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Abstract: We present a 3D fluorescence nanoscopy method operating at cryogenic 

temperatures, based on optical saturation of the excited state of individual molecules. Using a 

focused laser beam structured with a zero-intensity central region surrounded by intensity 

gradients in the three space directions, we achieve a sub-30 nm 3D optical resolution. 

Moreover, the analysis of the fluorescence scanning images of single molecules reveals the 

3D orientation of their transition dipole with an accuracy of a few degrees. This method 

provides a valuable tool for locating neighboring molecules with overlapping optical 

transitions in order to study their interactions. 

1. Introduction

Hybrid systems formed by quantum emitters strongly coupled to photonic or plasmonic 

nanostructures are promising elementary building blocks for the realization of integrated 

solid-state quantum photonics devices[1,2]. In order to characterize and optimize the 

interactions between the emitters and the electromagnetic modes strongly confined within 

these nanostructures, it is crucial to develop simple optical techniques for nanometric 

localization of single emitters in the vicinity of these structures[3-5]. Such techniques could 

also be used to study arrays of interacting quantum emitters and control their mutual coupling 

that occur at the nanometer scale. They are thus of prime importance for the development of 

quantum information protocols based on networks of strongly interacting qubits[6].  

Solid-state quantum emitters such as single molecules[7], quantum dots[8,9] and defect 

centers in diamond[10] are appealing candidates for the realization of such quantum 

networks. Among them, polycyclic aromatic hydrocarbon molecules embedded in well-

chosen solid matrices at liquid helium temperatures behave as simple two-level systems, with 

a fluorescence quantum yield close to unity. Vanishing dephasing of their transition dipole by 

phonon-assisted processes leads to a large absorption cross-section at their zero-phonon line 

(ZPL), whose linewidth reaches its fundamental lower bound determined by the inverse 

lifetime of the emitting state[11]. It is also manifested in the indistinguishability of the single 

photons emitted on the ZPL[12]. Over the past years, single molecules have proven to be test-

bench systems for quantum optics[12-17] and for the study of coherent optical dipole–dipole 

interactions[18]. Moreover, their photostability is excellent, with no blinking and no spectral 

diffusion even at high illumination intensities and over days[19]. 

Super-resolution[20,21] of single polycyclic-aromatic hydrocarbon molecules at cryogenic 

temperatures has been demonstrated with far-field optics, using two approaches based on the 

spectral selection of single molecules resonantly excited at their sharp ZPL. The simplest 

approach is based on successive localizations of single molecule fluorescence spot centers on 

a camera, while tuning the excitation laser frequency[22]. This method can hardly be 

employed to super-resolve molecules with overlapping resonances, i.e. molecules that can 

efficiently couple. The second is a very sophisticated method, which combines scanning of a 



micro-electrode probe that creates a local inhomogeneous electric field and Stark-shift 

mapping of the single molecule ZPLs[18]. Recently, a simple 2D optical nanoscopy technique 

has been developed to super-resolve single molecules with a sub-10 nm resolution[23]. It is 

based on excited state saturation (ESSat) of the molecules with a doughnut-shaped laser beam 

(i.e. in the first-order Laguerre-Gaussian). Yet, due to the vanishing intensity of the doughnut 

mode all along the optical axis, the longitudinal resolution remains similar to that of standard 

confocal microscopy. Taking this concept further, we use here a light structuration technique 

to produce a local zero-intensity focal spot with steep longitudinal and transverse intensity 

gradients. We demonstrate 3D-ESSat nanoscopy of single molecules with a longitudinal 

resolution of 30 nm. Additionally, we show that this method provides an accurate 

determination of the 3D orientation of the molecular transition dipoles. Altogether, it paves 

the way to the study and control of coherent interactions between single quantum emitters. 

2. Experimental setup 

The fluorescent molecules chosen in the experiment are dibenzanthanthrene (DBATT) 

molecules embedded in a thin film (thickness of few microns) made of either an octadecane 

Shpolskii matrix (ZPL at ~ 589 nm) or a naphthalene molecular crystal (ZPL at ~ 618 nm). 

