
HAL Id: hal-02185883
https://hal.science/hal-02185883v2

Submitted on 6 Oct 2020 (v2), last revised 23 Nov 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certified and efficient instruction scheduling.
Application to interlocked VLIW processors.

Cyril Six, Sylvain Boulmé, David Monniaux

To cite this version:
Cyril Six, Sylvain Boulmé, David Monniaux. Certified and efficient instruction scheduling. Applica-
tion to interlocked VLIW processors.. Proceedings of the ACM on Programming Languages, 2020,
OOPSLA 2020, 4, pp.129. �10.1145/3428197�. �hal-02185883v2�

https://hal.science/hal-02185883v2
https://hal.archives-ouvertes.fr

Certified and efficient instruction scheduling

Application to interlocked VLIW processors

CYRIL SIX, SYLVAIN BOULMÉ, and DAVID MONNIAUX

CompCert is a moderately optimizing C compiler with a formal, machine-checked, proof of correctness:
after successful compilation, the assembly code has a behavior faithful to the source code. Previously, it only
supported target instruction sets with sequential semantics, and did not attempt reordering instructions for
optimization.

We present here a CompCert backend for a VLIW core (i.e. with explicit parallelism at the instruction
level), the first CompCert backend providing scalable and efficient instruction scheduling. Furthermore, its
highly modular implementation can be easily adapted to other VLIW or non-VLIW pipelined processors.

CCS Concepts: • Software and its engineering → Formal software verification; Retargetable com-
pilers; • Theory of computation→ Scheduling algorithms; • General and reference→ Performance; •
Computer systems organization→ Superscalar architectures; Very long instruction word.

Additional Key Words and Phrases: Formal verification of compiler optimizations, Instruction-level parallelism,
the Coq proof assistant, Symbolic execution, Hash-consing.

1 INTRODUCTION

The CompCert certified compiler [Leroy 2009a,b] is the first optimizing C compiler with a formal
proof of correctness that is used in industry [Bedin França et al. 2012; Kästner et al. 2018]. In
particular, it does not have the middle-end bugs usually found in compilers [Yang et al. 2011], thus
making it a major success story of software verification.
CompCert features a number of middle-end optimizations (constant propagation, inlining,

common subexpression elimination, etc.) as well as some backend optimizations (register allocation
using live ranges, clever instruction selection on some platforms). However, it does not attempt to
reorder operations, which are issued in almost the same order as they are written in the source
code. This may not be so important on processors with out-of-order or speculative execution (e.g.
x86), since such hardware may dynamically find an efficient ordering on its own; yet it hinders
performance on in-order processors, especially superscalar ones (multiple execution units able to
execute several instructions at once, in parallel).
VLIW (Very Long Word Instruction) processors [Fisher 1983] require the assembly code to

specify explicitly which instructions are to be executed in parallel. A VLIW bundle of instructions
is an aggregate of atomic computations running in parallel on the execution units of the processor.
Compared to out-of-order architectures, an in-order VLIW processor has a simpler control logic,
thus using less CPU die space and energy for the same computing power; it is more predictable
with respect to execution time, which is important in safety-critical applications where a worst-case
execution time (WCET) must be estimated or even justified by a sound analysis [França et al. 2011].
In addition, a simpler control structure may be more reliable.1
Due to their simpler design, such processors require more complex compilers to benefit from

their potential. Compilers must indeed find an efficient way to decompose the behavior of the
high-level program (typically in C) into a sequence of parallel atomic computations. Optimizing
compilers for VLIW processors has a long and successful history since the seminal work of Fisher
[1981]; Rau et al. [1982], followed by Feautrier [1991]; Lam [1988] and theMultiflow compiler

1For instance, Intel’s Skylake processor had a bug that crashed programs, under complex conditions [Leroy 2017].

Authors’ address: Cyril Six, Cyril.Six@kalray.eu, Cyril.Six@univ-grenoble-alpes.fr; Sylvain Boulmé, Sylvain.Boulme@univ-
grenoble-alpes.fr; David Monniaux, David.Monniaux@univ-grenoble-alpes.fr.

2 Cyril Six, Sylvain Boulmé, and David Monniaux

[Lowney et al. 1993]. In the case of CompCert, the problem is made harder by the need to formally
verify that this transformation is sound, that is, that it preserves the program semantics.

This paper presents an extension of CompCert with certified assembly generation for an
interlocked VLIW processor (Kalray KVX core), along with an intrablock postpass scheduling
optimization (postpass meaning that it occurs after instruction selection, register allocation, and
spilling). However, only a few parts are specific to this processor: many of the insights and a large
part of the implementation are likely to be applicable to other architectures, in particular to multiple-
issue in-order cores (e.g. ARM Cortex A-53). Furthermore, we think general insights can be gained
from our experiment, beyond the issue of instruction scheduling, such as efficiently certifying the
output of compiler optimization phases by certified symbolic execution with hash-consing.

1.1 Overview of the Kalray KVX VLIW processor

The Kalray KVX core implements a 6-issue Fisher-style VLIW architecture [Fisher et al. 2005]
(partial predication, dismissible loads, no rotating registers). It sequentially executes blocks of
instructions called bundles, with parallel execution within them.

Bundles. A bundle is a block of instructions that are to be issued into the pipeline at the same cycle.
They execute in parallel with the following semantics: if an instruction writes into a register that is
read by another instruction of the same bundle, then the value that is read is the value of the register
prior to executing the bundle. If two instructions of the same bundle write to the same register,
then the behavior at runtime is non-deterministic. For example, the bundle written in pseudo-
code “𝑅1 B 1;𝑅1 B 2” assigns 𝑅1 non-deterministically. On the contrary, “𝑅1 B 𝑅2;𝑅2 B 𝑅1”
is deterministic and swaps the contents of 𝑅1 and 𝑅2 registers in one atomic execution step. In
assembly code, bundles are delimited by ;; (Fig. 1). Compilers must ensure that each bundle does
not require more resources than available—e.g., the KVX has only one load/store unit, thus a bundle
should contain at most one load/store instruction. The assembler refuses ill-formed bundles.

Execution pipeline. In the case of the KVX, bundles are executed through a 8-stage interlocked
pipeline: the first stage prefetches the next bundle (PF stage), the second decodes it (ID stage), the
third reads the registers (RR stage), then the last five stages (E1 through E5) perform the actual
computation and write to the destination registers; depending on the instructions the writes occur
sooner or later (e.g., an addition takes fewer stages than a multiplication). If, during the RR stage2,
one of the read registers of an instruction in the bundle is not available, the pipeline stalls: the
bundle stops advancing through the pipeline until the register gets its result (Fig. 1).3

Processor implementations can be divided into: out-of-order processors (e.g. modern x86), which
may locally re-schedule instructions to limit stalls; 4 in-order, which execute the instructions exactly
in the order of the assembly code. On an in-order processor, an optimizing compiler should provide
an efficient schedule; this is all the more important if the processor is multiple-issue or VLIW, since
a single stalling cycle could have been used for executing multiple instructions.

1.2 Modular design of the CompCert compiler

Usual compilers (GCC, Clang/LLVM, ICC) split the compilation process into several components.
In the case of CompCert, a frontend first parses the source code into an intermediate representation

2Or the ID stage, for some instructions such as conditional branching.
3When a register is read before some prior instruction has written to it, non-interlocked VLIW processors use the old

value. The compiler must then take instruction latencies and pipeline details into account to generate correct code, including
across basic blocks. This is not the case for the KVX, where these aspects are just matters of code efficiency, not correctness.

4For instance, in Fig. 1, seeing that the bundle B3 is stalled because its arithmetic instructions depend on a load in B2,
an out-of-order processor could instead schedule the execution of B6.

Certified and efficient instruction scheduling 3

Cycle ID RR E1 E2 E3 E4+E5
1 B1
2 B2 B1
3 B3 B2 B1
4 B4 B3 B2 B1
5 B4 B3 STALL B2 B1
6 B4 B3 STALL STALL B2
7 B5 B4 B3 STALL STALL

𝐵1 : 𝑅1 B 𝑙𝑜𝑎𝑑 (𝑅0 + 0); ;
𝐵2 : 𝑅2 B 𝑙𝑜𝑎𝑑 (𝑅0 + 4); ;
𝐵3 : 𝑅3 B 𝑅1 + 𝑅2; 𝑅4 B 𝑅1 ∗ 𝑅2; ;
𝐵4 : 𝑅3 B 𝑅3 + 𝑅4; ;
𝐵5 : 𝑠𝑡𝑜𝑟𝑒 (𝑅0, 𝑅3); ;
𝐵6 : 𝑅6 B 𝑅7 + 𝑅8; ;

Fig. 1. The pipeline stalls at cycles 5 and 6 because B3 is waiting for the results of 𝑅1 and 𝑅2 from bundles B1

and B2, which are completed at stage E3. Stage PF (not shown here) happens just before the ID stage.

CompCert C Clight C#minor Cminor CminorSel

RTLLTLLinearMachAsm

side-effects out of
expressions

type elimination
loop simplification

stack allocation
of variables

instruction
selection

CFG construction
expr. decomp.

register
allocation optimizations

linearization
of CFG

branch tunneling

layout of
stackframes

assembly
code generation

Fig. 2. The intermediate languages of CompCert.

(IR)—called Cminor—that is independent of the target machine [Blazy et al. 2006]. Then, a backend
transforms the Cminor program into an assembly program for the target machine [Leroy 2009b].
Each of these components introduces several IRs, which are linked by compilation passes. A compi-
lation pass can either transform a program from an IR to another (transformation pass), or optimize
within an IR (optimization pass). As illustrated in Fig. 2, CompCert introduces more IRs than usual
compilers. This makes its whole proof more modular and manageable, because each compilation
pass comes with its own proof of semantic preservation.

Within the backend, compilers usually first introduce an unbounded number of pseudo-registers,
which are then mapped to actual machine registers, with possible spills (saving on the stack, then
reloading) when needed. This mapping is performed by the register allocation pass. Compiler
backend passes are usually divided into two groups: those happening before register allocation,
and those happening after. This paper presents a postpass scheduling optimization: it reorders and
bundles instructions at the very end of the backend, after register allocation.

1.3 Porting CompCert to a VLIW architecture

Porting a VLIW architecture such as the KVX processor presents two main challenges:
• How to represent bundles in CompCert? The existing Asm languages are sequential. We need to
define a parallel semantics within bundles for our VLIW processor.
• How to include a scheduling pass within CompCert? On in-order processors, particularly those
capable of executing multiple instructions at the same time, it is of paramount importance for
execution speed that instructions are ordered in a way that minimizes stalls, which is not, in general,
the order in which they are written in the C program. A scheduling pass reorders the instructions,
with knowledge of their execution latencies, to minimize stalling. For instance, in Fig. 1, this pass
could schedule B6 before B3. The task of grouping instructions into bundles (bundling) on a VLIW

4 Cyril Six, Sylvain Boulmé, and David Monniaux

processor is usually performed by a postpass scheduler: instructions are in the same bundle if they
are scheduled in the same time slot.

Certified scheduling was already explored by Tristan and Leroy [2008], who extended CompCert
with a certified postpass list-scheduler, split into (i) an untrusted oracle written in OCaml that
computes a scheduling for each basic block5 in order to minimize pipeline stalls (ii) a checker—
certified in Coq—that verifies the oracle results. We identified three issues with their approach.

Firstly, their scheduling operates at the Mach level, simpler than Asm. Since some aspects (stack
and control flow handling) are only detailed in the Mach to Asm pass, a model of latencies and
pipeline use at theMach level cannot be accurate. Furthermore, our scheduling needs the actual
Asm instructions to construct well-formed bundles.

Secondly, their checker has exponential complexity w.r.t. the size of basic blocks, making it slow
or even impractical as the number of instructions within a basic block grows. We thus needed to
devise new algorithms that scale much better but that can still be proved correct in Coq.
Finally, Tristan and Leroy’s proof only holds for a preliminary version of CompCert where

non-terminating executions were not modeled (see Tristan [2009, Section 3.5.3]). CompCert now
models diverging executions as well. This makes the semantic preservation proof more complex.

Tristan and Leroy’s approach neither was integrated into CompCert, nor, to our best knowledge,
seriously evaluated experimentally, probably due to prohibitive compile-times.

1.4 Contributions

Ourmain contribution is a scalable, certified and highly modular scheduler with bundling, combining
an untrusted scheduling oracle with a verified scheduling checker. Both the oracle and checker are
highly generic; we instantiated them with the instruction set and (micro-)architecture of the Kalray
KVX core. We evaluated experimentally both scalability and the quality of the produced code.

Our solution solves the issues in Tristan and Leroy [2008]. Our certified scheduler is made of:
(1) An oracle, written in OCaml, producing a sequence of bundles for each basic block. We imple-
mented a greedy list-scheduler with a priority heuristic based on latencies. 6
(2) A generic certified scheduling checker, written in Coq, with a proof of semantic preservation,
implementing two independent checks:
• Verifying that, assuming sequential execution within each bundle, the reordered basic block
preserves the sequential semantics of the original one. This is achieved by comparing the symbolic
execution of two basic blocks, as did Tristan and Leroy. The exponential complexity of their
approach is avoided by introducing (verified) hash-consing.
• Verifying that, for each bundle, the sequential and parallel executions have the same semantics.
This reduces to checking that each bundle never uses a register after writing to it.

These checks are performed on a new IR, called AbstractBasicBlock, which makes them easier
to implement and prove, and which is moreover generic w.r.t the instruction set. The core of our
certified scheduler is independent from the instruction set: it can be reused for other processors, or
other IRs (e.g. in another prepass intrablock scheduling).

We compiled various software packages with our version of CompCert for the KVX, including
our scheduler7 and compared their execution time to that of the same software compiled with the
reference compiler for the KVX (versions of the GNU C Compiler supplied by the chip designers).

5A basic block is defined as a sequence of instructions with a single entry point (possibly named by a label in front of
the sequence) and a single exit point (e.g. a control-flow instruction at the end of the sequence).

6We briefly evaluate this choice compared to an optimal scheduler based on integer linear programming in Appendix D.
7Our full source code is available on https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx.

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-kvx

Certified and efficient instruction scheduling 5

Mach

Machblock

Section 7 &
Appendix A

Asmblock

Section 3
AsmVLIW

Section 3

AbstractBasicBlock

Sections 4, 5 & Appendix C

Basic-block
construction
Section 7 &
Appendix A

Assembly code
generation
Section 7 &
Appendix B

Intrablock postpass
scheduling
Sections 4 & 6

Fig. 3. Architecture of our solution in CompCert (and of this paper)

1.5 Related work

Our CompCert backend for the KV3 processor initially benefited from that of Barany [2018] for the
KV2, though Barany’s backend generates only one instruction per bundle, and does not model the
VLIW semantics. He also faced the challenge of representing pairs of 32-bit registers in CompCert
for handling 64-bit floating-point values on the KV2. The KV3 natively has 64-bit registers.
Scheduling with timing and resource constraints is a classical problem; [Micheli 1994, §5.4].

Ample work exists on scheduling for VLIW processors [Dupont de Dinechin 2004]—but with no
machine-checked proof of correctness of the compiler implementation.
Tristan and Leroy [2008]; Tristan [2009]; Tristan and Leroy [2010] studied more advanced

scheduling techniques, including software pipelining, which are particularly suited to prepass
optimization. We plan to consider these in future work.
Schulte et al. apply constraint programming to instruction selection, register allocation, code

motion and other optimizations [Blindell et al. 2017; Castañeda Lozano et al. 2019]. Their process
can even be optimal (w.r.t. their cost model) on medium-sized functions. They consider a wider class
of optimizations than we do, but they do not provide any machine-verified proof of correctness.
Our CompCert optimization at assembly level postdates the one of Mullen et al. [2016]. They

target x86-32 with more advanced peephole optimizations than we do: modulo register liveness and
considering pointers as 32 bit-integers. But, they do not tackle instruction scheduling. Moreover,
we show how to transfer basic blocks to the assembly, whereas they shortcut this issue by requiring
unchecked assumptions (entitled “calling conventions”) on the generated assembly.

1.6 Architecture of our solution (and of this paper)

Our ultimate goal is to generate efficient assembly code for our VLIW architecture: the AsmVLIW

language is our final representation. It formalizes the assembly semantics of our VLIW target: the
bundles are defined as basic blocks with a parallel execution inside.
Our postpass scheduler is formalized as a transformation on basic blocks. It takes as input our

Asmblock IR, which shares its syntax with AsmVLIW, but with sequential execution inside basic
blocks instead of a parallel one; these two languages are described in Section 3. Our postpass
scheduling itself is described in Sections 4 to 6. Before that, Section 2 recalls the necessary details
of CompCert. Finally, Section 8 presents experimental evaluations of our backend.
In summary, we extended the CompCert architecture with the passes shown in Fig. 3. The

preliminary stage of our backend constructs the Asmblock program from theMach program. As
Section 7 explains, the basic block structure cannot be recovered from the usual Asm languages
of CompCert. Thus, we recover it from Mach, through a new IR—called Machblock—whose
syntax reflects the basic block structure of Mach programs, and then translates each basic block

6 Cyril Six, Sylvain Boulmé, and David Monniaux

fromMachblock to obtain an Asmblock program. Then, our postpass scheduling from Asmblock

to AsmVLIW takes each block from Asmblock, performs intra-block scheduling via an external
untrusted oracle, and uses a certified checker to verify the generated AsmVLIW bundles. The
architecture of this pass and its verification are given in Sect. 4, while those on the actual intra-block
scheduling problem solved by our oracle are given in Sect. 6. The core of our scheduling checker—
involving symbolic evaluation of basic blocks with hash-consing—operates on a new auxiliary IR,
called AbstractBasicBlock, presented in Sect. 4 and 5, but further detailed in Appendix C.

2 COMPCERT BACKEND SEMANTICS

We present the correctness property of CompCert passes, then the Asm IR of existing backends.

2.1 Correctness of Compilation Passes

In CompCert [Leroy 2009b], the semantics of a program 𝑃 consists of predicates for describing
initial and final states, as well as a predicate 𝑆

𝑡−→ 𝑆 ′ (usually named step) indicating if one execution
step can run from state 𝑆 to state 𝑆 ′ by generating a trace 𝑡—where 𝑡 is either a single observable
event (e.g. an external call or an access to a volatile variable) or 𝜖 (absence of observable event).

Fig. 4. Examples of simulation diagrams in CompCert

The formal correctness property of Comp-
Cert expresses that, given a source program
𝑃1 without undefined behavior (i.e. that can al-
ways run a step from a non-final state), if the
compilation of 𝑃1 produces some assembly
program 𝑃2, then the observational behav-
iors of 𝑃2 are the observable behaviors of 𝑃1.
Hence, this property involves a high-level
notion of observable behavior, formalized by
Leroy [2009a,b].
In order to simplify correctness proofs of its successive passes (Fig. 2), CompCert uses an

alternative definition for the correctness. One of them is the forward simulation applicable on passes
between deterministic languages. In its simplest form (lockstep simulation), given a relation (∼)
matching states between 𝑃1 and 𝑃2, a forward simulation involves proving that:
• The initial (resp. final) states of 𝑃1 match those of 𝑃2
• Given two matching states, if 𝑃1 steps to a state 𝑆 ′1, then 𝑃2 steps to a state 𝑆 ′2 matching 𝑆 ′1.
Another form of forward simulation is the plus simulation, where the target program can execute
one or more steps instead of just one. Fig. 4 schematizes both simulations.

2.2 The Asm IR

CompCert defines one Asm language per target processor. An Asm program consists of functions,
each with a function body. Asm states are of a single kind “State(rs, m)” where rs is the register
state (a mapping from register names to values), and m is the memory state (a mapping from
addresses to values). An initial state is one where the PC register points to the first instruction of
the main function, and the memory is initialized with the program code. The instructions of Asm
are those of the target processor, each one with its associated semantics that specifies how the
instruction modifies the registers and the memory.

In each CompCert backend the instruction semantics are modeled by an exec_instr function
which takes as argument an instruction 𝑖 , a register state 𝑟𝑠 and a memory state𝑚, and returns the
next state (𝑟𝑠 ′,𝑚′) given by the execution of 𝑖; or the special state Stuck if the execution failed.
Here are some instructions that can be modeled in Asm:

Certified and efficient instruction scheduling 7

• Pcall(𝑠): calls the function from symbol 𝑠 (saves PC into RA and then sets PC to the address of 𝑠);
• Paddw(rd, r1, r2): writes in rd the result of the addition of the lower 32-bits of r1 and r2;
• Pcb(bt, r, l): evaluates the test bt on register 𝑟—if it evaluates to true, PC jumps to the label 𝑙 ;
• Pigoto(𝑟): PC jumps to the value of the register r .
Most of the instructions modeled in Asm directly correspond to the actual instructions of the

processor. There can also be a few pseudo-instructions like Pallocframe or builtins, which are
specified in Asm, then replaced by a sequence of instructions in a non-certified part of CompCert.
Due to distinctions in immediate vs register operand, word vs doubleword operand size etc. there
are as many as 193 instructions to be modeled in the KVX processor.

3 SEMANTICS FOR A VLIW ASSEMBLY LANGUAGE

The Asm language of our target processor introduces a syntax and semantics for bundles of
instructions. Bundles can be seen as a special case of basic blocks: zero or more labels giving
(equivalent) names to the entry-point of the block; followed by zero or more basic instructions – i.e.
instructions that do not branch, such as arithmetic instructions or load/store; and ended with at
most one control flow instruction, such as conditional branching to a label.

Semantically, basic blocks have a single entry-point and a single exit-point: branching from/to the
middle of a basic block is impossible. It is thus possible to define a semantics that steps through each
block atomically, sequentially executing the program block by block. We call such a semantics a
blockstep semantics. The notion of basic block is interesting for scheduling optimizations: reordering
the sequence of basic instructions in a basic block without changing its (local) blockstep does not
change the (global) semantics of the surrounding program.
We provide two such blockstep semantics which only differ on how they combine instructions

within basic blocks: an IR with sequential semantics called Asmblock, and one with parallel se-
mantics called AsmVLIW. Our backend first builds an Asmblock program from aMach program,
by detecting syntactically its basic block structure (Section 7). Then, each basic block is split into
bundles of the AsmVLIW IR (Sections 4 & 6). Below, Section 3.1 defines the syntax shared between
AsmVLIW and Asmblock. Then, Section 3.2 defines AsmVLIW, and Section 3.3 defines Asmblock.

3.1 Syntax of bundles/basic blocks

We first split the instructions into two syntactic categories: the basic ones and the control flow
ones. Then, a basic block (or a bundle) is syntactically defined as a record of type bblock with
three fields: a list of labels, a list of basic instructions, and an optional control flow instruction.
Inductive basic: Type B (* basic instructions *)
Inductive control: Type B (* control -flow instructions *)
Record bblock B { header: list label; body: list basic; exit: option control;

correct: wf_bblock body exit }

In our AsmVLIW and Asmblock semantics, on a None exit, the PC is incremented by the amount
of instructions in the block. This convention makes reasoning easier when splitting a basic block
into a sequence of smaller ones. In order to avoid infinite stuttering (due to incrementing PC by 0),
we further require that a block should contain at least one instruction.

