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Partially Asynchronous Distributed Unmixing
of Hyperspectral Images

Pierre-Antoine Thouvenin , Member, IEEE, Nicolas Dobigeon , Senior Member, IEEE,

and Jean-Yves Tourneret , Senior Member, IEEE

Abstract— So far, the problem of unmixing large or multitem-
poral hyperspectral data sets has been specifically addressed in
the remote sensing literature only by a few dedicated strategies.
Among them, some attempts have been made within a distributed
estimation framework, in particular, relying on the alternating
direction method of multipliers. In this paper, we propose to study
the interest of a partially asynchronous distributed unmixing
procedure based on a recently proposed asynchronous algorithm.
Under standard assumptions, the proposed algorithm inherits its
convergence properties from recent contributions in nonconvex
optimization, while allowing the problem of interest to be effi-
ciently addressed. Comparisons with a distributed synchronous
counterpart of the proposed unmixing procedure allow its interest
to be assessed on synthetic and real data. Besides, thanks to
its genericity and flexibility, the procedure investigated in this
paper can be implemented to address various matrix factorization
problems.

Index Terms— Hyperspectral (HS) unmixing, nonconvex
optimization, partially asynchronous distributed estimation.

I. INTRODUCTION

ACQUIRED in hundreds of contiguous spectral bands,
hyperspectral (HS) images present a high-spectral res-

olution, which is mitigated by a lower spatial resolution in
specific applications such as airborne remote sensing. The
observed spectra are thus represented as mixtures of signatures
corresponding to distinct materials. Spectral unmixing then
consists in estimating the reference signatures associated with
each material, referred to as endmembers, and their relative
fractions in each pixel of the image, referred to as abundances,
according to a predefined mixture model. In practice, a lin-
ear mixing model (LMM) is traditionally adopted when the
declivity of the scene and microscopic interactions between
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Fig. 1. Illustration of a synchronous distributed mechanism (idle time in
white, transmission delay in light gray, and computation delay in gray). The
master is triggered once it has received information from all the workers.

the observed materials are negligible [1]. Per se, HS unmixing
can be cast as a blind source separation problem and, under
the above-mentioned assumptions, can be formulated as a
particular instance of matrix factorization.

For this particular application, distributed procedures can
be particularly appealing to estimate the abundances since the
number of pixels composing the HS images can be orders
of magnitude larger than the number of spectral bands in
which the images are acquired. In this context, distributed
unmixing methods previously proposed in the remote sensing
literature essentially rely on synchronous algorithms [2]–[5]
with limited convergence guarantees. A different approach
consists in resorting to a proximal alternating linearized
minimization (PALM) [6], [7] to estimate the mixture para-
meters (see [8]–[10] in this context), which leads to an
easily distributable optimization problem when considering the
update of the abundances, and benefits from well-established
convergence results.

While a synchronous distributed variant of the PALM
algorithm is particularly appealing to address HS unmixing,
this algorithm does not fully exploit the difference in the
performance of the involved computing units, which is pre-
cisely the objective pursued by the numerous asynchronous
optimization techniques proposed in the optimization litera-
ture (e.g., [11]–[19]). For distributed synchronous algorithms,
a master node waits for the information brought by all the
available computation nodes (referred to as workers) before
proceeding to the next iteration (e.g., updating a variable
shared between the different nodes, see Fig. 1). On the
contrary, asynchronous algorithms offer more flexibility in the
sense that they allow more frequent updates to be performed
by the computational nodes, thus reducing their idleness time.
In particular, asynchronous algorithms can lead to a significant
speed up in the algorithm computation time by allowing the
available computational units (i.e., cores and machines) to
work in parallel, with as few synchronizations (i.e., memory
locks) as possible [20]–[22]. For some practical problems,
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Fig. 2. Illustration of an asynchronous distributed mechanism (idle time
in white, transmission delay in light gray, and computation delay in gray).
The master node is triggered whenever it has received information from K
workers (K = 1 in the illustration).

there is no master node, and the workers can become active at
any time and independently of the other nodes [21]–[23]. For
other applications, a master node first assigns different tasks to
all the available workers, then aggregates information from a
given node as soon as it receives its information and launches
a new task on this specific node (see Fig. 2). In this partially
asynchronous setting, the workers may make use of out-of-date
information to perform their local updates [19]. Given the pos-
sible advantages brought by the asynchronicity, we propose an
asynchronous unmixing procedure based on recent nonconvex
optimization algorithms. To this end, we consider a centralized
architecture as in [24], composed of a master node in charge of
a variable shared between the different workers, and � workers
which have access to a local variable (i.e., only accessible from
a given worker) and a (possibly out of date) local copy of the
shared variable.

Asynchronous methods adapted to the aforementioned con-
text include many recent papers, e.g., [20]–[22], [24], [25].
For HS image unmixing, Gauss–Seidel optimization schemes
have proved convenient to decompose the original optimiza-
tion task into simpler subproblems, which can be solved
or distributed efficiently [26]. We may mention the recently
proposed partially asynchronous distributed alternating direc-
tion method of multipliers (ADMM) [24], used to solve
a distributed optimization task reformulated as a consen-
sus problem. However, HS unmixing does not allow tradi-
tional block coordinate descent (BCD) methods (such as the
ADMM [27], [28]) to be efficiently applied due to the pres-
ence of subproblems which require iterative solvers. In such
cases, the PALM algorithm [6] and its extensions [7], [29],
which are sequential algorithms, combine desirable conver-
gence guarantees for nonconvex problems with an easily dis-
tributable structure in a synchronous setting. Recently, PALM
has been extended to accommodate asynchronous updates [21]
and analyzed in a stochastic and a deterministic framework.
More specifically, [21] considers the general case where all
the variables to be estimated are shared by the different work-
ers. However, the explicit presence of a maximum allowable
delay in the update steps is problematic, since this parameter
is not explicitly controlled by the algorithm. In addition,
the residual terms resulting from the allowed asynchronicity
have a significant impact on the step size prescribed to ensure
the convergence of the algorithm. In practice, the use of this
step size does not lead to a reduction of the computation
time needed to reach convergence, as it will be illustrated in
Section IV. From this practical point of view, the algorithm
proposed in [24], where the maximum delay is explicitly
controlled, appears to be more convenient. However, the use
of this ADMM-based algorithm does not ensure that the

constraints imposed on the shared variables are satisfied at
each iteration, and the subproblems derived in the context of
HS unmixing require the use of iterative procedures. Finally,
the strategy developed in [22] allows more flexibility in the
allowed asynchronicity, while requiring slightly more stringent
assumptions on the penalty functions when compared to [21].

Consequently, this paper proposes to adopt the framework
introduced in [22], which encompasses the system structure
described in [24], to HS unmixing. Indeed, given the preceding
remarks, the framework introduced in [22] appears as one
of the most flexible to address HS unmixing in practice.
This choice is partly justified by the possible connections
between the PALM algorithm and [22]. Indeed, the PALM
algorithm enables a synchronous distributed algorithm to
be easily derived for matrix factorization problems, which
then offers an appropriate reference to precisely evaluate the
relevance of the asynchronicity tolerated by the approach
described in [22]. Another contribution of this paper consists
in assessing the interest of asynchronicity for HS unmixing,
in comparison with recently proposed synchronous distributed
unmixing procedures.

