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Abstract

In this article, we consider a reaction-diffusion equation where the reaction term is given by a
cubic function and we are interested in the numerical reconstruction of the time-independent part
of the source term from measurements of the solution. For this identification problem, we present
an iterative algorithm based on Carleman estimates which consists of minimizing at each iteration
cost functionals which are strongly convex on bounded sets. Despite the nonlinear nature of the
problem, we prove that our method globally converges and the convergence speed evaluated in
weighted norm is linear. In the last part of the paper, we illustrate the effectiveness of our method
with several numerical reconstructions in dimension one or two.

Keywords: inverse problems, nonlinear parabolic equations, Carleman estimates, numerical recon-
struction.

AMS subject classifications: 35R30, 35K55, 35K57, 93B07.

1 Introduction

Let Q be a C? bounded domain of R? for d = 1,2 or 3 and T > 0. We consider the following
reaction-diffusion equation

Owu(t,z) — Au(t,z) + u(t,z) = o(z)h(t,z), (t,z) € (0,T) x £,
u(t,z) = g(t,x), (t,z) € (0,T) x 09, (1.1)
u(0,2) = uo(x), x € Q,

*This work was partially funded by the DGA 2014-91-00-79 project. The second author was partially supported by
the Project “Analysis and simulation of optimal shapes - application to life sciences” of the Paris City Hall.

Te-mail: boulakia@ljll.math.upmc.fr

te-mail: maya.de-buhan@universite-paris-saclay.fr

Se-mail: schwindt@math.cnrs.fr



where ¢ is the Dirichlet boundary data and u, is the initial condition. In the right hand side of the first
equation, we assume that the time-dependent function h is known and we focus on the reconstruction
of o which is assumed to depend only on the spatial variable. To identify this unknown, we have two
kinds of measurements, the flux of the solution on a part of a boundary and the solution in the whole
domain at a given time:

{ m(t,x) := Vu(t,z) -n(x), (t,x)€ (0,T)xT, (12)

r(z) == u(Tp, x), x € Q,

where I' C 99, T € (0,T) and n is the outward-pointing unit normal vector defined on 0f2.
Regarding the applications, this model can represent the evolution of a pollutant in the atmosphere.
The source in the right hand side corresponds to a spill of pollutant and we want to localise it. This
model can also be viewed as a simplified model to represent the evolution of the electrical potential
in the heart (we refer to [3| for a detailed presentation of this application domain and more precisely
to [%, Subsection 2.9.7| for cubic-like reaction models). In our model, the natural propagation of the
potential is initiated by the initial condition and the source in the right hand side may correspond to
a secondary undesirable source that we want to identify.

Let oaz > 0 be a fixed constant. We assume that the source term o that we want to reconstruct
belongs to L>°(£2) and satisfies the following a priori bound:

”UHL‘X’(Q) < Omaz- (13)

For this problem, according to Bukhgeim-Klibanov method, ¢ is uniquely determined by the measure-
ments and a Lipschitz stability estimate holds under appropriate assumptions on the data (the precise
result is stated in Proposition 2.6). Bukhgeim-Klibanov method [7] is a classical theoretical method
to prove the uniqueness and stability for parameter identification problems. For a presentation of this
method which relies on Carleman estimates and for a survey on its applications, we refer to [18] and in
particular to section 3.3 on parabolic equations. For the inverse problem of coefficients identification
in nonlinear parabolic equations, let us in particular mention that [3] and [9] deal with the theoretical
stability of the reaction term in a semi-linear PDE.

In this paper, our aim is to tackle the numerical reconstruction of o and to propose for this nonlinear
problem a globally convergent method. Our work is drawn from a numerical method presented in ||
for the identification of a potential in a wave equation. The method strongly relies on Carleman
inequalities and it consists of an iterative algorithm minimizing at each iteration a cost functional
involving Carleman weights. The main strength of this numerical method is that it globally converges
to the exact solution i.e. it converges independently of the initialization. In particular, contrary
to classical minimization techniques like Tikhonov methods [16], it is not necessary to add a priori
knowledge on the source term through the data of a background state to convexify the cost functional.

As pointed out in the introduction of [2], this method induces several numerical challenges. In
particular, the classical Carleman weights have very strong variations due to the presence of a double
exponential involving large coefficients. That is why, as in [2] for the wave equations, we need to
construct new Carleman weights for the heat equation which involve single exponentials (these weights
are given by (2.3) and (2.4)).



The presence of a nonlinearity in our PDE leads to additional difficulties in the study of the
numerical methods. In particular, the strong convexity properties of the cost functional are restricted
to bounded spaces. Moreover, the operator appearing in the cost functional has to be modified by
adding truncation operators in the nonlinear terms to tackle these terms in the proof of the convergence
of the numerical method. At last, contrary to [2] where the PDE is linear, introducing a conjugate
variable e*?z does not allow to overcome the fact that, even with single exponentials, the minimization
of the cost functional is challenging.

Let us mention that we could have considered general cubic functions of the form

a3u3 + a2u2 + aiu

with ag > 0 instead of a simple cubic monomial in this semi-linear parabolic partial differential equa-
tions (1.1). By this way, the study includes the bistable equation or Allen-Cahn equation. Moreover,
we refer to Remark 2.4 for some remarks on the case of other boundary data (Neumann boundary
conditions instead of the second equation in (1.1) and boundary measurements on the solution itself).

Using Carleman estimates to solve numerically inverse problems has been first considered in the
paper [17] by Klibanov. This method called convexification method has been applied in several papers.
In [19], the authors are interested by the reconstruction of a coefficient in a parabolic equation and
present a gradient method applied to a strictly convex cost functional involving Carleman weights. In
[22], the authors consider the reconstruction of the initial condition in a nonlinear parabolic equation.

We also refer to [20] for the most recent paper which applies this convexification method.
For numerical studies applying Carleman estimates to controllability problems, we refer to [7] for
the numerical controllability of the wave equation and [12] for the numerical controllability of the heat,

Stokes and Navier-Stokes equation.

The paper is organized as follows. Sections 2 give some preliminary results. First, in Section 2.1,
we present a Carleman estimate for the heat operator with Dirichlet boundary conditions. In this
estimate, we consider two kinds of Carleman weights: the classical weights for the heat equation with
a double exponential and new weights involving single exponentials which are introduced for numerical
purposes. Then, in Section 2.2, we state a regularity result satisfied by the solution of equation (1.1).
The proofs of the Carleman estimate and the regularity result are presented in Appendices A and B
respectively. At last, in Section 2.3, we state the stability inequality associated to our inverse problem.

Section 3.1 is the core of the paper and presents the numerical reconstruction method of the source
term. The latter is an iterative process which requires at each iteration the minimization of a functional
based on the Carleman estimate. This section states the global convergence of the method (Theorem
3.3). In Section 3.3, we establish properties satisfied by the functional to minimize at each step. In
particular, the existence of a global minimizer of the functional is stated in Lemma 3.6 and the strong
convexity on bounded set is proved in Lemma 3.7. In the last section (Section 3.4), we prove the global
convergence property. Finally, Section 4 is devoted to the implementation of the algorithm and the
numerical results obtained for several 1D and 2D test cases.



2 Preliminary results
2.1 Carleman inequality for the heat equation

Without loss of generality, from now on, we assume that Ty = 7

In this section, we state a Carleman inequality for the heat equation in two cases. The first case
corresponds to the classical weights with a double exponential while, in the second case, the weights
only involve single exponentials as in |27, Section 3|. Let us specify these two cases :

e Case 1: For A > 0, we define # and ¢ by: for all (¢,z) € (0,7 x Q

) e (210l oo +n0 () eA2lmollootmo(x)) _ g4 Inolloo -

where g satisfies the following properties:
o >0inQ, [Vl >C>0inQ and 79=0o0ndQ\T. (2.2)

e Case 2: For all (t,z) € (0,T) x €2, we define
1 1—p
(t) = — (2.3)
HT—t) I
and

o(t,z) = (x)0(t) with (z) = |v — zo|* — 2sup |z — zo)?, (2.4)

e

where 2 is an arbitrary point in R?\ € and p is a constant satisfying 0 < p < 1. We notice that
f# > 0 and ¥ < 0. In this case, we assume in addition that zg and I' are such that

{x € 09| (x — zg) -n(z) >0} CT. (2.5)

Let us mention that the spatial part ¢ of the Carleman weight in Case 2 resembles the one proposed
in [!] for the wave equation. Moreover, the geometric condition (2.5) which is classical for the wave
equation (see |14, 23]) is unusual for the heat equation and is linked to this new choice of weights.
With these weights, we have less flexibility in the computations and we need an extra condition on the
measurement domain compared to the classical weights corresponding to Case 1. On the other hand,
if we take the classical weights, the presence of a double exponential in the functional to minimize
(see (3.11)) is prohibitive to address numerical applications (we refer to Remark 2.3 for additional
comments). In all our numerical tests presented in Section 4.2, we have considered the weights given
by Case 2.
Let us now formulate the Carleman inequality in Case 1 and Case 2.