We select the molecules for which the effects of spherical aberrations on the recorded 

excitation point spread function (PSF) are negligible, i.e. those located at a depth less than 

~ 0.5 μm from the surface. They exhibit ZPLs with a FWHM linewidth of ~ 20 MHz at 2 K 

and weak saturation intensities I
s
 of a few W/cm

2
. The experiment is based on a modified 

scanning confocal microscopy setup sketched in Fig. 1(a). To realize a local 3D zero-intensity 

at the focus of the objective, the phase of the excitation field is patterned with a 0- circular 

phase mask[24]. Using a spatial light modulator (SLM), we generate a π-phase retardation in 

the central region of the parallel incident beam (see Fig. 1b). The phase distribution of the 

laser beam is set to p / 2sgn[sin(z
0
2p cosy )],y where is the incidence angle andz

0
a key 

parameter that fixes the relative size of the phase-retarded area. z
0

is chosen so that 

destructive interferences occurring between phase retarded and non-retarded areas of the 0- 

incident beam produce a 3D zero-intensity at the focus of the objective. This hollow focal 

spot is surrounded by comparable intensity gradients in the three space directions. 

 

Fig. 1. (a) Schematic of the experimental setup. The beam of a single mode tuneable dye laser 

is sent to a SLM where the 0- phase mask is imprinted. This beam is then passed through a 

quarter wave plate (QWP), which makes its polarization circular, and focused with a high 

numerical aperture objective (NA = 0.95) to excite the DBATT molecules on their ZPL. A 

piezoelectric stage scans the sample through the excitation PSF, while fluorescence emitted by 
the molecules is recorded with a single-photon-counting avalanche photodiode (APD). A CCD 

camera is used to characterize the beam spatial profile. The modulated-ESSat microscopy 

module is depicted in the dashed line box. The reflected beam from the first polarization beam 
splitter (PBS) is temporally modulated in intensity by two acoustic-optic modulators (AOM1 

and 2), then recombined with the 0- beam with the second PBS. (b) Schematic of the phase 

mask and the beam focusing, with the electric field orientations. 

 



3. Simulation of fluorescence images 

In order to illustrate the principle of 3D-ESSat nanoscopy, simulations of fluorescence images 

of a single molecule are presented in Fig. 2, assuming an isotropic molecular dipole 

orientation. We compute the three electric field components of the tightly focused laser beam 

near the focal point using the generalized vectorial Debye integral[25,26], which takes into 

account the phase distribution induced by the SLM and a factor of apodization cos(y )  for 

energy conservation through the objective. The fluorescence image is calculated for a single 

emitter scanned through the focal region and excited at resonance. For laser intensities 

smaller than I
s
, the fluorescence signal is proportional to the laser intensity and the images of 

the molecule reproduce the 3D local intensity distribution. When the intensity is increased, 

the saturation of the molecular transition leads to a broadening of the fluorescence (xy) and 

(xz) images and a sharpening of the central dark spots, therefore to a resolution enhancement 

in the focal (transverse) plane as well as along the optical (longitudinal) axis. We define the 

optical resolutions as the widths (FWHM) of the central dips in the cross sectional profiles of 

the scanned images (see Fig. 2b,c).  

 

Fig. 2. (a) Simulated fluorescence images of a molecule excited with a circularly polarized 0-π 

beam ( l = 589 nm, z
0
= 0.68) and scanned through the PSF in the (xy) plane and in the (xz) 

plane for different saturation parameters I
max

I
S

 (0.1, 10, 100), where I
max

 is the maximum 

excitation intensity along z. The colorbar is normalized to the maximum fluorescence counts 

along the axis when I
max

I
S

 = 100. (b), (c) Cross-sectional profiles of the fluorescence signal 

along z (b), along x (c), for four values of I
max

/ I
s
. In these simulations, the molecular dipole 

orientation is considered as isotropic. The computation of the three electric field components 

near the focal point is performed using the generalized vectorial Debye integral[25,26], 



assuming that the molecules are close enough to the surface so that we can neglect the effects 

of beam propagation in the crystal and of Fresnel coefficients at the matrix surface. 