This paper is organized as follows. The problem addressed
in this paper is introduced in Section II. The proposed
unmixing procedure is detailed in Section III, along with the
assumptions required from the problem structure to recover
appropriate convergence guarantees. Simulation results illus-
trating the performance of the proposed approach on synthetic
and real data are presented in Sections IV and V. Finally,
Section VI concludes this paper and outlines possible research
perspectives.

II. PROBLEM FORMULATION

The LMM consists in representing each acquisition by a
linear combination of the endmembers mr , which are present
in unknown proportions. Assuming that the data are composed
of R endmembers, where R is a priori known, and considering
that the image is divided into � subsets of pixels (see
Remark 1 for details) to distribute the data between several
workers, the LMM can be defined as

Yω =MAω + Bω, ω ∈ {1, . . . , �} (1)

where Yω = [y1,ω, . . . , yN,ω] is an L × N matrix whose
columns are the spectral signatures acquired for each pixel
of the ωth pixel subset. Note that each group can be assigned
a different number of pixels if needed. The columns mr of
the matrix M ∈ R

L×R are the different endmembers, and the
columns an,ω of the abundance matrix Aω ∈ R

R×N gather the
proportion of the endmembers within yn,ω. Finally, the matrix
Bω ∈ R

L×N represents an additive noise resulting from
the data acquisition and the modeling errors. The following
constraints, aimed at ensuring a physical interpretability of
the results, are usually considered

Aω � 0R,N , AT
ω1R = 1N , M � 0L ,R (2)

where � denotes a termwise inequality. Assuming that the data
are corrupted by a white Gaussian noise leads to the following



Fig. 3. Illustration of the master–slave architecture considered for the
unmixing problem (7) with � = 3 workers (the function and variables
available at each node are given in light gray rectangles).

data fitting term:

fω(Aω, M) = 1

2

∥∥Yω −MAω

∥∥2
F. (3)

In addition, the constraints summarized in (2) are taken into
account by defining

gω(Aω) = ιAN (Aω) (4)

AN = {X ∈ R
R×N | XT 1R = 1N , X � 0R,N } (5)

r(M) = ι{·�0}(M) (6)

where ιS denotes the indicator function of a set S (ιS(x) =
0 if x ∈ S, +∞ otherwise). This leads to the following
optimization problem:

(A∗, M∗) ∈ arg min
A,M

�(A, M) (7)

with

�(A, M) = F(A, M)+ G(A)+ r(M) (8)

F(A, M) =
�∑

ω=1

fω(Aω, M), G(A) =
�∑

ω=1

gω(Aω). (9)

With these notations, Aω denotes a local variable
(i.e., which will be accessed by a single worker), and M is
a global variable (i.e., shared between the different workers,
see Fig. 3). More generally, fω plays the role of a data fitting
term, whereas gω and r can be regarded as regularizers or con-
straints. The structure of the proposed unmixing algorithm,
inspired by [22], is detailed in Section III.

Remark 1: In the initial formulation of the mixing
model (1), the indexes ω and � refer to subsets of pixels.
A direct interpretation of this statement can be obtained by
dividing a unique (and possibly large) HS image into �
nonoverlapping tiles of smaller (and possibly different) sizes.
In this case, each tile is individually unmixed by a given
worker. Another available interpretation allows multitemporal
analysis to be conducted. Indeed, in practice, distributed
unmixing procedures are of particular interest when consid-
ering the unmixing of a sequence of several HS images,
acquired by possibly different sensors at different dates, but
sharing the same materials [30]–[32]. In this case, ω and �
could refer to time instants. Each worker ω is then dedicated
to the unmixing of a unique HS image acquired at a given
time instant. The particular applicative challenge of distributed
unmixing of multitemporal (MT) HS images partly motivates

the numerical experiments on synthetic (yet realistic) and real
data presented hereafter.

Remark 2: Even if the work reported in this paper has been
partly motivated by the particular application of HS unmixing,
the problem formulated in this section is sufficiently generic
to encompass a wider class of matrix factorization tasks,
like those encountered in audio processing [33] and machine
learning [34], [35].

III. PARTIALLY ASYNCHRONOUS

UNMIXING ALGORITHM

A. Algorithm Description
Reminiscent of [24], the proposed algorithm relies on a

star topology configuration in which a master node supervises
an optimization task distributed between several workers.
The master node also updates and transmits the endmember
matrix M shared by the different workers. In fact, the computa-
tion time of synchronous algorithms is essentially conditioned
by the speed of the slowest worker (see Figs. 1 and 2). Conse-
quently, relaxing the synchronization requirements (by allow-
ing bounded delays between the information brought by each
worker) allows a significant decrease in the computation time
to reach convergence, which can scale almost linearly with the
number of workers [21], [24]. Note that even though asyn-
chronous optimization schemes may require more iterations
than their synchronous counterparts to reach a given precision,
allowing more frequent updates generally compensates this
drawback in terms of computation time [24].

In the partially asynchronous setting considered, the master
node updates the variable shared by the workers once it has
received information from at least K � � workers. The new
state of the shared variable M is then transmitted to the K
available workers, which can individually proceed to the next
step. As in [22], a relaxation step with decreasing stepsizes
ensures the convergence of the algorithm (see Algorithm 1).
In order to clarify to which extent the convergence analysis
introduced in [22] is applicable to the present setting, we con-
sider K = 1 in the rest of this paper. However, other values of
K could be considered without loss of generality. Details on
the operations performed by the master node and each worker
are detailed in Algorithms 1 and 2, respectively.

Remark 3: The following remarks can be made on the
structure of Algorithm 1.

1) The parameter γk is essentially instrumental to ensure
the global convergence of the partially asynchronous
unmixing algorithm described in this paper, following
the general framework introduced in [22]. For simplicity,
we have directly adopted the expression proposed in [16]
and [22, Assumption D, p. 18], which has been reported
to yield satisfactory results in practice [16]. Evaluating
the practical interest of different expressions for the
relaxation parameters in terms of the convergence speed
of the algorithm is an interesting prospect, which is,
however, beyond the scope of this paper.

2) Note that a synchronous distributed counterpart of
Algorithm 1 can be easily derived for (7), which partly
justifies the form chosen for Algorithm 1. This version
consists in setting γk = 1 and waiting for the updates



Algorithm 1 Master node update

Data: A(0), M(0), γ0 ∈ (0, 1], μ ∈ (0, 1), Niter, K .
Broadcast M(0) to the � workers ;
k← 0 ;
Tk ← ∅ ;
while k < Niter do

Step 1 Wait for Âk
ωk from any worker ;

Tk = Tk ∪ {ωk} ;

dk+1
ω =

{
0 if ω ∈ Tk

dk
ω + 1 otherwise

;

Ak+1
ω =

{
Ak

ω + γk(Âω − Ak
ω) if ω ∈ Tk

Ak
ω otherwise

;

if (�Tk < K ) then
Go to step Step 1 ; // wait until �Tk≥K

else

M̂k ∈ proxr/ck
M

(
Mk + 1

ck
M
∇M F(Ak+1, Mk)

)
;

Mk+1 = M̂k + γk(M̂k −Mk);
γk+1 = γk(1− μγk);
Tk+1 ← ∅ ;
k ← k + 1;

Result: ANiter , MNiter .