Theorem 2.1. We assume that 6 and ¢ are given by (2.1) where X is fixred and large enough or by
(2.4). In this last case, we assume that I' is such that (2.5) holds. Then, there exists so > 0 and C > 0



such that, for all s > sg:
T 1 1
/ / e2s¢ (\8,:z|2 + —|Az]2 + 50|V 2|* + 8393|z|2> dxdt
0 Q 59 89

T T
< C/ / e*?|0pz — Az|* dadt + Cs/ / e**P0|Vz - n|* dvydt, (2.6)
0 Q 0 T

for all z € HY(0,T; L?(2)) N L2(0,T; H*(Q) N HL()).
Here and in all the paper, we denote by C a positive constant which depends on T" and 2, A in

Case 1 and p in Case 2, unless specified otherwise where appropriated. The proof of this theorem is
given in Appendix A. A consequence of Theorem 2.1 is the following lemma:

Lemma 2.2. Under the same assumptions as Theorem 2.1, there exist so > 0 and C > 0 such that,
forall s > sq :

T T
s/ 25910 | 2(Tp)|? da < C/ / e*?|0pz — Az|* dadt + Cs/ / e**°0|Vz - n|* dydt, (2.7)
Q 0 Q 0 T

for all z € HY(0,T; L?(2)) N L2(0,T; H*(Q) N HL(Q)).
Proof. We have

To d To
0N z(Ty T = — e“*Plzl“dx | dt = (€77 |z xdt
6234,0(T) 2 d 2sp| .12 d d b 25| .12 dad
Q o dt \Jg o Ja
= / / 2 <22 <501/2 591/2) Oz + 258tcp|z|2> dxdt
0 Q

To 1 To
§/ /625“’2|0t22dxdt—|—/ /625“"(82«9+28|8t90|)|z2dxdt
o Ja s o Ja

cr[m 255 1 2 T 250 39212
< — e**? — |0y z|* dxdt + e*%5°0%|z|* dxdt
s LJo Jao  s0 0o Jo

where we have used that |9;¢| < C#%. Thus, the result follows from (2.6). O

Remark 2.3. To better design Carleman weights for numerical purposes, it would be interesting to
make a comprehensive comparison between different possible choices of Carleman weights for the heat
equation. In particular, in such a study which is beyond the scope of our paper, it would be necessary
to spell the lower bound on s in the associated Carleman inequality.

Remark 2.4. We could have considered other kinds of boundary data by completing the first equation
of (1.1) with Neumann conditions instead of Dirichlet conditions and by replacing the first measurement
in (1.2) by a measurement on a part of the boundary of u itself. In this case, following [15] and [11],
we still have a Carleman inequality with the classical weights (2.1) and we can still prove the global
convergence of the numerical method. For the numerical tests, it would be interesting to see if we can
get a Carleman inequality with weights similar to the ones of Case 2.



2.2 Regularity result

Let us give a regularity result for problem (1.1). The proof of this result is presented in Appendix B.
Proposition 2.5. Assume thatu, € H*(Q), 0 € L™(Q), h € H'(0,T; L*(Q)) and g € H' (0, T; H3/?(9Q))N

H?(0,T; H/?(88)). Moreover, we assume that h(0,-) = 0 in .
Then the solution u of (1.1) belongs to

u e CH0,T; H'(Q)) N H?*(0,T; L*(Q)) N H' (0, T; H*())
with the estimate
lullcro ) + 1ullgzor 2 ) + 1wl or w2 @)

< C (10l ey + 1018 ey ) (Il sz + IR o 2z ) + € (ol magy + Tntol ey )

+C (HgHHl(O,T;HS/Q(aQ))ﬁH2(O,T;L2(BQ)) + HgHl;ll(0,T;H3/2(8Q))QH2(0,T;H1/2(8§2))>
(2.8)

where the power p > 1 is a fized integer and C' only depends on T and ).

Let us note that, in the above proposition, the regularity assumed for g is not optimal, it would
indeed be sufficient to assume that g € H(0,T; H*/2(09)) N H2(0,T; H*(9Q)) with x > 0 (see [24,
Chapter 1, Subsection 9.2]). In this result, if we do not make the assumption that A(0,-) = 0 in €, it
is necessary to assume that o belongs to H!(2) (since we need an initial condition in H*(Q) for the
problem satisfied by dyu). But this additional regularity assumption on o leads to difficulties in the
construction of the iterations in Algorithm 1.

2.3 Stability inequality

In this paragraph, we state a Lipschitz stability inequality for our inverse problem. This result asserts
in particular that the unknown o is identifiable from the measurements given by (1.2). It is obtained
thanks to a direct application of Bukhgeim-Klibanov method [5] and relies on the Carleman inequality
given by Theorem 2.1 and the regularity result given by Proposition 2.5. We do not give the proof
here and refer to [15] for a closely related result.

Proposition 2.6. We assume that uo, € H3(Q), g € H'(0,T; H?(0Q)) N H?(0,T; H'/2(09)) and
h € HY(0,T; L>(Q)) is such that h(0,-) = 0 in Q and |h(Tp,-)| > B > 0 in Q. We consider o1 and o2
in L () which satisfy (1.3). Then, for i =1, 2, if we denote by u; the solution of (1.1) associated to
0i, we have the following inequality: there exists C > 0 such that

lor — o2l 2y < C (Ilua(To) — uz(To)ll g2y + IV (w1 — u2) - nll 1o ri2(ry) -

3 Numerical reconstruction method and theoretical study

3.1 Presentation of the algorithm and convergence

In this subsection, we construct a sequence (o} )geny which approximates the unknown o and we state
the convergence of this sequence. We make the following assumptions:



Hypotheses 3.1. e u, € H3(Q) and g € H'(0,T; H3/?(0Q)) N H?(0,T; H'/?(5Q)).
e 0 € L™(Q) satisfies (1.3).
e h satisfies
he HY0,T;L®(Q)), h(0,-)=0inQ (3.1)
and

Ih(Tp, )| >8>0 inQ. (3.2)

e The weights 6 and ¢ are given by Case 1 or Case 2 described at the beginning of paragraph
2.1. In Case 1, the parameter A is fixed and large enough.
In our paper, we denote by M an arbitrary constant which only depends on T', Q, oymaz, [|Uol| i3 ()
[Pl z1 0,752 0)) and 9| g1 0,1 m3/2 (002 ) E2 0,1 1172 (062)) -

First, we initialize the sequence with o9 = 0 (or any guess such that ||ogl| L) < Omaz)-
Now, let us assume that we are at step k£ and that we have constructed o, which satisfies

||Uk||L°°(Q) < Omaz- (33)

We denote by uy the solution of (1.1) associated to o and by u, the solution of (1.1) associated to
the unknown o. Moreover, we set v = Uy — Ug.

We then use Proposition 2.5 and we denote by M > 0 a fixed constant depending on T, Q, 0maz,
[woll rr3(@)s 1Al 2 (0,7502(0)) and |9l g1 0,2, 1372 (902 )2 (0,151 /2 (92)) Such that

loellcomxay + lvklleroma @) + vkl zo,r;220) + vkl 20,1 m2(0)) < M. (3.4)

The function vy, is solution of

O (t, ) — Avg(t, ) + v (t, x)qok, ug|(t, x) = (o(x) — ox(x))h(t,z), (t,x) € (0,T) x Q,
Uk(tv .’IJ) =0, (t,.’L’) S (OaT) X 0,
vg(0,2) =0, T €€,

(3.5)
where we have set g[v, u] = 3u? + 3uv + v2. Let us differentiate the equation with respect to time. We
introduce wy = Jyv;, which satisfies:

Orwy(t, x) — Awg(t, ) + wi(t, z)qvk, u)(t, ) + v (t, )0 (qve, wk]) (t, z) = fi(t,z), (t,x) €
wi(t,x) =0, (t,x) €
wi(0,2) =0, x € Q,
(3.6)
where, for all (¢t,z) € (0,T) x Q,
fr(t,z) = (o(z) — or(x))0h(t, x). (3.7)

Let us now explain the core idea of the numerical method that we will introduce below. We notice
n (3.5) that

wg(To, ) = Oy (To, x) = Avk(To, ) — vi(To, x)qvk, uk)(To, ) + (o(z) — o (x))h(Ty, ), z € 9.
(3.8)



Hence, if wy(Tp,-) was known, then o could be directly computed, because we assume that h(7p,-)
satisfies (3.2) and the other terms in (3.8) are given observations thanks to (1.2). However, since fj
defined in (3.7) depends on o, wy is unknown. Thus, the idea is to use Zj obtained via the minimiza-
tion step (Step 2) of Algorithm 1 as a proxy for wg. In Section 3.4, we will estimate the discrepancy
between Zj and wy, (both seen as minimizers of functionals) with respect to f.

For the constant M > 0 introduced in estimate (3.4), we consider the following function:

Tyy: R—R

3.9
X — X® (X> , (39)
M
where ® € C3(R) is such that 0 < ® < 1 and
1, if[X|<1,
B(X) = x| < (3.10)
0, if|X|>2.

The properties satisfied by Ty are given in section 3.2. For any u in L?((0,T) x I') and for s large
enough, we introduce the functional Jy (] by

1 T T
Jox[p](z) = / / %% | Pz | dxdt + S/ / ¥ 0|V 2 - — pl? dydt, (3.11)
’ 2Jo Jo 2Jo Jr
with
Ppz = 0z — Az + 3(ug)?z + 60yurur Tip(y) + 30wu Tip(y)? + 6urz Tip(y) + 32 Tip(y)? (3.12)
where

t

y(t,x):vk(TO,x)—i—/T S D), (b)) € (0,T) x Q.