In the linear regime, the large distances between the two longitudinal bright spots produce a 

poor resolution close to 610 nm at a laser wavelength l = 589 nm, while the transverse 

resolution is close to 370 nm. Since the longitudinal intensity gradient is stronger than the 

transverse one, the longitudinal resolution becomes better than the transverse one at high 

excitation intensities, as shown in Fig. 3a. This results in a slightly anisotropic 3D PSF, with 

an aspect ratio of ~ 1.4 in the fully saturated regime. 

4. Optical super-resolution 

The laser intensity distribution along the optical axis in the central region of the PSF can be 

approximated as I z( ) = I
max

- I
res( )sin2 pz d

z( )+ I
res

, where I
res

is the residual intensity at the 

focus, I
max

is the maximal intensity and d
z
the separation between both intensity maxima along 

the axis. One can show that the longitudinal resolution improves as 1 I
max

I
S

at high 

saturation, and that the residual intensity inherent to real experiments sets the resolution limit: 

Dz»
2d

z

p

1+ I
res

I
S

I
max

I
S

for I
max

>> I
S

and I
max

>> I
res

. 

Figure 3(b) presents the longitudinal resolution, computed for I
max

= 105 I
S
, as a function of 

I
res

 for d
z

= 1300 nm (obtained at l = 589 nm). It degrades as the residual intensity 

increases, so that a nanometric resolution requires extremely small values of I
res

I
max

, below 

10-4. Achieving the best local zero-intensity by fine-tuning of the phase-mask parameter z
0
 

is therefore essential, as shown in Fig. 3(c). 

 

 

Fig. 3. (a) Computed longitudinal and transverse resolutions of 3D-ESSat microscopy as a 

function of the excitation intensity. These resolutions are derived from the simulated 

fluorescence intensity profiles. (b) Evolution of the longitudinal resolution as a function of the 

residual intensity at the center of the PSF for I
max

I
S

=105
(solid curve) and I

max
I

S
=103

(dashed curve). (c) Dependence of the residual intensity on the phase-mask parameter z
0
. The 

minimum of I
res

 is obtained for z
0

= 0.68 . Its value of 10-7 I
max

 is here limited by finite 

discretization in the evaluation of the Debye integral. All simulations are performed with a 

laser wavelength l = 589 nm. 

 

In the experiment, the objective is inserted in the cryostat and undergoes mechanical strain at 

low temperature, which induces optical aberrations, mainly astigmatism. They are corrected 

by applying a set of well-chosen Zernike polynomials on the SLM[23,27]. After corrections, 



I
res

 is reduced to ~ 5´10-3 I
max

. Fig. 4 (a)-(c) display 3D-ESSat images of a single DBATT 

molecule recorded in these conditions by scanning the sample in the planes (xy) and (xz) with 

three different laser intensities. For an excitation intensity of I
max

=82 W/cm
2
 (see Fig. 4c), 

the longitudinal and transverse resolutions are 260 nm and 200 nm, respectively. For another 

molecule excited at higher intensity I
max

=1.6 kW/cm
2
, the cross-sectional profiles displayed 

in Fig. 4 d,e demonstrate the achievement of transverse and longitudinal super-resolutions of 

79 nm and 38 nm, respectively.  

 

Fig. 4. 3D-ESSat fluorescence images of a single DBATT molecule embedded in octadecane 

at 2K, recorded in the (xy) and (xz) planes for three different excitation intensities: (a) I
max

=

0.4 W/cm2, (b) 16 W/cm2 and (c) 82 W/cm2. The pixel dwell time is 5 ms and the colorbar is 

normalized to the maximum fluorescence counts of (c). (d), (e) Cross sectional profiles along x 

and z for another molecule excited at I
max

= 1.6 kW/cm2. Their FWHM derived from 

Lorentzian fits (red curves) demonstrate 3D super-resolution. A slanted fluorescence 

background profile has been added to the fit to take into account the fluorescence signal from 

out-of-focus molecules. 

