital
angular momentum [15, 16]. Recently, considering correla-
tions between the spatial distribution of critical points in a
speckle under such spiral phase transforms [17], we observed
a strong inter-play between intensity maxima and optical vor-
tices. More precisely, the obtained results suggested that the
topological charge of these critical points were all incremented
by applying a +1 spiral phase mask in the Fourier plane. The
impossibility to spontaneously get +2-charged vortices (un-
stable and thus unlikely in random light structures [18]) re-
sulted in the observation of a partial cyclic permutation of
the three populations of critical points (namely, maxima and
±1-charged vortices). Furthermore, as a third kind of possible
transform, it was observed that the orbital angular momen-
tum may be not conserved when using amplitude masks with
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a high degree of symmetries [19, 20]. As a result, optical vor-
tices can be created using simple amplitude masks [21, 22].
This property proved to be of interest for imaging applications
to reveal symmetries of an imaged object [23, 24, 25] and for
allowing topological charge measurements [40], especially in
astronomy [27].

Here, combining spiral phase transforms of order n with
star-like amplitude masks having discrete point group sym-
metries D3 and D4, we study experimentally the topological
correlations between intensity maxima and optical vortices
in speckles. A new co-localization criterion is proposed, in-
spired by statistical mechanics. Although random wavefields
do not possess any symmetry, such a combination allows us to
strengthen periodicity and even to control the period of the
cyclic permutation. Noteworthy, for an amplitude mask of
symmetry D4, a phase saddle point appears as a complemen-
tary critical point to complete a cycle of period 4. A transpo-
sition between vortices of charge -1 and vortices of charge +1
is also revealed when adding a 2-charged spiral phase mask.

2 Experimental procedure

The experimental procedure consisted in modulating a ran-
dom phase pattern in a Fourier plane with an amplitude mask
and a spiral phase mask. Here, spiral phase masks of order
n, SPn(θ) = ei.n.θ (in polar coordinates), were applied for
n ∈ J−6; 6K. As amplitude masks, three Binary Amplitude
(BA) masks were used: a disk and two periodic angular slits
with a point group symmetry D3 and D4. They are defined
by the following angular transmission function (in polar co-
ordinates):

BAN(θ) =

{
1, if |θ − (k − 1

2 ). 2.πN | <
π
32 with k ∈ J1; NK .

0, otherwise.

(1)
for N ∈ {3, 4}. By convention, BA∞ defines the disk-shaped
aperture (obtained for N > 32). For N < 32, the orbital
angular momentum content (or spiral spectrum [28]) of the
BAN aperture exhibits discrete harmonics for the spiral modes
n = p.N with p ∈ Z. Given the width of the angular slits and
provided that N= 3 or 4, the aperture BAN can be considered
as invariant by the addition of SPn when n = ±N or ±2.N.
Such an invariance in the Fourier plane is thus necessarily
associated with a periodic transform of the speckle pattern in
the real space.

The experimental configuration is detailed in Fig. 1 [See
Supplement 1, Section 1 for further details on the experi-
mental methods]. A spatial light modulator (SLM) (LCOS,
X10468, Hamamatsu) was illuminated with a collimated
laser beam at 635 nm and Fourier conjugated to a camera
(768x1024 pixels, pixel size: 4.65x4.65 µm2) with a converg-
ing lens. The phase Φn and amplitude An of the modulated
(SPn mask) random wave were measured at the camera plane
by phase stepping interferometry [29]. To do so, the SLM
(792x600 SLM pixels, pixel size: 20x20 µm2) was split in two
parts to generate both the modulated random wave (or signal

L
SLM

BB

Cam.

ref

a)

b) c) d)

signal

BA∞ BA3 BA4

stack of
8 images

Fig. 1: Experimental setup (a) used to measure the intensity
and the phase of speckle patterns corresponding to the differ-
ent binary amplitude masks. A spatial light modulator (SLM)
is illuminated with a collimated laser beam at 635nm. The
phase is measured by phase stepping interferometry. Both
the reference and the signal wavefronts are imprinted on the
SLM. in addition to a blazed grating which allows sending
undiffracted light to a beam block (BB) and the first order
diffracted beam to a camera (Cam.). A stack of eight im-
ages was then sequentially recorded while phase shifting the
reference beam. The measured intensity I0 maps (top, green
colorscale) and phase Φ0 maps (bottom, gray colorscale) are
presented for a circular aperture (BA∞) (b), periodic angular-
slits with a point group symmetry D3 (BA3) (c), and pe-
riodic angular-slits with a point group symmetry D4 (BA4)
(d). Miniatures of the BA masks are displayed for illustration.

wave) on one side and a reference wave on the other side (see
Fig. 1a). The signal wave was generated by adding simultane-
ously the scattering random phase pattern, the spiral phase
modulation SPn and the amplitude mask BAN . Adding a
blazed grating achieved spatial separation of the imprinted
signal wavefront from undiffracted light (the latter being sent
to a beam-block). The signal speckle intensity In could be
measured directly by removing the contribution of the refer-
ence beam.