Sections 3.2 and 3.3 define, respectively, the parallel and the sequential blockstep semantics of
this syntax. A state in AsmVLIW and Asmblock is expressed the same way as in Asm: it is either a
pair (rs,𝑚) where rs (register state) maps registers to values and𝑚 (memory) maps addresses to
values, or a Stuck in case of failure (e.g. division by zero). Hence, executing a single instruction
in our semantics gives an outcome defined as either a (Next rs m) state, or a Stuck execution.
Then, each blockstep takes as input an initial state (rs,𝑚), fetches the block pointed by rs[PC] (the

8 Cyril Six, Sylvain Boulmé, and David Monniaux

value of PC in rs), and executes the content of that block. Finally, that blockstep either returns the
next state or propagates any encountered failure.

3.2 Parallel semantics of AsmVLIW

A bundle is a group of instructions that are to be issued in the same cycle through the pipeline. The
pipeline stages of our interlocked VLIW processor can be abstracted into:
Reading stage the contents of the registers are fetched.
Computing stages the output values are computed, which can take several cycles. Once an output
is computed, it is available to other bundles waiting at the reading stage.
Writing stage the results are written to the registers.8

Our processor stalls at a reading stage whenever the result is not yet available. The exact number
of cycles required to compute a value thus only has an impact on the performance: our formal
semantics abstracts away the computing stages and only considers the reading and writing stages.

Reads are always deterministic: they happen at the start of the execution of our bundle. However,
the write order is not necessarily deterministic, e.g. if the same register is written twice within the
same bundle. We first introduce a deterministic semantics where the writes are performed in the
order in which they appear in the bundle. For instance, the bundle “𝑅0 B 1;𝑅0 B 2” assigns 2 to 𝑅0,
in our in-order semantics. The actual non-deterministic semantics is then defined by allowing the
execution to apply an arbitrary permutation on the bundle, before applying the in-order semantics.

3.2.1 In-order parallel semantics. We model the reading stage by introducing an internal state
containing a copy of the initial state (prior to executing the bundle). Such an internal state is thus
of the form (rsr, rsw, mr,mw) where (rsr,mr) is the copy of the initial state, and (rsw,mw) is the
running state where the values are written. Fig. 5 schematizes the semantics.
• The function (bstep 𝑏 rsr rsw mr mw) executes the basic instruction 𝑏, fetching the values from
rsr and mr , and performing the writes on rsw and mw to give an outcome.
• The function (estep 𝑓 ext sz rsr rsw mw) does the same with the optional control flow instruction
ext: if there is no instruction, then it just increments PC by sz, the size of the block; here, 𝑓 is the
current function—in which branching instructions look for labels, like in other Asm semantics.
• The function (parexec_wio . . . rsr 𝑚𝑟) is the composition of the basic and control steps.
For example, the bundle “𝑅0 := 𝑅1; 𝑅1 := 𝑅0; jump@toto” runs over an initial register state
rsw0 = rsr in 3 steps:
(1) “𝑅0 B 𝑅1” leads to rsw1 = rsw0 [𝑅0 ← rsr [𝑅1]]
(2) “𝑅1 B 𝑅0” leads to rsw2 = rsw1 [𝑅1 ← rsr [𝑅0]]
(3) “jump @toto” leads to rsw3 = rsw2 [PC← @toto]
The final register state of the parallel in-order blockstep is

rsw3 = rsr [𝑅0 ← rsr [𝑅1]; 𝑅1 ← rsr [𝑅0]; PC← @toto]
As expected, this bundle swaps the contents of 𝑅0 and 𝑅1.

The in-order parallel execution of a list of basic instructions is formally defined in Coq by the
following function, where “NEXT 𝑟𝑠 ,𝑚 ←𝑒1 IN 𝑒2” is a notation for:

“match 𝑒1 with Next 𝑟𝑠 𝑚⇒ 𝑒2 | _ ⇒ Stuck end”
Fixpoint parexec_wio_body bdy rsr rsw mr mw : outcome B
match bdy with nil ⇒ Next rsw mw
| bi::bdy ' ⇒ NEXT rsw ', mw' ← bstep bi rsr rsw mr mw IN parexec_wio_body bdy ' rsr rsw ' mr mw '
end

8This includes the Program Counter register, which is updated at the end of each bundle execution.

Certified and efficient instruction scheduling 9

(rsr
mr

) (rsr,rsw1
mr,mw1

)
· · ·

(rsr,rsw𝑛

mr,mw𝑛

) (rsw𝑛+1
mw𝑛+1

)bstep 𝑏2 bstep 𝑏𝑛 estep 𝑓 ext sz

parexec_wio 𝑓 [𝑏1 ;𝑏2 ; · · · ;𝑏𝑛] ext sz

Fig. 5. Parallel in-order blockstep

The in-order parallel execution of
a block (defined below) first performs
a parallel in-order execution on the
body (the list of basic instructions),
and then performs a parallel execu-
tion with the optional control flow in-
struction. Here, f is the current func-
tion and sz is the offset by which PC is incremented in the absence of a control-flow instruction.
Definition parexec_wio f bdy ext sz rs m B
NEXT rsw ', mw' ← parexec_wio_body bdy rs rs m m IN estep f ext sz rs rsw ' mw '

3.2.2 Deterministic out-of-order parallel semantics. The in-order parallel semantics defined above
is not very representative of how a VLIW processor works, since concurrent writes may happen in
any order. This issue is solved by relation (parexec_bblock 𝑓 𝑏 rs𝑚 𝑜), which holds if there exists
a permutation of instructions such that the in-order parallel execution of block 𝑏 with initial state
(rs,𝑚) gives the outcome 𝑜 .
Definition parexec_bblock f b rs m o: Prop B
∃ bdy1 bdy2 , Sorting.Permutation (bdy1 ++ bdy2) b.(body)

∧ o=(NEXT rsw ', mw ' ← parexec_wio f bdy1 b.(exit) (Ptrofs.repr (size b)) rs m
IN parexec_wio_body bdy2 rs rsw ' m mw ')

Formally, the execution takes any permutation of the body and splits this permutation into two
parts bdy1 and bdy2 . It first executes bdy1 , then the control flow instruction, then bdy2 . While
PC is possibly written before the end of the execution of the bundle, the effect on the control-flow
takes place when the next bundle is fetched, reflecting the behavior detailed in Footnote 8.
This semantics gives a fair abstraction of the actual VLIW processor. However, the proof of

semantic preservation of CompCert requires the target language to be deterministic. Consequently,
we force our backend to emit bundles that have the same semantics irrespectively of the order of
writes. This is formalized by the relation below:
Definition det_parexec f b rs m rs' m': Prop B ∀ o, parexec_bblock f b rs m o → o = Next rs ' m'

Given (rs′,𝑚′), the above holds only if all possible outcomes 𝑜 satisfying (parexec_bblock 𝑓 𝑏 rs
𝑚 𝑜) are exactly (Next rs′𝑚′); that is, it only holds if (rs′,𝑚′) is the only possible outcome. We then
use the det_parexec relation to express the step of our AsmVLIW semantics: if det_parexec
does not hold then it is not possible to construct a step.

3.3 Sequential semantics in Asmblock

Asmblock is the IR just before AsmVLIW: instructions are grouped in basic blocks. These are not
re-ordered and split into bundles yet: execution within a block is sequential.
The given sequential semantics of a basic block, called exec_bblock below, is similar to the

semantics of a single instruction in other Asm representations of CompCert. Just like AsmVLIW,
its execution first runs the body and then runs the control flow. Our sequential semantics of single
instructions reuses bstep and estep by using the same state for reads and for writes. Our semantics
of single instructions is thus shared between the sequential Asmblock and the parallel AsmVLIW.
Fixpoint exec_body bdy rs m: outcome B

match body with nil ⇒ Next rs m
| bi::bdy ' ⇒ NEXT rs ', m' ← bstep bi rs rs m m IN exec_body bdy ' rs' m'
end

Definition exec_bblock f b rs m: outcome B
NEXT rs ', m' ← exec_body b.(body) rs m IN estep f b.(exit) (Ptrofs.repr (size b)) rs' rs' m'

10 Cyril Six, Sylvain Boulmé, and David Monniaux

4 CERTIFIED INTRABLOCK POSTPASS SCHEDULING

Our postpass scheduling takes place during the pass from Asmblock to AsmVLIW (Fig. 3). This pass
has two goals: (1) reordering the instructions in each basic block to minimize the stalls; (2) grouping
into bundles the instructions that can be executed in the same cycle. Similarly to Tristan and Leroy
[2008], our scheduling is computed by an untrusted oracle that produces a result which is checked
by Coq-proved verifiers. A major benefit of this design is the ability to change the untrusted oracle
without modifying our Coq proofs.

The verifiers check semantic correctness only. If some generated bundle exceeds resource con-
straints, it will be rejected by the assembler.

Asmblock

Program
PostpassScheduling

Module
AsmVLIW

Program

Error

AbstractBasicBlock

Verifiers

Scheduler Hash Consing

B lb

B

lb

B, lb
OK/Error

Coq (trusted)

OCaml (untrusted)

Fig. 6. Certified Scheduling from Untrusted Oracles

Scheduling is performed block by
block from the Asmblock program.
As depicted in Fig. 6, it generates a
list lb of AsmVLIW bundles from
each basic block B. More precisely,
a basic block B from Asmblock en-
ters the PostpassScheduling module.
This module sends B to an external
untrusted scheduler, which returns
a list of bundles lb, candidates to
be added to the AsmVLIW program
(scheduling is detailed in Section 6).
The PostpassSchedulingmodule then
checks that B and lb are indeed se-
mantically equivalent through dedi-
cated verifiers. Then, PostpassScheduling either adds lb to the AsmVLIW program, or stops the
compilation if the verifier returned an error.
In Coq, the scheduler is declared as a function9 splitting a basic block “B:bblock” into a value

that is then transformed into a sequence of bundles “lb: list bblock”.10

Axiom schedule: bblock → (list (list basic))*(option control)

The proof of the pass uses a “Plus” simulation (Fig. 4): one step of the initial basic block B in
the sequential Asmblock semantics is simulated by stepping sequentially all bundles of lb for the
parallel AsmVLIW semantics. This forward simulation results from composition of these two ones:
(1) A plus simulation ensuring that executing B is the same as executing lb in the sequential
Asmblock semantics, which proves the re-ordering part of the postpass scheduling.
(2) A lockstep simulation ensuring that executing each bundle of lb with the Asmblock semantics
gives the same result as executing this bundle with the parallel AsmVLIW semantics.
Each of these two forward simulations is actually derived from the correctness property of a

dedicated verifier. In other words, we prove that if each of these two verifiers returns “OK”, then the
corresponding forward simulation holds. The following sections describe these two verifiers and
their correctness proof. We first introduce AbstractBasicBlock, a helper IR that we use for both
simulations. Then we describe the “parallelizability checker” ensuring a lockstep simulation (2).
Finally, we describe the “simulation checker” ensuring a plus simulation (1).

9The scheduler is declared as a pure function like other CompCert oracles.
10It would be unsound to declare schedule returning directly a value of type “list bblock”, since the “correct” proof

field of bblock does not exist for the OCaml oracle.

Certified and efficient instruction scheduling 11

4.1 AbstractBasicBlock IR

The core of our verifiers lies in the AbstractBasicBlock specific representation. AbstractBasicBlock
provides a simplified syntax, in which the registers that are read or assigned by each instruction
appear syntactically. The memory is encoded by a pseudo-register denoted by𝑚. 11 We illustrate in
Example 4.1 how we have translated some instructions into AbstractBasicBlock assignments.

Example 4.1 (Syntax of AbstractBasicBlock). Examples of translations into AbstractBasicBlock:
(1) the addition of two registers 𝑟2 and 𝑟3 into 𝑟1 is written “𝑟1 B add[𝑟2, 𝑟3]”;
(2) the load into register 𝑟1 of memory address “ofs[𝑟2]” (representing ofs+𝑟2 where ofs is an integer
constant) is written “𝑟1 B (load ofs) [𝑚, 𝑟2]”;
(3) the store of register 𝑟1 into memory address “ofs[𝑟2]” is written “𝑚 B (store ofs) [𝑚, 𝑟1, 𝑟2]”.

AbstractBasicBlock is dedicated to intra-block analyses. In AbstractBasicBlock, a block is encoded
as a list of assignments, meant to be executed either sequentially or in parallel depending on the
semantics. Each assignment involves an expression, composed of operations and registers.
The syntax and semantics of AbstractBasicBlock are generic, and have to be instantiated with

the right parameters for each backend. Though we only did that task with the KV3 backend, we
believe it could easily be extended to other backends, and possibly other IRs as well.
AbstractBasicBlock provides a convenient abstraction over assembly instructions like most

IR of CompCert except Asm: it leverages the hundreds of AsmVLIW instructions into a single
unified representation. Compared to the Mach IR—used in the initial approach of [Tristan and
Leroy 2008]— AbstractBasicBlock is more low-level: it allows to represent instructions that are
not present at theMach level, like those presented in Section 4.6. It is also more abstract: there is
no particular distinction between basic and control-flow instructions, the latter being represented
as an assigment of a regular pseudo-register PC. The simplicity of its formal semantics (given in
Section 5) is probably the key design point that allows us to program and prove efficiently the
verifiers.

The following sections summarizes how we used AbstractBasicBlock to certify the scheduling of
Asmblock/AsmVLIW. See Section 5 for a more detailed presentation.

4.2 Parallelizability Checker

To check whether the sequential and parallel semantics of a certain bundle give the same result,
we translate the bundle into AbstractBasicBlock with a trans_block function, then we use the
is_parallelizable function from AbstractBasicBlock.
Function is_parallelizable analyzes the sequence of AbstractBasicBlock assignments and

checks that no pseudo-register is read or rewritten after being written once. For example, blocks
“𝑟1 B 𝑟2; 𝑟3 B 𝑟2” and “𝑟1 B 𝑟2; 𝑟2 B 𝑟3” are accepted as parallelizable. However, “𝑟1 B 𝑟2; 𝑟2 B 𝑟1”
and “𝑟1 B 𝑟2; 𝑟1 B 𝑟3” are rejected, because 𝑟1 is used after being written. See details in Appendix C.

When is_parallelizable returns true, the list of assignments has the same behavior in both
the sequential and the parallel semantics. This property at the AbstractBasicBlock level can be lifted
back to the AsmVLIW/Asmblock level, because the list of assignments returned by trans_block
is proven to bisimulate the input block—both for the sequential and the parallel semantics. This
bisimulation is also useful for the simulation checker described next section.
Proving the previously mentioned forward simulation (2) then relies on proving the following

lemma bblock_para_check_correct , which is proven by using the above bisimulation property.
Definition bblock_para_check bundle: bool B is_parallelizable (trans_block bundle)
Lemma bblock_para_check_correct ge f bundle rs m rs ' m': bblock_para_check bundle = true →

11This encoding should be refined in order to introduce alias analysis

12 Cyril Six, Sylvain Boulmé, and David Monniaux

exec_bblock ge f bundle rs m = Next rs' m' → det_parexec ge f bundle rs m rs' m'

4.3 Verifying Intrablock Reordering

In order to reason on reordering, we define a concatenation predicate: “is_concat tb lb” means
that the bblock tb is the concatenation of the list of bundles lb. Formally, lb must be non-empty,
only its head may have a non-empty header, only its tail may have a control flow instruction, and
tb .(body) must be the concatenation of all the bodies of lb, and the header (resp. exit) of the head
(resp. tail) of lb must correspond to the header (resp. exit) of tb.

We also define a block simulation: a block b is simulated by a block b′ if and only if when the
execution of b is not Stuck, executing b and b′ from the same initial state gives the same result
(using the sequential semantics). That is, b′ preserves any non-Stuck outcome of b.
Definition bblock_simu ge f b b' B ∀ rs m,

exec_bblock ge f b rs m <> Stuck → exec_bblock ge f b rs m = exec_bblock ge f b' rs m

The forward simulation (1) reduces to proving the correctness of our verified_schedule
function on each basic block, as formalized by this property:
Theorem verified_schedule_correct: ∀ ge f B lb,

(verified_schedule B) = (OK lb) → ∃ tb, is_concat tb lb ∧ bblock_simu ge f B tb

In detail, (verified_schedule B) calls our untrusted scheduler (schedule B) and then builds
the sequence of bundles lb as well as their concatenation tb. Then, it checks each bundle for
parallelizability with the bblock_para_check function described in the previous section. Finally, it
calls a function bblock_simub : bblock → bblock → bool checkingwhether tb simulates B.12
Function bblock_simub is composed of two steps. First, each basic block is compiled (through

the trans_block function mentioned in Section 4.2) into a sequence of AbstractBasicBlock as-
signments. Second, like in [Tristan and Leroy 2008], the simulation test symbolically executes
each AbstractBasicBlock code and compares the resulting symbolic memories (Fig. 7). A symbolic
memory roughly corresponds to a parallel assignment equivalent to the input block. More precisely,
this symbolic execution computes a term for each pseudo-register assigned by the block: this term
represents the final value of the pseudo-register in function of its initial value.

Example 4.2 (Equivalence of symbolic memories). Let us consider the two blocks 𝐵1 and 𝐵2 below:
(𝐵1) 𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟2]; 𝑟1 B 𝑟1 + 𝑟3
(𝐵2) 𝑟3 B load[𝑚, 𝑟2]; 𝑟1 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟1 + 𝑟3
They are both equivalent to this parallel assignment:

𝑟1 B (𝑟1 + 𝑟2) + load[𝑚, 𝑟2] ∥ 𝑟3 B load[𝑚, 𝑟2]
Indeed, 𝐵1 and 𝐵2 bisimulate (they simulate each other).

Collecting only the final term associated with each pseudo-register is actually incorrect: an
incorrect scheduling oracle could insert additional failures. The symbolic memory must thus also
collect a list of all intermediate terms on which the sequential execution may fail and that have
disappeared from the final parallel assignment. See Example 4.3 below. Formally, the symbolic
memory and the input block must be bisimulable13 as pictured on Fig 7.

12More precisely, if the result of “bblock_simub B tb” is true , then “bblock_simu ge f B tb” holds.
13A “symbolic memory” corresponds here to a kind of parallel assignment, and does not represent a memory (despite the

terminology). This confusion comes from the fact that “symbolic execution” as introduced by King [1976] refers to how to
compute “symbolic memories” and does not refer to what they represent. Indeed, in our case, “symbolic execution” computes
this alternative representation of each block by mimicking the sequential execution. See Sect. 5 for a formal overview.

Certified and efficient instruction scheduling 13

Example 4.3 (Simulation on symbolic memories). Consider:
(𝐵1) 𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟2]; 𝑟3 B 𝑟1; 𝑟1 B 𝑟1 + 𝑟3
(𝐵1) 𝑟3 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟3 + 𝑟3
Both 𝐵1 and 𝐵2 lead to the same parallel assignment:

𝑟1 B (𝑟1 + 𝑟2) + (𝑟1 + 𝑟2) ∥ 𝑟3 B 𝑟1 + 𝑟2
However, 𝐵1 is simulated by 𝐵2 whereas the converse is not true. This is because the memory

access in 𝐵1 may cause its execution to fail, whereas this failure cannot occur in 𝐵2. Thus, the
symbolic memory of 𝐵1 should contain the term “load[𝑚, 𝑟2]” as a potential failure. We say that a
symbolic memory 𝑑1 is simulated by a symbolic memory 𝑑2 if and only if their parallel assignment
are equivalent, and the list of potential failures of 𝑑2 is included in the list of potential failures of 𝑑1.
See Section 5 for the formal definitions.

Asmblock B tb

AbstractBasicBlock · ·

Symbolic memories · ·

bblock_simu

bisimulation

bisimulation

compilations
(by trans_block)

symbolic executions
with hash-consing

simulated by

Fig. 7. Diagram of bblock_simub correctness

As illustrated in Examples 4.2 and 4.3,
the computation of symbolic memories in-
volves many duplications of terms. Thus,
comparing symbolic memories with struc-
tural equalities of terms, as performed in
[Tristan and Leroy 2008], is exponential
time in the worst case. In order to solve
this issue, we have developed a generic ver-
ified hash-consing factory for Coq. Hash-
consing consists in memoizing the con-
structors of some inductive data-type in
order to ensure that two structurally equal terms are actually allocated to the same object in
memory. This enables us to replace (expensive) structural equalities by (constant-time) pointer
equalities.

4.4 Generic and Verified Hash-Consing

We give here a brief overview of the hash-consing mechanism. More details on AbstractBasicBlock

and its hash-consing mechanism are described in Section 5.
Hash-consing a data-type simply consists in replacing the usual constructors of this data-type by

smart constructors that perform the memoization of each constructor. This memoization is usually
delegated to a dedicated function that can in turn be generated from a generic factory [Filliâtre
and Conchon 2006]. Our hash-consing technique follows this principle. However, whereas the
memoization factory of Filliâtre and Conchon [2006] (in OCaml) has no formal guarantee, ours
satisfies a simple correctness property that is formally verified in Coq: each memoizing function
observationally behaves like an identity.

Our Coq memoization function on terms invokes an external untrusted OCaml oracle that takes
as input a given term, and returns a memoized term (possibly memoizing the input term in the
process). Then, our Coq memoization function dynamically checks that the memoized term and
the input term are isomorphic, or aborts the computation if it cannot ensure they are. This check
is kept constant-time by using OCaml pointer equality to compare already memoized subterms:
𝑓 (𝑡1, . . . , 𝑡𝑚) and 𝑔(𝑢1, . . . , 𝑢𝑛) are tested for isomorphism by checking that the head symbols 𝑓 and
𝑔 are identical, the numbers of arguments𝑚 and 𝑛 are the same, and for all 𝑖 , 𝑡𝑖 and 𝑢𝑖 are the same
pointer. We have thus imported OCaml pointer equality into Coq.
Importing an OCaml function into Coq is carried out by declaring the type of this OCaml

function through an axiom: the Coq axiom is replaced by the actual OCaml function at extraction.
Using a pure function type in this Coq axiom implicitly assumes that the OCaml function is

14 Cyril Six, Sylvain Boulmé, and David Monniaux

logically deterministic (like any Coq function): calling the function twice on equal inputs should
give equal outputs—where equality is Coq equality: structural equality. In contrast, the OCaml
pointer equality does not satisfy this property: two structurally equal values do not necessarily have
the same pointer.14
We solve this issue by using the pointer equality from the Impure library of [Boulmé and

Vandendorpe 2019], which embeds OCaml functions in Coq through a non-deterministic monad.
In particular, it represents OCaml pointer equality as a non-deterministic function.15 We then
use the axiom from Impure stating that, if pointer equality returns true, then the two values are
(structurally) equal.