By this way, since vy, satisfies (3.4), T5;(vi) = vi and Py (wy) corresponds to the left hand side of the
first equation of (3.6).
We consider the functional Jy ;[u] on the function space

E = {z €% (8z — Az) € L2((0,T) x Q),e¥0Y?Vz - n e L*((0,T) x I),
0%z € L2((0,T) x Q), e*07 22 € H'(0,T; L*(Q)) N L*(0,T; H*(Q) N H&(Q))} (3.13)
endowed with its natural norm.
The next iteration o1 is defined by following four steps:

Algorithm 1. Iteration: From k to k+ 1
e Step 1 - We set ux, = 9y (m — Vug -n) on (0,7) x I', where m is the measurement defined in (1.2)
and uy is the solution of (1.1) associated to oy.



e Step 2 - We denote by Zj, a critical point of Jo x[p] in E.
e Step 3 - We set

Zi(To, x) — Avg(To, ) + vi(To, z)qlvg, ug)(To, x)
h(T(), ac) ’

Op+1(x) = op(x) + x € €. (3.14)

e Step / - At last, we define
Ok+1 = Ho'maz (5’6"1‘1)7

where I, . is given by

I (O’) . g, if ’U| < Omaz,
gmar sign(o)omaz, otherwise.

Remark 3.2. Let us give some comments reqarding the different steps of Algorithm 1.

o According to Lemma 3.6, Jo ] (defined in (3.11)) admits a global minimizer in E if s is large
enough. Hence, this result in particular ensures the existence of a critical point which is needed in
Step 2 of the algorithm. For the numerical implementation of this step, we refer to Remark 4.1.
Let us also notice that, as the functional Jo k[pr], Zi depends on s but we drop this dependence
to avoid heavy notations.

o In Step 3, 0p41 is well-defined because h satisfies the positivity condition (3.2) and h(Ty, -) belongs
to L?()). Moreover, in this expression, vy (Tp,-) is known and given by vy (Tp,-) = r — ug(Typ, -)
where r is the measurement defined in (1.2). Since uy(To) and vi,(To) belong to H*(Q) and Zi(Tp)
belongs to L*(QQ), G141 belongs to L2(9).

e Step 4 is needed to ensure that o1 satisfies (3.3) at step k + 1.

Now we state the main theoretical result which gives the global linear convergence in the weighted
L?-norm of the sequence (0)xen:

Theorem 3.3. Under Hypotheses 3.1, there exist so > 0 and M > 0 such that for all s > sq, for all
keN

M
/ 2520 gy — ofPda < / 20| — o|dux. (3.15)
Q s Ja
Thus, for s large enough, (ok)ken tends to o when k goes to +o00.
This theorem will be proved in Subsection 3.4.

Remark 3.4. Let us notice that our method may also be applied to the identification of a source in
the simpler case of the linear heat equation. In this case, the inverse problem is linear and thus the
properties of our method (in particular the global convergence) are much more classical. If we simply
consider the least square method, the functional is quadratic and, thanks to the stability estimate, we
can prove that this functional is strongly convexr. Thus, a classical gradient descent method globally
converges and it is not necessary to introduce our algorithm which is more complez.



3.2 Properties satisfied by the function 73;

Proposition 3.5. The function Ty defined by (3.9) belongs to C2(R) satisfies the following properties:

a) For all X € R,
| Tyr(X)| < 2M. (3.16)

b) There exists L > 0 such that

T5(X)| < Lx_opzonn(X), VX ER, (3.17)
where x 4 is the characteristic function of a set A.

c) For all X1, X2 € R,
Ty (X) - Ty (X)) < LIX1 — Xal, (3.18)

which implies in particular that T3z is a Lipschitz operator.

d) There exists C > 0 such that, for all X1, X2 € R,
| T57(X1) — Tip(X2)| < OlX1 — Xal, (3.19)

Proof.  a) For X € R, we have

X <|X|, if [X|<2M
T (X)| = |X® <> = __ ¢ <2M
M =0, if|X|>2M

b) By definition (3.9), T4(X) = 0 for all [X| > 2M . Moreover, for all | X| < 2M, we have
X X X
0l = (37) + 572 (5
<14 2[|9]| ¢y (m)-

c) This is a direct consequence of (3.17) and the mean value inequality.

d) By the same arguments as in b), we show that
T (X)| < Lx_opronpy(X), VX €R. (3.20)

Hence, (3.19) is a direct consequence of (3.20) and the mean value inequality.
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3.3 Properties satisfied by Jy x|/

The following lemma ensures the existence of a global minimizer of Jy x[x] in E. This result in particular
ensures the existence of a critical point Zj introduced at Step 2 in Algorithm 1.

Lemma 3.6. Let pu be given in L?((0,T) xT) and assume that Hypotheses 3.1 hold. There exists so > 0

which depends on T, Q, Omazx» HuoHHa(Q), HhHHl(OyT;Loo(Q)), and HgHHl(0,T;H3/2(8Q))QH2(0,T;H1/2(8Q))
such that for all s > so and for all k € N, the functional Jy[p] defined by (3.11) admits a global

minimizer in E.
Proof. According to Proposition 2.5, there exists a constant M > 0 such that
ukllcro,mmr @) + 1kl a20,m020)) + vkl g1 o,mm200) < M. (3.21)

Using this estimate and (3.18), we have the continuity of Jyx[y] in E. Moreover, since Joklp] is
positive, it admits an infimum in E and we can introduce a sequence (z,)nen such that

Jorlpl(zn) — inf Joklpl(2).

n—-+o0o 2cE

Let us study the convergence properties of the sequence (z,)nen. First, we notice that we can write
Pz, under the form
Pz, = Oz — Az + TknZn + Skn,

where 7, and sy, only depend on wuy, Oyuy, and T;(yy,). Using inequality (3.21) and the property
(3.16), we deduce that 7y, is bounded in L>((0,T) x Q) and sy, is bounded in L?((0,7) x Q) by
some constant M. Hence, writing that

1
|Pk:zn’2 Z 5‘815271 - AznP - 2|Tk,nzn‘2 - 2|Sk,n’27

we get

1 (T T
Jo k1] (zn) > / / 5P| 0 2y, — Az |Pda dt — M/ / 25|z, |2dx dt — M
4Jo Jao o Jo

T T
+2 / / 20|V 2, - n|? dydt — > / / €202 dvydt.
4Jo Jr 2Jo Jr

According to the Carleman inequality given by (2.6) and using the fact that se?*?0 < C in (0,7) x Q
for the third term in the right hand side, we deduce that, for s large enough,

T 1 1
/ / 259 <0|atzn|2 + 79|Azn|2 + 50| V2 |* + 5393|Zn|2> dxdt < Jo,k[u](zn)+M+CHMII%2((0,T)XF)-
0 Q S S

(3.22)

By construction of (z,)nen, the sequence (Jo[p](2n))nen is bounded and thus the left hand side

of this last inequality is bounded. According to the definitions of § and ¢ which are given by (2.1) or
by (2.4), we have in (0,7") x Q

10,0] + |9,0] < CH* and |VO| + |V| + |D?*0| + |D?p| < CH
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and thus (e52071/22,,) e is bounded in H(0,T; L2(Q))NL%(0, T; H%(Q)). We deduce that, (e570~1/22, ) pen
weakly converges to some element in H(0,T; L*(Q)) N L?(0, T; H%(Q)) that we denote e*26~1/2% (all
the convergence results given in this proof are valid up to a subsequence but we do not specify it in
order to lighten the writing).

Moreover, since H'(0,T; L?(R2)) N L2(0,T; H*(Q)) is compactly embedded in L2((0,T) x ),

eP0722, — 0712z in L2((0,T) x Q) (3.23)
and, by identification of the limit, since §~% belongs to L°°((0,T) x ), we also have
e*00%/22, — 320327 weakly in L?((0,T) x Q)
and
P02V 2, — *¥0'/2V 2 weakly in L2(0,T; H'(Q)). (3.24)
Let us now prove that ngrfoo Joki)(zn) = Jok[p](Z) which will imply that Z minimizes Jo [p]. Since
(Jo.k[1](21))nen is bounded, (e°¥0'/2(V 2, -n))nen Weakly converges in L2((0,T) xT') and (€% P2y ) nen
weakly converges in L?((0,T) x ) and it is sufficient to identify their weak limits. The fact that
e*P0'2(Vz, - n) — e*$0'2(Vz - n) weakly in L*((0,T) x I)
directly comes from (3.24). To identify the limit of (%% Pyzy,)nen, we will prove that
P02 Pz, — 520712 P,z weakly in L2((0,T) x Q). (3.25)

We first consider in the definition (3.12) of Py the three first terms which correspond to the linear part.
The weak convergence of (e570~1/22,),en to €¥2071/22 in HY(0,T; L*(Q)) N L*(0,T; H*(Q)) implies
that

P02 (02 — Az + 3(ug)2) — €207 Y2(8,2 — A7+ 3(up)?2)  weakly in L2((0,T) x ). (3.26)

Now we define, for all ¢ € (0,7)

t t

a(@)dd and §(t) = vp(Th) + /T (t)dr

yn(t) = vp(To) + /

To
For the other terms in the operator P, let us first prove that (e526~1/ 2T57(Yn))nen strongly converges
to e370~1/2T=(5) in L>(0,T; L*()). To do so, we observe that

2

t
/6259001/2\yn—gj|2dx:/62‘9“”91/2 / (zn — 2)(t',2)dt'| dx
Q Q To

t
< o/ ¢230-1/2 / 12 — Z12(, 2)dl!
Q

To

dz.

By definition (2.1) or (2.4) of ¢ and 6 and since Ty = Z, we have, for all ¢’ between Tj and ¢, for all
ASRY)
o(t,z) < o(t',z) and O(t,z) > 6(t', z). (3.27)

12



This implies that

T
]\65“"9_1/2(% - :’-7)”%00(077“;[12(9)) S C/O /9628809_1/2’2n - 2’2dl' dt.