For phase-stepping interferometry, an additional Fresnel
lens was added to the reference beam in order to cover the
camera surface. The latter spherical contribution as well as
the relative phase-tilt between the signal and the reference
beams were removed in a numerical post-processing step. A
stack of eight images was sequentially recorded by phase shift-
ing the reference beam by 2π/8 phase-steps. All BA masks
had the same radius of r = 170 pixels at the SLM, so yielding
the same speckle grains size on the camera plane: λ/(2NA)
= 70 µm -Full Width Half Maximum (FWHM), where λ is
the wavelength and NA ' r/f ' 4.53 × 10−3 the numerical
aperture of illumination (with f = 750 mm the focal length
of the lens L in Fig. 1a). The speckle grain size thus covered
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15 camera pixels and ensured a fine sampling of the speckle
patterns. Hereafter, all distances and spatial densities are
expressed setting λ/(2NA) as the length unit.

In Fig. 1(b-d), an illustration of the speckle intensity and
phase maps obtained for the three different geometries of BA
masks is shown. In the following study, intensity maps In
and phase maps Φn were measured for all three BAN masks
(N ∈ {3, 4,∞}) and for each SPn masks (n ∈ J−6; 6K). For
comparison, the intensity-map Irand and the phase-map Φrand

obtained for a non-correlated scattering random pattern were
acquired for all the BAN masks independently.

3 Statistical analysis of the topo-
logical correlation between critical
points

3.1 Studied critical points

The field at the camera being linearly polarized, optical fields
are here studied as scalar fields. The location of the main
critical points of the experimental intensity and phase maps
were measured [See Supplement 1, Section 1.C for details on
the detection of critical points] and their statistical correla-
tion distances were analyzed. Importantly, for a given BA
mask, adding SPn masks preserves all statistical properties
of the speckle patterns, such as the number-density of crit-
ical points. Phase saddle-points of Φn are notated Spn and
vortices of charge ±1: V ±n . Vortices of charge higher than 1
do not appear in Gaussian random wavefields [18]. Maxima
and saddle-points of In are notated Mn and SIn, respectively.
Non-zero minima and phase extrema have not been consid-
ered here, since having significantly lower densities [30]. All
the notations are summarized in Table 1.

The measured average number-densities of the critical
points are presented in Table 2. The density of the critical
points of type X (X = V ±, M , Sp or SI) is notated ρ(X). As
expected, ρ(V −) and ρ(V +) are equal [9], and ρ(X) depends
both on the type of critical point and the BA mask.

Table 1: Notations for the main critical points

Phase Maxima Saddle Vortices (charge ±1)
- Sp V − and V +

Intensity Maxima Saddle Zeros
M SI V − and V +

Table 2: Measured average number density of critical
points (length unit: λ/(2.NA)). The average number
of V − is 660.85 for the circular aperture (BA∞).

BA mask V −(or V +) M Sp SI

BA∞ 0.19 0.32 0.36 0.65
BA3 0.20 0.39 0.36 0.79
BA4 0.19 0.33 0.40 0.70

3.2 Statistical tools for the analysis of topo-
logical correlations

X=

X=

rand.

WMD

WMND

rand.

a) b)

c) d)

=

BA∞

BA∞

BA∞

BA∞

Fig. 2: Statistical analysis of the separation distances be-
tween one set of critical points (here V −0 ) and the closest
point of another set (notated X). The distance between V −0
and the closest X is notated d

(
V −0 , X

)
. The Radial Proba-

bility Density Functions (RPDF) of the nearest neighbor (a)
and the corresponding Weighted Median Distance (WMD)
(b) are shown. Radial Distribution Functions (RDF) of the
nearest neighbor (c) and the corresponding Weighted Median
Normalized Distance (WMND) (d) provide a statistical tool-
box to study the spatial correlation between pairs of critical
points. The results were derived from experimental measure-
ments of In and Φn obtained for the amplitude mask BA∞.

To study statistical transformations of critical points quan-
titatively, new specific tools are presented. What we discuss
as transformation of critical points by the addition of spiral
phase masks refers to the mean nearest neighbor distances
between populations of critical points and calls for a discrim-
ination parameter. Two specific statistical tools are then de-
scribed below: the radial density function (RDF) and the
Weighted Median Normalized Distance (WMND).

In our previous study [17], correlations between critical
points could be characterized by computing the radial prob-
ability density function (RPDF) of the nearest-neighbor dis-
tance. Fig. 2a presents RPDFs of the distance d

(
V −0 , X

)
in

the case of BA∞. We define d(Y,X) as the distance between a
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Y -point and the closest X-point. The RPDF(r) corresponds
to the probability to find the closest X-point at the distance
r from a Y -point, per unit area (

∫∞
0
RPDF (r)2πrdr = 1).

One drawback associated with the use of the RPDF is that it
may suggest paradoxes if improperly interpreted. Consider-
ing d

(
V −0 , V +

2

)
and d

(
V −0 , SIrand

)
, it seems that V −0 correlates

both with V +
2 and SIrand since both RPDFs reach high values

at zero distances.

While a correlation is expected in the former case (due to
topological charge incrementation), no correlation is expected
from the latter which involves two independent sets of ran-
dom points. The reason why the amplitude of the RPDF
of d

(
V −0 , SIrand

)
is higher than the one of d

(
V −0 , V +

2

)
at zero

distances, is just due to the ∼ 3-times higher spatial density
of intensity saddle points SIrand as compared to vortices V +

2

(see Table 2): the probability to find a saddle point at close
distance is thus larger. To quantitatively characterize topo-
logical correlations, we thus need to normalize RPDFs by the
number densities ρ(X).