5. 3D dipole orientation 

Most of the applications introduced above will require the characterization of the exact 3D 

orientation of the molecular transition dipole. Various techniques have been developed to 

measure fixed or time-dependent single molecule dipole orientations[28]. They are based on 

selective polarization excitation schemes[29,30], dipole emission patterns[31] or scanning 

fluorescence images recorded under annular illumination and with different excitation 

polarizations[32]. Here, we combine the latter approach with ESSat nanoscopy. In the focal 

region, the high NA objective introduces a significant amount of polarization mixing such 

that the local electric field contains components of all directions, each of them having a 

specific spatial distribution[25]. A fluorescence scanning image of a molecule will consist in 

a characteristic combination of three intensity patterns corresponding to the three dipole 

projections. Comparing measured to simulated image patterns will therefore provide the 3D 

dipole orientation of a molecule. 

Figure 5 shows a selection of simulated ESSat images built in the planes (xy), (xz) and (yz), 

for various polar angles q of the molecular dipole placed in the (xz) plane. These images 

calculated at weak saturation ( I
max

- I
s
)reflect the squared projection of the laser field along 

the dipole. For instance, the three left (resp. right) images ( q =90°) gives the squared x-(resp. 

z) component of the field distribution. The (xy) images present a symmetry axis which is 

orthogonal to the in-plane dipole projection, except when the dipole is aligned along the z 

optical axis (q =0°), in which case the revolution symmetry shows up. This axial symmetry 

can readily be used to determine the orientation of the in-plane dipole projection. Moreover, 



variations in q  lead to significant differences in the (xz) and (yz) images (see Fig. 5b,c), 

which can be exploited to retrieve the polar angle of the molecular dipole from the 

experimental images. In particular, we find that in the imaging plane (xz), the iso-intensity 

contour around the PSF center has an elongation axis that strikingly coincides with the dipole 

axis. 

 

Fig. 5. Simulated ESSat images of a molecule, computed for various orientations of the dipole 

placed in the (xz) plane and making a polar angle q  with the z axis. The images are built in 

the (xy) plane (a), the (xz) plane (b) and in the (yz) plane (c), for I
max

= I
s
, l = 589 nm and 

NA = 0.95. The scale bar is 500 nm. Iso-intensity contours around the PSF center are plotted in 

white lines. The dashed lines indicate the dipole orientation. In (b), the dipole orientations 
coincide with that of the iso-intensity contours. 

Figure 6 exemplifies the method to determine the 3D-dipole orientation of a single DBATT 

molecule. We record two ESSat images at moderate saturations and perform numerical 

simulations to reproduce them by varying the azimuthal and polar dipole angles j and q . 

From the transverse image (see Fig. 6a, b), we can extract j . The second image is obtained 

by scanning the molecule in the longitudinal plane containing the dipole moment and the 

optical axis. Reproducing the latter image with simulations provides the determination of q , 

as shown in Fig. 6(c)-(f). For a signal-to-noise ratio of ~30,j andq are determined with an 

accuracy of ± 3°  and for dipoles nearly parallel to the optical axis z, this accuracy degrades 

to ± 5°.  

 



 

Fig. 6. Determination of the 3D dipole orientation of a single molecule. (a), (c) Experimental 

ESSat images of a DBATT molecule in octadecane, taken in the (xy) plane (a) and in the (yz) 

plane (c). From image (a) we deduce j = 90 ±3° . (b), (d)-(f) Simulated ESSat images, taking 

j = 90° and q = 46° (d), q = 49° (e), q = 43° (f). From the comparison of simulated to 

measured image patterns, in particular the regions close to the PSF center, we deduce 

q = 46 ±3° . Images are obtained using I
max

I
S

= 5 . 

With direct ESSat images, the locations of the molecules are given by fluorescence minima. If 

the emitters are highly concentrated, their fluorescence patterns will overlap, which will 

degrade the contrast of the images. In order to restore positive contrasts, we overlap on the 

saturating beam a weak Gaussian beam with a temporally modulated intensity. To avoid 

optical interferences between these beams, their polarizations are set circular with opposite 

helicities, and a slight frequency detuning of ~1 MHz (i.e. much smaller than the ZPL 

linewidth) is applied between them. Then we extract the amplitude of the fluorescence signal 

modulation, as has been done in 2D-ESSat nanoscopy[23]. Figure 7 displays modulated 3D-

ESSat images of a single DBATT molecule in a plane containing the optical axis and in the 

transverse plane, for increasing excitation intensities of the 0- beam (see Fig. 7a-c). At 

strong saturation, 3D super-resolution is achieved with a resolution better than 50 nm (see 



Fig. 7d,e,g,h). As in the case of direct 3D-ESSat images, the 3D-orientation of the molecular 

dipole can be extracted from the analysis of the PSF structure in these planes. For this 

molecule we findj = 0° andq = 66°and verify a posteriori that the images computed with this 

dipole orientation (See Fig. 7f,i) are similar to the experimental ones. 