Axiom phys_eq: ∀ {A}, A → A → ??bool
Extract Constant phys_eq ⇒ "(==)"
Axiom phys_eq_true: ∀ A (x y:A),

phys_eq x y { true → x=y

Here, “?? bool” is logically interpreted as the type
of all “subsets” of Booleans; phys_eq is the phys-
ical equality, later extracted as the OCaml (==);
and “{” is the may-return relation of the Impure li-
brary: “phys_eq x y { true” means that “true” is
a possible result of “phys_eq x y”. In other words, even if “phys_eq x y { true” and
“phys_eq x y { b”, then we cannot conclude that “b=true” (we could also have “b=false”).
The Impure library does not even assume that “∀ x , phys_eq x x { true”.

These axioms are proved to be non-contradictory w.r.t. the Coq logic. They express a correctness
property of OCaml physical equality, from which we derive efficient and formally verified hash-
consing.

4.5 Peephole optimization

We have expressed the semantics of assembly instructions by decomposing them into atomic
operations, which we used to define the symbolic execution. This means that distinct groups of
instructions that decompose into the same atomic operations are considered equivalent. We exploit
this to implement peephole optimization: local replacement of groups of instructions by faster ones,
prior to scheduling. On Fig. 6, this untrusted optimization is performed by a preliminary pass of
the “Scheduler” oracle, and thus dynamically checked by our bblock_simub trusted verifier.

Currently our only peephole optimizations are the replacement of two (respectively, four) store
instructions from an aligned group of double-word (64-bit) registers (e.g. $r18, $r19) to a succes-
sion of offsets from the same base register (e.g. 8[$r12], 16[$r12]) by a single quadruple-word
(respectively, octuple-word) store instruction; and the same with loads. In practice, this quickens
register spilling and restoring sequences, such as those around function calls: CompCert spills and
restores registers in ascending order, whereas in general it would only be sheer chance that register
allocation placed data that is consecutive in memory into a aligned group of consecutive registers.
Similar optimizations could be conducted on the ARM (multiple loads and stores) and AAarch64
(loads and stores of arbitrary pairs of registers) architectures.

4.6 Atomic Sequences of Assignments in AbstractBasicBlock

In the previous examples of this paper, each AsmVLIW instruction is translated to a single as-
signment of AbstractBasicBlock. However, in many cases (extended-word accesses of Sect. 4.5,
control-flow instructions, frame-handling pseudo-instructions, etc), AsmVLIW instructions cannot
correspond to a single assignment: they are rather translated to AbstractBasicBlock as an atomic

14Hence, if we model pointer equality (OCaml’s ==) as an infix function “phys_eq : ∀ { A } , A → A → bool”, then we
are able to prove this wrong proposition (when x and y are structurally equals but are distinct pointers):

y=x ∧ (phys_eq x y)=false ∧ (phys_eq x x)=true→ false=true
15In the Coq logic, two occurrences of variable “x” may correspond to two distinct objects in memory (e.g. after

substituting y=x in “P x y”). This is why phys_eq must appear as “non-deterministic” to Coq’s eyes.

Certified and efficient instruction scheduling 15

sequence of assignments (ASA). A form of parallelism may occur in such a sequence through the spe-
cial operator Old(𝑒) where 𝑒 is an expression, meaning that the evaluation of 𝑒 occurs in the initial
state of the ASA. And an AsmVLIW bundle (resp. an Asmblock basic-block) actually corresponds
to the parallel (resp. sequential) composition of a list of such ASA.
For example, the parallel load from a 128-bit memory word involves two contiguous (and

adequately aligned) destination registers𝑑0 and𝑑1 that are distinct from each other by construction—
but not necessarily from the base address register 𝑎. This parallel load is thus translated into the
following ASA, that emulates a parallel assignment of 𝑑0 and 𝑑1, even if 𝑎 = 𝑑0:

𝑑0 B (load 𝑖) [𝑚,𝑎] ; 𝑑1 B (load (𝑖 + 8)) [𝑚, (Old 𝑎)]
See Section 5.1 for a formal definition of atomic sequences of assignments.

5 FORMALIZING A SYMBOLIC EXECUTIONWITH HASH-CONSING

This section sketches how the symbolic execution with hash-consing of AbstractBasicBlock is
formalized. This requires to first present the formal sequential semantics of this IR (Sect. 5.1). See
Appendix C for more details on AbstractBasicBlock (in particular its parallel semantics and the
formalization of the parallelizability test).

5.1 Syntax and Sequential Semantics of AbstractBasicBlock

We sketch below the formal definition of AbstractBasicBlock syntax and its sequential semantics.
Its syntax is parametrized by a type R.tof pseudo-registers (positive integers in practice) and a type
op of operators. Its semantics is parametrized by a type value of values, a type genv for global
environments, and a function op_eval evaluating operators to an “option value”.
Let us introduce the semantics in a top-down (i.e. backward) style. Function run defines the

semantics of a bblock by sequentially iterating over the execution of instructions, called inst_run .
The inst_run function takes two memory states as input: m as the current memory, and old as the
initial state of the instruction run (the duplication is carried out in run). It invokes the evaluation
of an expression, called exp_eval . Similarly, the exp_eval function takes two memory states as
input: the current memory is replaced by old when entering under the Old operator.
(* Abstract Syntax parametrized by type R.t of registers and op of operators *)
Inductive exp B PReg(x:R.t) | Op (o:op) (le:list_exp) | Old (e:exp) with list_exp B . . .

Definition inst B list (R.t * exp). (* inst = atomic sequence of assignments *)
Definition bblock B list inst
(* Semantical parameters and auxiliary definitions *)
Parameter value genv: Type
Parameter op_eval: genv → op → list value → option value
Definition mem B R.t→ value. (* concrete memories *)
Definition assign (m:mem) (x:R.t) (v:value): mem B fun y ⇒ if R.eq_dec x y then v else m y
(* Sequential Semantics *)
Fixpoint exp_eval (ge: genv) (e: exp) (m old: mem): option value B
match e with PReg x ⇒ Some (m x) | Old e ⇒ exp_eval ge e old old
| Op o le ⇒ SOME lv ← list_exp_eval ge le m old IN op_eval ge o lv
end with list_exp_eval ge (le: list_exp) (m old: mem): option (list value) B . . .

Fixpoint inst_run (ge: genv) (i: inst) (m old: mem): option mem B
match i with nil ⇒ Some m
| (x,e)::i' ⇒ SOME v' ← exp_eval ge e m old IN inst_run ge i' (assign m x v') old end

Fixpoint run (ge: genv) (p: bblock) (m: mem): option mem B
match p with nil ⇒ Some m | i::p' ⇒ SOME m' ← inst_run ge i m m IN run ge p' m' end

5.2 Sketch of our verified hash-consed terms

Using King [1976] terminology, a symbolic value is a kind of term. In such terms, a pseudo-register
represents its value in the initial memory of block execution. Hence, the structure of our terms is
similar to type exp without the Old operator. Below, we define an inductive type hterm (together
with list_hterm) for hash-consed terms: it adds an hash-tag information (of type hashcode) to

16 Cyril Six, Sylvain Boulmé, and David Monniaux

each constructor. These hash-tags are computed by our external memoizing factory and intend to
identify each hash-consed term as a unique integer. Actually, a misuse on these hash-tags will not
affect the correctness of our verifier but only its performance (including its success). Indeed, it is
ignored by the formal semantics of hterm , called ht_eval .
Inductive hterm B Input (x:R.t) (hid:hashcode) | App (o: op) (l: list_hterm) (hid:hashcode)

with list_hterm B LTnil (hid:hashcode) | LTcons (t:hterm) (l:list_hterm) (hid:hashcode)
Fixpoint ht_eval (ge: genv) (ht: hterm) (m: mem): option value B
match t with Input x _ ⇒ Some(m x) | App o l _ ⇒ SOME v ← lht_eval ge l m IN op_eval ge o v
end with lht_eval ge (l: list_hterm) (m: mem): option (list value) B . . .

Our symbolic execution with hash-consed terms is parametrized by two memoizing functions
hC_term and hC_list_term . Indeed, our simulation test ultimately performs two symbolic exe-
cutions, one for each block: these two symbolic executions share the same memoizing functions,
leading to an efficient comparison of the symbolic memories through pointer equality. The correct-
ness property associated with each of these functions is directly derived from our generic certified
memoization factory (which is detailed in Appendix C.4.2). Here is the specification of hC_term
using notations of Impure (hC_list_term is similar).
Variable hC_term: hterm → ?? hterm
Hypothesis hC_term_correct: ∀ t t', hC_term t { t' → ∀ ge m, ht_eval ge t m = ht_eval ge t' m

These memoizing functions are invoked in the smart constructors of hterm and list_hterm .
Below, we give the smart constructor—called hApp—for the App case with its correctness property.
It uses a special hash-tag called unknown_hid (never allocated by our memoizing oracle): hC_term
replaces this special hash-tag by the one actually allocated for this term.
Definition hApp (o:op) (l: list_hterm) : ?? hterm B hC_term (App o l unknown_hid)
Lemma hApp_correct o l t: hApp o l { t →
∀ ge m, ht_eval ge t m = (SOME v ← lht_eval ge l m IN op_eval ge o v)

5.3 An abstract Model of our Simulation Test (without hash-consing)

The formal proof of our simulation test is decomposed into two parts using a data-refinement style.
In the first part, we define an abstract model of the symbolic execution and the simulation test
(without hash-consing): this allows to reduce the simulation of two basic blocks for their sequential
semantics to the simulation of their symbolic memories computed through an abstract definition of
the symbolic execution. In a second part, sketched in Section 5.4, this abstract symbolic execution
is refined using concrete data-structures and in particular hash-consing.

The symbolic execution of a block is modelled as a function bblock_smem : bblock → smem ,
where a symbolic memory of type smem is abstractly modelled by the pair of a predicate pre

expressing at which condition the intermediate computations of the block do not fail, and of a
parallel assignment post on the pseudo-registers. For the sake of this presentation, we model terms
with type hterm , but without real hash-consing (all hash-tags are set to unknown_hid).
Record smemB {pre: genv → mem → Prop; post: R.t→ hterm}. (* abstract symbolic memories *)

Then, the bisimulation property between symbolic and sequential execution is expressed by:
Lemma bblock_smem_correct p d: bblock_smem p = d →
∀ m m', run ge p m=Some m'↔ (d.(pre) ge m ∧ ∀ x, ht_eval ge (d.(post) x) m = Some (m' x))

This lemma allows to reduce the simulation of block executions to the simulation of symbolic
memories, formalized by smem_simu below.
Definition smem_valid ge (d: smem) (m:mem): Prop B

d.(pre) ge m ∧ ∀ x, ht_eval ge (d.(post) x) m <> None
Definition smem_simu (d1 d2: smem): Prop B ∀ ge m, smem_valid ge d1 m →

Certified and efficient instruction scheduling 17

(* initial symbolic memory *)
Definition smem_empty B {| preB(fun _ _ ⇒ True); postB(fun x ⇒ Input x unknown_hid) |}
(* symbolic evaluation of the right -hand side of an assignment *)
Fixpoint exp_term (e: exp) (d old: smem) : hterm B
match e with PReg x ⇒ d.(post) x | Old e ⇒ exp_term e old old
| Op o le ⇒ App o (list_exp_term le d old) unknown_hid
end with list_exp_term (le: list_exp) (d old: smem) : list_term B . . .

(* effect of an assignment on the symbolic memory *)
Definition smem_set (d:smem) x (t:term) B

{| preB(fun ge m ⇒ (t_eval ge (d.(post) x) m) <> None ∧ (d.(pre) ge m));
postB(fun y ⇒ if R.eq_dec x y then t else d.(post) y) |}

Fig. 8. Basic operations of the symbolic execution in the abstract model

(* initial symbolic memory *)
Definition hsmem_empty: hsmem B {| hpreB nil ; hpost B Dict.empty |}
Lemma hsmem_empty_correct ge: smem_model ge smem_empty hsmem_empty
(* symbolic evaluation of the right -hand side of an assignment *)
Fixpoint exp_hterm (e: exp) (hd hod: hsmem): ?? hterm B
match e with Old e ⇒ exp_hterm e hod hod
| PReg x ⇒ match Dict.get hd.(post) x with Some ht ⇒ RET ht

| None ⇒ hInput x (* smart constructor for Input *) end
| Op o le ⇒ DO lt f list_exp_hterm le hd hod;;

hApp o lt (* smart constructor for App *)
end with list_exp_hterm (le: list_exp) (d od: hsmem): ?? list_term B . . .

Lemma exp_hterm_correct ge e hod od d ht:
smem_model ge od hod → smem_model ge d hd → exp_hterm e hd hod { ht →
∀ m, smem_valid ge d m → smem_valid ge od m → ht_eval ge t m = ht_eval ge (exp_term e d od) m

(* effect of an assignment on the symbolic memory (naive wrt the actual implementation) *)
Definition hsmem_set (hd:hsmem) x (ht:hterm): ?? hsmem B

RET {| hpreB ht::hd.(hpre); hpostBDict.set hd x ht |}
Lemma hsmem_set_correct hd x ht ge d t hd ':

smem_model ge d hd → (∀ m, smem_valid ge d m → ht_eval ge ht m = ht_eval ge t m) →
hsmem_set hd x ht { hd ' → smem_model ge (smem_set d x t) hd '

Fig. 9. Data-refinement of symbolic execution with hash-consing

(smem_valid ge d2 m ∧ ht_eval ge (d1.(post) x) m = ht_eval ge (d2.(post) x) m))
Theorem bblock_smem_simu p1 p2: smem_simu (bblock_smem p1) (bblock_smem p2) →
∀ ge m, (run ge p1 m) <> None → (run ge p1 m) = (run ge p2 m)

Internally, as coined in the name of “symbolic execution” by King [1976], bblock_smem mimics
run (the sequential execution of the block), by replacing operations on memories of type mem by
operations on type smem given in Fig. 8. The initial symbolic memory is defined by smem_empty .
The evaluation of expressions on symbolic memories is defined by exp_term : it outputs a term
(a symbolic value). Also, the assignment on symbolic memories is defined by smem_set . To con-
clude, starting from smem_empty , the symbolic execution preserves the bisimulation of symbolic
memories wrt the sequential execution, on each assignment.

5.4 Refining symbolic execution with hash-consed terms

Wenow refine the type smem into type hsmem . The latter involves a dictionary of type (Dict.t hterm)
(positive maps in practice) associating pseudo-registers of type R.t to hash-consed terms. Type
hsmem is related to smem (in a given environment ge) by relation smem_model .
(* The type of our symbolic memories with hash -consing *)
Record hsmemB {hpre: list hterm; hpost: Dict.t hterm}
(* implementation of the [smem_valid] predicate *)
Definition hsmem_valid ge (hd: hsmem) (m:mem): Prop B
∀ ht, List.In ht hd.(hpre) → ht_eval ge ht m <> None

(* implementation of the symbolic memory evaluation *)
Definition hsmem_post_eval ge (hd: hsmem) x (m:mem): option value B

match Dict.get hd.(hpost) x with None ⇒ Some (m x) | Some ht ⇒ ht_eval ge ht m end
(* The data -refinement relation *)
Definition smem_model ge (d: smem) (hd:hsmem): Prop B

18 Cyril Six, Sylvain Boulmé, and David Monniaux

(∀ m, hsmem_valid ge hd m↔ smem_valid ge d m)
∧ ∀ m x, smem_valid ge d m → hsmem_post_eval ge hd x m = ht_eval ge (d.(post) x) m

Fig. 9 provides an implementation of the operations of Fig. 8 that preserves the data-refinement
relation smem_model . It uses the monadic operators provided by Impure: its unit noted “RET _”
and its bind operator noted “DO _ f _ ; ; _”. The smart constructors building hash-consed terms
are invoked by the exp_hterm (i.e. the evaluation of expressions on symbolic memories).
Then, the symbolic execution bblock_hsmem : bblock → ?? hsmem invokes these operations

on each assignment of the block. We prove that it refines bblock_smem from lemma of Fig. 9.
Lemma bblock_hsmem_correct p hd: bblock_hsmem p { hd → ∀ ge, smem_model ge (bblock_smem p) hd

Finally, the main function of the simulation test (detailed in Appendix C.4.3) creates two memo-
izing functions hC_term and hC_list_term as presented Sect. 5.2. Then, it invokes the symbolic
execution bblock_hsmem on each block. These two symbolic executions share the memoizing
functions hC_term and hC_list_term , meaning that each term produced by one of the symbolic
executions is represented by a unique pointer. The symbolic executions produce thus two hsmem

and we compare them efficiently using physical equality on hash-consed terms.

6 INTRABLOCK SCHEDULING ORACLE

The postpass schedule is computed by an untrusted oracle, which first invokes a processor-
dependent frontend that turns the scheduling problem of a given basic-block into an optimization
problem (Sec. 6.2), which is then solved by one of our processor-independent oracles: (1) one instruc-
tion per bundle (2) greedy bundling without reordering (3) list scheduling (default) (4) reduction to
ILP (Integer Linear Programming; Appendix D), solved by an external tool (e.g., Gurobi).

6.1 Bundlers without reordering

In order to measure the performance impact of scheduling, we provide two simple backends
without any reordering: the first one trivially issues one instruction per bundle, while the second
one attempts to greedily “pack” successive instructions without altering the sequential semantics.

6.2 Scheduling as an optimization problem

We refer the reader to [Micheli 1994, Ch. 5] for a general background on scheduling problems in
hardware, which is not far from our software problem [Dupont de Dinechin 2004]. Here, we explain
the exact problem we need to solve on the Kalray VLIW architecture.
We have 𝑛 instructions to schedule, that is, compute a function 𝑡 : 0 . . . 𝑛 − 1→ N assigning a

time slot to each instruction. These time slots will be used to group instructions into bundles: first
bundle is all instructions 𝑗 such that 𝑡 (𝑗) = 0, next bundle all those such that 𝑡 (𝑗) = 1 etc.

Each instruction 𝑗 is characterized by a kind 𝐾 (𝑗) (whether it is an addition, a multiplication, a
load, etc.). This schedule must satisfy three classes of constraints:
Semantic dependencies Read and write dependencies are examined for each processor register,
as well as the pseudo-register𝑚, standing for the whole addressable memory. These dependencies
are functionally relevant: code reordered without paying attention to them is generally incorrect.
• Read after write: If instruction 𝑗 writes to register 𝑟 and this is the last write to 𝑟 before an
instruction 𝑗 ′ reading from 𝑟 , then the schedule should respect 𝑡 (𝑗 ′) − 𝑡 (𝑗) ≥ 1.
• Write after write: If instruction 𝑗 writes to register 𝑟 and this is the last write to 𝑟 before an
instruction 𝑗 ′ writing to 𝑟 , then the schedule should respect 𝑡 (𝑗 ′) − 𝑡 (𝑗) ≥ 1.
• Write after read: Instruction 𝑗 reads from 𝑟 , the next write to 𝑟 is instruction 𝑗 ′, then 𝑡 (𝑗 ′)−𝑡 (𝑗) ≥ 0.

Certified and efficient instruction scheduling 19

Find 𝑡 : 0 . . . 𝑛 → N satisfying:
A resource usage constraint

∀𝑖
∑

𝑗 |𝑡 (𝑗)=𝑖
u(𝐾 (𝑗)) ≤ r (1)

Latency constraints of the kind (where 𝑗 ′ > 𝑗):

𝑡 (𝑗 ′) − 𝑡 (𝑗) ≥ 𝛿 (2)

Fig. 10. Our family of scheduling problems

Latency constraints The description of the processor microarchitecture states, for each instruc-
tion, the number of clock cycles after which the values it produces are ready. More precisely, it
states that if an instruction of kind 𝑘 ′ is scheduled at least 𝛿 cycles after an instruction of kind 𝑘
then it incurs no waiting for reading the output of the other instruction. In most cases, 𝛿 depends
only on 𝑘 , but there are “bypasses” for some 𝑘 ′ with lower 𝛿 than for others. All these are mentioned
in the processor documentation. For memory loads, we take the timing for a L1 cache hit.
The KVX processor is interlocked: latencies do not affect architectural semantics. If an instruction
is scheduled before its operands are ready, the result is unchanged, the only consequence is that
the whole bundle to which the instruction belongs is stalled. Thus, mistakes in the latencies may
lead only to suboptimal performance, not to incorrect results.
Resource usage constraints The processor has a limited number of processing units. Therefore,
a bundle of instructions must not request more processing units of a given kind than available.
Also, there is a limit on the number of instruction words (“syllables”) inside a bundle. Bundles that
do not abide by these rules will be rejected by the assembler.
The architecture documentation describes these limitations as a constant vector of available re-
sources r ∈ N𝑚 and, for each instruction kind 𝑘 , a vector u(𝑘) ∈ N𝑚 . The constraint is that the sum
of all u(𝐾 (𝑗)) for all instructions 𝑗 scheduled within the same bundle 𝑖 should be coordinate-wise
less than or equal to r, as expressed by Inequality (1) in Fig. 10.

Algorithm 1: Simplified view of our list scheduler
𝑖 := 0 ∥ 𝑄 := {0 . . . 𝑛 − 1}
while 𝑄 ≠ ∅ do

𝑅 := ∅ ∥ a := r
for 𝑗 ′ ∈ 𝑄 do

𝑟𝑒𝑎𝑑𝑦 := true

for 𝑗
𝛿−→ 𝑗 ′ ∈ 𝐺 do

if 𝑡 (𝑗) > 𝑗 ′ − 𝛿 then 𝑟𝑒𝑎𝑑𝑦 := false;
if 𝑟𝑒𝑎𝑑𝑦 then 𝑅 := 𝑅 ∪ { 𝑗 ′};

for 𝑗 ∈ 𝑅 (in descending 𝑙 (𝑗, 𝑛) order) do
if a ≥ u(𝐾 (𝑗)) then

a := a − u(𝐾 (𝑗)) ∥ 𝑄 :=
𝑄 \ { 𝑗} ∥ 𝑡 (𝑗) := 𝑖

𝑖 := 𝑖 + 1

The semantic dependencies and the
latency constraints are instances of
Inequality (2). In fact, the “read after
write” dependencies are subsumed by
the latency constraints between the
output values and the read operands.
Finally, we introduce an extra time

slot 𝑡 (𝑛) representing the time at
which all instructions have already
been completely executed, in the sense
that all their outputs have been com-
puted. We thus add extra latency con-
straints of the form 𝑡 (𝑛) − 𝑡 (𝑗) ≥ 𝛿 to
express that output operands should
be available at time 𝑡 (𝑛). Hence, 𝑡 (𝑛) is
themakespan of our basic block, which
we wish to minimize.

Our scheduling problem is thus an instance of the system of inequalities in Fig. 10: a correct
sequence of bundles using 𝑡 (𝑛) cycles in total is directly built from any solution 𝑡 .