Our first statistical tool, the radial-distribution function
(RDF) – well known in statistical mechanics [31] – was ex-
tended here for nearest neighbor by normalizing the RPDF
of d

(
V −0 , X

)
by ρ(X), and the distances d

(
V −0 , X

)
by the

mean X-interpoint half-distance
(

2
√
ρ(X)

)−1

[32]. Fig. 2c

shows the RDF of the same data as in Fig. 2a. As a result,
all the RDFs of d

(
V −0 , Xrand

)
.2.
√
ρ(X) are superimposed for

every Xrand, and the spatial correlation betweeen V −0 and V +
2

clearly appears.

To obtain a single binary parameter discriminating the spa-
tial correlation between V −0 and X, we further define the
Weighted Median Normalized Distance (WMND) as a sec-
ond statistical tool: the WMND

(
V −0 , X

)
is the 50% weighted

percentile of d
(
V −0 , X

)
.2.
√
ρ(X) with weights corresponding

to the RDF values. A WMND
(
V −0 , X

)
around 0.5 means

that no spatial correlation exist between V −0 and X, while
WMND < 0.5 and WMND > 0.5 mean an attraction and a
repulsion, respectively. A zero WMND value means perfect
correlation while WMND=1 means perfect anti-correlation.

Fig 2d presents the WMND
(
V −0 , X

)
for all the critical

points considered in this study and for n ∈ J0; 6K. For com-
parison, the Weighted Median Distance (WMD) associated
with the RPDFs – defined as the 50% weighted percentile
of d

(
V −0 , X

)
with weights corresponding to the RDPF val-

ues – is also computed and displayed in Fig. 2b. To validate
this tool, taking BA∞ as an illustrative example, we notice
that WMND

(
V −0 , Xrand

)
is around 0.5 for all the Xrand, as

expected. By comparison, WMD
(
V −0 , SIrand

)
= 0.35, which

irrelevantly suggests correlations as discussed above. More-
over, for n > 3, the RDFs of d

(
V −0 , Xn

)
are observed to

match the RDFs of d
(
V −0 , Xrand

)
: no noticeable spatial cor-

relation is obtained for n > 3. As expected again, the
WMND

(
V −0 , Xrand

)
are around 0.5 for n > 3. Conversely,

we get WMD
(
V −0 , SIn

)
< 0.38, which would falsely suggest

correlations. All these observations validate the WMND as a
parameter to assess the spatial correlation between pairs of

critical points in a speckle pattern.

4 Topological correlations between
critical points for the different am-
plitude masks

Fig. 3 presents the WMND(Y0, Xn) for all the critical points
(Y0 and Xn) screened in this study, for SPn masks with
n ∈ J−6; 6K and for the three considered BA apertures. The
WMND was verified to be around 0.5 for all the amplitude
masks and all the pairs (Y0,Xrand), for which there is obvi-
ously no spatial correlation. For the sake of readability, in
the following, we only discuss the interplay between critical
points when adding positively charged SP masks but sym-
metrical behaviours are observed for negatively charged SP
masks (Fig. 3).

(V-
0,X) (M0,X) (V0

+,X) (Sp
0,X) (S I
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Fig. 3: Weighted Median Normalized Distance (WMND) for
all possible pairs of critical points screened here and for the
addition of spiral phase mask with charges up to n =±6. The
WMND were computed from experimental measurements of
In and Φn.

For the aperture BA∞, the WMND reveals several notice-
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able features (reported in Table 3). First, as expected from
our previous study [17], we notice some spatial correlations
for the triplets (V −m−1,Mm, V

+
m+1). Because ρ(V −0 ) < ρ(M1),

a one-to-one transformation is impossible between vortices
and maxima. Although V −0 and V +

2 have the same number
density, we also notice that WMND(V −0 , V +

2 ) is significantly
different from 0, indicating that the rate of the macroscopic
transformation from V −0 to V +

2 is below 1.
In agreement with the 3-point cyclic permutation alge-

bra observed in [17], a weak attraction is found for the pair
(V +

0 , V −+1), corresponding to the topological-charge equation

1+1 = −1. However, as an alternative transformation for V +
0 ,

a similar attraction is now also observed for (V +
0 , Sp+1). V +

0

is thus subjet to a bifurcation between V −+1 and Sp+1, which
implies two different mechanisms.

As a first possibility, some V +
0 transform into Sp+1. This

transformation inspires the following interpretation: When
adding a SP+1 phase mask to an isolated Laguerre-Gaussian
beam with topological charge +1, a +2-charged vortex is
obtained. Under weak perturbation, this +2 vortex splits
into two +1 vortices, accompanied by the creation of both
an intensity saddle point and a phase saddle point in be-
tween [14]. The creation of this pair of saddle points is gov-
erned by the Poincaré number conservation. In the frame of
this model, a V +

0 vortex is expected to co-localize with both
SI+1 and Sp+1 and to anti-correlate with the two V +

1 that split
away. Although no noticable spatial attraction was found
for (V +

0 , SI+1), a co-localization is observed for (V +
0 , Sp+1) and

a weak repulsion is observed for the pair (V +
0 , V +

+1), consis-
tent with this interpretation. In speckles, where +2-charged
vortices cannot be encountered since unstable [18], the weak
perturbation approximation cannot be fully valid, potentially
accounting for the remaining discrepancy between experimen-
tal observations and the proposed model.