Thus, according to (3.23), (€520~ Y2y, ),en strongly converges to e¥0~'/2j in L>(0,T; L*(2)) and
since T5; satisfies (3.18), this implies that

P02 T (yy) — P07 Y2 T5(5)  in L°(0,T; LA(Q)). (3.28)

We can now study the limit of the remaining terms of e%¢ Pyz, when n tends to +o00 : using (3.16),
(3.21) and (3.28), we have

20 20pupun, Tip(yn) — P07V 20upu Tp(9)  in L2((0,T) x Q) (3.29)

and
P07 20pu, Tir(yn)? — €907V 200 Tip(9)? in L2((0,T) x Q). (3.30)

Let us now prove that
P9V 2y 2, Trr(yn) — €207V 2 2 () in L2((0,T) x Q). (3.31)

The strong convergence (3.23) of (e5#0~1/22,),en implies the almost everywhere convergence of
(2n)nen to Z and the existence of a function 2, in L2((0,T) x ) such that, for all n € N

€207 122, | < z,.

Moreover, the strong convergence of (e*20~1/2y,) ey in L2((0,T) x Q) implies the almost everywhere
convergence of (y,)nen to §. Thus, we deduce that

P02 2, T (yn) — 5201 2, 5 T57(7) ae.

and
|e$§09_1/2ukzn Ti7(yn)| < Mz,

And these two properties imply (3.31) according to Lebesgue’s dominated convergence theorem. At
last, we use the same arguments to prove that

P02, Tor(yn)? — €072 2 Tip(§) i L2((0,T) x Q). (3.32)

Finally, gathering (3.26) and (3.29) to (3.32), we obtain (3.25) and we conclude that Z is a minimizer
of Jo k1.
O

Due to the nonlinearities in our equation, we can not state the strong convexity of Jy[u] in E.
Nevertheless, it is interesting to notice that the strong convexity property holds if we consider a smaller
space than E including some boundedness hypotheses which allow to deal with the nonlinearities
(similar results are obtained in [19])). We state this property in the following lemma:

13



Lemma 3.7. Let C > 0 be fized. We define

Ec = {Z € H1(07T§ LQ(Q)) N LQ(O,T; H2<Q) N H&(Q)), HZ”L2(0,T;H2(Q)) + HZHHl(o,T;L2(Q)) < C} .
(3.33)
For sg large enough, Jo k1] is strongly convex in Ec for any s > sq.

This Lemma is proved in Appendix C. Contrary to the wave equation where the weights stay far

from 0 (see |1, Section 4]), our weights, as usual for the heat equation, vanish at 0 and 7" and it is not
clear that a minimizer of Jy ;|| in E will belong to E¢ for some C' > 0. Therefore, it is not possible
to deduce the uniqueness in E from the strong convexity in F¢.
This convexity property is not used in the proof of Theorem 3.3 but it is an important property for
the convergence of numerical minimization methods (we refer to Remark 4.1 for a discussion on the
numerical methods and the fact that the property shown here does not correspond exactly to the
numerical framework).

3.4 Proof of the convergence result stated in Theorem 3.3

For py = 0y (m — Vuy -n) on (0,7) x I, we define the functional

1 T T
@) =5 [ [ e ipe = v+ 5 [ [ 000 -l avat,

where Py, is given by (3.12) and f is defined by (3.7). We notice that wy, solution of the equation (3.6)

minimizes Jy[py] in E. Indeed, according to (3.4), T5;(vk) = v and this implies that Jj ] (wy) = 0.
Let us now compute the Gateaux derivative of Pj at point w, for any w € E. Let z € E,

DPy(w)(z) = lim Zel0 +€2) = Pelw)

e—0 €
=0z — Az + 3z ((uk)2 + 2w Ty7(v) + TM(U)Q)
+ 6T’M(v)@ (Orupug + pupThz(v) + wpw + wTip(v))

(3.34)

where v(t) = v (Tp) + /T wt)dt', y(t) = /T 2(t)dt'.

Then, w;, satisfies theO first order optimali)ty condition given by
T T _
/ / e (Pywy, — fr) DPr(wy)(2) dedt + s/ / e**P0(Vwy, - n — g, ) (Vz - n) dydt = 0, Vz e E.
0 Q 0 T

(3.35)
Similarly, Z;, satisfies the first order optimality condition

T T ~
/ / e*¢ (P, Z,)DPy(Z1)(2) dmdt+s/ /625@9(VZk-n,uk)(Vz-n) dydt = 0, Vz € E. (3.36)
0 Q 0 r

14



Let us define z;, = wy — Z;. We compute the difference between (3.35) and (3.36) and take z = z.
We get

T
/ / €2scp((Pkwk — Py Zy)DPy(Zk)(2k) + Pewy (D Py(wg)(2k) — DPy(Zk)(2x))) dadt
Q (3.37)

T T
+ 5/ / e**P0|V 2y, - n|? drydt = / / %2 f, D Py (wy,) (21 dadt.
0 r 0 Q

This implies that

T T T
/ / %% (Pywy, — PpZy,) D Py (Zy) (21) dadt + S/ / 0|V 2, - n|? dadt < / / | fr)? dadt
0o Jo o Jr 0o Jo

1 T T
+ 4/ / 625¢|DPk(wk)(zk)|2 dxdt + / / 625¢\Pkwk\|DPk(wk)(zk) — DPk(Zk)(Zk)’ dxdt.
0 Q 0 Q

(3.38)
For what follows, we define, for all t € (0,7)

Vlt) = T )+ | Z@)i and Git) = uilt) =il = [ attar.

To

We will estimate separately the different terms of this inequality. We divide the computations in several
steps.

e Step 1. Let us first find a lower bound for the first term in the left-hand side of (3.38).

Pywy, — P2y =0z — Azi + 3(up,) 25 + 60pupu (Top(vx) — Tp(Ya)

+ 30u Ty (vi)? — Typ(Ye)?) + 6up(Typ(v)wi — Typ(Ya) Zi)
+ 3(Typ(ve) *wi, — Typ(Yi)* Zk)

=0z — Az + 3(uk)22k + 60surur (T (v) — Th7(Y))
+ 30pur (T (vi) — T (Ye)) (Tip(ve) + Tip(Ye)) + 6upze Thp(Ye)
+ Gup (Typ(vr) — Top(Yie) ywi + 32 Typ(Ya)®
+ 3(Tgr(vk) + Tr(Ye)) (Taz(vi) — Tip(Ye))we

=0z, — Az + Ry .

Using (3.16), (3.18) and (3.21), we can estimate Ry
| Ry k| <M|z| + Myg|(|0yue| + |w))-
Moreover, from (3.34), we can write DPy(Zy)(2i) = Orz, — Az + Ra , where, according to (3.16)

and (3.21)
| Ro k| < Mlzg| + M| Tgr(Ye) |75l (10u] + [ Zi])-
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We deduce from these inequalities that
T T
3
/ / eQS‘P(Pkwk — P Zy)DPy(Zk) (2 )dxdt > 4/ / e2s“0|8tzk — Azk|2dxdt
0o JOQ 0 JO
T T
M [ [ ot Pdade =0 [ [ P00 + o + [T (V) PO Pt (339
0o JQ o Jao

T
M [ | TP 2 s
0 Q

According to (3.17) and using that Z; = wy — 2 and that X[ 237 27] (Vi) < X[—377,37] (7)) thanks
to (3.4), we get for the last two terms that

T
/0 /Q €22 5 2 (O ? + |wil? + [T (V) Pl0yug ? + [T () | Zi ) dacdt

T (3.40)
< [ [ R0l + lunl? + xi_sar g (50) |2 o
0
Let us estimate this last integral. We first notice that
T T
/0 /Qezwlyk\QX[_?)M’gM] W) |2k dzdt < M/o /96235"\zk2d§cdt. (3.41)

Next, according to (3.21) and (3.4), we have

T
/0 /962w|yk|2(|8tuk|2 + |wy|?) dadt < HewﬂkH%oo(om;p(g))(”atukH2L2(0,T;L°°(Q)) + ”wkH%Q(QT;LO‘?(Q)))
< MHeswka%W(QT;LQ(Q))'

We have, for all ¢t € (0,7")

2

t

/ 22D |y (¢, 1)) da = / 25 (t:) / 2t 2)dt'| dx

@ @ o . (3.42)
< C/ 2 (to) |2k (', ) |2dt | do < C/ /625¢|zk\2da:dt’
Q To 0 Q
using inequality (C.5) for ¢. By this way, we deduce that
T T
/ / 2525, [2(10yug |2 + wn2) dadt < M/ / €259 P d (3.43)
0 Q 0 Q
Using, (3.40), (3.41) and this last inequality, (3.39) becomes
T 25 3 4 25¢p 2
e“*?(Pywy, — PpZi) D Py (Zy) (2 )dxdt > 1 e“*?|0pzy, — Azg|*dxdt

0 e 0 e (3.44)

T
—M/ /ezsﬂzkIdedt.
0 Q
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e Step 2.To bound the second term in the right-hand side of (3.38), by definition (3.34) of D P,
we have, according to (3.17) and (3.21)

| DPy(wie) (z1)[* < 2/8ezk — Azl + Mlze|* + Mgy *(|0pur]® + Jwi ).

Thus, using again (3.43), we get

/ / €29\ D Py (wy,) () |*dedt < = / / 5|02y, — Az dxdt+M/ / €% 21, 2 dxdt.