Algorithm 2 ωth worker update (since the shared
variable M may have been updated by the master node
in the meantime, M̃ corresponds to a possibly delayed
version of the current Mk). From the master point of view,
M̃ =Mk−dk

ω

Data: M̃, Ãω.
begin

Wait for (M̃, Ãω) from the master node;

Âω ∈ proxgω/cAω

(
Ãω − 1

cAω

∇Aω fω
(
Ãω, M̃

))
;

Transmit Âω to the master node;

Result: Âω.

performed by all the workers (i.e., K = �, see Step 1 of
Algorithm 1) before updating the shared variable M. This
implementation will be taken as a reference to evaluate
the computational efficiency of the proposed algorithm in
Sections IV and V.

B. Parameter Estimation

A direct application of the algorithm described in
Algorithm 2 under the constraints (2) leads to the following
update rule for the abundance matrix Aωk :

Âk
ωk = proxιAN

(
Ak

ω −
1

ck
Aωk

∇Aω fω
(
Ak

ωk , Mk−dk
ωk
))

(10)

where proxιAN
denotes the proximal operator of the indicator

function ιAN (see [36]) and

∇Aω fω(Aω, M) =MT(MAω − Yω). (11)

The step size ck
A

ωk
is chosen as in the standard PALM

algorithm, that is,

ck
Aωk
= Lk

Aωk
= ∥∥(Mk−dk

ωk
)TMk−dk

ωk
∥∥

2 (12)

where Lk
Aωk

denotes the Lipschitz constant of

∇Aω fω(·, Mk−dk
ωk ) (see [6, Remark 4(iv)]). Note that the

projection proxιAN
(·) can be exactly computed (see [37], [38]

for instance). Similarly, the update rule for the endmember
matrix M is

M̂k = proxι{·�0}

(
Mk − 1

ck
M
∇M F(Ak+1, Mk)

)
(13)

with

∇M F(A, M) =
∑
ω

(MAω − Yω)AT
ω (14)

ck
M = Lk

M =
∥∥∥∥∥∑

ω

Ak+1
ω

(
Ak+1

ω

)T

∥∥∥∥∥
2

(15)

and Lk
M is the Lipschitz constant of ∇M F

(
Ak, ·).

C. Convergence Guarantees

In general, the proposed algorithm requires the follow-
ing assumptions, based on the convergence results given
in [6, Th. 1] and [22, Th. 1].

Assumption 1 (Algorithmic Assumption): Let (ωk, dk
ωk ) ∈

{1, . . . , �} × {1, . . . , τ } denote the couple composed of the
index of the worker transmitting information to the mas-
ter at iteration k, and the delay between the (local) copy
M̃k of the endmember matrix M and the current state Mk

(i.e., M̃k � Mk−dk
ωk ). The allowable delays dk

ωk are assumed
to be bounded by a constant τ ∈ N

∗. In addition, each couple
(ωk, dk

ωk ) represents a realization of a random vector within
the probabilistic model introduced in [22, Assumption C].

Assumption 2: The following set of assumptions is inher-
ited from the convergence conditions of the PALM algo-
rithm [6].

1) For any ω ∈ {1, . . . , �}, gω : R
R×N → (−∞,+∞]

and r : R
L×R → (−∞,+∞] are proper, convex lower

semicontinuous (l.s.c.) functions.
2) For ω ∈ {1, . . . , �}, fω : R

R×N × R
L×R → R is a C1

function and is convex with respect to each of its variables
when the other is fixed.

3) � , fω, gω, and r are lower bounded,
i.e., infRR×N×RL×R � > −∞, infRR×N×RL×R fω > −∞,
infRR×N gω > −∞, and infRL×R r > −∞.

4) � is a coercive semialgebraic function (see [6]).
5) For all ω ∈ {1, . . . , �}, M ∈ R

L×R , Aω → fω(Aω, M)
is a C1 function, and the partial gradient ∇Aω fω(·, M)
is Lipschitz continuous with Lipschitz constant LAω(M).
Similarly, M → fω(Aω, M) is a C1 function, and the



partial gradient ∇M fω(Aω, ·) is Lipschitz continuous,
with Lipschitz constant LM,ω(Aω).

6) The Lipschitz constants used in the algorithm,
i.e., LAk

ωk
(M̃k) and LM,ωk (Â

k
ωk ) (denoted by Lk

Ak
ωk

and Lk
M,ωk

in the following) are bounded, i.e., there
exists appropriate constants such that for all iteration
index k.

0 < L−A ≤ Lk
A

ωk
≤ L+A, 0 < L−M ≤ Lk

M,ωk ≤ L+M.

7) ∇F is Lipschitz continuous on bounded subsets.

Assumption 3: The following additional assumptions are
required to ensure the convergence of Algorithm 1.

1) For all ω ∈ {1, . . . , �}, Aω ∈ R
R×N , ∇Aω fω(Aω, ·) is

Lipschitz continuous with Lipschitz constant LAω,M(Aω).
2) The Lipschitz constants LAωk ,M(Âk

ωk ) (denoted by
Lk

Aωk ,M in the following) is bounded, i.e., there exists
appropriate positive constants such that for all k ∈ N

0 < L−A,M ≤ Lk
Aωk ,M ≤ L+A,M.

Assumption 1 summarizes standard algorithmic assump-
tions to ensure the convergence of Algorithm 1. Besides,
Assumption 2 gathers requirements of the traditional PALM
algorithm [6], under which the synchronous version of the
proposed algorithm can be ensured to converge.

Note that the nonconvex problem (7) obviously satisfies
Assumptions 2 and 3 for the functions defined in Section II
(see [6] for examples of semialgebraic functions). In particu-
lar, the bounds on the Lipschitz constants involved in Assump-
tions 2-6 and 3-2) are satisfied in practice, considering the
fact that HS unmixing is generally conducted on reflectance
data (implying Yω ∈ [0, 1]L×N ) and given the constraints
imposed on Aω and M, respectively.

Under Assumptions 1–3, the analysis led in [22] allows the
following convergence result to be satisfied.

Proposition 1: Suppose that (7) satisfies the requirements
specified in Assumptions 1–3. Define the sequence {vk}k∈N
of the iterates generated by Algorithms 1 and 2, with vk �
(Ak, Mk) and the parameters in Algorithm 2 chosen as

ck
Aωk
= Lk

Aωk
, ck

M = Lk
M.