As a second possible transformation, the more surprising
attraction of the pairs (V +

0 , V −+1) is observed, which calls for
another mechanism. Since no such transformation can be
imagined from isotropic V +

0 , it may only be interpreted by
a mechanism dominated by strong perturbations. The sta-
tistically uniform mesh created by vortices and maxima in
speckles [33], together with strong correlations observed for
pairs (M0, V

+
+1) and (V −0 ,M1) seem to constrain V +

0 to co-

localize with V −+1. This transformation would deserve further
analytical investigation but we anticipate that the creation
mechanism of V −+1 from V +

0 can only be a many-body prob-
lem, involving the field structure (maxima, phase saddles and
vortices) surrounding the initial V +

0 of interest.
When adding a SP+2 mask for BA∞, V +

0 is not observed
to significantly co-localize with any remarkable critical point
(see Fig. 3 and Table 3), whereas two possible transforma-
tions might have been expected for V +

0 . On the one hand,
from the 3-point cyclic permutation, we could expect that
V +

0 would transform into M+2. On the other hand, since
in Table 3, maxima and phase saddle-points are noted to be
simply exchanged (see pairs (M0, S

p
+2) and (Sp0 ,M+2)), a sim-

ilar symmetrical echange between −1 and +1 vortices could
be expected, yielding a transformation of V +

0 into V −2 (as

V −0 is transformed into V +
2 ). However, no such correlation is

observed either for the pair (V +
0 ,M2) or for (V +

0 ,V −2 ). Con-
versely, these correlations appear when applying amplitude
masks BA3 and BA4, respectively, as detailed in the follow-
ing.

For |n| > 3, no significant spatial correlation with the addi-
tion of SPn is observed for BA∞. This aperture has a circular
symmetry. Therefore, its spiral spectrum contains only the
fondamental spiral mode n = 0, and is not invariant by the
addition of any SP masks. All the described topological cor-
relations associated with BA∞ are summarized in Table 3.

Table 3: Macroscopic transformations observed for the
critical points Y0 with the amplitude mask BA∞. The
transformation rates are below 1.

Critical point Y0 Adding SP+1 Adding SP+2

V −0 → M1 → V +
2

M0 → V +
1 → Sp2

V +
0 → V −1 + Sp1 → ∅
Sp0 → V −1 → M2

Adding SP−2 Adding SP−1 Critical point Y0

∅ ← V +
−1 + Sp−1 ← V −0

Sp−2 ← V −−1 ← M0

V −−2 ← M−1 ← V +
0

M−2 ← V +
−1 ← Sp0

As a possible solution to strengthen the 3-point cyclic per-
mutation, we used the BA3 amplitude mask, making the
Fourier plane almost invariant with respect to the addition of
SP±3k (so long as 3k, with k integer, remains small enough).
Here, four main observations can be noted. First, as expected,
the pairs (Y0,Y±3) and (Y0,Y±6) are observed to have a
WMND very close to zero, indicating that the macroscopic
transformation rate is close to 1 for all these pairs. Second,
we observe that the cycle of period 3 reinforces the spatial cor-
relations of the triplet (V −m−1,Mm, V

+
m+1) and even extends it

to the 3rd and 6th spiral harmonics. Third, no noticeable
correlation is observed between V +

0 and phase saddle-points
Sp+1 (although an anti-correlation is obtained between V +

0 and

V +
+1), contrary to the case of BA∞. The periodicity of 3 in-

duces a strong correlation for the pairs (V +
0 , V −+1), and es-

tablishes a cyclic permutation of three populations of critical
points V −, M and V +. Forth, as a consequence, the pairs
(V +

0 ,M2) also exhibit strong spatial correlations, contrary to
the case of BA∞. In these two latter permutations, it must
be reminded that not all intensity maxima M may transform
into vortices, because of the difference in spatial densities (Ta-
ble 2) of these two populations of critical points [17].

Next, we constrained the period to be equal to 4 by using
the BA4 mask. In this case, the WMND(Y0,Y±4) are close
to zero (transformation rate close to 1). As expected, this pe-
riodicity enhances the spatial correlation for the quadruplet
(V −m−1,Mm, V

+
m+1, S

p
m+2) and extends it to their 4th spiral

harmonics. Furthermore, in Fig. 3, strong correlations are
observed for the pairs (V −0 ,M1), (M0, V

+
+1) and (Sp0 , V

−
+1).
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However, V +
0 is still observed to bifurcate between V −+1 and

Sp+1 with the same likelihood, similarly to the BA∞ case.
Therefore the cyclic permutation of four populations of crit-
ical points Sp, V −, M and V + is not clearly established for
BA4 (conversely to the permutation obtained for BA3).

When considering the addition of ±2-charged spiral masks
for BA4, a transposition (2-cycle permuation) between V +

and V − is clearly obtained (with a transposition rate below
1). A strong spatial correlation, reinforced as compared to
BA∞, is also clearly observed between M and SP by addition
of SP±2k.

In summary, the results displayed in Fig. 3 reveals the fon-
damental topological transformations of critical points in a
speckle with the addition of SP mask for a single-spiral mode
aperture (BA∞ ), and demonstrate the possible modification
of topological transformation by the addition of BA masks
with dihedral symmetry [See Supplement 1, Section 2.B for
numerical confirmation of the experimental results and Sec-
tion 2.C for details on transformations induced by BA masks
with dihedral symmetries of orders higher than 4]. For the
sake of simplicity, we chose here star-like amplitude masks
with a dihedral symmetry which comprise spiral harmonics
with equal amplitudes (at small enough spiral mode number)
[See Supplement 1, Section 2.D for details on the influence of
the width of the star branches].