(3.45)
e Step 3. To bound the last term of (3.38), we notice that

DPy(wy)(z) — DPy(Zg) (21) = 321, (2upTyp(v) + Typ(vi)?) — 321 (2w Tp(Yi) + Ti7(Yi)?)
+ 6T/M(Uk)yk (8tukuk + Opu Ty (vg) + upwy, + wkTM(vk))
— 6T5;(Ye) Uy, (Orurup + OrurTyp(Ye) + uka + ZkTﬁ(Yk))
=625y, (Typ(vi) — T (Vs )) + 3z, (Tp(ve)® = Typ(Ya)?) + 60unudy, (Tor(vr) — Tor(Vi)
+ 60pur Ty, (Typ(vr) — Tip(Ya)) Tap(ve) + GatukT' (Ye)ur (Tr(v) — Tir(Ye))
+ 6uryy (T (vg) — TM(Yk)) wy, + 6ukT (Y)Y 2k + 67 (T (vg) — T’M(Yk)) wi Ty (vk)
+ 6757 (Vi) Uwn (Tip(vx) — Typ(Ya)) + 6T (Ye) Gy 2 T (Vi)

Hence, using that [T5;(Ye)| < Lx(_sa7.057 (Ye) < LX(_s57 337 (Uk)
| D Py (wi)(zk) — DBk (Zk) (2k)| < Mlzk| + My |([Ovur| + [wr] + |zkx(_337 387 Tk ))-
This implies that

T
/0 /9628(p|Pkwk:||DPk(wk)(zk)_DPk(Zk)(Zk”dmdt

1 T 1 T
0 Q 0 Q

1 T T
< / /eQSso\kaQdmdt—i—M/ /ezsﬂzkIdedt
2Jo Ja 0 Jo

according to (3.41) and (3.43).
Using (3.44), (3.45) and (3.46), inequality (3.38) becomes:

1 (T T
/ /625¢|8tzk—Azk]2d:Udt—l—s/ /625“’9|Vzk-n|2d7dt
4Jo Jo o Jr
3 T T
</ /625¢]fk|2dxdt+M/ /628‘p|zk|2dxdt.
2Jo Ja 0 Jo

Using Theorem 2.1, we can eliminate the last term in the right hand-side of (3.47) for s larger than
some constant sg. Thus, using inequality (2.7), we get the following bound on z(7p):

(3.47)

T
s/ e2s“p(T0)|Zk(T0)’2d$§ M/ /@Zsﬂfkfdg;dt. (3.48)
Q 0 Q
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In the left hand-side of this inequality, we have zx(Ty, x) = wi(To, x) — Zk(Tp, ) for x € 2 and, using
(3.8) and (3.14), we get that

Zk(TOa ‘T) = 7h(T0a ‘T)(&k:-‘rl(x) - U('T))v z €.
In the right hand-side of (3.48), since fj, = (ox—0)0;h and h is assumed to be bounded in H*(0, T; L>(2)),

we have .
/ / 25| f|? dadt < M/ e?5?10) | g — o|? da.
0o Ja Q

Using (3.2), we get that
s/ 2 ?M0)|5  — o dx < M/ e25¢10) |5y — 0|2 du.
Q Q

Now, to estimate o1 = I, . (0k+1), we notice that, since o satisfies (1.3), we have
|ok+1 — 0| < |oky1 — ol in Q. (3.49)
Thus, we get (3.15) and, applying iteratively this estimate, we obtain that
/ 22| gp 1 — o2 da < () / 2510 |50 — o dux.
Q S Q

Thus, for s large enough we deduce from this inequality the convergence of the sequence (oy)ren to o.
This concludes the proof of Theorem 3.3.

4 Numerical issues

4.1 Numerical methods

In this subsection, we present the discretization procedure and the numerical methods used in our
numerical simulations. To simplify the presentation, we explain the discretization scheme in the one-
dimensional case and assume that @ = (0,L) for L >0 and I' = {o = L}.

Generation of the data

In this article, we work with synthetic data. To discretize the reaction-diffusion equation (1.1) for the
exact source o, we use a finite differences scheme based on the three-point backward Euler scheme
and a linearization of the cubic term. We denote by N, € N the number of discretization points in
the interior of [0, L] and by Ny € N the number of discretization points in the interior of [0,7]. The

T
d At =
N, +1 ™ N, +1

0<j<Ny+1land 0 <n < N+ 1, uj anumerical approximation of the solution w(t",z;) with

t" = nAt and z; = jAz. The approximated solution is computed in the following way:

space and time steps are denoted by Ax = respectively and we define, for

Initialize: u? = uo(z5), 0<j<N,+1.
For 0 < n < Ny, knowing «", compute "' as the solution of the linear system:
WL gn L gumtl g ntl (4.1)
R P () 4 30 () — ) = o(a)h(t" @),
upg™ = g(t"*,0) and WL, =g(t"t L), 1< <N,
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where the time implicit cubic term (u}1Jr1

(u] )3 4 3(uj M2(u ?H uf). Then, we compute the counterpart of the continuous measurements r and

glven in (1 2) as follows:

)3 has been approximated by its first order Taylor expansion

u —u
m”zw, 0<n<N;+1 and Tj:u?(), 0<j<N,;+1,

with ng is the integer part of Ny/2 + 1.
On the computed data, we may add a Gaussian noise:

m" +—m" + a(maxm™)N(0,1), 0<n< N +1,
n

4.9
T <—7“j+a(mfx7"j)/\/(07 1), 0<j<N;+1, (42)

where N (0, 1) satisfies a centered normal law with deviation 1 and « is the level of noise (i.e. a = 0.01
corresponds to a noise of 1%).

Discrete algorithm

We present in this subsection the discrete version of Algorithm 1. In order to lighten the notations, we
will denote by & the source term at the current iteration (previously denoted by o in the continuous
framework).

Algorithm 2. Initialisation : Start with ¢ = 0.
Iteration : Until the convergence criteria is reached, do
e Step 1 - Knowing & € RY=, solve

—n+1 — —n+1 —n+1 n+1
u? u]—i-l Quj U + (ﬂn)S = 5,;h(t", ;)
é Ax? J s (4.3)
ag™ = g(t"*t1,0) and u’f\;ﬂl =g(t"*t L), 0<n<Ng, :
U?*uo(l'j)a 1 <7< Ng,
and set v; = r; — u;°.
e Step 2 - Define for 1 < n < Ny,
N, 41— an, \" Un,+1 — an, \"
m— —Netl  TNs (= el PNe
< Ax ) ( Ax )
"= (4.4)
a 2AL '
and discretize the functional (3.11) as follows:
Nt Nz _ZTL 2
Toxlul(z) = S AAR S S0 P (B + Atz ettt gy | Z eyl (45)
n=1 j=1 n=1
where
2L _pnml o gn o _9an g gn avtt — gt
(Pra)p = L T = L DL (@2 4 6 ()
J 2At sz ] 2At J J (4 6)
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Withzgzz}{,zﬂ:0fora110§n§Nt+1 and

Yy’ = vj, 1 <7< Ng,
Y = y?_l + Atz if n > no,
Y = y;‘H — Atz}, if n < ng.

Find a critical point of Jy ;[u] which is denoted by Z = (Zjn)lgjgNz,OgngNH»l
e Step 8 - Update

Vj41 — 2Uj + Vj—1
Ax?
h(tno,l‘j) ’

Z;° — +vjqlvj, u5°]

0j <— 05+ 1< <N, (47)

e Step 4 - At last, define
gj «— sign(a;) min(omaq, |05]).

The iterative loop is stopped when two consecutive & are closer than a fixed relative tolerance ¢ or
when the maximal number of iterations is reached. In the absence of knowledge of the exact solution
o, the quality of the converged solution is measured thanks to the following criteria

_ UN,+1 — UN,
Az
Il

Ir — @] Hm
err, = —————
e

and erry, = 2 (4.8)

that should be of the order of the noise level on the observations. If the exact solution o is known, we

can also compute the relative error
er. — 1o = 0ll2
o =

loll2

Remark 4.1. For the numerical implementation of Step 2 in Algorithm 2, we determine a critical
point of Jo k[p] by applying the Newton method or Newton-Krylov method [/, 21]. This last method
belongs to the family of inexact Newton methods and consists of solving at each step the linear system
in a Krylov subspace. The Newton minimization method is globally convergent if the functional is
strongly convex. To be in this framework, it would be necessary to prove that the discrete functional
Joi (4.5) is strongly convex under boundedness assumptions (like in Lemma 3.7 for the functional in
the continuous setting) and to prove that the discrete minimization sequence satisfies these bounds. A
complete study of the discretized algorithm could be tackled in the future and would involve in particular
a Carleman inequality for the discretized heat equation. In our numerical simulations, we have taken
the initial guess of the iterative Newton-Krylov method equal to 0 and checked that the convergence
does not depend on this initialization. Thus, we observe numerically global convergence properties for
the minimization of Jo [u].

Remark 4.2. In order to avoid the inverse crime, we introduce a bias by taking different schemes
for the direct and the inverse problems. Hence, we solve (4.1) associated to o thanks to a linearized
implicit scheme and we use an explicit scheme for the nonlinear term in equation (4.3) with & = oy,.
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Numerical challenges

One of the main drawbacks of the numerical method presented in Algorithm 1 is that we have to
differentiate in time the observation m in (4.4) and to take the Laplacian of the observation r in (4.7).
Thus, even a small perturbation (noise) on the observations may induce a large perturbation on its
derivatives. In order to partially remedy this problem in the presence of noise, we first regularize the
data (m,r) thanks to a 3-order low-pass Butterworth filter [0] associated to a cutoff frequency w. We
also replace the classical finite difference formulae in (4.4) and (4.7) that generate instabilities by a
Savitzki-Golay formula [25] associated with a cubic polynomial and a window size of 5 points.