Then, the following convergence results are obtained.
1) The sequence {�(vk)}k∈N converges almost surely.
2) Every limit point of the sequence {vk}k∈N is a critical

point of � almost surely.

Proof: See sketch of the proof in the Appendix. �
The convergence analysis is conducted using an auxiliary

function (introduced in Lemma 2 in the Appendix) to han-
dle asynchronicity [21]. The resulting convergence guarantees
then allow convergence results associated with the original
problem (7) to be recovered.

Besides, the following result ensures a stronger convergence
guarantee for the synchronous counterpart of Algorithm 1.

Proposition 2 (Finite length property, following from [6]):
Suppose that (7) satisfies the requirements specified in
Assumptions 2 and 3. Define the sequence {vk}k∈N of the

iterates generated by the synchronous version of Algorithm 1,
with vk � (Ak, Mk) and

ck
Aωk
= Lk

Aωk
, ck

M = Lk
M, γk = 1, K = �.

Then, the following properties can be proved.
1) The sequence {vk}k∈N has finite length

+∞∑
k=1

�vk+1 − vk� < +∞

where

�vk+1 − vk� =
√
�Ak+1 − Ak�2F + �Mk+1 −Mk�2F .

2) The sequence {vk}k∈N converges to a critical point of � .
Proof: These statements result from a direct application

of [6, Ths. 1 and 3] and [6, Remark 4(iv)]. �
Note that an additional volume regularization can be con-

sidered, as long as it satisfies the conditions given in Assump-
tion 2, and more specifically the convexity Assumption 2-1).
For instance, the mutual distance between the endmembers
introduced in [39] can be easily accounted for.

IV. EXPERIMENTS WITH SYNTHETIC DATA

To illustrate the interest of the allowed asynchronicity,
we compare the estimation performance of Algorithm 1 to
the performance of its synchronous counterpart (described in
Section III) and evaluate the resulting unmixing performance
in comparison with three unmixing methods proposed in the
literature. We propose to consider the context of MTHS
unmixing, which is of particular interest for recent remote
sensing applications [30]–[32]. For this application, a natural
way of distributing the data consists in assigning a single HS
image to each worker. To this end, we generated synthetic
data composed of � = 3 HS images resulting from linear
mixtures of R ∈ {3, 6, 9} endmembers acquired in L =
413 bands. The generated abundance maps vary smoothly over
time (i.e., from one image to another) to reproduce a realistic
evolution of the scene of interest. As in [40, Section V],
the abundance maps were obtained by multiplying reference
abundance coefficients with trigonometric functions to ensure
a sufficiently smooth temporal evolution. For the data set
with R = 3, the reference abundance map was obtained by
unmixing the Moffett scene (same area as in [41]). For the
data sets composed of R ∈ {6, 9} endmembers, we directly
used the synthetic abundance maps introduced in [42] as a
reference.1 Each image, composed of 10 000 pixels, was then
corrupted by an additive white Gaussian noise whose variance
ensures a signal-to-noise ratio (SNR) of 30 dB.

Note that the distributed methods were run on a single
computer for illustration purposes using the built-in low
level distributed computing instructions available in Julia [43]
[which provide an interface reminiscent of the Message Pass-
ing Interface (MPI)]. In this case, the workers are independent
processes.

As is common with many blind unmixing algorithms,
the performance of the proposed approach is expected to be

1Abundance maps available at http://www.umbc.edu/rssipl/people/aplaza/
fractals.zip.



limited in cases where the initial endmember matrix does not
properly represent the observed materials. This observation
essentially results from the nonconvex nature of the prob-
lem presently addressed and is not specific to the proposed
approach. To the best of the authors’ knowledge, no blind
unmixing algorithm can systematically ensure the convergence
of the generated iterates to a “satisfactory” critical point of the
objective function in cases where the initialization is relatively
poor.

A. Compared Methods

The estimation performance of the proposed algorithm has
been compared to those of several unmixing methods from
the literature. Note that only the computation times associated
with Algorithm 1 and its synchronous version, implemented
in Julia [43], can lead to a consistent comparison in this
experiment. Indeed, some of the other unmixing methods have
been implemented in MATLAB by their respective authors.
In the following lines, implementation details specific to each
of these methods are given.

1) VCA/FCLS: The endmembers are first extracted on each
image using the vertex component analysis (VCA) [44],
which requires pure pixels to be present. The abundances
are then estimated for each pixel by solving a fully con-
strained least squares problem (FCLS) using the ADMM
algorithm described in [45].

2) SISAL/FCLS: The endmembers are extracted on each
image by the simplex identification via split augmented
Lagrangian (SISAL) [46], and the abundances are esti-
mated for each pixel by FCLS. The tolerance for the
stopping rule is set to 10−4.

3) Proposed Method (referred to as ASYNC): The endmem-
bers are initialized with the signatures obtained by VCA
on the first image of the sequence, and the abundances are
initialized by FCLS. The synchronous and asynchronous
algorithms are stopped when the relative decrease of the
objective function between two consecutive iterations is
lower than 10−5, with a maximum of 100 and 500 itera-
tions, respectively. Its synchronous counterpart is referred
to as SYNC. The relaxation parameter γk (k ∈ N

∗) is
updated as in [22] with γ0 = 1 and μ = 10−6 (see
Algorithm 1). In the absence of any temporal or spa-
tial regularization, the lexicographically ordered pixels
composing the data sets are evenly distributed between
� = 3 workers.

4) DAVIS [21]: This asynchronous algorithm only differs
from the previous algorithm, in that no relaxation step is
considered, and in the expression of the descent stepsize
used to ensure the algorithm convergence. To ensure a
fair comparison, it has been run in the same setting as
the proposed asynchronous method.

5) DSPLR [5]: The DSPLR algorithm is considered with the
stopping criterion proposed in [5] (set to ε = 10−5), with
a maximum of 100 iterations. The same initialization as
the two previous distributed algorithms is used.

The estimation performance reported in Table I are
evaluated in terms of the following.

TABLE I

SIMULATION RESULTS ON SYNTHETIC DATA

[GMSE(A)×10−3, RE ×10−4 ]

1) Endmember estimation and spectral reconstruction
through the average spectral angle mapper (aSAM)

aSAM(M) = 1

R

R∑
r=1

arccos

(
mT

r m̂r

�mr�2�m̂r�2
)

(16)

aSAM(Y) = 1

N�

∑
n,ω

arccos

(
yT

n,ω

(
M̂ân,ω

)
�yn,ω�2�M̂ân,ω�2

)
.

(17)

2) Abundance estimation through the global mean square
error (GMSE)

GMSE(A) = 1

�RN

�∑
ω=1

�Aω − Âω�2F. (18)

3) Quadratic reconstruction error (RE)

RE = 1
�L N

∑�
ω=1�Yω − M̂Âω�2F. (19)

B. Results

The results reported in Table I correspond to a single trial of
the different algorithms. More precisely, the results reported
for VCA/FCLS are representative of the results obtained
over multiple runs, which have not been observed to vary
significantly from one run to another. A similar observation has
been made for multiple runs of the asynchronous algorithms
(ASYNC and DAVIS) whose performance does not change
significantly over different runs for the simulation setting
adopted in this paper, both in terms of estimation accuracy
and computation time.