5 Wavefield control in the vicinity of
critial points

On a local scale, the transformations of critical points shown
in Fig. 3 arise from the convolution in the imaging plane of
the scattered field with the point spread function (PSF) asso-
ciated with the combined amplitude and spiral phase masks.
Controlling the transformation of a critical point Y0 of the
complex wavefield A0, by adding a SPn mask (n ∈ Z∗) in
a Fourier plane, requires that the PSF associated with the
combination of the SPn and BA masks has a significant am-
plitude in the coherence area surrounding the critical point,
or in other words: the area where the randomness of the
speckle pattern has a limited influence as compared to the
control by the incident wavefield. As a definition for the
coherence area, we use the one proposed by Freund [34] :
Carea = (ρ(V +) + ρ(V −))−1/2. This definition avoids issues
related to the shape of the aperture [34] encountered when
considering the area of the intensity autocorrelation peak [35].
In our case, for all three BA masks, the coherence length was
measured to be: Clength =

√
Carea ' λ/(2.NA).

Experimentally, the PSFs can be obtained (Fig. 4a) by com-
puting the intensity cross-correlations of the measured speckle
pattern I0 and the measured speckle patterns In associated
with SPn masks (n ∈ J0; 6K) and for the three BA masks. The
mean values of In were subtracted before computing the cross-
correlations. The intensity cross-correlations xcorr(I0,In) are
identical to the PSF of the combined BA and SPn masks.
The centered spot of the autocorrelation xcorr(I0,I0) illus-
trates the spatial extent of the coherence area, and has the

same dimension for all three BA masks since having the same
radial aperture.

For BA∞, we observe that xcorr(I0,In) has a circular sym-
metry with the highest values distributed on a ring whose
radius (marked with a green line) increases with n (Fig. 4b),
as observed for simple Laguerre-Gaussian beams [36]. Inter-
estingly, for n > 3, not only we observe that the ring radius
is larger than twice Clength but also that its amplitude is
decreased to below 1/10 of the auto-correlation peak value
(Fig. 4c). As a consequence, the transformation of critical
points by applying SPn masks is inefficient (or “unlikely”)
and dominated by the surrounding random field. For this
reason, no spatial correlation between pairs of critical points
(Y0, Xn) could be found for n > 3. For BA3 and BA4, the
cross-correlation patterns xcorr(I0,In) have dihedral symme-
tries D3 and D4 and a periodicity of N = 3 and 4, respectively.
In both cases, the radial distance of the strongest peak re-
mains below 1.4 ∗ Clength, and its amplitude always remains
above 1/3 of the auto-correlation maximum value (Fig. 4c).
The addition of the SPn mask thus allows controlling the field
inside the coherence area surrounding critical points Y0, even
for n > 3.

6 Conclusion

The critical points that naturally appear in a random wave-
field can be transformed by the addition of a spiral phase mask
in a Fourier plane. Here, we studied these transformations ex-
perimentally by imprinting spiral phase masks with a charge
n ∈ J−6; 6K to a laser beam impinging on a randomly scat-
tering surface. In addition, these phase masks were combined
with star-like amplitude masks with dihedral symmetries D3

and D4 in order to better control critical point transforma-
tions.

For a simple disk-shaped aperture carrying a single spiral
mode n = 0, we experimentally demonstrated the topological
correlation existing between the critical points of the initial
wavefield A0, and the corresponding spiral transformed field
An. A partial transformation of vortices V −0 into maxima
M+1 was observed as well as a transformation of maxima M0

into vortices V +
+1. Vortices V +

0 were observed to either corre-
late with phase saddle points Sp+1 or with vortices of opposite

sign V −+1. For this statistical bifurcation, two transformation
interpretations were suggested, calling for further future an-
alytical studies. No simple topological correlation was found
between the critical points of the wavefields A0 and An for
|n| > 3. This result could be explained by the weak influ-
ence of spiral phase masks with a charge higher than 2 in the
coherence area surrounding the critical points.

Furthermore, adding centered binary amplitude masks with
dihedral symmetry D3 or D4 and Dirac-comb-like spiral spec-
tra (of period 3 and 4), we demonstrated that it is possible
to deeply modify the topological correlation between critical
points. The observed changes arise from the introduction of a
periodicity in the transformation between the critical points.
We could thereby extend the correlation to spiral phase masks
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Fig. 4: Cross-correlation (a) of the speckle patterns I0 and
In with n ∈ J0; 6K. The cross correlations illustrate the spa-
tial distribution of the intensity in the point spread func-
tion associated with the combined amplitude and spiral phase
masks. The colorscale set for the autocorrelations xcorr(I0,I0)
and was kept for the intercorrelations xcorr(I0,In). A N-
periodicity is observed for the aperture BAN with N = 3 or 4.
Green circles mark the radial distance to the strongest peak.
Radial distance (b) and normalized amplitude of the strongest
peak (c) as a function of the charge of the spiral phase mask.
The radial distance keeps increasing for the circular aperture
BA∞ while it remains close or below λ/(2.NA) (the coher-
ence length of the speckle) even for SPn with n > 3 for the
aperture BAN and N = 3 or 4. The amplitude decreases for
BA∞ while it remains above 0.3 for BA3 and BA4.

with charges higher than 3, and reinforce some spatial corre-
lation intrinsically present with a circular-aperture symmetry.
For the amplitude mask with a D3-symmetry, a cyclic permu-
tation between negatively charged vortices V −, maxima M ,
and positively charged vortices V +, is observed. For the am-
plitude mask with a D4-symmetry, phase saddle points par-
ticipate as complementary points to complete the 4-periodic
cycle. Considering the addition of 2-charged spiral masks,
transpositions between V − and V +, and between M and Sp

were also revealed for D4-symmetry. The enhancement of the
spatial correlation between the critical points of the wave-
fields A0 and An (compared to BA∞) could be explained by
the strong influence of the spiral phase mask in the coher-
ence area surrounding each critical point, when the binary
amplitude masks are added.