20 Cyril Six, Sylvain Boulmé, and David Monniaux

0 make $r3 = stringlit2
1 make $r2 = stringlit1
2 compw.gtu $r11 = $r18 , 65535
3 cmoved.weqz $r11? $r3 = $r2
4 ld $r0 = 952[$r19]
5 addd $r1 = $r12 , 40
6 ld $r2 = 0[$r19]
7 ld $r4 = 32[$r4]
8 call TIFFErrorExt

Fig. 11. Example of a basic-block

make $r3 = stringlit_2
make $r2 = stringlit_1
compw.gtu $r11 = $r18 , 65535

;;
cmoved.weqz $r11? $r3 = $r2
ld $r0 = 952[$r19]
addd $r1 = $r12 , 40

;;
ld $r2 = 0[$r19]

;;
ld $r4 = 32[$r4]
call TIFFErrorExt

Fig. 12. Its list scheduling

compw.gtu $r11 = $r18 , 65535
ld $r4 = 32[$r4]

;;
make $r3 = stringlit_2
make $r2 = stringlit_1
ld $r0 = 952[$r19]

;;
cmoved.weqz $r11? $r3 = $r2
addd $r1 = $r12 , 40
ld $r2 = 0[$r19]
call TIFFErrorExt

Fig. 13. Its ILP scheduling

6.3 (Critical paths) List scheduler

Our default solver is based on a variant of Coffman-Graham list scheduling [Dupont de Dinechin
2004] [Micheli 1994, §5.4] with one heuristic: instructions with the longest latency path to the exit
get priority. This is fast (quasi linear-time) and computes an optimal schedule in almost all practical
cases.

We consider that time 𝑖 starts from 0, and we choose at each step which instructions 𝑗 to schedule
at time 𝑖 (those for which 𝑡 (𝑗) = 𝑖). Our Algorithm 1 chains two ideas16:
Maximal scheduling sets Assume we have already chosen a set 𝑆 of instructions to be scheduled
at time 𝑖 , such that

∑
𝑗 ∈𝑆 u(𝐾 (𝑗)) ≤ r. Assume there is 𝑗 ′ ∉ 𝑆 such that all its operands are ready,

and
∑

𝑗 ∈𝑆∪{ 𝑗 ′ } u(𝐾 (𝑗)) ≤ r. Then it is always at least as good to schedule 𝑗 ′ in the same time slot as
the instructions in 𝑆 , compared to scheduling only 𝑆 : this cannot increase the makespan. Thus, at
every step we can restrict the search to 𝑆 maximal w.r.t. the inclusion ordering among the feasible 𝑆 .
Critical path heuristic The question is then which 𝑆 to consider if there are many of them, often
the case for the first bundles of a block—since all instructions using only registers with their values
at the start of the block can be scheduled in the first bundle.
Consider the (multi)graph𝐺 with an edge 𝑗

𝛿−→ 𝑗 ′ for each inequality (2). It is acyclic, since all these
edges satisfy 𝑗 ′ > 𝑗 . In a valid schedule, 𝑡 (𝑗) is at most 𝑡 (𝑛) − 𝑙 (𝑗, 𝑛) where 𝑙 (𝑗, 𝑛) is the maximal
length of paths from 𝑗 to 𝑛 in𝐺 . If we had no resource constraints, in an optimal schedule we would
have 𝑡 (𝑗) = 𝑡 (𝑛) − 𝑙 (𝑗, 𝑛). When constructing a maximal 𝑆 , we thus consider 𝑗 in decreasing order
of 𝑙 (𝑗, 𝑛); in other words, we try to schedule first the instructions on the critical path.
This algorithm never backtracks. If the choice is non-optimal, it may miss a better solution.

This happens on example of Figure 11 (sequential code shown, one line per bundle). The timing
constraints of this examples are: 𝑡8 ≥ all other times, 𝑡6 ≥ 𝑡3 (write-after-read), 𝑡6 − 𝑡1 ≥ 1 (write-
after-write, WAW), 𝑡3 − 𝑡0 ≥ 1 (WAW), 𝑡3 − 𝑡1 ≥ 1 (read-after-write, RAW), 𝑡3 − 𝑡2 ≥ 1 (RAW). The
critical path lengths to 𝑡8 are 1 for 𝑡0, 𝑡1, 𝑡2, 𝑡6 and 0 for 𝑡3, 𝑡4, 𝑡5, 𝑡7.

The list scheduler breaks ties between instructions 0, 1, 2, 6 according to their order in the original
program and schedules instructions 0, 1, 2 at time slot 0, saturates the “maximumnumber of syllables”
resource at this time slot and yields a schedule with a makespan of 4 (Fig. 12). In contrast, the
optimal scheduler, using integer linear programming, yields a makespan of 3 (Fig. 13).

16This algorithm gives a simplified view of our implementation. The latter pre-computes all 𝑙 (𝑗, 𝑛) by graph traversal.
And, it avoids scanning for all 𝑗 ′ ∈ 𝑄 by updating an array, indexed by 𝑖 , of sets of instructions ready to be scheduled 𝑅 (𝑖)
at time 𝑖: an instruction is added to the appropriate 𝑅 (𝑖) when its last predecessor has been scheduled.

Certified and efficient instruction scheduling 21

7 BASIC BLOCK RECONSTRUCTION

We motivate and briefly present our solution to reconstruct basic blocks in CompCert, necessary
for the later scheduling pass. More details can be found in appendices A and B.

7.1 Necessity of constructing basic blocks at the Mach level

Mach is the IR closest to assembly with a significant level of abstraction. It features 3-address code
instructions, with generic instructions (such as Mload, Mstore and Mop) that are to be translated
into their Asm architecture specific equivalents. The ABI (Application Binary Interface) is also
abstracted away into specific Mach instructions handling the stack and function parameters.

Onemajor difference betweenMach and Asm lies in their semantics: the “next”Mach instructions
to be executed are directly in a Mach state (as a list of instructions), whereas the Asm instructions
are stored in memory, accessed by the PC register. In such Asm semantics, the PC register can
jump anywhere within the function body, not necessarily to a label.17 On the contrary, theMach

semantics ensures that jumps can only branch to particular points (labels, function entry points and
return addresses). This property is not carried within the Asm IR. This makes reconstructing basic
blocks from Asm (in a hypothetical Asm to Asmblock pass) impossible: our AsmVLIW semantics
requires that PC never jump inside a basic block.
Our solution is to construct the basic blocks earlier, at the Mach level, by introducing a new

Machblock IR as well as an architecture independent Mach to Machblock translation, and then
adapting the former Mach to Asm pass to a new Machblock to Asmblock pass. Not only does
introducingMachblock allows separating the proof of the basic block reconstruction from the proof
of theMach to Asm translation, but it also makes part of the process reusable for other backends.

7.2 Translating and proving Mach to Machblock

The Mach to Machblock translation is a purely syntactic one: Mach instructions are separated into
labels, basic and control-flow instructions (much like section 3). We create an initial basic block
and start filling basic instructions inside. The translation ends the current basic block whenever a
label or control-flow instruction is met - after which it creates a new basic block.

The semantic preservation proof then checks that stepping through a certain number of instruc-
tions at theMach level is equivalent to stepping through a corresponding basic block inMachblock.
This is done with an Option simulation: executing a Mach instruction either leads to a “stuttering”
with a decreasing measure, 18 or the execution of the whole Machblock block once the end is
reached. See Appendix A.2 for details.

7.3 Translating and proving Machblock to Asmblock

TheMachblock to Asmblock translation relies on translating eachMachblock basic block into an
Asmblock basic block. Each Machblock basic instruction is translated into one or more Asmblock

basic instructions—and each Machblock control flow instruction is translated into any number of
Asmblock basic instructions, followed by a control flow instruction. 19

The proof of Machblock toAsmblock is a star simulation: eachMachblock basic block is simulated
by one (or more, in the case of a builtin)Asmblock basic blocks; like in usualMach toAsm translation
there is only a single stuttering case, on theMach step restoring the caller state (see Appendix A.1.2

17See the igoto instruction in section 2.2
18In our case, the measure is the (statically known) number of instructions left to run before the end of the basic block.
19For instance, translating a Machblock conditional instruction may require basic instructions to evaluate the condition,

followed by the actual Pcb conditional branch instruction.

22 Cyril Six, Sylvain Boulmé, and David Monniaux

𝑆1 𝑆2

𝑠11 𝑠12

𝑐𝑠11𝑐𝑠10 𝑐𝑠12 𝑐𝑠13

𝑆 ′1 𝑆 ′2

Machblock.step

remove_header

body step
exit step

exec_header exec_body exec_body

exec_control

Asmblock.step

: match_codestate : match_asmstate : match_states

Fig. 14. Diagram of the simulation proof

for detailed explanations). The simulation used for that proof is a blockstep simulation (stepping
one basic block at a time) that we have to decompose in terms of instruction-step simulations.

In usual Mach to Asm passes, the match_states simulation specifies that the value of registers
and memory stay correct throughout the execution. It also specifies that the code to which the PC
register points must correspond to the code that is executed. Here, our instruction-step simulations
cannot directly use such a match_states relation, since the PC register would have to point in the
middle of a basic block (to fetch the current instruction), however our semantics disallow that.
We thus split the match_states relation into two different simulations: match_codestate

which handles the simulation between Machblock and Asmblock regardless of the presence of the
instructions in memory (these are instead saved in an intermediate “ghost state” called codestate),
and a match_asmstate relation ensuring that the instructions stored in the codestate are present
at the memory address pointed to by PC.

The actual blockstep simulation theorem is then cut into several smaller theorems, following the
simulation diagram of Fig. 14. This approach re-uses most of the existingMach to Asm proofs with
a minimum amout of readaptations. More details can be found in Appendix B.

8 EXPERIMENTAL EVALUATION

Our implementation7 adds to CompCert around 28Kloc of Coq and 5Kloc of OCaml, much more
than e.g. 10 Kloc of Coq and 2Kloc of OCaml each for the Risc-V and x86 targets. Our target
assembly is described by around 1.8K lines of specification in the AsmVLIW module. This is a little
more than other Asm (1–1.3Klines). Our scheduling oracle is implemented by 2.4Kloc of OCaml
(half for its frontend, half for its backend).

The remaining of this section describes our evaluation of this implementation. Firstly, we measure
the compilation time of our optimization w.r.t the other optimization passes of CompCert. Then,
we compare timings of compiled code with our CompCert to that of the default compiler for the
target platform, measuring clock cycles using performance counters. We also compare our timings
in different configurations to study the impact of postpass scheduling in CompCert.

8.1 Experimental compiling time

We experimentally checked that our oracle and its verifier have linear running times, by instru-
menting the generated OCaml code of the compiler to get the user timings and basic block sizes.
Fig. 15 shows our measurements in logarithmic scales. Each point in this figure corresponds to

an actual basic block from our benchmarks, verified or scheduled (for the list-scheduling) 1000

Certified and efficient instruction scheduling 23

times. The verifier is generally a little slower than the oracle, but both are experimentally of linear
complexity. The biggest basic block we came accross, of around 500 instructions, was scheduled and
verified in approximately 4 ms, which is the same time required for other CompCert optimizations
such as constant propagation or common subexpression elimination.
These compile times are in line with other optimization passes of CompCert.

8.2 Benchmarks used

radiotrans

convertib
le

heater_co
ntrol lift

bitsli
ced-aes

sha-256 glpk
picosat

genann4
float_m

at

float_m
at_v2

jpeg-6b zlib
40%

50%

60%

70%

80%

90%

100%

.ccomp.orig

.ccomp.pack

correlation

covariance2mm3mmataxbicg
cholesky

doitgen
gemm

gemver

gesummvmvt
symm

syr2ksyrk
triso

lv
trm

m
durbin

dynprog

gramsch
midt lu

ludcmp

floyd-warshall

reg_detect adi
fdtd-2d

jacobi-1d-imper

jacobi-2d-imper
seidel-2d

50%

60%

70%

80%

90%

100%

.ccomp.orig

.ccomp.pack

Fig. 16. Relative speed of CompCert’s generated code depending on scheduling options. The speed with list

scheduling—the default option— is “100%” (lower is slower). The “orig” option outputs the original assembly

code, unscheduled, one instruction per bundle. “pack” packs instructions into bundles without reordering

them. The left picture represents our target benchmark, whereas the right picture represents Polybench.

1 10 100
Size of basic block

0.01

0.1

1.0

Av
er

ag
e

tim
e

of
 o

ne
 ru

n
(m

s)

Verifier
Oracle
slope of 1

Fig. 15. Scheduling times

We evaluated our optimization on a range of ap-
plications that could be used on the Kalray KVX
core: critical embedded systems and computational
benchmarks. This is our target benchmark. We
also evaluated CompCert on the Polybench bench-
marks [Pouchet 2012].
radiotrans, convertible and heater-control are

benchmarks compiled from synchronous dataflow
programming languages (respectively Heptagon,
Lustre v6 and Lustre v4). Such languages are for
instance used to specify and implement fly-by-wire
aircraft controls [França et al. 2011]. The C source
code compiled from the high-level specification is
then often compiled without optimization so that it
can be easily matched to the resulting assembly code.
CompCert’s advantage in this area is that it allows using optimizations, its semantics preservation
proof replacing the manual structural matching between assembly and C code. lift is a lift con-
troller program from TACLeBench, a collection of benchmarks used for worst-case execution time
research [Falk et al. 2016].

24 Cyril Six, Sylvain Boulmé, and David Monniaux

On the computational part, bitsliced-aes and sha-256 are cryptography primitives taken from
[Mosnier 2019] and [Patrick 2015]. glpk runs GLPK (GNU Linear Programming Kit [Makhorin 2012])
on an example. picosat is an optimized SAT solver [Biere 2008], ran over a Sudoku example. genann
is a minimal artificial neural network [Van Winkle 2018]. float-mat is a textbook implementation of
floating-point matrix multiplication; float-mat-v2 is a version with high level transformations such
as loop unrolling done at the source level. jpeg-6b is from the Libjpeg [Lane and the Independent
JPEG Group (IJG) 1998]. zlib [Gailly and Adler 2017] is a data-compression library.

8.3 Impact of optimizations

Figure 16 illustrates the impact of our optimization pass on the performance of the generated code.
The reference version uses the list scheduler of Section 6.3. Two others use the bundlers without
reordering of Section 6.1: “orig” emits one instruction per bundle (close to what straightforwardly
generating instuctions one by one as other CompCert backends would produce), and “pack” uses
the greedy bundler. In Figure 16, the execution time of each version is compared to those of the
reference. Higher percentages mean better timings.
Postpass scheduling has a noticeable impact on performance: compared to the reference “orig”

version, we get an average performance increase of 41%. However, some benchmarks such as
convertible are barely affected by the optimization—indeed, the main loop features around 800
different variables in the same scope, which do not fit into the 64 registers of the KVX. Register
spills are thus generated, which in turn prevent scheduling since we do not yet have any alias
analysis yet, which would allow reordering memory accesses.
The “pack” version increases performance slightly w.r.t. “orig”, but not by much compared to

true scheduling. We gain an average of 23% by scheduling instead of naive greedy bundling.
A word of warning: since our scheduler operates after register allocation,20 it is highly sensitive

to register reuse: write(𝑣1, 𝑟1) . . . read (𝑟1) . . .write(𝑣2, 𝑟2) . . . read (𝑟2) (with no other accesses to
𝑟1, 𝑟2) can be rescheduled to write(𝑣1, 𝑟1) . . .write(𝑣2, 𝑟2) . . . read (𝑟1) . . . read (𝑟2) but write(𝑣1, 𝑟1) . . .
read (𝑟1) . . .write(𝑣2, 𝑟1) . . . read (𝑟1) cannot. In some cases, optimizations prior to register allocation,
with actual improvements in intermediate code, lead to worse final performance because the
optimized code, after register allocation, happens to reuse a register in a “hot” loop in a way that
prevents instructions from being scheduled optimally, whereas the less optimized code does not.
This makes it difficult to measure the impact of optimizations, because whether or not registers are
reused in this way is a matter of luck. Adding a prepass scheduler could solve this problem.21

8.4 Comparison of CompCert with Kalray’s GCC

We also compared our CompCert compiler to the GCC22 compiler supplied by Kalray, adapted from
version 7.5.0, at -O0. . . -O2 optimization levels. -O1 deactivates scheduling and thus only generates
bundles of one instruction. -O0 loads and stores variables from memory at every use.

The results (see Fig. 17) vary considerably depending on the benchmark—furthermore, at the time
of this writing, the GCC backend is still being developed by Kalray: in particular some optimizations
are not yet functional, and code selection could be improved in a few places. It is thus hard to
draw meaningful conclusions on the comparison with GCC, though it allowed us to outline some
optimizations that could be made by CompCert to improve performance.

20We have not modified CompCert’s register allocator, except for allowing float and integer values to be allocated to a
single bank of registers.

21But, even with a prepass scheduler, a postpass scheduler on the assembly code would still be required: the assembly
code is the level where instructions (e.g. loads of spilled registers) are precisely scheduled.

22The GNU Compiler Collection, https://gcc.gnu.org/

https://gcc.gnu.org/

Certified and efficient instruction scheduling 25

radiotrans

convertib
le

heater_co
ntrol lift

bitsli
ced-aes

sha-256 glpk
picosat

genann4
float_m

at

float_m
at_v2

jpeg-6b zlib
10%

50%

100%

200%

300%

.gcc.o0

.gcc.o1

.gcc.o2

.gcc.o3

correlation

covariance2mm3mmataxbicg
cholesky

doitgen
gemm

gemver

gesummvmvt
symm

syr2ksyrk
triso

lv
trm

m
durbin

dynprog

gramsch
midt lu

ludcmp

floyd-warshall

reg_detect adi
fdtd-2d

jacobi-1d-imper

jacobi-2d-imper
seidel-2d

10%

50%

100%

200%

300%

.gcc.o0

.gcc.o1

.gcc.o2

.gcc.o3

Fig. 17. Relative speed of generated code with Kalray’s GCC, from -O0 to -O3 optimization levels; 100% being

the speed with CompCert by list scheduling (lower is slower). Note that for some safety-critical applications

with mandatory traceability from source to object code (e.g., DO178 level-A avionics), only gcc -O0 is likely

to be usable, whereas CompCert’s correctness proof is accepted for traceability [Bedin França et al. 2012].

Our target benchmark is pictured at the top, Polybench is at the bottom picture.

26 Cyril Six, Sylvain Boulmé, and David Monniaux

For example, while CompCert is outperformed by GCC on float-mat, it comes close in perfor-
mance on float-mat-v2, meaning that we identified which high-level transformations need to be
integrated into CompCert to improve performance on this kind of functions.

Regardless, in average, we produce code 276% faster than code produced by -O0, 19% faster than
-O1, 18% slower than -O2, and 25% slower than -O3. In some cases, we produce faster code than
GCC, in the best case 8% faster than -O3.

8.5 Remarks and limitations

Even though we aim at comparing the quality of instruction scheduling, we actually compare two
very different whole compilers. In particular, the machine-independent parts of CompCert do not
perform certain optimizations that GCC does, among which:
• certain strength reductions:GCC converts amultiplicative expression 𝑐𝑖 , where 𝑐 is a loop-invariant
constant and 𝑖 is a loop index with a step of one into a new variable 𝑥 stepping in increments of 𝑐 ;
• loop invariant code motion and, more generally, any form of code motion across basic blocks;
• loop unrolling and other loop optimizations; CompCert compiles loops straightforwardly;
• structure or array “disaggregation”: expanding an aggregate (accessed through base + index loads
and stores) into independent scalar variables, which can be allocated to registers;
• interprocedural optimisations: the only one performed by CompCert is inlining, and CompCert’s
inlining heuristic is less aggressive than GCC’s.
In contrast, CompCert replaces a 32-bit signed division by a constant with a small efficient

sequence of code [Granlund and Montgomery 1994], whereas GCC calls a generic library function.
Certain compiler differences are subtler but may have dramatic effects in some cases: e.g., our

version of CompCert sometimes does not simplify an inlined function if a parameter is a constant
value allowing simpler instructions to be used, e.g., replacing a floating-point division by 2 by a
multiplication by 0.5. Some of these discrepancies have great importance on some benchmarks. For
instance, textbook matrix multiplication can be greatly optimized by strength reduction (removal
of multiplications for computing the address of array cells according to indices and stride), loop
unrolling and loop invariant code motion. In some benchmarks, we consider both the original code
and some slight manual optimization thereof, reproducing optimizations that GCC would perform.

9 CONCLUSION AND FUTUREWORK

Trusted Computing Base. Customizing Coq’s extraction mechanism to call external OCaml
procedures increases the trusted computing base. Yet we limited this increase: the only property
we trust is that OCaml’s pointer equality implies structural equality (of Coq).23

Lessons learned. Formal proof forces developers to rigorously document the compiler, with
precise semantics and invariants. Proving programs in Coq is heavyweight, but there is almost no
bug-finding after testing on real programs: the compiler just works. We however had a few bugs
in the parts of CompCert not checked by formal proofs—printing of assembly instructions, stack

23Our correctness proof does not rely on other properties that our OCaml code provides (in particular, the correctness
proof of our verifier does not assume that two isomorphic hash-consed data structures in existence at the same time are
always allocated to the same place in memory). In order not to have to convert CompCert’s code generation flow to the full
monadic style of Impure, we also unsafely exit from the Impure monad in order to obtain the scheduled code as though the
verified scheduler were guaranteed to be (logically) deterministic. We do not think that this weakness hides a real issue:
even if an unexpected bug in some of our OCaml oracles makes them non-deterministic, we do not call the scheduler twice
on the same code, so there is no absurd case where we could go to if two different calls gave different results. This is in line
with similar implicit assumptions elsewhere in CompCert that oracles are deterministic. These assumptions result from a
shortcut in the formalization and are expected to be useless, without any bad consequence if they are wrong.

Certified and efficient instruction scheduling 27

frame (de)allocation. Most bugs in the scheduling oracles were found by testing them on random
examples; an untrusted checker with detailed error messages is useful for such early testing.
Apart from the difficulty of finding suitable invariants and proof techniques, another main

hurdle was interpreting benchmark results. Missed optimization bugs (e.g. an inferior schedule
was selected) were particularly hard to catch.

Future work. Our scheduler is intra-block; this implies it cannot for instance anticipate computa-
tions by moving them to free time slots before a branching instruction. We plan to implement a
superblock scheduler allowing such movements on the critical path, before register allocation.

In some cases, we were able to identify register reuse as the cause of disappointing performance.
Our postpass scheduler has to obey read-over-write and write-over-write dependencies. Comp-
Cert’s register allocator sometimes reuses registers in ways that prevent some better scheduling
from being adopted; again, prepass scheduling should help in this respect: it would generate a
reasonable schedule, register allocation would be performed on that schedule and the postpass
scheduler would then perform local adjustments.
Our backend cannot at present reorder a memory read and a memory write, or two memory

writes, even when their addresses cannot overlap. Also, CompCert sometimes does not recognize
that it is reloading a value that it recently stored. We plan to add some form of alias analysis to our
system to resolve both these issues.

Despite our efforts, our instruction selection is still perfectible: a few instructions that could be of
use are still not selected. We shall work on this, though we do not hope much improvement can be
gained. Selecting vector instructions automatically (loop vectorization) could improve performance
in some cases, but doing so would entail considerable changes to CompCert’s notions for mapping
variables to registers. Hardware loops could save some cycles on tight loops, but again these would
require considerable changes to CompCert’s backend.
The main cause of inefficiency of the code generated for some examples, compared to GCC’s,

is the lack of some high level optimizations in CompCert, for instance better inlining heuristics,
structure or array “disaggregation” (expanding an aggregate into scalar variables), loop-invariant
code motion and strength reduction. Again, this is left to future work.