 

Fig. 7. Modulated 3D-ESSat imaging. Images of a single DBATT molecule embedded in an 

octadecane matrix, with various intensities of the 0- beam and a Gaussian beam intensity of 

6 W/cm2 : (a) I
max

=  16 W/cm2, (b) I
max

=  78 W/cm2, (c) I
max

=  163 W/cm2. The colorbar is 

normalized to the maximal fluorescence count rate in (a). l = 589 nm, pixel dwell time: 5 ms. 

(d,g) Zooms on the modulated ESSat images displayed in (c). The colobar scale is given in 
counts per 10 ms. Scale bar: 100 nm. (e,h) Cross sectional profiles of the images in (d,g), 

respectively, along the two white lines and their associated fits with Lorentzian curves (solid 

lines). The resolutions (FHWM) are 48 nm along the optical axis and 42 nm in the transverse 

plane. (f,i) Simulated images performed with the experimental excitation intensities of (d,g) 

and for a dipole orientation given by j = 0° and q = 66° . The modulation signal is derived 

from the difference between signals calculated with and without the Gaussian beam. The 
colorbar is given in unit of saturated fluorescence intensity. 

 

 

 

 

 



6. Achieving sub-30 nm resolutions 

Figure 8 provides a comparison between the 3D-reconstructed PSF surfaces of a single 

DBATT molecule obtained in conventional confocal microscopy (Fig. 8a) and with 

modulated ESSat imaging (Fig. 8b). The points forming those surfaces are the locations 

where the fluorescence signal is half of its maximum. In the confocal image recorded with a 

Gaussian beam, the PSF has a transverse size of 375 nm and a longitudinal size of 900 nm. In 

the case of modulated 3D-ESSat with the same molecule, the transverse resolution is 55 nm 

and the longitudinal resolution 29 nm at I
max

=3 kW/cm
2
. This demonstrates a thirty times 

improvement in the longitudinal resolution. Ultimately, for another molecule, a 3D super-

resolved PSF is achieved with transverse and longitudinal resolutions of 28 nm and 22 nm, 

respectively, at higher saturation with I
max

=10 kW/cm
2
 (see Fig. 8c,d,e). 

 

Fig. 8. 3D-reconstruction of the PSF surface, obtained at half of the maximal fluorescence 

signal of a single DBATT molecule excited at 618 nm. (a) The molecule is imaged in confocal 
microscopy, with a Gaussian beam with intensity 1.2 W/cm2. The transverse and longitudinal 

sizes of the surface are 375 nm and 900 nm, respectively. (b) Modulated-ESSat PSF built for 

the same molecule, with I
max

= 3 kW/cm2 and an intensity of the modulated Gaussian beam of 

60 W/cm2. (c) PSF of another molecule, demonstrating transverse and longitudinal resolutions 

of 28 nm and 22 nm, with I
max

= 10 kW/cm2 and an intensity of the modulated Gaussian beam 

of 75 W/cm2. 3D images plotted with ImageJ (NIH). (d,e) Cross sectional profiles of the 3D-

image in (c). 

7. Conclusion 

In conclusion, we have developed a low temperature optical super-resolution method to 

image quantum emitters with a sub-30 nm resolution in the three space directions, and with 

extremely low excitation intensities (of the order of 10 kW/cm
2
) compared to room 

temperature STED nanoscopy methods. Compared to 2D-ESSat nanoscopy, this method 

provides an enhancement factor of more than 25 in the axial resolution, as well as a 

determination of the 3D dipole orientation of the emitters with a precision of a few degrees, 

from a pair of transverse and longitudinal ESSat images. It will enable 3D super-resolution of 

neighboring emitters with nanometric separations and thus marks an important milestone in 

the study of the spatial and spectral signatures of their coherent dipole-dipole interaction. 
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