Here, cyclic permutations were controled using binary am-
plitude masks enforcing periodicity. Interestingly, our study

may extend to other amplitude masks with a dihedral sym-
metry, such as polygonal [20] and triangular apertures [40],
whose interactions with vortex beams were studied in free
space. For N-gons, the Nth spiral harmonics have a much
lower amplitude than the fundamental spiral mode (n = 0).
As a result, the spatial correlations between critical points
for |n| > 3 is weaker than for BAN, and vanishes with the
increasing charge of the SP mask [See Supplement 1, Section
2.E].

In a nutshell, we showed here that it is possible to manipu-
late the topological correlation between critical points and
to control the transformation of critical points in random
wavefields by combining amplitude masks and spiral phase
transforms. Topological manipulation of critical points in ran-
dom wavefields is of high importance to understand and con-
trol light propagation through scattering and complex media.
The statistical study of correlations between permuted critical
points provides a new tool to analyse seemingly information-
less and random intensity patterns and thus to transmit in-
formation through complex media.
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Supplementary
information
The first section provides expended descriptions of
the methods used to acquire and process the exper-
imental data: details are given on the phase mask
displayed on the spatial light modulator, the numeri-
cal treatment of the recorded speckle parterns is pre-
sented, and the algorithms for the detection of critical
points are given. The second section contains numer-
ical confirmations of the experimental results, as well
as an extention (in numerical simulation) of the range
of tested binary amplitude apertures: the Weighted
Median Normalized Distances are shown for star-like
amplitude masks with dihedral symmetries of orders
higher than 4, for star-like amplitude masks with
larger angular slits, and for polygonal apertures.

A Experimental data acquisition
and processing

A.1 Phase mask on the SLM

The laser source was a laser diode emitting at λ = 635 mm.
The laser beam was spatially filtered with a pinhole, expanded
and collimated to cover the surface of the Spatial Light Mod-
ulator (SLM). The phase at the SLM was computed according
to the scheme shown in Fig. 5.

The scattering phase pattern at the SLM (or diffuser in
Fig. 5) was engineered in order to both generate a fully de-
veloped speckle pattern at the camera plane and to minimize
energy losses by controling the scattering angle. To achieve
so, a complex matrix of dimension 396 × 396 pixels (half of
the long-axis of the SLM) was generated numerically, with
uniform amplitude and random phases evenly distributed be-
tween 0 and 2π. This random matrix was then multiplied by
a disk-shaped amplitude mask of radius 60 SLM pixels (SLM
pixel size : px2

SLM = 20 × 20 µm2) and Fourier transformed
numerically to generate the random phase mask at the SLM
plane. Provided the optical design of the setup and the focal
distance of the lens f = 750 mm, this mask corresponds to a
disk of diameter 60

400 ×
2.λ.f
pxSLM

' 8.8 mm, slightly larger than

the camera diagonal (7.62 mm), so ensuring uniform illumi-
nation of the camera chip (on average) and minimization of
energy losses.

The BA amplitude mask were applied to the phase mask
by setting the SLM phase to zero where the amplitude of
the BA mask equals zero, and by adding a blazed grating
where the amplitude of the BA mask equals one. The radius
of the BA masks was chosen to have a speckle grain size of
15 camera pixels (camera pixel size: 4.65 × 4.65 µm2). The
blazed grating had a period of 4.34 SLM pixels (SLM pixel size
: 20× 20 µm2), which yields a deflection angle of 7.31 mrad.
With the focal distance of the lens f = 750 mm, this deflection
angle provides a 5 mm shift of the zero order as compared

to the speckle pattern. Because of the camera field of view
(4.76 mm×5.95 mm), the undiffracted zero-order was centered
at a distance 2.5 mm away from the camera sensor and could
then efficiently be blocked with no spurious light observed on
the camera.

For the reference beam, the same blazed grating was ap-
plied to a disk-shaped aperture separated from the scattering
aperture. The radius of the disk was chosen so that the sig-
nal beam (scattered wavefield) and the reference beam have
similar amplitudes at the camera plane. A defocus (Fresnel
lens) was applied to the reference beam to cover the camera
surface.

A.2 Numerical treatment of experimental
data

The complex wavefield Ane
iΦn at the camera plane was mea-

sured with the following procedure. The phase Φn was ob-
tained thanks to the intensity modulation induced by the
phase-stepping interferometric measurements [37, 38]. The
phase-stepping was performed by acquiring eight successive
images with relative phase-shifts between the signal and ref-
erence waves: k × 2π/N , with N = 8 and k ∈ J0; 7K. The
phase of the speckle pattern was obtained from phase-stepped
intensity measurements:

In,k =
∣∣∣ERe 2ikπ

N +Ane
iΦn
∣∣∣2 (2)

= |ER|2 + |An|2 + ERAne
−iΦne

2ikπ
N + E∗RAne

iΦne−
2ikπ
N

The phase can then be trivially retrieved by computing the
argument of the following sum:

N−1∑
k=0

In,k × e
2ikπ
N = E∗RAne

iΦn (3)

In our case, the reference beam did not exhibit a flat phase but
a combination of a parabolic curvature as well as a relative
phase tilt with respect to the speckled beam. Both of these
profiles were numerically removed from the computed phase
Φn. The magnitude An was not computed using this result
to avoid amplitude uncertainties about the reference beam.
Instead, An was obtained from the signal speckle intensity In
without any reference beam: An =

√
In.