1) Endmember Estimation: The proposed asynchronous
algorithm leads to competitive endmember estimation
for the three synthetic data sets (in terms of aSAM
and RE), notably in comparison with its synchronous
counterpart. We can note that the DSPLR algorithm yields
interesting estimation results for R = 3, which, however,
significantly degrade as R increases. This partly results
from the matrix inversions involved in the update steps
of [5], which remain relatively sensitive to the condition-
ing of the involved matrices, and consequently to the



Fig. 4. Evolution of the objective function for the synthetic data sets, obtained for Algorithm 1 and its synchronous version until convergence. (a) R = 3.
(b) R = 6. (c) R = 9.

Fig. 5. Mud lake data set used in the MTHS experiment with the corresponding acquisition dates. The area delineated in red in (e) highlights a region known to
contain outliers (this observation results from a previous analysis led on this data set in [31]). (a) April 10, 2014. (b) February 6, 2014. (c) September 19, 2014.
(d) November 17, 2014. (e) April 29, 2015. (f) October 13, 2015.

TABLE II

ENDMEMBER NUMBER R ESTIMATED BY NWEGA [51]
ON EACH IMAGE OF THE MUD LAKE DATA SET

choice of the regularization parameter of the augmented
Lagrangian.

2) Abundance Estimation: The synchronous PALM algo-
rithm leads to the best abundance estimation results, even
in the absence of any additional regularization on the spa-
tial distribution of the abundances. In this respect, we can
note that the performance of PALM and its asynchronous
version is relatively similar, and consistently outperforms
the other unmixing methods.

3) Overall Performance: The performance measures
reported in Table I show that the proposed distributed
algorithm yields competitive estimation results, especially
in terms of the required computational time when
compared to its synchronous counterpart. To be
more explicit, the evolution of the objective function
versus the computation time shows the interest of the
allowed asynchronicity to speed up the unmixing task,
as illustrated in Fig. 4 (the computation time required
by Algorithm 1 is almost four times lower than the one
of its synchronous counterpart).

Note that even though the SYNC and ASYNC algorithms
start from the same initial point, there is no guarantee that both
methods converge to the same critical point, which essentially
accounts for the differences in the results reported for both

TABLE III

SIMULATION RESULTS ON REAL DATA (RE ×10−4 )

methods in Table I. For the asynchronous algorithms, another
potential source of variability comes from the variations in the
order the updates are performed from one run to another. For
the simulation setting adopted in this paper, such variations
have not been observed to lead to significant differences in
the estimation results.

V. EXPERIMENTS WITH REAL DATA

In practice, as emphasized earlier, distributed unmixing
procedures are of particular interest when considering the
unmixing of large HS images, or of a sequence of HS



Fig. 6. Abundance maps recovered by the different methods (in each row) for the Cuprite data set.

Fig. 7. Abundance maps recovered by the different methods (in each row)
for the Houston data set.

images acquired by possibly different sensors at different time
instants [30]–[32], referred to as MTHS images. The unmixing
of two large real HS images is first proposed, whereas the
application to MTHS images essentially motivates the last
example addressed in this section. The experiments have been
conducted in the same setting as in Section IV (the pixels
composing the data sets are evenly distributed between � = 3
workers).

A. Description of the Data Sets

1) Cuprite Data Set (single HS image): The first data
set considered in this paper consists of a 190 × 250 subset
extracted from the popular Cuprite data set. In this case,

Fig. 8. Soil abundance map recovered by the different methods (in each
row) at each time instant (given in column) for the experiment on the Mud
lake data set (the different rows correspond to VCA/FCLS, SISAL/FCLS,
DSPLR [5], DAVIS [21], SYNC, and ASYNC methods).

reference abundance maps are available from the literature (see
for instance [44], [47]). After removing water absorption and
low SNR bands, 189 out of the 224 spectral bands initially
available were exploited in the subsequent unmixing proce-
dure. The data have been unmixed with R = 10 endmembers
based on prior studies conducted on this data set [44], [47].

2) Houston Data Set (single HS image): The second data
set considered hereafter was acquired over the campus of the
University of Houston, Houston, TX, USA, in 2012 [48]. The
152×108 scene of interest is composed of 144 bands acquired
in the wavelength range 380–1050 nm. The data have been
unmixed with R = 4 endmembers based on prior studies
conducted on this data set [49].



Fig. 9. Water abundance map recovered by the different methods (in each
row) at each time instant (given in column) for the experiment on the Mud
lake data set (the different rows correspond to VCA/FCLS, SISAL/FCLS,
DSPLR [5], DAVIS [21], SYNC, and ASYNC methods).

Fig. 10. Vegetation abundance map recovered by the different meth-
ods (in each row) at each time instant (given in column) for the experiment
on the Mud lake data set (the different rows correspond to VCA/FCLS,
SISAL/FCLS, DSPLR [5], DAVIS [21], SYNC, and ASYNC methods).

3) Mud Lake Data Set (MTHS images): We finally con-
sider a real sequence of HS images acquired with an air-
borne visible/infrared imaging spectrometer between 2014 and
2015 over the Mud Lake, located in the Lake Tahoe region
(CA, USA).2 The 100 × 100 scene of interest is in part
composed of a lake and a nearby field displayed in Fig. 5.
The images have been unmixed with R = 3 endmembers
based on results obtained from prior studies conducted on

2The images from which the interest of interest is extracted
are freely available from the online AVIRIS flight locator tool at
http://aviris.jpl.nasa.gov/alt_locator/.

Fig. 11. Endmembers (mr , red lines) recovered by the different methods from
the real data set depicted in Fig. 5. Endmembers extracted by VCA, SISAL,
and DSPLR show a notable sensitivity to the presence of outliers in these
data. (a) Soil (VCA). (b) Water (VCA). (c) Veg. (VCA). (d) Soil (SISAL).
(e) Water (SISAL). (f) Veg. (SISAL). (g) Soil (DSPLR). (h) Water (DSPLR).
(i) Veg. (DSPLR). (j) Soil (DAVIS). (k) Water (DAVIS). (l) Veg. (DAVIS).
(m) Soil (SYNC). (n) Water (SYNC). (o) Veg. (SYNC). (p) Soil (ASYNC).
(q) Water (ASYNC). (r) Veg. (ASYNC).

these data [31], [50] and confirmed by the results of the
noise-whitened eigengap algorithm (NWEGA) [51] reported
in Table II. After removing the water absorption bands, 173 out
of the 224 available spectral bands were finally exploited.

B. Results

Given the absence of ground truth for the different data
sets (except the indications available in the literature for the
Cuprite scene [44], [47]), the estimation results obtained by
the proposed algorithms are compared to the other unmixing
procedures in terms of the RE and the aSAM introduced
in (17) and (19), respectively (see Table III). The consistency
of the estimated abundance maps, reported in Figs. 6–10,
is also considered when analyzing the different results.