As already mentioned previously, another difficulty is the presence of the exponential weights in
the functional that leads to severe numerical difficulties when performing the minimization for s large.
Indeed, to ensure the strong convexity of the functional Jyj (see Lemma 3.7) and the convergence
of Algorithm 1 (see Theorem 3.3), s has to be large. In [2], this difficulty was solved by choosing a
functional that only depended on the conjugate variable e*#z and the corresponding conjugate operator.
But this was possible because the considered operator was linear. Here, we managed to deal with this
difficulty by introducing the new weight functions (2.4). In Figure 1, we plot e*? in (0,7") x (0, L) for
s =1 and s = 100. Notice that even for s large, the function does not vanish at the observation time
Ty = 0.5 what allows a good reconstruction of the source term in the whole domain 2. Numerically,
we observe that for s = 1, the minimisation step is slow (5202 seconds for s = 1 versus 17 seconds for
s = 100 for the test case of Figure 3 (a)) and in some cases the convergence of the algorithm is not
achieved (for example in the test case of Figure 3 (b)).

w0 00

(b) s = 100

Figure 1: Carleman weight function e*? defined in (2.4) for different values of s.

4.2 Numerical results

This subsection is devoted to the presentation of some numerical examples to illustrate the properties
of the numerical reconstruction method and its efficiency. All simulations are executed with PYTHON.
The source codes are available on request. Table 1 gathers the numerical values used for all the
following examples, unless specified otherwise where appropriate. Moreover, we construct the function
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® introduced in (3.10) in the form:

(1, if | X| <1,
1| -1
B(X)=d1- 12 eXP((xl)(zx))d”:’ 1< |X| <2,
Ji exp ((x—ﬁ(lQ—x) dx
0, it x| > 2.

Figure 2 presents some examples of data generated by the direct problem. In all the figures presenting
the numerical results, the exact source that we want to recover is plotted by a red line, whereas the
numerical source recovered by our method is represented by a dotted black line. The convergence
informations (number of iterations, running time, convergence errors) are reported in Table 2.

L T Ny | Ny g Uo Omazx
1 1 25 |50 0 0 2
Q o S M P € w
0| —0.31]100| 10 | 1073 | 1073 | 0.15

Table 1: Numerical values for the variables.

Example Number of iterations | Running time in seconds | err,, err, err,
Figure 3 (a) 3 117 0.1% | 0.2% | 0.02%
Figure 3 (b) 16 554 0.7% | 0.1% | 0.8%
Figure 5 (a) 3 87 1% | 0.3% | 2%
Figure 5 (b) 3 91 1% | 03% | 4%
Figure 5 (c) 3 97 3% | 05% | 9%
Figure 6 (b) 4 497 0.05% | 0.1% | 0.05%
Figure 6 (d) 6 802 0.1% | 0.1% | 0.01%

Table 2: Convergence results of the test cases.

Simulations from data without noise

In Figure 3, we present the successive results obtained at each iteration of Algorithm 1 in the case of
the reconstruction of the source o(z) = sin(wz) for two different choices of h. One can observe that in
both cases the convergence criteria (4.8) for ¢ is achieved in less than 20 iterations. In Figure 4, several
results of reconstruction of sources obtained using Algorithm 1 in the absence of noise are given.

Simulations with several levels of noise

Figure 5 shows the results for o(z) = sin(rz) with different levels of noise in the measurements
(a = 1%, 2% and 5%). In Table 2, we report the corresponding errors on the reconstructed source. In
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0.8 0.08 -

0.6 0.06 -

0.4 - 0.04 4

0.2 4 0.02 4

0.0 4 0.00 1

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

(a) h(t) =t + sin(wt) (b) u(t, ) for different times

0.0 1 —— without noise —— without noise
——- with noise ——- with noise

0.‘0 0.‘2 0.‘4 0.‘6 0.‘3 l.‘U 0:0 0.‘2 0.‘4 0.‘6 0.‘3 1.‘0
(c) m(t) the measurement of the flux at z = L (d) r(z) the measurement of u at ¢t = Ty

Figure 2: Examples of data used in the numerical examples for o(z) = sin(7z) and a = 2%.

fact, we observe that a noise of level « in the measurements gives rise to an error of order 2« in the
recovered source.

Simulations in two dimensions

We also performed some reconstructions in two dimensions where = (0,1)%, 29 = (—0.3, —0.3) and
I' = ({0} x[0,1])U([0, 1] x {0}). By this way, assumption (2.5) is satisfied. Figure 6 presents the results
obtained for two different sources in the absence of additional noise. The gray scales are identical for
the exact and the recovered graphics. The final error (reported in Table 2) is less than 0.1% what
shows the effectiveness of the reconstruction obtained in a few minutes on a personal laptop.
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1.0 4

0.8 4

0.6 4

0.4 4

0.2 9

0.0 4

(a) h(t) =t + sin(mt) (b) h(t) =t + sin(7nt)

Figure 3: Reconstruction of o(x) = sin(mz). Different choices for h and the corresponding convergence
history.

0.0
100 10
o7s
-0.2 08
0.50
-04 025 06
0.00
-0.6 025 0.4
—0.50
-0.8 0.2
073
10 -1.00 0.0
E 0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
(a) o(z) = —x (b) o(z) = sin(27x) (¢) o rectangular

Figure 4: Different examples of reconstruction for h(t) =t + sin(nt).

0.0 02 04 06 08 10 0.0 0.2 04 06 08 10 00 02 04 06 08 10

(a) a = 1% (b) a = 2% (¢) a = 5%

Figure 5: Reconstruction of the source o(x) = sin(wz) for h(t) = t +sin(nt) in presence of noise in the
data. The level of noise is denoted by a.
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(b) Sources recovered numerically.
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(c) Exact sources.

(d) Sources recovered numerically.

Figure 6: Different examples 0£5reconstruction in the 2d case



Appendix

A Proof of the Carleman inequality given by Theorem 2.1

If we are in Case 1 with the first choice of weight (2.1), this result is proved in an identical way as
Lemma 1.2 in [13] which considers the case of internal measurements. Assume now that we are in
Case 2 where 6 and 1) are given by (2.4).

Let us give some properties on ¢ which will be useful in what follows:

o(t,z) < p(To,x), V(t,z) € (0,T) x Q, V3p =201y, (A.1)
Vol <CO, || < CO, |0,V < CO, || < CH. (A.2)

In the proof, we assume that z belongs to C2([0,7] x Q) and satisfies z = 0 on (0,7) x 9. A
density argument allows to come back to the regularity hypotheses of the theorem.

For all s > 0, we set w = e’z and we introduce the conjugate operator ) defined by
Quw = e*?(0y — A)(e” *Pw). (A.3)

If we set f = 0yz — Az, we have
Qu = e*? f.
Some computations give
Qu = Jw+ 25V Vw + sApw — Aw — (s*|V|? + s0i0)w = Qrw + Q_w,
where the operators )4 and Q)_ are defined by

Qiw = —Aw— (s*|Vy|* + s0s0)w, .
Q-w = 0w+ 2sVy- - Vw+ sApw. (A.5)

In a classical way, we write that

T T T T
/ /eQS‘P]f\dedt:/ /]Q+w\2dxdt+/ /waP drdt + 2/ /Qw@wdzdt. (A.6)
0 Q 0 Q 0 Q 0 Q

The main part of the proof consists of bounding from below the terms in the right hand side by positive
and dominant terms and a negative observation term located in (0,7") x I'. For the sake of clarity, we
divide the proof in several steps.

e Step 1 - Explicit calculation of the cross-term.

We set .
/ / QiwQ_wdxdt = g I k.,
0 Q

1<i<2, 1<k<3
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where I ;, is the integral of the product of the ith-term in () yw and the kth-term in Q_w.
Integrations by parts in time give easily

T T T
7 = / / (—Aw)oyw dxdt = / / Vw - Voyw dxdt — / Vw - n Osw dydt
0 Q 0 Q 0 oN

1 ror
= = [/ |Vw|2d:z:] —/ Vw-n dwdydt =0
2 Lo o Jo Joo

since w(0) = w(T) =01in Q and w = 0 on (0,7) x 9. An integration by parts in time gives
for 121

T T
1
I = —/ /(32]Vg0|2 + sOrp)wow dxdt = 2/ /6,5(32]Vg0|2 + 50pp) |w|* dadt.
0 Q 0 Q
We compute in the same way, by integrating by parts in space
T
Iy = —/ / Aw(2sVy - Vw) dzdt
0 Q
T T
= 28/ / Vw -V (Ve - Vw)dzdt — 28/ Vw -n(Ve - Vw) dydt
0 Q 0 o0

T T T
= 23/ / (V2o)Vw - Vw dzdt + 23/ /(V2w)Vw -V dxdt — 28/ Vw - n(Ve - Vw) dydt
0 Q 0 Q 0 o0

T T T
= 25/ /(V%o)Vw-dexdt—s/ /|Vw\2Acpdxdt+s/ / \Vw|*V - n dydt
0 JO 0 JQ 0 JoQ

T
25/ Vw - n(Ve - Vw) dydt
0 o0
and

T T
Iy = —/ /(32]V¢]2 + s0pp)w(2sV - Vw) dxdt —/ / V- [(8°|V|* + s20i0) Ve [w|? dadt.
0o Ja 0o Ja

Since Ay is independent of x, by integration by parts in space, we have

T T
Iz = / / Aw(sApw) dzdt = S/ / \Vw|?Agp dadt..
0 Q 0 Q

At last, we have

T T
Iy = —/ /(sQ\VgDQ + sOp)w(sApw) dedt = —/ /(33]V¢|2 + 5%0;0) A|w|? dadt.
0 Q 0 Q
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Gathering all these computations and using the second property in (A.1), we get

T T
/ /Q+wQ_wdxdt:4s/ /H\VwIdedt
0 Q 0 Q

T 1
+ / /Q <28t(82|Vs0\2 +50i0) + V- [(8°| Vol + s°0p) Vo] = (5°Ve|* + 528t<ﬂ)A<P> |w|? dzdt
0

T T
+ S/ / |Vw|?V - ndydt — 28/ / Vw - n(Ve - Vw) dydt.
0 onN 0 o
(A7)

3 is given by

For the second term in the right hand side, we notice that the main part in s
s (V- (I[Ve’Ve) — [Ve?Ap) = s°V(|Ve]?) - Vip = 85°0% |z — zo|* > Cs°6°.