ACKNOWLEDGMENTS

We wish to thank Benoît Dupont de Dinechin, Xavier Leroy, Gergö Barany, Thomas Vandendorpe
as well as the anonymous reviewers for their helpful remarks.

28 Cyril Six, Sylvain Boulmé, and David Monniaux

REFERENCES

Gergö Barany. 2018. A more precise, more correct stack and register model for CompCert. In LOLA 2018 - Syntax and
Semantics of Low-Level Languages 2018. Oxford, United Kingdom. https://hal.inria.fr/hal-01799629

Ricardo Bedin França, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris. 2012. Formally
verified optimizing compilation in ACG-based flight control software. In Embedded Real Time Software and Systems
(ERTS2). AAAF, SEE. arXiv:hal-00653367

Armin Biere. 2008. PicoSAT Essentials. JSAT 4 (01 2008), 75–97.
Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal Verification of a C Compiler Front-End. In FM 2006: Formal

Methods, 14th International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings (Lecture
Notes in Computer Science), Vol. 4085. Springer, 460–475. https://doi.org/10.1007/11813040_31

Gabriel Hjort Blindell, Mats Carlsson, Roberto Castañeda Lozano, and Christian Schulte. 2017. Complete and Practical
Universal Instruction Selection. ACM Trans. Embedded Comput. Syst. 16, 5 (2017), 119:1–119:18. https://doi.org/10.1145/
3126528

Sylvain Boulmé and Thomas Vandendorpe. 2019. Embedding Untrusted Imperative ML Oracles into Coq Verified Code.
(March 2019). https://hal.archives-ouvertes.fr/hal-02062288 preprint.

Thomas Braibant, Jacques-Henri Jourdan, and David Monniaux. 2014. Implementing and Reasoning About Hash-consed
Data Structures in Coq. J. Autom. Reasoning 53, 3 (2014), 271–304.

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When good instructions go bad: generalizing
return-oriented programming to RISC. In Proceedings of the 2008 ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008. ACM, 27–38. https://doi.org/10.1145/1455770.1455776

Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte. 2019. Combinatorial Register
Allocation and Instruction Scheduling. Transactions on Programming Languages and Systems (April 2019). arXiv:1804.02452
https://chschulte.github.io/papers/castanedacarlssonea-toplas-2019.html Accepted for publication.

Benoît Dupont de Dinechin. 2004. From Machine Scheduling to VLIW Instrution Scheduling. ST Journal of Research 1, 2
(September 2004), 1–35. https://www.cri.ensmp.fr/classement/doc/A-352.ps Also as Mines ParisTech research article
A/352/CRI.

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl,
Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016) (OpenAccess Series in Informatics (OASIcs)), Martin Schoeberl (Ed.), Vol. 55. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2:1–2:10.

Paul Feautrier. 1991. Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20, 1
(1991), 23–53. https://doi.org/10.1007/BF01407931

Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-safe modular hash-consing. In Proceedings of the ACM Workshop
on ML, 2006, Portland, Oregon, USA, September 16, 2006. ACM, 12–19. https://doi.org/10.1145/1159876.1159880

Joseph A. Fisher. 1981. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Trans. Comput. 30, 07 (jul
1981), 478–490. https://doi.org/10.1109/TC.1981.1675827

Joseph A. Fisher. 1983. Very Long Instruction Word Architectures and the ELI-512. In Proceedings of the 10th Annual
Symposium on Computer Architecture, 1983. ACM Press, 140–150.

Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. 2005. Embedded Computing: A VLIW Approach to Architecture, Compilers
and Tools. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris. 2011. Towards Formally Verified
Optimizing Compilation in Flight Control Software. In Bringing Theory to Practice: Predictability and Performance in
Embedded Systems, DATE Workshop PPES 2011, March 18, 2011, Grenoble, France. (OASICS), Philipp Lucas, Lothar Thiele,
Benoit Triquet, Theo Ungerer, and Reinhard Wilhelm (Eds.), Vol. 18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 59–68. https://doi.org/10.4230/OASIcs.PPES.2011.59

Jean-Loup Gailly and Mark Adler. 2017. zlib. https://www.zlib.net/
Torbjörn Granlund and Peter L. Montgomery. 1994. Division by Invariant Integers using Multiplication. In Proceedings of the

ACM SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI), Orlando, Florida, USA, June
20-24, 1994, Vivek Sarkar, Barbara G. Ryder, andMary Lou Soffa (Eds.). ACM, 61–72. https://doi.org/10.1145/178243.178249

Daniel Kästner, Jörg Barrho, Ulrich Wünsche, Marc Schlickling, Bernhard Schommer, Michael Schmidt, Christian Ferdinand,
Xavier Leroy, and Sandrine Blazy. 2018. CompCert: Practical Experience on Integrating and Qualifying a Formally
Verified Optimizing Compiler. In ERTS2 2018 - 9th European Congress Embedded Real-Time Software and Systems. 3AF,
SEE, SIE, Toulouse, France, 1–9. https://hal.inria.fr/hal-01643290

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394. https://doi.org/10.
1145/360248.360252

https://hal.inria.fr/hal-01799629
https://doi.org/10.1007/11813040_31
https://doi.org/10.1145/3126528
https://doi.org/10.1145/3126528
https://hal.archives-ouvertes.fr/hal-02062288
https://doi.org/10.1145/1455770.1455776
https://chschulte.github.io/papers/castanedacarlssonea-toplas-2019.html
https://www.cri.ensmp.fr/classement/doc/A-352.ps
https://doi.org/10.1007/BF01407931
https://doi.org/10.1145/1159876.1159880
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.4230/OASIcs.PPES.2011.59
https://www.zlib.net/
https://doi.org/10.1145/178243.178249
https://hal.inria.fr/hal-01643290
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

Certified and efficient instruction scheduling 29

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software
analysis perspective. Formal Asp. Comput. 27, 3 (2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

Monica S. Lam. 1988. Software Pipelining: An Effective Scheduling Technique for VLIWMachines. In Programming Language
Design and Implementation (PLDI). ACM Press.

Tom Lane and the Independent JPEG Group (IJG). 1998. Libjpeg. http://libjpeg.sourceforge.net/
Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009). arXiv:inria-00415861
Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363–446.

http://xavierleroy.org/publi/compcert-backend.pdf
Xavier Leroy. 2017. How I found a crash bug with hyperthreading in Intel’s Skylake processors. https://thenextweb.com/

contributors/2017/07/05/found-crash-bug-hyperthreading-intels-skylake-processors/
P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein, Robert P. Nix, John S. O’Donnell,

and John Ruttenberg. 1993. The Multiflow Trace Scheduling Compiler. J. Supercomput. 7, 1-2 (May 1993), 51–142.
https://doi.org/10.1007/BF01205182

Andrey Makhorin. 2012. GNU Linear Programming Kit. Free Software Foundation. https://www.gnu.org/software/glpk/
Giovanni De Micheli. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill.
Alain Mosnier. 2019. SHA-256 implementation. https://github.com/amosnier/sha-2
Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Verified peephole optimizations for CompCert.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 448–461. https:
//doi.org/10.1145/2908080.2908109

Conor Patrick. 2015. Bitsliced AES implementation. https://github.com/conorpp/bitsliced-aes
Louis-Noël Pouchet. 2012. the Polyhedral Benchmark suite. http://web.cs.ucla.edu/~pouchet/software/polybench/
B. Ramakrishna Rau, Christopher D. Glaeser, and Raymond L. Picard. 1982. Efficient code generation for horizontal

architectures: Compiler techniques and architectural support. In 9th International Symposium on Computer Architecture
(ISCA 1982), Austin, TX, USA, April 26-29, 1982. IEEE Computer Society, 131–139. https://dl.acm.org/citation.cfm?id=801721

Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification of Translation Validators: a Case Study on Instruction
Scheduling Optimizations. In Principles of Programming Languages (POPL). ACM Press, 17–27.

Jean-Baptise Tristan. 2009. Formal verification of translation validators. Ph.D. Dissertation. Université Paris 7 Diderot.
Jean-Baptiste Tristan and Xavier Leroy. 2010. A simple, verified validator for software pipelining. In Principles of Programming

Languages (POPL). ACM Press, 83–92. http://gallium.inria.fr/~xleroy/publi/validation-softpipe.pdf
Lewis Van Winkle. 2018. Genann — minimal artificial neural network. https://github.com/codeplea/genann
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Programming

Language Design and Implementation (PLDI). ACM Press, 283–294.

https://doi.org/10.1007/s00165-014-0326-7
http://libjpeg.sourceforge.net/
http://xavierleroy.org/publi/compcert-backend.pdf
https://thenextweb.com/contributors/2017/07/05/found-crash-bug-hyperthreading-intels-skylake-processors/
https://thenextweb.com/contributors/2017/07/05/found-crash-bug-hyperthreading-intels-skylake-processors/
https://doi.org/10.1007/BF01205182
https://www.gnu.org/software/glpk/
https://github.com/amosnier/sha-2
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1145/2908080.2908109
https://github.com/conorpp/bitsliced-aes
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://dl.acm.org/citation.cfm?id=801721
http://gallium.inria.fr/~xleroy/publi/validation-softpipe.pdf
https://github.com/codeplea/genann

30 Cyril Six, Sylvain Boulmé, and David Monniaux

A BASIC-BLOCK RECONSTRUCTION

This section explains how we recover the basic-block structure of aMach program. Section A.1
first recalls some preliminaries onMach and Asm IR in CompCert. This helps to motivate our new
Machblock IR, betweenMach and Asmblock, introduced at Section A.2. The latter also presents
the translation between Mach and Machblock. The pass of Machblock to Asmblock is presented in
Section B.

A.1 Preliminaries : from Mach to Asm in CompCert

Section A.1.1 presents theMach IR of CompCert. Section A.1.2 explains the difference between
Mach and Asm and presents the proof from Mach to Asm in existing CompCert backends.

A.1.1 The Mach IR of CompCert. The Mach IR consists of a set of functions, each with a function
body. Roughly speaking, Mach is a simplified assembly language (with 3-address code instructions
handling the actual registers of the target processor, except for some special registers like the
program counter PC) where:
• The ABI (Application Binary Interface) is abstracted intoMach instructions allowing access to
the stack and function parameters Mgetstack, Msetstack and Mgetparam.
• Loads and stores stay generic, and are not yet expanded into the “real” load/store instructions.
The same applies to branching instructions.
• Calling instructions Mcall and Mtailcall can only branch either on a function symbol, or a
register on an address that must be the first address of a function.
• Branching instructions such as Mgoto branch to labels in the current function (like in LLVM).
• There is neither a PC (Program Counter) nor a RA (Return Address) register. The remaining code
to execute is an explicit part of the current state.
Mach states describe the register state rs, the global memory state m, and the stack state st.

They are of three kinds, with the following meanings:
• (State st f c rs m): the first instruction of code c is about to be run in current function f;
• (Callstate st f rs m): function f is about to be run, the caller context has just been pushed
on stack st;
• (Returnstate st rs m): a caller context is about to be restored from stack st.

State

Returnstate Callstate

Other Mach instructions

Mreturn

Mcall/MtailcallRestoring the caller state

Internal
function

External function
emitting an observable event

Fig. 18. Execution steps between Mach states

A.1.2 Proving a translation from Mach to Asm. The major difference betweenMach and Asm really
lies in the execution semantics. In Mach, the remaining code to execute is directly in the state
and Mach semantics provide a clean notion of internal function call: execution can only enter into
an internal function by its syntactic entry-point. In Asm, the code to execute resides in memory,

Certified and efficient instruction scheduling 31

Fig. 19. Simulation diagrams with stuttering in CompCert

and is pointed to by the PC register. Through jumps into registers and a bit of pointer arithmetic,
an Asm program can jump into the middle of a function, like in Return-Oriented-Programming
(ROP) [Buchanan et al. 2008]. Thus, proving the code generation pass fromMach to Asm implies
ensuring that the generated code does not have such a behavior (assuming that the Mach program
does not have any undefined behavior): it simulatesMach execution where such a behavior does
not exist.24

Formally, it involves introducing a suitable “∼” relation matching Mach states with Asm states.
The gist of it consists in expressing a correspondence between the register states as well as the
memory, in addition to the following properties depending on the Mach state: if it is a State,
then the PC register points to the Asm code generated from Mach; if it is a Callstate, then the
PC should point to the callee function, and the RA register to the return address (i.e. the address
following the call instruction in the caller); otherwise, it is a Returnstate and the PC should point
to the return address.
Then, the proof involves a “Star” simulation. Such a simulation of a program 𝑃1 by a program

𝑃2 is defined — for a relation 𝑆1 ∼ 𝑆2 matching states 𝑆1 from 𝑃1 with states 𝑆2 from 𝑃2 — by the
following conditions:
• The initial states match

∀𝑆1, 𝑃1.istate 𝑆1 =⇒ ∃𝑆2, 𝑃2.istate 𝑆2 ∧ 𝑆1 ∼ 𝑆2
• The final states match

∀𝑆1 𝑆2 𝑟, 𝑆1 ∼ 𝑆2 ∧ 𝑃1.fstate 𝑆1 𝑟 =⇒ 𝑃2.fstate 𝑆2 𝑟

• The execution steps match through the “Star” simulation diagram (also depicted in Figure 4)

∀𝑆1 𝑆2 𝑆 ′1 𝑡, 𝑆1 ∼ 𝑆2 ∧ 𝑆1
t−−→ 𝑆 ′1 =⇒ ∃𝑆 ′2, 𝑆 ′1 ∼ 𝑆 ′2 ∧ (𝑆2

t−−→+ 𝑆 ′2 ∨ (𝑆2
t−−→∗ 𝑆 ′2 ∧ |𝑆 ′1 | < |𝑆1 |))

The “Star” simulation diagram expresses that each single step of 𝑃1 producing a trace 𝑡 can be
simulated by several steps of 𝑃2 producing the same trace 𝑡 . In particular, when 𝑃1 performs an
internal step (where 𝑡 = 𝜖), 𝑃2 can stutter, i.e. perform no computation step. But, if 𝑃1 loops forever
without producing any observable event, then 𝑃2 cannot stutter infinitely.25 Indeed, stuttering is
only allowed if the step of 𝑃1 makes the state decrease for a well-founded order (hence, sequences
of successive stutterings cannot be infinite).

The “Star” simulation from Mach to Asm thus corresponds to prove that one Mach step (i.e. one
transition of Fig. 18) gives the same result as several Asm instructions. For instance, the Mach step
from Callstate into State is simulated by the steps of the Asm function prologue that allocate the
stack-frame and save it into registers FP (Frame Pointer) and RA. The Mach conditional branching

24Thus, ROP attacks on code generated by CompCert are only possible from undefined behaviors of the source code.
25Otherwise an infinite silent loop 𝑃1 could be compiled into a program 𝑃2 returning in one step, and this would be

incorrect.

32 Cyril Six, Sylvain Boulmé, and David Monniaux

step is simulated by the Asm steps that compute the result of the condition, and then branch
accordingly. Actually, the only stuttering step of Asm w.r.t Mach corresponds to the Restoring step
from Returnstate.

A.2 Mach to Machblock translation

As explained in A.1.2, on an arbitrary Asm program, we cannot prove that an execution cannot
jump to the middle of a function, and in particular to the middle of a basic block. Thus, the basic
block structure can only be recovered syntactically from the function structure of Mach programs.
Moreover, proving that a block-step semantics simulates an instruction-step semantics is not trivial.
Hence, it seems interesting to capitalize this effort for a generic component w.r.t the processor. This
motivates us to introduce a new IR between Mach and Asmblock, called Machblock (Fig. 3), which
introduces a sequential blockstep semantics on Mach programs.

The basic blocks syntax inMachblock is very similar to that of Asmblock, except that instructions
areMach instructions and that empty basic blocks are allowed (but not generated by our translation
from Mach). We have only defined a sequential semantics for Machblock, which is Mach one,
except that a whole basic block is run in one single step. This block-step is internally made up of
several computation steps, one by basic or control-flow instruction.
Record bblock B { header: list label; body: list basic_inst; exit: option control_flow_inst }

The code of our translation fromMach toMachblock is straightforward: it groups successive
Mach instructions into a sequence of “as-big-as-possible” basic blocks, while preserving the initial
order of instructions. Indeed, eachMach instruction corresponds syntactically to either a label, a
basic instruction, or a control-flow instruction of Machblock.
Proving that this straightforward translation is a forward simulation is much less simple than

naively expected. Our proof is based on a special case of “Option” simulation (Fig. 19). Intuitively,
theMachblock execution stutters until theMach execution reaches the last execution of the current
block, then while the Mach execution runs the last step of the current block, the Machblock

execution runs the whole block in one step. Hence, the measure over Mach states—that indicates
the number of Machblock successive stuttering steps—is simply the size of the block (including
the number of labels) minus 1. Formally, we have introduced a dedicated simulation scheme,
called “Block” simulation in order to simplify this simulation proof. This specialized scheme avoids
defining the simulation relation—written “∼” in Fig. 19—relatingMach andMachblock states in
the stuttering case. In other words, our scheme only requires relating of Mach and Machblock

states at the beginning of a block. Indeed, the “Block” simulation scheme of a Mach program 𝑃1 by
a Machblock program 𝑃2 is defined by the two conditions below (where 𝑆1 and 𝑆 ′1 are states of 𝑃1;
𝑆2 and 𝑆 ′2 are states of 𝑃2; and 𝑡 is a trace):
(1) stuttering case of 𝑃2 for one step of 𝑃1:

|𝑆1 | > 0 ∧ 𝑆1
𝑡−−→ 𝑆 ′1 =⇒ 𝑡 = 𝜖 ∧ |𝑆1 | = |𝑆 ′1 | + 1

(2) one step of 𝑃2 for |𝑆1 |+1 steps of 𝑃1:

𝑆1 ∼ 𝑆2 ∧ 𝑆1
𝑡−−→|𝑆1 |+1 𝑆 ′1 =⇒ ∃ 𝑆 ′2, 𝑆2

𝑡−−→ 𝑆 ′2 ∧ 𝑆 ′1 ∼ 𝑆 ′2
Naively, relation 𝑆1 ∼ 𝑆2 would be defined as “𝑆2 = trans_state(𝑆1)” where trans_state

translates the Mach state in 𝑆1 into a Machblock state, only by translating the Mach codes of
𝑆1 intoMachblock codes. However, this simple relation is not preserved by goto instructions on
labels. Indeed, inMach semantics, a goto branches to the instruction following the label. On the
contrary, inMachblock semantics, a goto branches to the block containing the label. Hence, we
define 𝑆1 ∼ 𝑆2 as the following relation: “either 𝑆2 = trans_state(𝑆1), or the next Machblock step

Certified and efficient instruction scheduling 33

from 𝑆2 reaches the same Machblock state as the next step from trans_state(𝑆1)”. The condition (2)
of the “Block” simulation is then proved according to the decomposition of Figure 20.

On the right-hand side, c and b::bl are, respectively,
the initialMach andMachblock codes where b is the
basic block at the head of the Machblock code. Rela-
tion match_state is the Coq name of the simulation
relation (also noted “∼” in the paper). The Machblock

step from b::bl simulates the following |b| Mach steps
from c. First, skip all labels: this leads toMach code c0.
Second, run all basic instructions: this leads toMach

code c1. Finally, run the optional control-flow: this
leads to code c2. Each of these three subdiagrams is an
independent lemma of our Coq proof.

Mach

c

c2

Machblock

b::bl

bl

|b.(header)|

|b.(body)|

|b.(exit)|

equals_rs_m

equals_rs
_m

match_state

b.(body)

b.(exit)

c0

c1

trans_state

|b|

Fig. 20. Overview of our proof for condition (2) of the “Block” simulation of Mach by Machblock

B MACHBLOCK TO ASMBLOCK

TheMachblock to Asmblock pass is adapted from theMach to Asm pass of other backends (see
Section A.1.2), but with a consequential change: instead of manipulating instructions (and reasoning
on the execution of single instructions), we are now manipulating basic blocks of instructions,
and must reason on the execution of an entire basic block (in one single step). We are giving here
details to hint the reader on the differences between the two approaches, in particular for the star
simulation proof.

This appendix details the biggest differences, to give the viewer an idea of the difficulty involved
in porting an existingMach to Asm translation into aMachblock to Asmblock variant.

B.1 Machblock to Asmblock translation

B.1.1 Overview. Given a basic block from Machblock, the translation consists in emitting an
Asmblock basic block which performs the same operation.

The Mach to Asm pass of other backends translates code function by function, then within each
function, instruction by instruction.

Our translation goes through theMachblock code function by function, then basic block by basic
block. Within each basic block, the labels, basic instructions, then the control-flow instruction are
translated consecutively.

The label translation is straightforward. A label in CompCert is a positive identification number,
so we translate a label from Machblock to Asmblock by applying the identity function.

The translation of Machblock basic instructions give Asmblock basic instructions. Indeed, if a
Machblock instruction does not modify the control, then there is no reason for the corresponding
Asmblock instructions to do so. By "modifying the control" we mean here: not taking any branch,
and going to the "next" instruction in line instead. This is done by the transl_ basic_code and
transl_instr_basic with the following signatures (the Boolean is there for an optimization
explained in the next section):
transl_basic_code:

Machblock.function → list Machblock.basic_inst → bool → list Asmblock.basic_inst
transl_instr_basic: Machblock.function → Machblock.basic_inst → bool → list Asmblock.basic_inst

34 Cyril Six, Sylvain Boulmé, and David Monniaux

The translation of Machblock control-flow instructions is less trivial. It gives a list of Asmblock

basic instructions (possibly empty), followed by a single Asmblock control-flow instruction.

For example, the translation of a MBreturn cannot be just a ret assembly instruction, because
other operations such as restoring the stack pointer must be handled in the function epilogue.

Another example is the (MBcond cond args lbl) instruction which evaluates the arguments
args with the condition cond, and jumps to lbl if this evaluation is true. Evaluating a comparison
of a register to 0 can be done in one instruction in the Kalray assembly. However, comparing
two registers must be done by at least two instructions: one (compd rd rs1 rs2) instruction
comparing the two registers rs1 and rs2, writing the Boolean result to rd, then a cb (Conditional
Branch) instruction using the value of rd to decide of the branch.

The translation of control-flow instructions is done by a transl_instr_control function of
signature:
transl_instr_control:

Machblock.function → option Machblock .control_flow_inst → list Asmblock.instruction

If we note (𝐿; lb; 𝑐) a Machblock basic block, the translation then consists in generating the
Asmblock basic block (𝐿; 𝑡𝑏 (lb) ++ 𝑙 ′; 𝑐 ′) where 𝑡𝑏 is transl_basic_code , and 𝑙 ′, 𝑐 ′ are defined
such that 𝑡𝑐 (c) = 𝑙 ′ ++ (𝑐 ′ :: nil), with 𝑡𝑐 being transl_instr_control.