1) Cuprite Data Set: Except for the DSPLR algorithm,
whose scale indeterminacy leads to results somewhat harder to
interpret for this data set, the results obtained by the different
methods are relatively similar, both in terms of the estimated
abundance maps and the recovered endmembers (see Fig. 6).

2) Houston Data Set: The distributed algorithms yield
abundance maps in agreement with the VCA/FCLS and SISAL
algorithms (see Fig. 7). We can note that the algorithms SYNC,
ASYNC, and DSPLR provide a more contrasted abundance
map for the concrete than VCA/FCLS, SISAL/FCLS, and
DAVIS.

3) Mud Lake Data Set: The algorithms SYNC, DAVIS [21],
and ASYNC lead to particularly convincing abundance maps,
in the sense that the abundances of the different materi-
als (containing soil, water, and vegetation) are consistently
estimated for each time instant, contrary to VCA/FCLS,
SISAL/FCLS, and DSPLR (see Figs. 8–10). At ω = 5,
VCA/FCLS and SISAL, which have been applied individually
to each image of the sequence, appear to be particularly
sensitive to the presence of outliers in the area delineated in
red in Fig. 5(e) (see [31] for a previous study on this data set).
This observation is further confirmed by the abundance maps
reported at t = 5 in Figs. 8 and 9, as well as the corresponding
endmembers reported in Fig. 11 (whose amplitude is signifi-
cantly greater than 1). This sensitivity notably results from the
fact that each scene has been analyzed independently of the
others in this specific context (note that the results would have
been worse if these methods were applied to all the images at
once).

4) Global Reconstruction Performance: The performance
measures reported for the different data sets in Table III
confirm the interest of the PALM algorithm and its asyn-
chronous variant for unmixing applications. The asynchronous
variant can be observed to lead to a notable reduction of
the computation time (see also Fig. 12), while allowing a
reconstruction performance similar to the classical PALM
algorithm to be obtained.

VI. CONCLUSION

This paper focused on a partially asynchronous distributed
unmixing algorithm based on recent contributions in noncon-
vex optimization [21], [22], [24], which proves convenient to
address large scale HS unmixing problems. Under relatively
standard conditions, the proposed approach inherits from the
convergence guarantees studied in [22], and from those of
the traditional PALM algorithm [6], [7] for its synchronous
counterpart. Evaluated on synthetic and real data, the proposed
approach provided competitive estimation results, while signif-
icantly reducing the computation time to reach convergence.
From a computational point of view, implementing a fully
functional, large scale asynchronous unmixing algorithm, and
assessing its scalability with respect to the volume of data
involved is an interesting prospect. As with any distributed
algorithm, the computation time required by the proposed
method is expected to decrease linearly with the number of
workers assigned to the unmixing task until the cost of the
master/worker communications is comparable to the cost of
the estimation task conducted on each worker. Future research

perspectives also include the extension to different network
topologies as in [18] and [23], or the use of variable metrics
as described in [7], [8], [29], and [52].

APPENDIX

The proposed sketch of proof adapts the first arguments
developed in [22], in order to clarify that the proposed algo-
rithm fits within this general framework. Note that a similar
proof can be obtained by induction when J blocks have to
be updated by each worker, and I blocks by the master node
[corresponding to the situation described in (7)].

Lemma 1: Under Assumptions 1–3, there exists two posi-
tive constants cA and cM such that

�(Ak+1, Mk+1)

≤ �(Ak, Mk)

−γk

2

(
cA − γk

(
L+A + L+A,M

))∥∥Âk
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ωk

∥∥2

−γk

2

(
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)�M̂k −Mk�2

+1

2
τ L+A,M

k∑
q=k−τ+1

�Mq −Mq−1�2. (20)

Proof:
Step 1: Assumption 2-5) allows the descent

lemma [53, p. 683] to be applied to M → F(A, M),
leading to

F(Ak+1, Mk+1) ≤ F(Ak+1, Mk)+ Lk
M

2
�Mk+1 −Mk�2

+�∇M F(Ak+1, Mk), Mk+1 −Mk�. (21)

Thus
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Since Mk+1 =Mk + γ k(M̂k −Mk), we further have
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In addition, the optimality of M̂k implies

r(M̂k)+ ck
M

2
�M̂k −Mk�2
+�∇M F(Ak+1, Mk), M̂k −Mk� ≤ r(Mk) (24)

and the convexity of r leads to

r(Mk+1) ≤ r(Mk)+ γk(r(M̂k)− r(Mk)). (25)



Fig. 12. Evolution of the objective function for the synthetic data sets, obtained for DAVIS [21], Algorithm 1, and its synchronous version until convergence.
(a) Cuprite. (b) Houston. (c) Mud lake.

Combining (25) and (24) and exploiting the expression
Mk+1 =Mk + γ k(M̂k −Mk) leads to

r(Mk+1) ≤ r(Mk)+ γk
(
r(M̂k)− r(Mk)

)
(from (24)) ≤ r(Mk)− γ kck

M

2
�M̂k −Mk�2

−γ k�∇M F(Ak+1, Mk), M̂k −Mk�. (26)

Combining (26) and (23) finally results in
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Step 2: Arguments similar to those used in Step 1 lead to
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Since ∇Aω fω(Aω, ·) is assumed to be Lipschitz continuous
[see Assumption 3-1)], we have〈∇A
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Step 3: From this point, the product involving
∥∥Mk − M̃k

∥∥
in (29) can be bounded as proposed in [21, Th. 5.1].
To this end, we first note that
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Besides, using the fact that dk
ωk ≤ τ for any index k (see

Assumption 1), we have
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Combining (29)–(31) then leads to
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Step 4: Combining (27) and (32) and using the bounds on
the different Lipschitz constants introduced in Assumptions
2-6) and 3-2) finally leads to the announced result. �

According to Lemma 1, the objective function � is not
necessarily decreasing from an iteration to another due to the
presence of a residual term involving τ past estimates of M.
From this observation, an auxiliary function (whose derivation
is reproduced in Lemma 2 for the sake of completeness) has
been proposed in [21]. The introduction of such a function,
which is eventually nonincreasing between two consecutive
iterations, is of particular interest for the convergence analysis.
This function finally allows convergence guarantees related to
the original problem (7) to be recovered.

Lemma 2 (Auxiliary Function Definition, Adapted From
[21, Proof of Th. 5.1]): Under the same assumptions as in
Lemma 1, let 
 be the function defined by
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2
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with β = τ L+A,M. Let wk = (Ak, Mk, M̌k) and M̌k =
(Mk−1, . . . , Mk−τ ) for any iteration index k ∈ N (with the
convention Mq =M0 if q < 0). Then
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Proof: The expression of the auxiliary function proposed
in [21] results from the following decomposition of the resid-
ual term

∑k
q=k−τ+1 �Mq −Mq−1�2. Introducing the auxiliary

variables
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and replacing (35) in (20) yields
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Observing that 
(wk) = �(Ak, Mk)+ αk finally leads to the
announced result. �

The previous lemma makes clear that the proposed algo-
rithm can be studied as a special case of [22]. The rest of
the convergence analysis, which involves somewhat convo-
luted arguments, exactly follows [22] up to minor notational
modifications.