For all the apertures and all the speckle patterns, the Full
Width Half Maximum (FWHM) of the point spread function
(i.e. the speckle grain size) corresponded to 15 camera pixels,
leading a fine spatial sampling of the speckle field. We set the
length unit to 15 pixels and the corresponding spatial sam-
pling frequency to 15 pixel−1. For noise removal, the complex
amplitude field was filtered in the Fourier domain by zeroing
the values corresponding to spatial frequencies outside of the

disk
√
f2
x + f2

y 6 0.5 pixel−1. Because of the spatial filtering

by optical system, the frequencies outside of this disk con-
tain only optical and electronic noise. We verified that the
strongest spectral values of the complex field were within the
disk. After this filtering process, experimental noise was not
found to interfere with the detection of the critical points.
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Fig. 5: Computation of the phase displayed at the SLM. The SLM is virtually split into two parts of surfaces 396 × 396
pixels, each bearing pupils of different shapes, one for the reference beam (green), the other for the signal beam (blue). A
tilt is applied to both beams in order to shift the speckle pattern of interest away from the unmodulated light. A defocus is
added to the reference beam to cover the caerma surface, while the signal beams receives a random phase mask (or diffuser).
Finally, the phase step and spiral wavefronts are added.

A.3 Detection of the critical points

The detection of critical points in the experimental speckle
pattern is illustrated in Fig. 6. The pixel-precise locations
of the critical points were determined in the spatial domain
using the topology of each pixel neighborhood. For the
intensity maxima M , the intensity saddles SI and the
phase saddles Sp, the eight neighbors of each pixel were
used. We used the Matlab function developed by Tristan
Ursell and made available in May 2013 (image extrema finder,
https://fr.mathworks.com/matlabcentral/fileexchange/41955-
find-image-extrema). For the vortices V + and V −, we used
the fact that the summed phase shifts on a closed loop
around a vortex is greater than 2π. As a dicretised closed
loop, we computed this sum over four neighbouring pixels,
the phase differences between the adjacent corners of the
square being computed and wrapped in the range

]
− π, π

]
.

The summed phase shift was computed by adding the four
phase differences, leading to a summed phase shift of ±2π
around a vortex of charge ±1 and a summed phase shift close
to zero elsewhere [39].

B Numerical simulations of scalar
random wavefields

Numerical simulations of scalar random wavefields were per-
formed to confirm our experimental results with larger statis-
tics on critical points, independent random phase media and
an independent method (section BB.2). Indeed, larger speckle
patterns can be generated numerically directly from randomly
distributed phase. Additionally, we extended our investi-
gations to apertures with point group symmetries of orders
higher than 4 (section BB.3), as well as to apertures with
larger angular slits (section BB.4) and to polygon apertures

M
SI

V+

V-

Sp

BA∞

Fig. 6: Detected critical points superimposed to the filtered
experimental intensity (left) and phase (right) patterns ob-
tained with the aperture BA∞. The displayed pattern corre-
spond to an area of 150 × 150 pixels on the camera. Phase
vortices (V + and V −) are also zeros of the intensity pattern.
Notations for the critical points are identical to those intro-
duced in the core of the main article.

(section BB.5).

B.1 Methods for the numerical simulation

The far-field of uniformly-illuminated apertures comprised of
random phases (standard uniform distribution between 0 and
2π,) with spiral phase (SP) masks of order n ∈ J−6; 6K,
was computed to simulate the complex wavefield Ane

iΦn .
The speckle patterns were obtained by computing the two-
dimensional Fourier transform of the apertures addressed with
random phases. As in the experimental procedure, an uncor-
related speckle pattern was also computed for each aperture.
For all the apertures, the speckle grain size (FWHM) was set
to λ/(2.NA) = 19 pixels where λ is the optical wavelength

11



and NA is the numerical aperture, and a square grid of 17
mega pixels was computed. The pixel-precise location of the
critical points were determined in the spatial domain using
the topology of each pixel neighborhood, as for the experi-
mental speckle patterns.

These parameters lead to a count of critical points for the
aperture BA∞ of ∼ 104 vortices of each sign. The average
number-densities of the critical points for the apertures BA∞,
BA3 and BA4 are presented in Table 4. The slight differ-
ences in number-densities between experimental and simula-
tion measurements can be attributed to the higher number of
critical points in the simulation, which leads to better preci-
sion in the estimation of the critical point densities.

Table 4: Measured average number density of criti-
cal points from numerical simulations (length unit:
λ/(2.NA)). The average number of V − is 9551.43 for
the circular aperture (BA∞).