B.1.2 The argument pointer code optimization. There are many possible ways to pass the argu-
ments to a function in assembly code. In order to ensure a compatibility between the different
compilers as well as hand-written assembly code, each architecture defines an ABI (Application
Binary Interface), a specification of how arguments should be handled.

The arguments are usually first passed into registers, and then onto the stack if there isn’t enough
place in the registers. In the case of the Kalray Coolidge ABI (but it is also the case for some other
ABIs like the Risc-V), when there are too many arguments to be contained by the registers, the
caller pushes the extra arguments on the stack. Since each stack-frame is adjacent, the callee can
then access the arguments directly via its SP (Stack Pointer) register. For instance, if the stack size
of the callee is 24 bytes long, and the stack is in decreasing order (parents are in higher addresses),
then the first extra argument will be at address (SP+32).

This poses an issue within the memory model of CompCert. A CompCert address is a couple
(𝑏, off), where 𝑏 is an integer representing the memory block, and off is the offset within that
memory block. In this model, memory blocks are not contiguous. If we take the above example,
(SP+32) would actually be pointing to an invalid memory. Consequently, in CompCert, function
arguments cannot be accessed with the SP register directly.

The solution adopted by CompCert backends, is to keep the value of the "old SP " somewhere on
the stack. It is then part of the specifications that the function prologue should be saving SP before
modifying SP. This is done by the Pallocframe pseudo-instruction, for which we give below the
specification:

| Pallocframe sz pos ⇒
let (mw, stk) B Mem.alloc mr 0 sz in
let sp B (Vptr stk Ptrofs.zero) in
match Mem.storev Mptr mw (Val.offset_ptr sp pos) rsr#SP with
| None ⇒ Stuck

Certified and efficient instruction scheduling 35

| Some mw ⇒ Next (rsw #FP ← (rsr SP) #SP ← sp #RTMP ← Vundef) mw
end

This pseudo-instruction is doing two actions in regards to the old value of SP:
• Storing it at (Val.offset_ptr sp pos)
• Copying it at the register FP, a register arbitrarily chosen among the general purpose registers
that can be used for any operation.
This pseudo-instruction does not correspond to any particular assembly instruction: it is ex-

pended into a sequence of assembly instructions by not-formally-verified (but trusted) part of
CompCert26.

The copy into FP is part of a small optimization done during code generation. Loading a value
from memory is expensive in most architectures, and having to load this "old SP " for each access
of a parameter would result in a particularly inefficient code. In order to alleviate this, CompCert
backends remember during the code generation whether they previously loaded the old SP or not.
Then, when translating a MBgetparam, additional code is inserted if the old SP isn’t already loaded
in FP. For instance, translating two consecutive MBgetparam writing a parameter in a different
register than FP, will result in at most one FP reload operation.

In order to remember whether FP is loaded, a Boolean value parameter ep is added to each
translation function. The translation starts with ep=true (the prologue initially loads the old SP
into FP) , then throughout the translation sets ep to true if it has been reloaded, or to false if it
might have been destroyed. For instance, ep is set to false every time a label is encountered, since
it is not possible to know where did the control originate from.

More precisely, the next value of ep (outside of labels, handled separately) is given by this
function (in the case of Kalray backend, but other backends also have a similar function):
Definition fp_is_parent (before: bool) (i: Machblock.basic_inst) : bool B

match i with
| MBgetstack ofs ty dst ⇒ before && negb (mreg_eq dst MFP)
| MBsetstack src ofs ty ⇒ before
| MBgetparam ofs ty dst ⇒ negb (mreg_eq dst MFP)
| MBop op args res ⇒ before && negb (mreg_eq res MFP)
| MBload chunk addr args dst ⇒ before && negb (mreg_eq dst MFP)
| MBstore chunk addr args res ⇒ before
end

MFP stands for theMach register corresponding to FP. In the case of an operation whose result is
to be stored in FP, we must invalidate FP by setting ep to false, hence the (negb (mreg_eq dst
MFP)) used in most cases of the match.

B.1.3 Constraints of an Asmblock basic block. There are two main constraints to verify when
forming an Asmblock basic block. These are enforced by a wf_bblock predicate inside a bblock
record.

The first constraint is that the bblock should never be empty. Indeed, by our semantics, PC is
incremented by the size of the block in the end of its execution. If there are three instructions

26It can be a source of bugs to perform such a critical operation in the uncertified part of CompCert, especially when
taking into account the complex support for variadic arguments. Yet, as of now, all backends adopt that approach, and
careful testing can rule out these bugs.

36 Cyril Six, Sylvain Boulmé, and David Monniaux

in the bblock, then, at the end of the bblock step, PC is incremented by three. If the bblock was
allowed to be empty, then PC would not get modified, we would then execute the same bblock,
which would cause an infinite stuttering.

The second constraint comes from the Pbuiltin special instructions. A Pbuiltin instruction
represents a builtin instruction, that is, an instruction that is inserted directly from the C code to
the assembly code, without any translation from the compiler.

Here is an example of a C code containing such a builtin:
/* Invalidating data cache */
__builtin_k1_dinval ();

int v = tab [40];
printf("%d\n", v+3);

The __builtin_k1_dinval builtin produces directly the instruction dinval, which is used to
invalidate the data cache, before accessing a value on the heap. Such instructions are specially
handled by compilers.

In terms of CompCert assembly semantics, they are treated as external function calls (generating
a trace), however they pose the problem that, in assembly, we do not know exactly what they are
made of. Their expansion lies in the uncertified part of CompCert, with the only restriction that
a builtin cannot create new functions or sections. Each builtin instruction could potentially be
generating an entire block of code, with its own labels and more than one control-flow instructions.

We could treat them the same way we treat function call instructions, but then the uncertified
scheduler could return us a schedule where the builtin is to be bundled with another basic instruc-
tion, which could lead to absurd code if the builtin is eventually expanded to several instructions
and/or labels.

We are hitting here the limits of the builtin specification inside CompCert. In order to prevent
the above case, we chose to isolate each builtin, with one desired property: if an Asmblock basic
block has a builtin instruction, then that instruction must be the only instruction of the basic block.

This ensures that the uncertified expansion should have no effect on the rest of the gener-
ated code - though this is not proven formally, by lack of precise builtin semantics. Just like the
function prologue and epilogue, test benchmarks are used to remedy this lack of formal certification.

Let us also recall a third constraint, which is not specific to a bblock but rather a direct definition
of our Asmblock semantics: we cannot branch in the middle of a bblock, i.e. a Stuck state is induced
when the PC register does not point to the beginning of a bblock. This third constraint is necessary
to define a blockstep semantics.

B.1.4 Function prototypes for implementation. We describe here the actual functions used for
implementing the translation.

For each function, linearly, each basic block is translated via a transl_blocks function, starting
with ep=true:
Definition transl_function (f: Machblock.function) B

do lb ← transl_blocks f f.(Machblock.fn_code) true;

Certified and efficient instruction scheduling 37

OK (mkfunction f.(Machblock.fn_sig) (make_prologue f lb))

The make_prologue consists in inserting the Pallocframe pseudo-instruction, as well as in-
structions making sure the return address is stored on the stack, in order to have a correct linking
when executing the ret instruction of the function epilogue.

The transl_blocks goes through each basic block of the list, translates it, then propagates ep if
the block does not have any label.
Fixpoint transl_blocks (f: Machblock.function) (lmb: list Machblock.bblock) (ep: bool) B

match lmb with
| nil ⇒ OK nil
| mb :: lmb ⇒

do lb ← transl_block f mb (if Machblock.header mb then ep else false);
do lb ' ← transl_blocks f lmb false;
OK (lb @@ lb ')

end

transl_block is split into three functions: transl_basic_code which translates linearly each
basic instruction of the Machblock basic block, then transl_exit_code which translates the
optional control-flow instruction, and finally, gen_bblocks which makes one or several basic
blocks based on the results of the two last functions.
Definition transl_block f fb ep : res (list bblock) B

do c ← transl_basic_code f fb.(Machblock.body) ep;
do ctl ← transl_instr_control f fb.(Machblock.exit);
OK (gen_bblocks fb.(Machblock.header) c ctl)

The gen_bblocks function ensures that we generate bblocks that satisfy the two earlier de-
scribed constraints:
• a bblock cannot be empty: while we believe this should never happen, we must nevertheless
tackle what happens in the case that it does to ensure a forward simulation. We have chosen to
generate a bblock with a single nop instruction if we ever come across an empty Machblock basic
block.
• a builtin instruction must be alone in its bblock. When we encounter one, we split the basic
block into two bblocks.
Program Definition gen_bblocks (hd: list label) (c: list basic) (ctl: list instruction) B
match (extract_ctl ctl) with
| None ⇒ match c with

| nil ⇒ {| header B hd; body B Pnop::nil; exit B None |} :: nil
| i::c ⇒ {| header B hd; body B ((i::c) ++ extract_basic ctl); exit B None |} :: nil
end

| Some (PExpand (Pbuiltin ef args res)) ⇒ match c with
| nil ⇒ {| header B hd; body B nil; exit B Some (PExpand (Pbuiltin ef args res)) |} :: nil
| _ ⇒ {| header B hd; body B c; exit B None |} ::

{| header B nil; body B nil; exit B Some (PExpand (Pbuiltin ef args res)) |} :: nil
end

| Some ex ⇒ {| header B hd; body B (c ++ extract_basic ctl); exit B Some ex |} :: nil
end

Finally, the extract_basic and extract_ctl functions (not detailed here) extract respectively
the basic and the control-flow instructions of a list of instructions.

B.2 Forward simulation proof

B.2.1 Issues of using the usual Mach to Asm diagram. The usual diagram consists in starting
from two states 𝑠1 and 𝑠2 for which a certain match_states relation holds, executing oneMach

38 Cyril Six, Sylvain Boulmé, and David Monniaux

instruction, then executing the translated Asm instruction and proving that the two obtained states
𝑠 ′1 and 𝑠

′
2 also verify the match_states relation, that we give below for our backend: 27

Inductive match_states: Machblock.state → Asmvliw.state → Prop B
| match_states_intro:

∀ s fb sp c ep ms m m' rs f tf tc
(STACKS: match_stack ge s)
(FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
(MEXT: Mem.extends m m')
(AT: transl_code_at_pc ge (rs PC) fb f c ep tf tc)
(AG: agree ms sp rs)
(DXP: ep = true → rs#FP = parent_sp s),

match_states (Machblock.State s fb sp c ms m)
(Asmvliw.State rs m')

This relation ensures several things, among which:
• AG and MEXT ensures the value of registers and memory match those of theMachblock state
• AT ensures that, in the memory pointed by PC register, the Machblock code c is translated into
the Asmblock code tc with the Boolean parameter ep.
• DXP ensures that if ep is true , then FP must contain the value of the old SP.

In the other CompCert backends, the match_states relation holds between each execution of
aMach instruction. For each possibleMach instruction, lemmas are then proved to ensure that
executing on one hand theMach instruction, on the other hand the translated Asm instructions,
lead to the same result.

In our case, using the above match_states directly is tricky: instead of executing oneMach

instruction and reasoning on its translation, we execute an entire basic block of Machblock instruc-
tions, and must reason on the translation of the whole block.

A possibility for us could be to define a finer grain step relation, which would execute a single
instruction of a basic block on the Machblock part. In Machblock, executing one instruction could
be as simple as executing its effects, then removing it from the current basic block. On the Asmblock

side, one could suggest to increment PC instruction by instruction instead of doing it all at the end
of the bblock, however that would not be compatible with the constraint that we must not branch
in the middle of a bblock.

B.2.2 A new diagram to prove Machblock to Asmblock. In the lights of this difficulty, we chose to
introduce a new state definition, used for reasoning at a finer grain. We call it a Codestate, and
define it as follows:
Record codestate B

Codestate { pstate: state; (* projection to Asmblock.state *)
pheader: list label; (* list of label *)
pbody1: list basic; (* list of basics coming from the Machblock body *)
pbody2: list basic; (* list of basics coming from the Machblock exit *)
pctl: option control; (* exit instruction , coming from the Machblock exit *)
ep: bool; (* reflects the [ep] variable used in the translation *)
rem: list AB.bblock; (* remaining bblocks to execute *)
cur: bblock (* current bblock to execute - useful to increment PC *)

}

A Codestate augments a state of Asmblock by also including the instructions to execute, much
like Machblock. It also includes the value of ep used when translating the first instruction of
Codestate.

27We are here only describing the particular case of executing code within an internal function

Certified and efficient instruction scheduling 39

With this new Codestate, we can decompose the match_states relation into two relations.

The first of these two relations is match_codestate, which ensures an agreement between a
Machblock state and a Codestate, namely: the code residing in the Codestate must have been a
result of a translation of a Machblock code, the memory and register states should correspond, and
also the ep value of the Codestate should match with the one used in the translation.

Inductive match_codestate fb: Machblock.state → codestate → Prop B
| match_codestate_intro:

∀ s sp ms m rs0 m0 f tc ep c bb tbb tbc tbi
(STACKS: match_stack ge s)
(FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
(MEXT: Mem.extends m m0)
(TBC: transl_basic_code f (MB.body bb) (if MB.header bb then ep else false) = OK tbc)
(TIC: transl_instr_control f (MB.exit bb) = OK tbi)
(TBLS: transl_blocks f c false = OK tc)
(AG: agree ms sp rs0)
(DXP: (if MB.header bb then ep else false) = true → rs0#FP = parent_sp s)
,

match_codestate fb (Machblock.State s fb sp (bb::c) ms m)
{| pstate B (Asmvliw.State rs0 m0);

pheader B (MB.header bb);
pbody1 B tbc;
pbody2 B extract_basic tbi;
pctl B extract_ctl tbi;
ep B ep;
rem B tc;
cur B tbb

|}

The second relation is match_asmstate between a Codestate and an Asmblock state, ensuring
that the code present in a Codestate actually resides in memory of the Asmblock state, at the
address pointed by the PC register.
Inductive match_asmstate fb: codestate → Asmvliw.state → Prop B

| match_asmstate_some:
∀ rs f tf tc m tbb ofs ep tbdy tex lhd

(FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
(TRANSF: transf_function f = OK tf)
(PCeq: rs PC = Vptr fb ofs)
(TAIL: code_tail (Ptrofs.unsigned ofs) (fn_blocks tf) (tbb::tc))
,

match_asmstate fb
{| pstate B (Asmvliw.State rs m);

pheader B lhd;
pbody1 B tbdy;
pbody2 B extract_basic tex;
pctl B extract_ctl tex;
ep B ep;
rem B tc;
cur B tbb |}

(Asmvliw.State rs m)

Both relations take an extra fb parameter, which is the function block, an integer value
identifying the current function.

The details of proving the Machblock to Asmblock pass with these two new match relations are
very cumbersome (it is in general the case for all of theMach to Asm proofs of the various backends
- there are a lot of details and corner cases to consider). In particular, we are not covering here the
case of a builtin instruction. However, we are giving below the general idea of simulating a bblock
without builtin, assuming we already have an existingMach to Asm proof to base ourselves on.

40 Cyril Six, Sylvain Boulmé, and David Monniaux

𝑆1 𝑆2

𝑠11 𝑠12

𝑐𝑠11𝑐𝑠10 𝑐𝑠12 𝑐𝑠13

𝑆 ′1 𝑆 ′2

Machblock.step

remove_header

body step
exit step

exec_header exec_body exec_body

exec_control

Asmblock.step

: match_codestate

: match_asmstate

: match_states

Fig. 21. Diagram of the simulation proof

Figure 21 depicts the diagram we went for. It can be decomposed in three theorems for simulating
respectively the Machblock header, body, and exit. The exec_header is a predicate which removes
the header from the bblock, and sets ep to false if there was a header:
Inductive exec_header: codestate → codestate → Prop B

| exec_header_cons: ∀ cs1 ,
exec_header cs1 {| pstate B pstate cs1; pheader B nil; pbody1 B pbody1 cs1;

pbody2 B pbody2 cs1; pctl B pctl cs1;
ep B (if pheader cs1 then ep cs1 else false); rem B rem cs1;
cur B cur cs1 |}

We start by the theorem match_state_codestate, allowing us to decompose (match_states 𝑆1 𝑆 ′1)
into a (match_codestate 𝑆1 𝑐𝑠10) and a (match_asmstate 𝑐𝑠10 𝑆 ′1) with a fitting 𝑐𝑠10:
Theorem match_state_codestate:
∀ mbs abs s fb sp bb c ms m,
(∀ ef args res , MB.exit bb <> Some (MBbuiltin ef args res)) →
(MB.body bb <> nil ∨ MB.exit bb <> None) →
mbs = (Machblock.State s fb sp (bb::c) ms m) →
match_states mbs abs →
∃ cs fb f tbb tc ep,

match_codestate fb mbs cs ∧ match_asmstate fb cs abs
∧ Genv.find_funct_ptr ge fb = Some (Internal f)
∧ transl_blocks f (bb::c) ep = OK (tbb::tc)
∧ body tbb = pbody1 cs ++ pbody2 cs
∧ exit tbb = pctl cs
∧ cur cs = tbb ∧ rem cs = tc
∧ pstate cs = abs

TheMachblock header simulation is then straight forward, and is proven by the step_simu_header
theorem below. After this theorem, the state 𝑠11 is free of any header.
Theorem step_simu_header:
∀ bb s fb sp c ms m rs1 m1 cs1 ,
pstate cs1 = (State rs1 m1) →
match_codestate fb (MB.State s fb sp (bb::c) ms m) cs1 →
(∃ cs1 ',

exec_header cs1 cs1 '
∧ match_codestate fb (MB.State s fb sp (mb_remove_header bb::c) ms m) cs1 ')

The body simulation is then proven by induction on the list of basic instructions of 𝑠11, each
individual case is covered by adapting the old proofs of Mach to Asm for the basic instructions.

Certified and efficient instruction scheduling 41

Theorem step_simu_body:
∀ bb s fb sp c ms m rs1 m1 ms ' cs1 m',
MB.header bb = nil →
(∀ ef args res , MB.exit bb <> Some (MBbuiltin ef args res)) →
body_step ge s fb sp (MB.body bb) ms m ms ' m' →
pstate cs1 = (State rs1 m1) →
match_codestate fb (MB.State s fb sp (bb::c) ms m) cs1 →
(∃ rs2 m2 cs2 ep,

cs2 = {| pstate B (State rs2 m2); pheader B nil; pbody1 B nil; pbody2 B pbody2 cs1;
pctl B pctl cs1; ep B ep; rem B rem cs1; cur B cur cs1 |}

∧ exec_body tge (pbody1 cs1) rs1 m1 = Next rs2 m2
∧ match_codestate fb (MB.State s fb sp

({| MB.header B nil; MB.body B nil; MB.exit B MB.exit bb |}::c) ms ' m') cs2)

This theorem gives a state 𝑠12 without any body anymore, just the exit instruction. We can then
use the last theorem, step_simu_control:
Theorem step_simu_control:
∀ bb ' fb fn s sp c ms ' m' rs2 m2 t S'' rs1 m1 tbb tbdy2 tex cs2 ,
MB.body bb ' = nil →
(∀ ef args res , MB.exit bb ' <> Some (MBbuiltin ef args res)) →
Genv.find_funct_ptr tge fb = Some (Internal fn) →
pstate cs2 = (Asmvliw.State rs2 m2) →
pbody1 cs2 = nil → pbody2 cs2 = tbdy2 → pctl cs2 = tex →
cur cs2 = tbb →
match_codestate fb (MB.State s fb sp (bb '::c) ms ' m') cs2 →
match_asmstate fb cs2 (Asmvliw.State rs1 m1) →
exit_step return_address_offset ge (MB.exit bb ') (MB.State s fb sp (bb '::c) ms' m') t S'' →
(∃ rs3 m3 rs4 m4,

exec_body tge tbdy2 rs2 m2 = Next rs3 m3
∧ exec_control_rel tge fn tex tbb rs3 m3 rs4 m4
∧ match_states S'' (State rs4 m4))

That last theorem gives us a match_states between a 𝑆 ′2 and 𝑆2 which is what we are looking
for. The final theorem step_simulation_bblock then uses the four theorems to prove the plus
simulation.
Theorem step_simulation_bblock:
∀ sf f sp bb ms m ms ' m' S2 c,
body_step ge sf f sp (Machblock.body bb) ms m ms ' m' →
(∀ ef args res , MB.exit bb <> Some (MBbuiltin ef args res)) →
exit_step return_address_offset ge (Machblock.exit bb)

(Machblock.State sf f sp (bb :: c) ms ' m') E0 S2 →
∀ S1 ', match_states (Machblock.State sf f sp (bb :: c) ms m) S1' →
∃ S2 ' : state , plus step tge S1 ' E0 S2 ' ∧ match_states S2 S2'

C OVERVIEW OF THE ABSTRACTBASICBLOCK INTERMEDIATE REPRESENTATION

AbstractBasicBlock is an IR (Intermediate Representation) dedicated to verification of the results of
scheduling/bundling oracles operating on basic blocks. This IR is only used for verification: there is
no translation from AbstractBasicBlock to another IR of CompCert. It is independent of the target
processor and from the remainder of CompCert.
Because of this good feature, this appendix describing AbstractBasicBlock intends to be self-

contained, and does not even require to read other parts of the paper in details (except to understand
the applications motivating AbstractBasicBlock). In particular, this appendix reformulates entirely
Sect. 5, while providing much more details.28
Section C.1 explains informally how our assembly instructions are compiled into AbstractBa-

sicBlock: this introduces the syntax of AbstractBasicBlock instructions. Section C.2 formally defines
this syntax and its associated semantics. Section C.3 presents the parallelizability test, which checks
that a bundle/basic block has the same behavior in sequential and in parallel executions. Section C.4

28Of course, this comes at the price of repetitions. Sorry for the careful reader of Sect. 5.

42 Cyril Six, Sylvain Boulmé, and David Monniaux

presents the simulation test, which checks that the sequential semantics of basic blocks is preserved
by scheduling.