REFERENCES

[1] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet-
rical, statistical, and sparse regression-based approaches,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[2] S. A. Robila and D. Ricart, “Distributed algorithms for unmixing
hyperspectral data using nonnegative matrix factorization with sparsity
constraints,” in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS),
Melbourne, VIC, Australia, Jul. 2013, pp. 2156–2159.

[3] J. Sigurdsson, M. O. Ulfarsson, J. R. Sveinsson, and
J. M. Bioucas-Dias, “Sparse distributed hyperspectral unmixing,”
in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), Beijing,
China, Jul. 2016, pp. 6994–6997.

[4] J. Sigurdsson, M. O. Ulfarsson, J. R. Sveinsson, and J. M. Bioucas-Dias,
“Sparse distributed multitemporal hyperspectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 11, pp. 6069–6084, Nov. 2017.

[5] C. G. Tsinos, A. A. Rontogiannis, and K. Berberidis, “Distributed blind
hyperspectral unmixing via joint sparsity and low-rank constrained non-
negative matrix factorization,” IEEE Trans. Comput. Imag., vol. 3, no. 2,
pp. 160–174, Jun. 2017.

[6] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Math. Program.,
vol. 146, nos. 1–2, pp. 459–494, Jul. 2013.

[7] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “A block coordinate
variable metric forward–backward algorithm,” J. Global Optim., vol. 66,
no. 3, pp. 457–485, 2016.

[8] A. Repetti, E. Chouzenoux, and J.-C. Pesquet, “A preconditioned
Forward-Backward approach with application to large-scale nonconvex
spectral unmixing problems,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), Florence, Italy, May 2014, pp. 1498–1502.

[9] J. Li, J. M. Bioucas-Dias, A. Plaza, and L. Liu, “Robust collaborative
nonnegative matrix factorization for hyperspectral unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6076–6090, Oct. 2016.

[10] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Estimation de
variabilité pour le démélange non-supervisé d’images hyperspectrales,”
(in French), in Proc. Actes XXVeme Colloque GRETSI, Lyon, France,
Sep. 2015, pp. 1–4.

[11] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE Trans.
Autom. Control, vol. 58, no. 2, pp. 391–405, Feb. 2013.

[12] J. Liang, M. Zhang, X. Zeng, and G. Yu, “Distributed dictionary
learning for sparse representation in sensor networks,” IEEE Trans.
Image Process., vol. 23, no. 6, pp. 2528–2541, Jun. 2014.

[13] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary Learning Over
Distributed Models,” IEEE Trans. Signal Process., vol. 63, no. 4,
pp. 1001–1016, Feb. 2015.

[14] P. Di Lorenzo and G. Scutari, “Distributed nonconvex optimization over
networks,” in Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor
Adapt. Process. (CAMSAP), Cancún, Mexico, Dec. 2015, pp. 229–232.

[15] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” IEEE Trans. Signal Process.,
vol. 63, no. 7, pp. 1874–1889, Apr. 2015.

[16] G. Scutari, F. Facchinei, L. Lampariello, and P. Song, “Parallel and
distributed methods for constrained nonconvex optimization—Part I:
Theory,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1929–1944,
Apr. 2017.

[17] Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento, “A paral-
lel decomposition method for nonconvex stochastic multi-agent opti-
mization problems,” IEEE Trans. Signal Process., vol. 64, no. 11,
pp. 2949–2964, Jun. 2016.

[18] J.-C. Pesquet and A. Repetti, “A class of randomized primal-dual
algorithms for distributed optimization,” J. Nonlinear Convex Anal.,
vol. 16, no. 12, pp. 2453–2490, Nov. 2015.

[19] P. L. Combettes and J. Eckstein, “Asynchronous block-iterative primal-
dual decomposition methods for monotone inclusions,” Math. Program.,
vol. 168, pp. 645–672, Mar. 2016.

[20] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: An algorithmic framework
for asynchronous parallel coordinate updates,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. A2851–A2879, Sep. 2016.

[21] D. Davis. (Apr. 2016). “The asynchronous PALM algorithm for non-
smooth nonconvex problems.” [Online]. Available: https://arxiv.org/abs/
1604.00526

[22] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari. (Jul. 2016).
“Asynchronous parallel algorithms for nonconvex optimization.”
[Online]. Available: https://arxiv.org/abs/1607.04818

[23] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-
dual algorithm and application to distributed asynchronous optimiza-
tion,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 2947–2957,
Oct. 2016.

[24] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous
distributed ADMM for large-scale optimization—Part I: Algorithm and
convergence analysis,” IEEE Trans. Signal Process., vol. 64, no. 12,
pp. 3118–3130, Jun. 2016.

[25] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Proc. Adv. Neural Inf. Process.
Syst., Montreal, QC, Canada, Dec. 2015, pp. 2719–2727.

[26] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151,
no. 1, pp. 3–34, Jun. 2015.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[28] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in non-
convex nonsmooth optimization,” UCLA CAM Rep. 15-62, Nov. 2015.
[Online]. Available: https://arxiv.org/abs/1511.06324

[29] P. Frankel, G. Garrigos, and J. Peypouquet, “Splitting methods with vari-
able metric for Kurdyka–Łojasiewicz functions and general convergence
rates,” J. Optim. Theory Appl., vol. 165, no. 1, pp. 874–900, 2015.

[30] S. Henrot, J. Chanussot, and C. Jutten, “Dynamical spectral unmixing
of multitemporal hyperspectral images,” IEEE Trans. Image Process.,
vol. 25, no. 7, pp. 3219–3232, Jul. 2016.

[31] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Online unmixing of
multitemporal hyperspectral images accounting for spectral variability,”
IEEE Trans. Image Process., vol. 25, no. 9, pp. 3979–3990, Sep. 2016.

[32] N. Yokoya, X. X. Zhu, and A. Plaza, “Multisensor coupled spectral
unmixing for time-series analysis,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 5, pp. 2842–2857, May 2017.



[33] C. Févotte, “Bayesian audio source separation,” in Blind Speech Sep-
aration, S. Makino, T. W. Lee, and H. Sawada, Eds. Dordrecht,
The Netherlands: Springer, 2007, pp. 305–335.

[34] V. Y. F. Tan and C. Févotte, “Automatic relevance determination in
nonnegative matrix factorization with the β-divergence,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1592–1605, Jul. 2013.

[35] B. Gao, W. L. Woo, and B. W.-K. Ling, “Machine learning source sep-
aration using maximum a posteriori nonnegative matrix factorization,”
IEEE Trans. Cybern., vol. 44, no. 7, pp. 1169–1179, Jul. 2014.

[36] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, vol. 49. New York, NY, USA: Springer, 2011,
pp. 185–212.