BA mask V −(or V +) M Sp SI

BA∞ 0.20 0.32 0.39 0.67
BA3 0.21 0.38 0.39 0.75
BA4 0.20 0.34 0.43 0.70

B.2 Validation of the experimental results

To support our experimental measurements, numerical sim-
ulations were performed for the apertures BA∞, BA3 and
BA4. The resulting Weighted Median Normalized Distances
(WMND) are presented in Fig. 7. Despite the difference in the
method to generate the speckle field, the size of the speckle
grains, and the number of critical points involved in the sta-
tistical estimation of the WMNDs, our experimental results
are remarkably consistent with numerical ones. Our experi-
mental results are then validated in two regards. First, the
results are robust to modifications in (i) the method to gener-
ate the speckle patterns, (ii) the scattering medium and (iii)
the spatial sampling. Second, our experimental estimation
of the WMND are statistically relevant since a higher average
number of critical points did not lead to significantly different
WMND.

B.3 Point group symetries of higher order

We investigated in numerical simulation the effect of an in-
crease in the order of the dihedral point group symmetry. For
this purpose, we used the apertures BAN with N ∈ {5, 6, 7, 8}
( point group symmetry DN ), as defined in the main article.
Because of the strong anisotropy of the central peak of its
point spread function, the aperture BA2 could not be com-
pared to the other apertures, and therefore was not computed.
The WMND are presented in Fig. 8.

As expected for N= 5 or 6, the WMND(Y0,Y±N) are close
to zero (transformation rate close to 1). We can also no-
tice that, for BA7 and n ∈ J−3; 3K, as well as for BA8 and
n ∈ J−4; 4K, the same WMND
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Fig. 7: Weighted Median Normalized Distance (WMND)
for all possible pairs of critical points screened here, for the
addition of spiral phase mask with charges up to n =±6 and
for the apertures BAN (N ∈ {3, 4,∞}. The WMND were
computed from numerical simulations.
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found. The topological correlations for BA∞ correspond to a
single spiral mode, while the spiral spectrum of BA8 contains
harmonics. The first harmonics are the spiral modes m = ±8
and are for spiral modes high enough so that, for the pairs(
V+

0 ,X±n

)
, the topological correlations of the fundamental

mode (m = 0 as in BA∞) dominates for n ∈ J−4; 4K. For
smaller N, the topological correlations between critical points
are dictated by both the fundamental mode and the harmon-
ics which leads to more complex WMND diagrams. This is
this true in particular for BA3 and BA4.

B.4 Influence of the width of the angular
slits

The influence of the width of the angular slits was investigated
in numerical simulation. Simulation were performed for peri-
odic angular slits with a point group symmetry D3 and three
different widths of angular slits were tested : π

16 (i.e. BA3),
π
8 , and π

4 . The WMND are presented in Fig. 9.
We can notice that the WMND(Y,Y±6) increases with the

increasing width of the slits, and even becomes equal to 0.5
for the largest slits. This results was expected considering the
spiral spectrum of the apertures. All the considered apertures
have harmonics at the spiral modes m = k.N with k ∈ Z.
However, the amplitude of the harmonics is given by a sinc
apodisation function which FWHM depends on the width of
the angular slits. For the angular slit π

16 , the FWHM of the
spectral apodization function corresponds to n= ±19. As a
consequence, the aperture could be considered as spectrally
invariant by the addition of SPn when n = ±3 or ±6. For
angular slits of width : π

8 and π
4 , the FWHM of the spec-

tral apodization function corresponds to n= ±10 and n= ±5,
respectively. Consequently, the apertures are spectrally mod-
ified by the addition of SP±6.

In the experimental procedure, the width of the angular
slits was chosen large enough so that the dark center induced
by the spatial sampling of the SLM pixels has a radius below
2 SLM pixels. However, the width was chosen small enough
to keep a spectral invariance in the range n ∈ J−6; 6K. Both
the dihedral symmetry and the width of the angular slit are
important parmeters to observe the periodicity of the critical
point transformation.

B.5 Polygonal apertures

Polygonal apertures with dihedral symmetries D3 (equilateral
triangle) and D4 (square) were used to extend our study to
other aperture shapes. The WMND computed from numeri-
cal simulations are shown in Fig. 10.

For the triangular aperture, topological correlations are ob-
served for the pairs (M0,M±3), but no cyclic permutation be-
tween V −, M and V+ can be noticed. For the square, the
WMND is very similar to the one of BA∞ (disk). These re-
sults can be explained by the fact that, for N-gons, the Nth

spiral harmonics have a much lower amplitude than the funda-
mental spiral mode (m = 0). The spiral spectrum is therefore
not invariant by the addition of a SPN mask. Moreover, for
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Fig. 8: WMND for all possible pairs of critical points
screened here, for the addition of spiral phase mask with
charges up to n =±6 and for the apertures BAN with N ∈
{5, 6, 7, 8}. The WMND were computed from numerical sim-
ulations.
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Fig. 9: Weighted Median Normalized Distance (WMND)
for all possible pairs of critical points screened here, for the
addition of spiral phase mask with charges up to n =±6 and
for apertures with dihedral symmetry D3 and angular slits of
width : π

16 , π8 , and π
4 , respectively (from top to bottom). The

WMND were computed from numerical simulations.

the triangular aperture, the point spread function (PSF) is an
optical lattice which spatial extend expends as the charge of
the SP mask increases [40]. Thereby, the maximum values of
the PSF decreases, which strongly limits any possible control
of the transformation of the critical points.
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Fig. 10: WMND for all possible pairs of critical points
screened here, for the addition of spiral phase mask with
charges up to n =±6 and for a disk aperture (top) and polyg-
onal apertures : equilateral triangle (dihedral symmetry D3)
and square (dihedral symmetry D4). The WMND were com-
puted from numerical simulations.
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