For the boundary terms in (A.7), we notice that, since z = 0 on (0,7") x 09, Vw = €*/Vz. In
particular, Vw -7 =0 on (0,7) x 9. Thus, we get

T T T
s/ / |Vw|?*V - ndydt — 23/ Vw-n(Ve - Vw) dydt = —3/ / |Vw - n|?V - ndydt.
0 o0 0 o0 0 o0

We divide this last integral as follows

T T T
—s/ / \Vw-n|*V-ndydt = —s/ /|Vw-n\2V<p'nd'ydt—s/ / \Vw-n|*Vp-n dydt.
0o Joo o Jr 0o Jao\r

According to (2.5), the second integral is positive and the first integral corresponds to an obser-
vation integral.

Gathering these estimates, (A.7) becomes, for s large enough

T T T
/ /Q+wQ_wdxdt 243/ /9|Vw\2dxdt+053/ /93|w]2dxdt
0 Q 0 Q 0 Q

T
s/ / |Vw - n|>V - n dydt. (A.8)
0 r

e Step 2 - Bounds on Aw and dyw.

From the definition of Q_ (A.5), we have
1T ) T ra ) T ra )
= —|Opw|* dxdt < —|Q-w|* dzdt + — 125V - Vw + sApw|* dxdt
2 0 Q s6 0 Q s6 0 0 s6

T T T
S/ /\Q_w|2 da:dt+0(/ /sevw|2 da:dt+/ /se\wP dxdt).
0 Q 0 Q 0 Q

In the same way,
LT 1 2 r 1 2 r L o 2 20,12
= —|Aw|* dzdt < —|Qiw|* dxdt + —(s%|V|* + s0rp)*|w|” dadt
2 0 Q s0 0 Q s0 0 Q s

T T
S/ / |Qywl? d:cdt+C/ /3393\11}]2 dxdt.
0 Q 0 Q
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Thus, coming back to (A.6) and, gathering (A.8) and these last two estimates, we get, for s large
enough

T
1 1
/ / <9|atw12+Q\Aw|2+sew|2+s3e3lw\2) et
0 O \S S

T T
< C'/ / 2P| |2 dmdt—}—C’s/ / IVw - n|>V - ndydt.
0 Q 0 r

e Step 3 - Back to the variable z.

(A.9)

Since z = e~ *?w and according to (A.2), we have, in Q x (0,7

10,22 < Ce 2 (|0gw|? + s20%w|?), |Vz|? < Ce™2?(|Vuw|* + s26%|w|?),
|Az2 < Ce % (|Aw|? + s20%|Vw|* + s10%|w|?).

Thus, (A.9) gives inequality (2.6) for s large enough.

B Proof of the regularity result given by Proposition 2.5
We split the proof in several steps.

e Step 1 - A lifting of the boundary condition of (1.1).

First, we will use a lifting for the boundary condition. Since g € H(0,T; H3/?(9Q))NH?(0,T; H/?(0Q)),
from trace theorem, we deduce that there exists a function @ € H*(0,T; H*(Q))NH?2(0,T; H(Q2))
such that @ = g on (0,7) x 092 and

lall zo,msm2(0)) < Cllgllgro,mmsroa),  Nalazormi@) < Cllallmzormeea)-  (B1)
The function @ = v — 4 satisfies
ou — Au+ud + 3w +3w*u=F, in (0,7) x Q,
u =0, on (0,T) x 09, (B.2)
u(0, ) = uo — u(0, ), in €,
with F defined by F = oh — 0yt + At — 4>,
Multiplying the main equation of (B.2) by ¢ € HJ () and integrating by parts, we obtain
/ owu(t, x)¢p(x) dx +/ Vu(t,z) - Vo(z) do + / w3 (t, x)p(x) da + 3/ au?(t, z)o(x) da
Q Q Q Q
+ 3/ a*u(t, x)¢(x) doe = / F(t,z)¢p(x) dx,
Q Q
(B.3)

ae. t € (0,T).
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e Step 2 - Finite-dimensional approximated solutions.

At this step, we use the Faedo-Galerkin method and introduce a family of functions {¢., }m>1 in
HZ(Q) which is an orthogonal basis in H}(£2) and an orthonormal basis in L?(Q).

A positive integer m being fixed, we look for an approximated solution of (B.3) @, : [0,7] —
H} () under the form

U (t) =D tim(t)es, (B.4)
i=1
where the coefficients (im)1<i<m being to be determined by the conditions:

(? X (ﬁ‘ X d.%' + C’U, xX) - C(ﬁ X d.%' + U3 X (ﬁ' X dﬂ:’ +3 ﬁu2 X (ﬁ‘ X d.%'
/ tum<t7 ) Z( ) / m(t7 ) Z( ) / m(t7 ) %( ) / m(t') ) Z( )
+ 02 i(x) doe = x)pi(xr) de, Vi=1,....,m
3/u Um(t, )di(x) d /F(t, Yoi(x) d 1

Q
(B.5)
along with

Qi (0) = /Q (0, 2)6i(2) dv, Wi=1,....m. (B.6)

From Picard-Lindelof theorem (see, for example [20]), the system (B.5)-(B.6) of nonlinear ordi-
nary differential equations, admits a unique local in time solution (cm)1<i<m in C" defined on
a maximal interval (0,7,,).

e Step 8 - A priori estimates.
Multiplying the equation (B.5) by ay,, summing over ¢ and integrating on (0,t), we deduce that
[ | co0,.622(0)) + [mll 20,607 () + Tm | 210,000
< C (IFlzeqomyxe) + NalZ a0y + 170, iz ) -

Thus, the coefficients (i )1<i<m stay bounded in C°(0,7,,) and this ensures that they are
defined on the global interval (0, 7).

e Step / - Passage to the limit m — oo.

/
m?

Now, we multiply the equation (B.5) by o/, , sum over i and integrate on (0,7"). We get that
&m |l z1 0,522 (02)) + Tl Loo (0,751 (02))
<C (1 + ||71||%oo((o,T)xQ)> <||F||L2((O,T)><Q) {10174 0,7y x) + 1700, ')HHl(Q)) :

Thus we deduce that, up to a subsequence, (U, )m weakly converges in H(0,T; L*(2))NL>(0, T; H}(£2))
and strongly converges in L2((0,T) x Q). This convergence properties allow to deduce that the
limit u satisfies the weak formulation (B.3) and the estimate

1l 1 (0,7:22(0) + @l oo 0,751 ) + 18l 21 0.7y 0
<C (1 + H@H%w((o,T)xQ)) (HFHL2((0,T)xQ) + [l 0.7y x ey + @00, ')”Hl(Q)) :
(B.7)
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e Step 5 - Higher regularity.

Looking at (B.2) as an elliptic problem, the elliptic regularity implies that 7 belongs to L?(0, T; H%(Q2))
and

@l 20,7 m2(0)) < C (1 + Hﬂ”%oo((QT)xQ)) (”FHLQ((O,T)XQ) + @210 myxey + @00, ')||H1(Q))

s 3 o B 3
+C (1 + HUHLoo((o,T)xQ)) <HF||L2((0,T)><Q) + 1@l 740,y + 1170, ')HHl(Q)> :

Moreover, since u belongs to H(0,T; L*(Q2)) N L(0,T; H*(12)), according to [10, Section 5.9,
Theorem 4], we deduce that @ belongs to C°(0,T; H(Q)).

e Step 6 - Return to the variable u.

Coming back to u = w + @ and using (B.1), we conclude that
u € L*(0,T; H*(Q)) N C°(0,T; HY(Q)) N H' (0, T; L*(Q))

with the following estimate

1wl 20, m200)) + lullcoqo,rs )y + lull o2 ) < C (||Uh||L2(O,T;L2(Q)) + ol 20, 7.220)

+H9HH1(0,T;H3/2(89)) + HgH?'-Il(O,T;HWQ(('?Q)) + HUOHHl(Q) + HUOHI[)—jl(Q)) ’
(B.8)

where the power p is a positive integer that can change from line to line.

e Step 7 - Improved regularity.
Next, let us consider w = dyu which is, according to (1.1) and (3.1), formally the solution of
Ow — Aw + 3u*w = adsh, in (0,T) x Q,

w = Oy, on (0,T) x 09, (B.9)
w(0,-) = Auo — (u0)3, in Q.

We use the same lifting as in Step 1 and define the function w = w — 04, which satisfies
0w — AW + 3uw = G, in (0,7) x Q,
w =0, on (0,7") x 012, (B.10)
@(07) = U}<07) _atﬂ(ov')a in Q?
with G defined by G = 00;h — Oyt + Ayt — 3u?0,4. For this system, we have a unique solution
w e C°0,T; L*(Q)) N L2(0,T; Hy (Q))

which satisfies

[@llcoor:220)) + 1@l 2207501 0)) < C (1G] 20,1y %) + 1[@(0, )l £2(0)) -
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For the first term in the right hand side, we have
1GlL2(0,m)x9) < llobll g2 ) + 1@l 20,7220 m1 (0,712 (2)
+C (Hu||200(0,T;H1(Q)) + ||ﬂ||H1(o,T;H2(Q))> -
Taking account (B.1) and (B.8), and going back to w = w + 0%, we conclude that
ue CH0,T; L7(Q) N H'(0,T; H (),

with the following estimate

lullcrome2@)) + lullromm@) < C (HfthHl(o,T;Lz(Q)) ol o 1020

+HQHHl(o,T;H3/2(aQ))mH2(o,T;L2(aQ)) + Hg”ll){1(OyT;HB/Q(aQ))mH2(O’T;LQ(BQ)) + ”u0||H2(Q) + Huo”%z(g)) .