[37] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient
projections onto the 1-ball for learning in high dimensions,” in Proc.
Int. Conf. Mach. Learn. (ICML), Helsinki, Finland, 2008, pp. 272–279.

[38] L. Condat, “Fast projection onto the simplex and the 1 ball,” Math.
Program., vol. 158, pp. 575–585, Jul. 2015, doi: 10.1007/s10107-015-
0946-6.

[39] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and
J. F. Huntington, “ICE: A statistical approach to identifying endmembers
in hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 42,
no. 10, pp. 2085–2095, Oct. 2004.

[40] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “A hierarchical
Bayesian model accounting for endmember variability and abrupt spec-
tral changes to unmix multitemporal hyperspectral images,” IEEE Trans.
Comput. Imag., vol. 4, no. 1, pp. 32–45, Mar. 2018.

[41] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and
A. O. Hero, “Joint Bayesian endmember extraction and linear unmixing
for hyperspectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11,
pp. 4355–4368, Nov. 2009.

[42] J. Plaza, E. M. T. Hendrix, I. García, G. Martín, and A. Plaza,
“On endmember identification in hyperspectral images without pure
pixels: A comparison of algorithms,” J. Math. Imag. Vis., vol. 42,
pp. 163–175, Feb. 2011.

[43] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017.

[44] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component
analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[45] J. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algo-
rithms for constrained sparse regression: Application to hyperspectral
unmixing,” in Proc. IEEE GRSS Workshop Hyperspectral Image Sig-
nal Process., Evol. Remote Sens. (WHISPERS), Reykjavik, Iceland,
Jun. 2010, pp. 1–4.

[46] J. Bioucas-Dias, “A variable splitting augmented Lagrangian approach to
linear spectral unmixing,” in Proc. IEEE GRSS Workshop Hyperspectral
Image Signal Process., Evol. Remote Sens. (WHISPERS), Grenoble,
France, Aug. 2009, pp. 1–4.

[47] L. Miao and H. Qi, “Endmember extraction from highly mixed data
using minimum volume constrained nonnegative matrix factorization,”
IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–776,
Mar. 2007.

[48] C. Debes et al., “Hyperspectral and LiDAR data fusion: Outcome of
the 2013 GRSS data fusion contest,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2405–2418, Jun. 2014.

[49] L. Drumetz, M.-A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and
C. Jutten, “Blind hyperspectral unmixing using an extended linear mix-
ing model to address spectral variability,” IEEE Trans. Image Process.,
vol. 25, no. 8, pp. 3890–3905, Aug. 2016.

[50] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Online
unmixing of multitemporal hyperspectral images accounting
for spectral variability—Complementary results,” IRIT/INP-
ENSEEIHT, Dept. Elect. Eng. Signal Process., Univ. Toulouse,
Toulouse, France, Tech. Rep., Oct. 2015. [Online]. Available:
http://thouvenin.perso.enseeiht.fr/papers/Thouvenin_TR_2015.pdf

[51] A. Halimi, P. Honeine, M. Kharouf, C. Richard, and J.-Y. Tourneret,
“Estimating the intrinsic dimension of hyperspectral images using a
noise-whitened eigengap approach,” IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 7, pp. 3811–3821, Jul. 2016.

[52] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “Variable metric forward–
backward algorithm for minimizing the sum of a differentiable function
and a convex function,” J. Optim. Theory Appl., vol. 162, no. 1,
pp. 107–132, 2014.

[53] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1999.

Pierre-Antoine Thouvenin (S’15–M’17) received
the State Engineering degree in electrical engineer-
ing from ENSEEIHT, Toulouse, France, in 2014, and
the M.Sc. and Ph.D. degrees in signal processing
from the National Polytechnic Institute of Toulouse,
University of Toulouse, Toulouse, in 2014 and 2017,
respectively.

Since 2017, he has been a Post-Doctoral Research
Associate with the School of Engineering and Phys-
ical Sciences, Heriot-Watt University, Edinburgh,
Scotland. His research interests include statistical

modeling, optimization techniques, and HS unmixing.

Nicolas Dobigeon (S’05–M’08–SM’13) received
the State Engineering degree in electrical engineer-
ing from ENSEEIHT, Toulouse, France, in 2004, and
the M.Sc. degree in signal processing, the Ph.D.
and Habilitation à Diriger des Recherches degrees
in signal processing from the National Polytech-
nic Institute of Toulouse, University of Toulouse,
Toulouse, in 2004, 2007, and 2012, respectively.

From 2007 to 2008, he was a Post-Doctoral
Research Associate with the Department of Electri-
cal Engineering and Computer Science, University

of Michigan, Ann Arbor, MI, USA. Since 2008, he has been with the National
Polytechnic Institute of Toulouse, where he is currently a Professor. He is cur-
rently an Affiliated Faculty Member with the Telecommunications for Space
and Aeronautics Cooperative Laboratory, Toulouse. He conducts his research
within the Signal and Communications Group, IRIT Laboratory, Toulouse.
His research interests include statistical signal and image processing, with a
particular interest in Bayesian inverse problems with applications to remote
sensing, biomedical imaging and genomics.

Jean-Yves Tourneret (SM’08) received the
ingénieur degree in electrical engineering from
the Ecole Nationale Supérieure d’Electronique,
d’Electrotechnique, d’Informatique, d’Hydraulique
et des Télécommunications de Toulouse, Toulouse,
France, in 1989, and the Ph.D. degree from
the National Polytechnic Institute of Toulouse,
University of Toulouse, Toulouse, in 1992.

He is currently a Professor with the ENSEEIHT,
University of Toulouse and a member with the IRIT
Laboratory (UMR 5505 of the CNRS), Toulouse.

He has been involved in the organization of several conferences including the
European Conference on Signal Processing EUSIPCO’02 (Program Chair),
the International Conference ICASSP’06 (Plenaries), the Statistical Signal
Processing Workshop SSP’12 (International Liaisons), the International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing
CAMSAP 2013 (Local Arrangements), the Statistical Signal Processing
Workshop SSP’2014 (Special Sessions), and the Workshop on Machine
Learning for Signal processing MLSP’2014 (Special Sessions). His research
interests include statistical signal and image processing with a particular
interest to Bayesian and Markov chain Monte Carlo (MCMC) methods.

Dr. Tourneret has been a member of different technical committees
including the Signal Processing Theory and Methods Committee of the IEEE
Signal Processing Society from 2001 to 2007 and since 2010. He has been
the General Chair of the CIMI Workshop on Optimization and Statistics
in Image Processing Hold in Toulouse in 2013 (with F. Malgouyres and
D. Kouamé) and International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing CAMSAP 2015 (with P. Djuric). He has
been serving as an Associate Editor for the IEEE TRANSACTIONS ON

SIGNAL PROCESSING from 2008 to 2011 and since 2015 and for the
EURASIP Journal on Signal Processing since 2013.

http://dx.doi.org/10.1007/s10107-015-0946-6
http://dx.doi.org/10.1007/s10107-015-0946-6