C.1 Introduction through the translation from Asmblock and AsmVLIW

AbstractBasicBlock defines a (deeply-embedded) language for representing the semantics of single
assembly instructions as the assignment of one or more pseudo-registers. For example, an instruc-
tion “add 𝑟1, 𝑟2, 𝑟3” is represented as an assignment “𝑟1 B add[𝑟2, 𝑟3]”. Hence, AbstractBasicBlock
distinguishes syntactically which pseudo-registers are in input or output of each instruction.
Moreover, it gives to all operations (including load/store and control-flow ones) a single signa-
ture “list exp → exp”. A binary operation like add will just dynamically fail, if applied to an
unexpected list of arguments. This makes the syntax of AbstractBasicBlock very simple.
Let us consider less straightforward examples. Our translation from Asmblock to AbstractBa-

sicBlock represents the whole memory as a single pseudo-register called here𝑚. Hence, instruc-
tion “load 𝑟1, 𝑟2, 𝑖” (where 𝑖 is an integer constant representing offset) is encoded an assignment
“𝑟1 B (load 𝑖) [𝑚, 𝑟2]” where the underlying operation is “(load 𝑖)”. In other words, the syntax of
AbstractBasicBlock provides an infinite number of operations “(load 𝑖)” (one for each 𝑖). Similarly,
a “store 𝑟1, 𝑟2, 𝑖” is encoded an assignment “𝑚 B (store 𝑖) [𝑚, 𝑟1, 𝑟2]” reflecting that the whole
memory is potentially modified.
We also encode control-flow instructions in AbstractBasicBlock: a control-flow instruction

modifies the special register PC (the program counter). Actually, we consider that each bundle of
a VLIW processor has one control-flow instruction: when the latter is implicit in the assembly
code, it corresponds to the increment of PC by the size of the bundle. Hence, in our translation
of bundles to AbstractBasicBlock, each control-flow instruction performs at least the assignment
“PC B (incr 𝑖) [PC]” where 𝑖 is an integer representing the size of the bundle. Typically, a conditional
branch such as “lt 𝑟, 𝑙” (where 𝑙 is the label and 𝑟 a register) is translated as the sequence of two
assignments in AbstractBasicBlock:

PC B (incr 𝑖) [PC] ; PC B (lt 𝑙) [PC, 𝑟]
It could equivalently be coded as the assignment “PC B (lt 𝑙) [(incr 𝑖) [PC], 𝑟]”. However, we
find it more convenient to insert the incrementation of PC before the assignments specific to each
control-flow instruction. A more complex control-flow instruction such as “call 𝑓 ” (where 𝑓 is
a function symbol) modifies two registers: PC and RA (the returned address). Hence “call𝑓 ” is
translated as the sequence of 3 assignments in AbstractBasicBlock:

PC B (incr 𝑖) [PC] ; RA B PC ; PC B (cte address𝑓) []
To resume, an instruction of AbstractBasicBlock is a sequence of assignments. An abstract basic

block is simply a list of such instructions: this list is run in sequence (for the sequential semantics),
or in parallel (for the parallel semantics). Hence, there is a single translation from our assembly to
AbstractBasicBlock: this translation produces a bisimulable basic block, both for the sequential
semantics and the parallel semantics.
Finally, Asmblock contains instructions modifying several pseudo-registers in parallel. One of

them is an atomic parallel load from a 128-bit memory word in two contiguous (and adequately
aligned) destination registers 𝑑0 and 𝑑1. These two destination registers are distinct from each other
by construction—but not necessarily from the base address register 𝑎. These parallel assignments
are expressed in the sequential semantics of AbstractBasicBlock instructions with the special Old
operator of AbstractBasicBlock expressions: an expression “(Old 𝑒)” evaluates “𝑒” in the initial state

Certified and efficient instruction scheduling 43

of the surrounding AbstractBasicBlock instruction.29 Hence, the parallel load of 128-bit words is
given in terms of two loads of 64-bit words:30

𝑑0 B (load 𝑖) [𝑚,𝑎] ; 𝑑1 B (load (𝑖 + 8)) [𝑚, (Old 𝑎)]
Similarly, our assembly provides a pseudo-instruction freeframe modifying both the memory

and some registers. It is involved in the epilogue of functions. In the semantics, freeframemodifies
the memory𝑚 by deallocating the current stack frame in the memory model of CompCert. It also
updates register SP (the stack pointer) accordingly and destroys the contents of a scratch register
called here 𝑡𝑚𝑝 . The modifications to SP and𝑚 are performed in “parallel”, since SP indicates the
current stack frame in𝑚, and the new value of SP is read from this stack frame. For the pseudo-
instruction “freeframe 𝑖1 𝑖2” (where 𝑖1 and 𝑖2 are two integers), our translation from Asmblock

to AbstractBasicBlock introduces two intermediate operations: first, “(freeframe_m 𝑖1 𝑖2)” for
the effect on memory, and second, “(freeframe_SP 𝑖1 𝑖2)” for the effect on the stack pointer.
Then, the pseudo-instruction “freeframe 𝑖1 𝑖2” is translated as the sequence of 3 assignments in
AbstractBasicBlock:

𝑚 B (freeframe_m 𝑖1 𝑖2) [SP,𝑚] ;
SP B (freeframe_SP 𝑖1 𝑖2) [SP, (Old𝑚)] ;

𝑡𝑚𝑝 B Vundef[]
In conclusion, each instruction of our assembly is translated into a sequence of assignments,

where some of these assignments modify several pseudo-registers in “parallel” thanks to the special
Old operator. We speak about atomic sequences of assignments: these sequences represent atomic
instructions which can themselves be combined either sequentially or in parallel.

C.2 Syntax, sequential and parallel semantics

The syntax of AbstractBasicBlock is parametrized by: a type R.t of pseudo-registers (the type of
positive integers in practice) and a type op of operators. The semantics of AbstractBasicBlock is
parametrized by: a type value of values and a type genv for global environments; and an evaluation
function:
Parameter op_eval: genv → op → list value → option value

By convention, a None value in the semantics represents an error. For the underlying assembly
instruction, it is either a dynamic error (like an invalid pointer dereference) or a syntactic error
(the operation is not called on the right numbers of parameters).
The syntax of the language is given by:
Inductive exp B PReg(x:R.t) | Op (o:op) (le:list_exp) | Old (e:exp)

with list_exp B . . .

Definition inst B list (R.t * exp). (* inst = atomic sequence of assignments *)
Definition bblock B list inst

The semantics introduces a notion of memory from pseudo-registers into values.
Definition mem B R.t→ value
Definition assign (m: mem) (x:R.t) (v: value): mem B fun y ⇒ if R.eq_dec x y then v else m y

29Such an operator Old is quite standard in Hoare logic assertions. For example, see the ACSL annotation language of
Frama-C [Kirchner et al. 2015].

30A benefit of this translation is that our scheduling oracle may replace two loads of 64-bit words into one load of a
128-bit words, and our verifier is able to check “for free” whether the replacement is semantically correct.

44 Cyril Six, Sylvain Boulmé, and David Monniaux

Then, the sequential semantics of a bblock takes a memory m as input and returns an optional
memory. It simply iterates sequentially over the execution of instructions, called inst_run , and
detailed below. Here,“SOME 𝑣 ←𝑒1 IN 𝑒2” means “match 𝑒1 with Some 𝑣 ⇒ 𝑒2 | _ ⇒ None end”.
Fixpoint run ge (p: bblock) (m: mem): option mem B

match p with
| nil ⇒ Some m
| i::p' ⇒ SOME m' ← inst_run ge i m m IN run ge p' m'
end

The inst_run function takes two memory states as input: m as the current memory, and old as
the initial state of the instruction run (the duplication is carried out in run above). It invokes the
evaluation of expression, called exp_eval and defined below.
Fixpoint inst_run ge (i: inst) (m old: mem): option mem B

match i with
| nil ⇒ Some m
| (x,e)::i' ⇒ SOME v' ← exp_eval ge e m old

IN inst_run ge i' (assign m x v') old
end

Similarly, the exp_eval function takes two memory states as input: the current memory is
replaced by old when entering under the Old operator.
Fixpoint exp_eval ge (e: exp) (m old: mem): option value B

match e with
| PReg x ⇒ Some (m x)
| Op o le ⇒ SOME lv ← list_exp_eval ge le m old IN

op_eval ge o lv
| Old e ⇒ exp_eval ge e old old
end

with list_exp_eval ge (le: list_exp) (m old: mem): option (list value) B
. . .

Now, we define the non-deterministic out-of-order parallel semantics of AbstractBasicBlock as
the prun relation below. Like the semantics of AsmVLIW defined at Section 3.2, it is defined from
the in-order parallel semantics, called prun_iw below. This out-of-order execution simply invokes the
prun_iw on an arbitrary permutation p ' of the bblock and after duplicating the initial memory.
Definition prun ge p m (om: option mem) B ∃ p', om = (prun_iw ge p' m m) ∧ Permutation p p'

Indeed, prun_iw is parametrized by m for the write-only memory and by old for the read-only
memory (which is thus the initial memory of the block)
Fixpoint prun_iw ge p m old: option mem B

match p with
| nil ⇒ Some m
| i::p' ⇒ SOME m1 ← inst_prun ge i m old old IN

prun_iw ge p' m1 old
end

The parallel semantics of an instruction now takes three memories as input: m for the write-only
memory, old for the read-only memory (which is thus the initial memory of the block), and tmp a
duplication of the old memory, with modifications that are purely local to the instruction.
Fixpoint inst_prun ge (i: inst) (m tmp old:mem) : option mem B

match i with
| nil ⇒ Some m
| (x,e)::i' ⇒ SOME v' ← exp_eval ge e tmp old IN

inst_prun i' ge (assign m x v') (assign tmp x v') old
end

Certified and efficient instruction scheduling 45

Note that, like in AsmVLIW, the sequential semantics of an instruction is a particular case of
the parallel one. We have (inst_run ge i m old) = (inst_prun ge i m m old) . Moreover, in the se-
quential and parallel semantics of a block, instructions are considered atomically: splitting/merging
instructions in the block does generally not preserve the semantics.

C.3 Parallelizability Testing

Our parallelizability test is a function is_parallelizable taking a basic block p and returning
a Boolean. If this Boolean is true, then any out-of-order parallel execution returns the same31 result
(possibly None) as the sequential execution. In this case, out-of-order parallel execution is thus
deterministic.
Theorem is_parallelizable_correct (p:bblock): is_parallelizable p = true →
∀ ge m om ', prun ge p m om '↔ om '=run ge p m

The is_parallelizable test analyzes the sets of pseudo-registers used by each instruction.
The type of such sets of pseudo-registers is noted here S.tand is implemented by prefix-trees from
module PositiveSet of the Coq standard library. Function is_parallelizable invokes two
functions, inst_wframe and inst_frame , of type inst → S.t:
• (inst_wframe i) is the set of all pseudo-registers written by instruction i.
• (inst_frame i) is the set of all pseudo-registers used—i.e. read or written—by i;

Then, (is_parallelizable p) simply checks the absence of Use-After-Write: no instruction
of p uses a pseudo-register after a previous instruction of p has written in it.
Fixpoint is_pararec (p: bblock) (previously_written: S.t): bool B

match p with
| nil ⇒ true
| i::p' ⇒ S.is_disjoint (inst_frame i) previously_written

&&& is_pararec p' (S.union (inst_wframe i) previously_written)
end

Definition is_parallelizable (p: bblock) B is_pararec p S.empty

The proof of is_parallelizable_correct results from the conjunction of two properties:
the absence of Write-After-Write ensures that out-of-order parallel execution is deterministic; the
absence of Read-After-Write ensures that sequential execution gives the same result as in-order
parallel execution. To simplify this proof, we use a data-refinement style: first, we prove it when
frames are implemented by lists instead of prefix-trees; then, we prove that the handling of frames
implemented by prefix-trees emulates the handling of frames using lists. There is thus little proof
about prefix-trees. A more detailed and significant example of data-refinement style is given in the
next section.

C.4 Simulation Testing

The sequential simulation of a block p1 by a block p2 is defined by the following pre-order:
Definition bblock_simu (p1 p2: bblock): Prop B
∀ ge m, (run ge p1 m) <> None → (run ge p1 m) = (run ge p2 m)

We have implemented a simulation test: it takes two blocks p1 and p2, and returns a Boolean,
such that if this latter is true then (bblock_simu p1 p2) . This test is largely inspired by the
list-scheduling verifier of Tristan and Leroy [2008], but with two major differences. First, they
define their verifier for theMach IR, while ours defined for AbstractBasicBlock is more generic.
Second, we use hash-consing in order to avoid a combinatorial explosion of the test.

31Here, we admit functional extensionality to compare memories, like other parts of CompCert.

46 Cyril Six, Sylvain Boulmé, and David Monniaux

Like in Tristan and Leroy [2008], our simulation test symbolically executes each block, and then
simply compares the resulting symbolic memories. As introduced in Section 4.3, such a symbolic
memory bisimulates the input block by combining a parallel assignment together with a list of
potential failures. We recall the examples of Section 4.3 below.

Example (Reminder of Example 4.2). Let us consider the two blocks below (in informal syntax):
𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟2]; 𝑟1 B 𝑟1 + 𝑟3 𝑟3 B load[𝑚, 𝑟2]; 𝑟1 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟1 + 𝑟3
These two blocks are both equivalent to the parallel assignment (in an informal syntax):

𝑟1 B (𝑟1 + 𝑟2) + load[𝑚, 𝑟2] ∥ 𝑟3 B load[𝑚, 𝑟2]
Indeed, these two blocks simulate each other (they bisimulate).

Example (Reminder of Example 4.3). Let us consider the two bblocks 𝑝1 and 𝑝2 below:
𝑟1 B 𝑟1 + 𝑟2; 𝑟3 B load[𝑚, 𝑟2]; 𝑟3 B 𝑟1; 𝑟1 B 𝑟1 + 𝑟3 (𝑝1) 𝑟3 B 𝑟1 + 𝑟2; 𝑟1 B 𝑟3 + 𝑟3 (𝑝2)
Again, 𝑝1 and 𝑝2 lead to the same parallel assignment:

𝑟1 B (𝑟1 + 𝑟2) + (𝑟1 + 𝑟2) ∥ 𝑟3 B 𝑟1 + 𝑟2
However, 𝑝1 is simulated by 𝑝2 whereas the converse is not true. This is because the “useless”
memory access in 𝑝1 may cause its execution to fail, whereas this failure cannot happen in 𝑝2. Thus,
the symbolic memory of 𝑝1 should contain the term “load[𝑚, 𝑟2]” as a potential failure.
Our formal development is decomposed into two parts using a data-refinement style. In a first

part, presented in Section C.4.1, we define a model of the symbolic execution and the simulation
test. In a second part, sketched by Section C.4.3, we refine this model with efficient data-structures
and algorithms, involving hash-consing of terms. Indeed, as illustrated by the previous examples,
without a mechanism dealing efficiently with duplication of terms, symbolic execution produces
terms that may be exponentially big w.r.t to the size of the source block. Our technique for hash-
consing terms is explained in Section C.4.2.

C.4.1 A Model of our Simulation Test. The principle of symbolic execution has been first introduced
by King [1976]. “Symbolic execution” refers to how to compute “symbolic memories” (and not
to what they are) : mimicking the concrete execution while replacing operations on “concrete
memories” by operations on “symbolic memories”.

In this analogy, “values” are replaced by “symbolic values”, which are actually terms evaluated in
the initial memory. Hence, our type term of terms—defined below—is similar to type exp without
the Old operator: in a term, a pseudo-register represents its value in the initial memory of block
execution.
Inductive term B Input (x:R.t) | App (o: op) (l: list_term) with list_term B . . .

Fixpoint term_eval (ge: genv) (t: term) (m: mem): option value B . . .

In our model, the symbolic execution of a block is a function bblock_smem : bblock → smem ,
where a symbolic memory of type smem is the pair of a predicate pre expressing at which condition
the intermediate computations of the block do not fail, and of a parallel assignment post on the
pseudo-registers.
Record smemB {pre: genv → mem → Prop; post: R.t→ term}

Then, the bisimulation property between the symbolic memory and sequential execution is
expressed by the bblock_smem_correct lemma below. It uses the smem_correct predicate,
relating the symbolic memory d with an initial memory m and a final optional memory om.
Definition smem_correct ge (d: smem) (m: mem) (om: option mem): Prop B
∀ m', om=Some m'↔ (d.(pre) ge m ∧ ∀ x, term_eval ge (d.(post) x) m = Some (m' x))

Lemma bblock_smem_correct p m: smem_correct ge (bblock_smem p) m (run ge p m)

Certified and efficient instruction scheduling 47

By using this lemma, we transfer the notion of simulation of block executions into the simula-
tion of symbolic memories, through the predicate smem_simu below. In particular, proposition
(smem_valid ge d m) holds iff the underlying execution does not return a None result from the
initial memory m.
Definition smem_valid ge (d: smem) (m:mem): Prop B

d.(pre) ge m ∧ ∀ x, term_eval ge (d.(post) x) m <> None

Definition smem_simu (d1 d2: smem): Prop B
(∀ ge m, smem_valid ge d1 m → smem_valid ge d2 m)

∧ (∀ ge m x, smem_valid ge d1 m → term_eval ge (d1.(post) x) m = term_eval ge (d2.(post) x) m)

Theorem bblock_smem_simu p1 p2:
smem_simu (bblock_smem p1) (bblock_smem p2) → bblock_simu ge p1 p2

Internally, as coined in the name of “symbolic execution”, bblock_smem mimics run , by replacing
operations on memories of type mem by operations of type smem : these operations on the symbolic
memory are given in Fig. 22. The initial symbolic memory is defined by smem_empty . The evaluation
of expressions on symbolic memories is defined by exp_term : it outputs a term (i.e. a symbolic
value). Also, the assignment on symbolic memories is defined by smem_set . To conclude, starting
from smem_empty , the symbolic execution preserves the smem_correct relation w.r.t the initial
memory and the current (optional) memory, on each assignment.

(* initial symbolic memory *)
Definition smem_empty B {| preB(fun _ _ ⇒ True); postB(fun x ⇒ Input x) |}

(* symbolic evaluation of the right -hand side of an assignment *)
Fixpoint exp_term (e: exp) (d old: smem) : term B

match e with
| PReg x ⇒ d.(post) x
| Op o le ⇒ App o (list_exp_term le d old)
| Old e ⇒ exp_term e old old
end

with list_exp_term (le: list_exp) (d old: smem) : list_term B . . .

(* effect of an assignment on the symbolic memory *)
Definition smem_set (d:smem) x (t:term) B

{| preB(fun ge m ⇒ (term_eval ge (d.(post) x) m) <> None ∧ (d.(pre) ge m));
postB(fun y ⇒ if R.eq_dec x y then t else d.(post) y) |}

Fig. 22. Basic operations of the symbolic execution in the abstract model

C.4.2 Formally Verified Hash-Consed Terms in Coq. Hash-consing is a standard technique of
imperative programming, which in our case has two benefits: it avoids duplication of structurally
equal terms in memory, and importantly, it reduces (expansive) structural equality tests over
terms, to (very cheap) pointer equality tests. In our verified backend, we thus need to import
pointer equality from OCaml. However, importing pointer equality as a pure function, such as
“∀ { A } , A → A → bool”, would be unsafe. Indeed, such a Coq function is—by construction—
compatible with the logical equality of Coq (i.e. the structural equality), which is not the case of
pointer equality. Thus, we instead import pointer equality from the Impure library of [Boulmé and
Vandendorpe 2019].

The Impure library and its pointer equality test. The Impure library provides an approach to
safely embed type-safe OCaml impure computations into Coq-verified code: impure computations
are abstracted as non-deterministic computations. For a given type A, type ?? A represents the
type of non-deterministic computations returning values of type A: it can be interpreted as P (A) ,

48 Cyril Six, Sylvain Boulmé, and David Monniaux

the type A → Prop of predicates over A. Formally, the type transformer “??” is axiomatized as a
monad that provides a may-return relation “{” of type ?? A → A → Prop . Intuitively, when “A”
is seen as “P (A) ”, then “{” simply corresponds to identity. At extraction, ?? A is extracted like A,
and its binding operator is efficiently extracted as an OCaml let-in. See details in [Boulmé and
Vandendorpe 2019]. Moreover, this library declares a trusted pointer equality with the following
axioms.
Axiom phys_eq: ∀ {A}, A → A → ?? bool
Extract Constant phys_eq ⇒ "(==)"
Axiom phys_eq_true: ∀ A (x y: A), phys_eq x y { true → x=y

In other words, in our Coqmodel, the pointer equality test is seen as a non-deterministic function,
since it can distinguish more objects than the logical equality of Coq. Moreover, when it answers
true, we know that the two objects under test are logically equals.

A generic and verified factory of memoizing functions for hash-consing. Hash-consing is a fun-
damentally impure construction, and it is not easy to retrofit it into a pure language; Braibant
et al. [2014] propose several approaches for hash-consing in Coq and in code extracted from
Coq to OCaml. However, we need weaker properties than what they aim for. They wish to use
physical equality (or equality on an “identifier” type) as equivalent to semantic equality; they use
this to provide a fast equality test for Binary Decision Diagrams (BDD)—two Boolean functions
represented by reduced ordered binary decision diagrams are equal if and only if the roots of the
diagrams are physically the same. In contrast, we just need physical equality to imply semantic
equality. This allows a lighter approach.

Hash-consing consists in memoizing the constructors of some inductive data-type —such as the
terms described above—in order to ensure that two structurally equal terms are allocated to the
same object in memory. In practice, this technique simply replaces the usual constructors of the
data-type by smart constructors that perform memoization. Memoization is usually delegated to a
dedicated function in turn generated from a generic factory.
On the top of the Impure library, we have defined in Coq a generic and verified memoization

factory. This factory is inspired by that of Filliâtre and Conchon [2006] inOCaml. However, whereas
their factory was not formally verified, ours satisfies a simple correctness property that is formally
verified in Coq (and shown sufficient for the formal correctness of our simulation test). Actually, we
use an external untrusted OCaml oracle that creates memoizing functions and we only dynamically
check that these untrusted functions behave observationally like an identity. Let us insist on this
point: the formal correctness of our memoization factory does not assume nor prove that our oracle
is correct; it only assumes that the embedding of OCaml untrusted oracles in Coq verified code
through the Impure library is correct (see the details in [Boulmé and Vandendorpe 2019]). We now
detail a slightly simplified version of this factory.32

Our generic memoization factory is parametrized by a record of type (hashP A) , where A is the
type of objects to memoize. Below, hashcode is an abstract data type on the Coq side, extracted as
an OCaml int . Function hash_eq is typically a fast equality test, for comparing a new object to
already memoized ones in smart constructors. This test typically compares the sons of the root node
w.r.t pointer equality (the example for terms is given below by term_hash_eq function). Function
hashing is expected to provide a unique hashcode for data that are equal modulo hash_eq . Finally,
set_hid is invoked by memoizing functions to allocate a fresh and unique hash-tag to new objects
(this hash-tag is used by efficient implementations of hashing).

32Our actual factory also provides some debugging features, which are useful for printing a trace when the whole
simulation test fails. We omit these implementation details in this presentation.