Thus, if look at (1.1) as an elliptic problem, we get that v € C°(0,T; H?(2)) and we have the
estimate

lullcoo,rm2(a)) + 1ullororrz@)) + 1l gror:mr @)

<C <||Uh||H1(O,T;L2(Q)) +

|O-h’||§){1(()7T;L2(Q)) + HUOHH?(Q) + ||,U“OH1])J2(Q) (B.11)
191l z11 (0,712 002 )02 (0,73 £2(002)) T ngl;{l(07T;H3/2(69))0H2(0,T;L2(89))> '
Let us note that, since u, € H3(), the initial condition
w(0,-) = Auo — (uo)® — 941 (0, -)

belongs to H'(2). Then, if we multiply the equation (B.10) by d;w and integrate in (0,7) x €,
we obtain that 0,w € L?(0,T; L?(Q)) with

107 L2(0,7:22(02)) < C (1G | L2(0.7)x2) + 1T(O)] 1r1(03)) -

Hence, if we look at (B.10) as an elliptic problem, we deduce that w belongs to L?(0,T; H*(Q2))
with the following estimate

10| 20,7, H2(0)) < C (HGHLQ((O,T)XQ) + HUH?JO(O,T;H?(Q))H@HL%(O,T)m) + HW(O)HHl(Q)> :

Besides, since w belongs to H(0,7; L*(Q)) N L?(0,T; H%(Q)), we deduce that w belongs to
Co%0,T; H'()).

Coming back to dyu = w+0,a, we finally deduce that u belongs to H'(0, T; H2(Q))NC(0,T; H'(Q2))N
H?2(0,T; L?(2)) along with the estimate (2.8).
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C Proof of Lemma 3.7

On E, we consider the norm | - ||s defined by
r 1 1
o1 = [ [ e (10l + Syl + o017 4 S0P ) o,
o Ja s6 s0

For any fixed C' > 0, the set E¢ is convex and closed in (E, || - ||s).
Let z; and z2 be given in Eo. We set z = z; — 25. Then, we have

DJo[pl(z1)(2) = DJok[nl(22)(2) =

T T
/ /QeQWszlDPk(zl)(z) dxdt + s/ / e*°0(Vz1 - n — p)(Vz-n)dydt
0 o Jr
T T
- / / 5% Pr2o D Py(22)(2) dadt — s/ / e*P0(Vzg - n — p)(Vz - n) dydt
0o Jo o Jr

T T
:/ / 625@(Pk2’1 — PkZQ)DPk(ZQ)(Z) dxdt + / / 62S@Pk2’1 (DPk(Zl)(Z) - DPk(ZQ)(Z)) dxdt
0 Q 0 Q

T
+ S/ / e*%0|Vz - n|* dvydt.
0 r
(C.1)

To estimate the two first terms, we will follow similar computations as in Section 3.4 since we can
notice that these terms also appear in (3.37) if we replace z1, 29 and z respectively by wy, Zj and zj.
Since the assumptions on the functions are different (in Section 3.4, wy = dyvy, where vy, satisfies (3.4)
whereas here z1 and 23 belong to E¢), we detail the arguments below when they are different from the
ones in Section 3.4.

For the first term, we follow the computations made in Step 1 of Section 3.4 and the counterpart of
(3.39) is:

T T
/ /628¢(P]c2’1—PkZQ)DPk-(ZQ)(Z)dIIZ’dtZ i/ /eZSw\atz—Ade:vdt
0 Q 0 Q
T T
—M/ /ezw\z|2dazdt—M/ /625@y|2(|8tuk|2+|Zl\2+|T]/V[(y2)|2|8tuk]2)d:cdt
0 Q 0 Q

T
[ P Pza o,
0 Q

where

t t

zi(t', x)dt for 1 <i <2 and y(t,z) = / 2(t', x)dt’.
Ty

yi(t,x) = vg(To, z) + /

To
Using (3.17), we deduce

T T
/ / eQSW(szl — Py22)D Py (22)(z)dzdt > i/ / 62590]8152 — Az|2dxdt
0 Q 0 Q
T T
—M/ /e%ﬂz?dxdt—M/ /628¢|y\2(\atuk\2+ |21 4 |22|?)dxdt.
0 Q 0 Q
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For the last term of this inequality, we have

T
[ [ el + o + 2o ydsas
0 Q
< Hewgﬂiw(o,:r;m(m)(HatukHiz(o,T;Loo(Q)) + H21||%2(0,T;L°°(Q)) + HzQH%Q(O,T;Lm(Q)))
< M|’€w?||%oo(o,T;L2(Q))v
according to (3.21) and to the fact that z; and 2z belong to F¢. Using the same arguments than in

(3.42) with z; and g, replaced respectively by z and g, we get

T
/o /QeZSW\ylz(!(?thZ + |21]? + |22)*)dadt < MH65¢2”%2(0,T;L2(Q))‘

Thus,

T T T
| [eethia - Peprea@ana =5 [ [ 0z - sspasac—ar [ [ 0)2pasar
0o Jo 4 Jo Ja 0o Jo

(C.2)

For the second term in the right hand side of (C.1), we follow the computations of Step 3 in Section
3.4. We have

DPy(21)(2) — DPi(22)(2) = 6zug (Typ(y1) — Typ(y2)) + 32 (Taz(11)? — Tap(y2)?)

+ 60vurury (Tip(y1) — Tiz(ye)) + 60vury (Tip(yr) — Tip(y2)) Tar(y1)

+ 60 ur T (y2) Y (T (1) — Tap(y2)) + 6wy (T (1) — Tip(y2)) 21 + 6ur T (y2)y2

+ 69 (T57(y1) — Tip(y2)) 21Tz (y1) + 6T5;(y2) 021 (Typ(y1) — Tap(ye)) + 6T5,(y2)u2Tap(ya)-

Using (3.21) and Proposition 3.5 which states the properties satisfied by T57, we get
|DPy(21)(2) — DPi(22)(2)] < M(|2|[g] + |0pur|[71* + |21][7]%)-

Thus, for the second term in the right hand side of (C.1), we have the bound

. T
/ / **?|Pyz1 || DPy(21)(2) — DPy(22)(2)| dwdt < M/ / e**?| Pez1 |2 ||yl dedt
o Jo 0 Ja (C.3)

T
+ M/ / €250\ Pz (O | + |21 )71 davd.
0 Q
For the first term in the right hand side of (C.3), we have

T
/0 /Q 29| Pz |21 7] dizdt < O\ Poa | 22(0.2 e €% 20 0.1y

< Cl|Pe21 20,1y < ll€*? 2l 20,706 () 17Tl Lo (0,753 ()
< CllPa1ll 2.y (1€ 21720 1ozo gy + 1€l e 0,105 2)))

< M(Hewz”%%o,T;LG(Q)) + HGS@?H%OO(O,T;L%Q)))
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where we have used that z; belongs to E¢. For the second term in the right hand side of (C.3), we
have

T
/0 /QGQS‘”IPkZlI(I@tUkI+|21!)|y|2df6dt§CIIPk21||L2((o,T>m)II(IatUk!+|Zl|)62s¢lyl2llL2((o,T)xm

< Ol Przall 20,1y %) 10wkl 20 7100 ) + 121l 20,7100 @) 1€ 112 | Lo (0,722 (92))

< M||€s¢g‘|%w(0,T;L4(Q))’

where we have used that z1 belongs to E¢ and wuy satisfies (3.21). Therefore, inequality (C.3) becomes

T
|| 1Pl DR 1) () = DP(ea) () ot < M2 o sy + e o)

(C4)
For the terms in the right hand side, we first have
2 2 r 2 2424112 2
1€ 2172 0,716y < 1€ 21220, 1501 () S/O /Qe (L + 57072 + |V2]?) dadt
thanks to (A.2). Moreover,
”ewyniw(oj;m(g)) < CHeS(pyH%oo(gj;Hl(g)) < COE?ET/QG%@(Q + 5292)|§|2 + |V§|2) dz.
We notice that, for all ¢ € (0,7
/ D (14 5202 (t, 2))[g(t, ) * + |Vy(t, 2)|*) de
Q
¢ t
<C / 2570 (1 + $20%(t, ) | | |2(t, x) > dt'| dx + C / 22t | [ V(! x) 2 dt| da
Q To Q To

T T
<c / / e259(62) (1 1 $202(t, 2))|2(t, o) dedt + C / / 20(t2) | (¢ )2 dadt
0 Q 0 Q

according to the fact that, in both cases (2.1) and (2.4), for s large enough, for all ¢’ between Ty and
t, for all z €
25900 (1 4 §20%(t,z)) < 290 (1 + $20%(t, ). (C.5)

Thus, inequality (C.4) becomes

T T
/ / €%%| Ppz1 || DPy(21)(2) — DPy(22)(2)| dzdt < M/ / 6254’((1 + 520%)|2)? + |Vz\2) dxdt.
0 Q 0 Q

Coming back to (C.1), using (C.2), this last inequality and the Carleman estimate (2.1), we conclude
that, for s large enough, there exists § > 0 such that, for all z; and 25 in E¢

DJo k] (21)(21 — 22) — DJo[p](22) (21 — 22) > 6|21 — 222

This proves that Jy p[u] is strongly convex in Ec.
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