Certified and efficient instruction scheduling 49

Record hashP (A:Type) B {
hash_eq: A → A → ?? bool;
hashing: A → ?? hashcode;
set_hid: A → hashcode → A;

}

The details on hashing and set_hid are only relevant for efficiency: these functions are simply
ignored in our formal proofs. Hence, given such (hashP A) structure, our OCaml oracle xhCons

returns a (fresh) memoizing function of type (A → ?? A) .
Axiom xhCons: ∀ {A}, hashP A → ??(A → ??A). (* declares our OCaml oracle in Coq *)

Such amemoizing function of type (A → ?? A) is expected to behave as an identity w.r.t hash_eq .
Actually, as we do not trust xhCons , we dynamically check this property.33 Hence, our verified
generic memoization factory in Coq –called hCons below—simply wraps each function returned
by xhCons with this defensive check: it raises an exception if the memoizing function does not
return a result equal to its input (w.r.t hash_eq). Below, the notation “DO 𝑥 f𝑒1 ; ; 𝑒2” stands for
a bind operation of the may-return monad of the Impure library (it is extracted as “let 𝑥 = 𝑒1 in 𝑒2”).
Moreover, “RET 𝑒” is the unit of this monad (it is extracted as “𝑒”). Function “assert_b” is also
provided by Impure.
Definition hCons {A} (hp: hashP A): ??(A → ??A) B

DO hC f xhCons hp;;
RET (fun x ⇒

DO y f hC x;;
DO b f hp.(hash_eq) x y;;
assert_b b "xhCons: hash -eq differs";; (* exception raised if Boolean [b] is [false] *)
RET y)

We are thus able to formally prove the following (trivial) correctness property on hCons , which
is sufficient in our development to reason about hash-consing. Here, the relation R is typically an
equivalence under which we want to observe hash-consed objects.
Lemma hCons_correct A (hp: hashP A) (R: A → A → Prop):

(∀ x y, hp.(hash_eq) x y { true → R x y) → ∀ hC, hCons hp { hC → ∀ x y, hC x { y → R x y

Smart constructors for hash-consed terms. In our development, we need hash-consing on two
types of objects: term and list_term , because they are mutually inductive. First, we redefine
type term and list_term into hterm and list_hterm by inserting a hash-tag—called below
hid—at each node.
Inductive hterm B

| Input (x:R.t) (hid:hashcode)
| App (o: op) (l: list_hterm) (hid:hashcode)

with list_hterm B
| LTnil (hid:hashcode)
| LTcons (t:hterm) (l:list_hterm) (hid:hashcode)

Thus, we also have to redefine term_eval and list_term_eval for their “hterm” versions.
Note that these functions simply ignore hash-tags.
Fixpoint hterm_eval (ge: genv) (t: hterm) (m: mem): option value B

match t with
| Input x _ ⇒ Some (m x)
| App o l _ ⇒ SOME v ← list_hterm_eval ge l m IN op_eval ge o v
end

with list_hterm_eval ge (l: list_hterm) (m: mem) {struct l}: option (list value) B . . .

33As hash_eq is expected to be constant-time, this dynamic check only induces a small overhead.

50 Cyril Six, Sylvain Boulmé, and David Monniaux

Then, we define two records of type (hashP hterm) and (hashP list_hterm) . Below, we
only detail the case of (hashP hterm) , as the (hashP list_hterm) case is similar. First, the
hash_eq field of (hashP hterm) is defined as function term_hash_eq below. On the Input

case, we use the structural equality over pseudo-registers. On the App case, we use an equality
op_eq on type op in parameters of the simulation test, and we use the pointer equality over the
list of terms.
Definition term_hash_eq (ta tb: hterm): ?? bool B

match ta, tb with
| Input xa _, Input xb _ ⇒ if R.eq_dec xa xb then RET true else RET false
| App oa lta _, App ob ltb _ ⇒

DO b f op_eq oa ob ;;
if b then phys_eq lta ltb else RET false

| _,_ ⇒ RET false
end

Second, the hashing field of (hashP hterm) is defined as function term_hashing below.
This function uses an untrusted oracle “hash : ∀ { A } , A → ?? hashcode” extracted as the poly-
morphic Hashtbl.hash of the OCaml standard library. It also uses list_term_get_hid defined
below—that returns the hash-tag at the root node. To ensure memoization efficiency, two terms
that are distinct w.r.t term_hash_eq are expected to have distinct term_hashing with a high
probablity.34 This property relies here on the fact that when term_hashing is invoked on a node
of the form “ (App o l _) ”, the list of terms l is already memoized, and thus l is the unique
list_hterm associated with the hash-tag (list_term_get_hid l) .
Definition list_term_get_hid (l: list_hterm): hashcode B

match l with
| LTnil hid ⇒ hid
| LTcons _ _ hid ⇒ hid
end

Definition term_hashing (t:hterm): ?? hashcode B
match t with
| Input x _ ⇒

DO hc f hash 1;;
DO hv f hash x;;
hash [hc;hv]

| App o l _ ⇒
DO hc f hash 2;;
DO hv f hash o;;
hash [hc;hv;list_term_get_hid l]

end

Finally, the set_hid field of (hashP hterm) updates the hash-tag at the root node. It is
defined by:
Definition term_set_hid (t: hterm) (hid: hashcode): hterm B

match t with
| Input x _ ⇒ Input x hid
| App op l _ ⇒ App op l hid
end

Having defined two records of type (hashP hterm) and (hashP list_hterm) as sketched
above, we can now instantiate hCons on each of these records. We get two memoizing functions
hC_term and hC_list_term (Fig. 23). The correctness property associated with each of these
functions is derived from hCons_correct with an appropriate relation R: the semantical equiva-
lence of terms (or list of terms). These memoizing functions and their correctness properties are
parameters of the code building hterm and list_hterm described below.

34Two terms equals w.r.t term_hash_eq must also have the same term_hashing .

Certified and efficient instruction scheduling 51

Variable hC_term: hterm → ?? hterm
Hypothesis hC_term_correct: ∀ t t', hC_term t { t' →
∀ ge m, hterm_eval ge t m = hterm_eval ge t' m

Variable hC_list_term: list_hterm → ?? list_hterm
Hypothesis hC_list_term_correct: ∀ lt lt ', hC_list_term lt { lt ' →
∀ ge m, list_hterm_eval ge lt m = list_hterm_eval ge lt' m

Fig. 23. Memoizing functions for hash-consing of terms (and list of terms)

Indeed, these functions are involved in the smart constructors of hterm and list_hterm . Below,
we give the smart constructor—called hApp—for the App case with its correctness property. It uses
a special hash-tag called unknown_hid (never allocated by our xhCons oracle). The three other
smart constructors are similar.
Definition hApp (o:op) (l: list_hterm) : ?? hterm B hC_term (App o l unknown_hid)
Lemma hApp_correct o l: ∀ t, hApp o l { t →
∀ ge m, hterm_eval ge t m = (SOME v ← list_hterm_eval ge l m IN op_eval ge o v)

In the next section, we only build hterm and list_hterm by using the smart constructors
defined above. This ensures that we can replace the structural equality over type hterm by the
physical equality. However, this property does not need to be formally proved (and we have no such
formal proof, since this property relies on the correctness of our untrusted memoization factory).

C.4.3 Implementing the Simulation Test. Our implementation can be decomposed in two parts. First,
we implement the symbolic execution function as a data-refinement of the bblock_smem function
of Section C.4.1. Then, we exploit the bblock_smem_simu theorem to derive the simulation test.

Refining symbolic execution with hash-consed terms. Our symbolic execution builds hash-consed
terms. It invokes the smart constructors of Section C.4.2, and is thus itself parametrized by the
memoizing functions hC_term and hC_list_term defined in Figure 23. Note that our simulation
test will ultimately perform two symbolic executions, one for each block. Furthermore, these two
symbolic executions share the same memoizing functions, leading to an efficient comparison of the
symbolic memories through pointer equality. In the following paragraph, functions hC_term and
hC_list_term remain implicit parameters as authorized by the section mechanism of Coq.
Figure 24 refines the type smem of symbolic memories into a type hsmem . The latter involves a

dictionary with pseudo-registers of type R.t as keys, and terms of hterm as associated data. These
dictionaries of type (Dict.t hterm) are implemented as prefix-trees, through the PositiveMap

module of the Coq standard library.
Figure 24 also relates type hsmem to type smem (in a given environment ge), by a relation

called smem_model . The hpre field of the symbolic memory is expected to contain a list of all
the potential failing terms in the underlying execution. Hence, predicate hsmem_valid gives a
precondition on the initial memory m ensuring that the underlying execution will not fail. This
predicate is thus expected to be equivalent to the smem_valid predicate of the abstract model.
Function hsmem_post_eval gives the final (optional) value associated with pseudo-register x

from the initial memory m: if x is not in the hpost dictionary, then its associated value is that of
the initial memory (it is expected to be unassigned by the underlying execution). This function is
thus expected to simulate the evaluation of the symbolic memory of the abstract model.

Hence, smem_model is the (data-refinement) relation for which our implementation of the sym-
bolic execution simulates the abstract model of Section C.4.1. Figure 25 provides an implementation
of the operations of Figure 22 that preserves the data-refinement relation. The smart constructors
building hash-consed terms are invoked by the exp_hterm (i.e., the evaluation of expressions

52 Cyril Six, Sylvain Boulmé, and David Monniaux

(* The type of our symbolic memories with hash -consing *)
Record hsmemB {hpre: list hterm; hpost: Dict.t hterm}

(* implementation of the [smem_valid] predicate *)
Definition hsmem_valid ge (hd: hsmem) (m:mem): Prop B
∀ ht, List.In ht hd.(hpre) → hterm_eval ge ht m <> None

(* implementation of the symbolic memory evaluation *)
Definition hsmem_post_eval ge (hd: hsmem) x (m:mem): option value B

match Dict.get hd.(hpost) x with
| None ⇒ Some (m x)
| Some ht ⇒ hterm_eval ge ht m
end

(* The data -refinement relation *)
Definition smem_model ge (d: smem) (hd:hsmem): Prop B

(∀ m, hsmem_valid ge hd m↔ smem_valid ge d m)
∧ ∀ m x, smem_valid ge d m → hsmem_post_eval ge hd x m = term_eval ge (d.(post) x) m

Fig. 24. Data-refinement of symbolic memories, with handling of hash-consed terms

on symbolic memories). The hsmem_set implementation (Fig. 25) is an intermediate refinement
toward the actual implementation, improving on two points. First, in some specific cases—i.e., when
ht is an input or a constant, we know that ht cannot fail. In these cases, we avoid adding it to
hd .(hpre) . Second, when ht is structurally equal to (Input x) , the implementation removes
x from the dictionary: in other words, an assignment like “𝑥 := 𝑦”—where 𝑦 ↦→ (Input 𝑥) in
the current symbolic memory—resets 𝑥 as unassigned. There is much room for future work on
improving the hsmem_set operation by, e.g., applying rewriting rules on terms.35
Finally, we define the symbolic execution that invokes these operations on each assignment

of the block. It is straightforward to prove that (bblock_hsmem p) refines (bblock_smem p)
from the correctness properties of Figure 25.
Definition bblock_hsmem: bblock → ?? hsmem B . . .

Lemma bblock_hsmem_correct p hd: bblock_hsmem p { hd → ∀ ge, smem_model ge (bblock_smem p) hd

The main function of the simulation test. Let us now present the main function of the simulation
test, called bblock_simu_test below36. First, it creates two memoizing functions hC_term and
hC_list_term (Fig. 23) from the generic factory hCons (see Section C.4.2 for details). Then, it
invokes the symbolic execution bblock_hsmem on each block. Notice that these two symbolic
executions share the memoizing functions hC_term and hC_list_term , meaning that each term
produced by one of the symbolic executions is represented by a unique pointer. The symbolic
executions produce two symbolic memories d1 and d2. We compare them using two auxiliary func-
tions specified in Fig. 26. Hence, (Dict.eq_test d1 .(hpost) d2 .(hpost)) compares whether
each pseudo-register is assigned to the same term w.r.t pointer equality in both symbolic memories.
Finally, (test_list_incl d2 .(hpre) d1 .(hpre)) compares whether each term of d2 .(hpre) is
also present in d1 .(hpre) : i.e. whether all potential failures of d2 are potential failures of d1. Again,
in test_list_incl , terms are compared for pointer equality. Let us note that test_list_incl
is itself efficiently implemented (with a linear execution time), by using an untrusted OCaml oracle
with a hash-table. More precisely, the formal proof of test_list_incl_correct relies on a

35Our implementation of hsmem_set is actually able to apply some rewriting rules. But, this feature is still not used
by our verified scheduler.

36The code of bblock_simu_test has been largely simplified, by omitting the complex machinery which is
necessary to produce an understandable trace for CompCert developers in the event of a negative answer.

Certified and efficient instruction scheduling 53

(* initial symbolic memory *)
Definition hsmem_empty: hsmem B {| hpreB nil ; hpost B Dict.empty |}
Lemma hsmem_empty_correct ge: smem_model ge smem_empty hsmem_empty

(* symbolic evaluation of the right -hand side of an assignment *)
Fixpoint exp_hterm (e: exp) (hd hod: hsmem): ?? hterm B

match e with
| PReg x ⇒

match Dict.get hd.(post) x with
| None ⇒ hInput x (* smart constructor for Input *)
| Some ht ⇒ RET ht
end

| Op o le ⇒
DO lt f list_exp_hterm le hd hod;;
hApp o lt (* smart constructor for App *)

| Old e ⇒ exp_hterm e hod hod
end

with list_exp_hterm (le: list_exp) (d od: hsmem): ?? list_term B
. . .

Lemma exp_hterm_correct ge e hod od d ht:
smem_model ge od hod → smem_model ge d hd → exp_hterm e hd hod { ht →
∀ m, smem_valid ge d m → smem_valid ge od m →

hterm_eval ge t m = term_eval ge (exp_term e d od) m

(* effect of an assignment on the symbolic memory *)
Definition hsmem_set (hd:hsmem) x (ht:hterm): ?? hsmem B

(* a weak version w.r.t the actual implementation *)
RET {| hpreB ht::hd.(hpre); hpostBDict.set hd x ht |}

Lemma hsmem_set_correct hd x ht ge d t hd ':
smem_model ge d hd → (∀ m, smem_valid ge d m → hterm_eval ge ht m = term_eval ge t m) →
hsmem_set hd x ht { hd ' → smem_model ge (smem_set d x t) hd '

Fig. 25. Refinement of the operations of Figure 22 for symbolic memories with hash-consing

property derived by parametricity from the polymorphic type of this untrusted oracle. This applies
a “theorems for free” technique described in [Boulmé and Vandendorpe 2019].
Definition bblock_simu_test (p1 p2: bblock): ?? bool B

DO hC_term f hCons {| hash_eqBterm_hash_eq; hashingBterm_hashing; set_hidBterm_set_hid |};;
DO hC_list_term f hCons . . . (* omit a record of type [(hashP list_hterm)] *)
DO d1 f bblock_hsmem hC_term hC_list_term p1;;
DO d2 f bblock_hsmem hC_term hC_list_term p2;;
DO b f Dict.eq_test d1.(hpost) d2.(hpost);;
if b then test_list_incl d2.(hpre) d1.(hpre);;

else RET false

Lemma bblock_simu_test_correct (p1 p2 : bblock):
bblock_simu_test reduce p1 p2 { true → ∀ ge, bblock_simu ge p1 p2

The proof of bblock_simu_test_correct directly results from the conjunction of the two
correctness properties of Fig. 26 with bblock_smem_correct and bblock_hsmem_correct .

Definition Dict.eq_test: ∀ {A}, Dict.t A → Dict.t A → ?? bool
Lemma Dict.eq_test_correct A (d1 d2 : Dict.t A): Dict.eq_test d1 d2 { true →
∀ x:R.t, Dict.get d1 x = Dict.get d2 x

Definition test_list_incl: ∀ {A}, list A → list A → ?? bool
Lemma test_list_incl_correct A (l1 l2:list A): test_list_incl l1 l2 { true →
∀ t:A, List.In t l1 → List.In t l2

Fig. 26. Formal specification of the two auxiliary functions used by the simulation test

54 Cyril Six, Sylvain Boulmé, and David Monniaux

D OPTIMAL ILP SCHEDULER

We provide a solver based on Integer Linear Programming (ILP), that optimally solves scheduling
problem of Section 6.2. This ILP solver is not intended for production use as it is too costly. Rather,
it is used to validate how often the “critical-path” scheduler of Section 6.3 actually computes an
optimal solution (for a counter-example, see Fig. 12 vs Fig. 13).

Roughly speaking, our optimal solver will turn the scheduling problem into an ILP problem, and
then, invoke an external ILP solver to find a solution. More precisely, we first compute an upper
bound 𝐵 on the makespan 𝑡 (𝑛), typically by running the “critical-path” scheduler of Section 6.3: if
the latter computes a solution with makespan 𝐵 + 1, then we can restrict our ILP search to solutions
of makespan at most 𝐵.
We first compute, for every instruction 𝑗 , the maximum length 𝛼 (𝑗) of a path ending at 𝑗 in

the graph, and the maximum length 𝑙 (𝑗) of a path starting at 𝑗 (necessarily to 𝑛). Let us define
𝛽 (𝑗) = 𝐵 − 𝑙 (𝑗). Then we know that any solution 𝑡 satisfies 𝛼 (𝑗) ≤ 𝑡 (𝑗) ≤ 𝛽 (𝑗) for all 𝑗 .
For every 𝑗 and every 𝛼 (𝑗) ≤ 𝑖 ≤ 𝛽 (𝑗), we introduce a Boolean variable 𝑥 (𝑗, 𝑖), meaning that

instruction 𝑗 is scheduled at time 𝑖 . An instruction is scheduled at a single time slot, thus all these
variables are exclusive, as expressed by Equation (3) of Fig. 27. Then, 𝑡 (𝑗) is easily recovered from
the Boolean variables (Equation 4). The latency (and dependency) constraints 𝑡 (𝑗 ′) − 𝑡 (𝑗) ≥ 𝛿 are
directly copied into the ILP problem. Alternatively, a constraint 𝑡 (𝑗 ′) − 𝑡 (𝑗) ≥ 𝛿 can for instance
be encoded as Inequality (5). The resource constraints are implemented by introducing, for all
0 ≤ 𝑖 ≤ 𝐵 and all 1 ≤ ℎ ≤ 𝑚, an instance of Inequality (6) where 𝑢ℎ (𝑘) denotes the ℎ-th coordinate
of u(𝑘) and 𝑟ℎ the ℎ-th coordinate of r.

𝛽 (𝑗)∑
𝑖=𝛼 (𝑗)

𝑥 (𝑗, 𝑖) = 1 (3)

𝑡 (𝑗) =
𝛽 (𝑗)∑

𝑖=𝛼 (𝑗)
𝑥 (𝑗, 𝑖)𝑖 (4)

𝑥 (𝑗, 𝑖) ≤
𝛽 (𝑗 ′)∑

𝑖′=max(𝑖+𝛿,𝛼 (𝑗 ′))
𝑥 (𝑗 ′, 𝑖 ′) (5)

∑
𝑗 |𝛼 (𝑗) ≤𝑖≤𝛽 (𝑗)

𝑥 (𝑗, 𝑖)𝑢ℎ (𝐾 (𝑗)) ≤ 𝑟ℎ (6)

Fig. 27. Turning the scheduling problem into one of ILP

The resulting ILP problem can be used in two ways:
Optimization Minimize 𝑡 (𝑛).
Decision Test for the existence of a solution with makespan 𝑡 (𝑛) ≤ 𝐵. Then set 𝐵 to be 𝑡 (𝑛) − 1
and restart the process, until no better solution is found.

While it may appear that this optimization, requiring one ILP call, would be more efficient than
a sequence of decision problems, it seems that, experimentally, this is not the case.
Such an ILP problem can also be formulated as pseudo-Boolean, that is, a problem where all

variables are Boolean and the constraints are linear inequalities. It suffices to replace 𝑡 (𝑗) by its
definition from Equ. (4) everywhere.
We support Gurobi and CPlex as ILP backends, and we have run experiments with Sat4J and

others as pseudo-Boolean backends.

Experimental evaluation of the (sub)optimality of our list scheduler. We compiled our benchmarks
with the ILP scheduling described above. The ILP scheduler outperformed our list scheduler of

Certified and efficient instruction scheduling 55

Section 6.3 in only 8 of 26,161 basic blocks: for 1 block, removing 2 cycles (from 106 to 104); in
others, removing 1.
As detailed above, we first compute an initial schedule by list scheduling, then try to find

improvements using ILP. The ILP solver is not called if that initial schedule is obviously optimal
since its makespan is the minimum makespan imposed by a critical path. Among the 26,161, we
called the ILP solver only 2,368 times.

In most cases, solving ILP problems using Gurobi takes a few milliseconds of CPU time. However,
it can be considerably costlier in some rare cases: for instance, Gurobi took more than 7 hours to
check that the initial schedule for a 147 instruction block was optimal.

	Abstract
	1 Introduction
	1.1 Overview of the Kalray KVX VLIW processor
	1.2 Modular design of the CompCert compiler
	1.3 Porting CompCert to a VLIW architecture
	1.4 Contributions
	1.5 Related work
	1.6 Architecture of our solution (and of this paper)

	2 CompCert backend semantics
	2.1 Correctness of Compilation Passes
	2.2 The Asm IR

	3 Semantics for a VLIW assembly language
	3.1 Syntax of bundles/basic blocks
	3.2 Parallel semantics of AsmVLIW
	3.2.1 In-order parallel semantics
	3.2.2 Deterministic out-of-order parallel semantics

	3.3 Sequential semantics in Asmblock

	4 Certified Intrablock Postpass Scheduling
	4.1 AbstractBasicBlock IR
	4.2 Parallelizability Checker
	4.3 Verifying Intrablock Reordering
	4.4 Generic and Verified Hash-Consing
	4.5 Peephole optimization
	4.6 Atomic Sequences of Assignments in AbstractBasicBlock

	5 Formalizing a symbolic execution with hash-consing
	5.1 Syntax and Sequential Semantics of AbstractBasicBlock
	5.2 Sketch of our verified hash-consed terms
	5.3 An abstract Model of our Simulation Test (without hash-consing)
	5.4 Refining symbolic execution with hash-consed terms

	6 Intrablock scheduling oracle
	6.1 Bundlers without reordering
	6.2 Scheduling as an optimization problem
	6.3 (Critical paths) List scheduler

	7 Basic block reconstruction
	7.1 Necessity of constructing basic blocks at the Mach level
	7.2 Translating and proving Mach to Machblock
	7.3 Translating and proving Machblock to Asmblock

	8 Experimental Evaluation
	8.1 Experimental compiling time
	8.2 Benchmarks used
	8.3 Impact of optimizations
	8.4 Comparison of CompCert with Kalray's GCC
	8.5 Remarks and limitations

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Basic-block reconstruction
	A.1 Preliminaries : from Mach to Asm in CompCert
	A.1.1 The Mach IR of CompCert
	A.1.2 Proving a translation from Mach to Asm

	A.2 Mach to Machblock translation

	B Machblock to Asmblock
	B.1 Machblock to Asmblock translation
	B.1.1 Overview
	B.1.2 The argument pointer code optimization
	B.1.3 Constraints of an Asmblock basic block
	B.1.4 Function prototypes for implementation

	B.2 Forward simulation proof
	B.2.1 Issues of using the usual Mach to Asm diagram
	B.2.2 A new diagram to prove Machblock to Asmblock

	C Overview of the AbstractBasicBlock Intermediate Representation
	C.1 Introduction through the translation from Asmblock and AsmVLIW
	C.2 Syntax, sequential and parallel semantics
	C.3 Parallelizability Testing
	C.4 Simulation Testing
	C.4.1 A Model of our Simulation Test
	C.4.2 Formally Verified Hash-Consed Terms in Coq
	C.4.3 Implementing the Simulation Test

	D Optimal ILP scheduler

