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What makes a bad egg? Egg transcriptome
reveals dysregulation of translational
machinery and novel fertility genes
important for fertilization
Caroline T. Cheung1, Thao-vi Nguyen1, Aurélie Le Cam1, Amélie Patinote1, Laurent Journot2,3,
Christelle Reynes2 and Julien Bobe1*

Abstract

Background: Egg quality can be defined as the egg ability to be fertilized and subsequently develop into a normal
embryo. Previous research has shed light on factors that can influence egg quality. Large gaps however remain
including a comprehensive view of what makes a bad egg. Initial development of the embryo relies on maternally-
inherited molecules, such as transcripts, deposited in the egg during its formation. Bad egg quality is therefore
susceptible to be associated with alteration or dysregulation of maternally-inherited transcripts. We performed
transcriptome analysis on a large number (N = 136) of zebrafish egg clutches, each clutch being split to monitor
developmental success and perform transcriptome analysis in parallel. We aimed at drawing a molecular portrait of
the egg in order to characterize the relation between egg transcriptome and developmental success and to
subsequently identify new candidate genes involved in fertility.

Results: We identified 66 transcript that were differentially abundant in eggs of contrasted phenotype (low or high
developmental success). Statistical modeling using partial least squares regression and genetics algorithm
demonstrated that gene signatures from transcriptomic data can be used to predict developmental success. The
identity and function of differentially expressed genes indicate a major dysregulation of genes of the translational
machinery in poor quality eggs. Two genes, otulina and slc29a1a, predominantly expressed in the ovary and
dysregulated in poor quality eggs were further investigated using CRISPR/Cas9 mediated genome editing. Mutants
of each gene revealed remarkable subfertility whereby the majority of their eggs were unfertilizable. The Wnt
pathway appeared to be dysregulated in the otulina mutant-derived eggs.

Conclusions: Here we show that egg transcriptome contains molecular signatures, which can be used to predict
developmental success. Our results also indicate that poor egg quality in zebrafish is associated with a
dysregulation of (i) the translational machinery genes and (ii) novel fertility genes, otulina and slc29a1a, playing an
important role for fertilization. Together, our observations highlight the diversity of the possible causes of egg
quality defects and reveal mechanisms of maternal origin behind the lack of fertilization and early embryonic
failures that can occur under normal reproduction conditions.
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Background
Good quality or developmentally competent fish eggs are
defined as those that are successfully fertilized and de-
velop normally as viable, non-malformed embryos [1].
However, the detailed mechanisms that are involved in
egg quality are still poorly understood, and at present, no
predictive markers of egg quality exist. Maternal genes are
those that produce factors that are involved in oocyte
growth and in the earliest stages of embryonic develop-
ment, including fertilization, parental genome union, and
cell division. Since initial development of the embryo re-
lies on these maternally-inherited molecules including
coding and non-coding mRNAs and proteins that are de-
posited into the developing oocyte, thus, they would likely
reflect egg quality [2, 3]. Among these, the maternally-
provided transcriptome of the egg is critical in supporting
early embryogenesis because transcription from the
zygotic genome does not start until the mid-blastula
transition (MBT) which occurs approximately 3–4 h post-
fertilization (hpf) in zebrafish [4, 5] even though transcrip-
tion starts earlier for “first wave” zygotic genes [6].
Previous research using both traditional mutational as-

says [7] as well as more recent transcriptomic analyses have
revealed several maternal factors that can influence egg
quality. The nucleoplasmin 2 (npm2a and npm2b) genes
were recently found to be crucial for egg quality; suppres-
sion of npm2b resulted in embryonic arrest before zygotic
genome activation (ZGA) in mouse and zebrafish, and
npm2a deficiency in zebrafish led to a complete lack of em-
bryonic development [8, 9]. Further, post-ovulatory ageing
induced egg quality defects are associated with low mRNA
levels of igf1 (insulin growth factor 1) and beta-tubulin, as
well as a small but significant overabundance of keratins 8
and 18, cathepsin Z, and pgs2 (prostaglandin synthase 2)
[10, 11]. In addition, controlled induction of ovulation by
hormonal or photoperiod manipulation negatively impacts
egg quality in rainbow trout, and the abundance of several
genes including apoC1 (apoliprotein C1), mr-1 (major
histocompatibility class 1 related protein), ntan1 (N-ter-
minal asparagine amidase 1),myo1b (myosin 1b), pyc (pyru-
vate carboxylase), as well as phb2 (prohibitin 2) was found
to be significantly different between eggs that were naturally
and artificially spawned [12]. Other studies have suggested
that genes involved in immune regulation have an impact
on egg quality whereby variable abundance of transcripts in
the interferon pathway and mhc (major histocompatibility)
class genes was demonstrated in eggs of different quality
[13, 14]. However, despite these results, knowledge on the
factors that contribute to the quality of fish eggs remains
patchy. Thus, in this study, we carried out a large-scale ana-
lysis to compare the transcriptome of one-cell stage eggs of
different quality and performed statistical modeling of dif-
ferentially expressed genes (DEGs) with survival in order to
determine if there are common factors that impact egg

quality in wildtype (WT) females that can then serve as
markers and/or predictors of developmental competence.
Our findings provide evidence that in different quality eggs
from wildtype couples bred under standard conditions,
gene signatures exist in the egg transcriptome, which can
be used to predict developmental success. The identity and
function of differentially expressed genes indicate a signifi-
cant dysregulation of genes of the translational machinery.
We further conducted functional analyses on two candidate
genes that were dysregulated in bad quality eggs using the
CRISPR/Cas9 knockout system and reveal for the first time
the essential roles of two new potential fertility-related
genes, otulina (OTU deubiquitinase with linear linkage spe-
cificity a) and slc29a1a (solute carrier family 29, member
1a) that appear to be important for fertilization. This dra-
matic decrease in the ability of the egg to be fertilized was
associated with the dysregulation of the Wnt pathway in
the case of otulina. Together, our observations indicate that
poor zebrafish egg quality is associated with a dysregulation
of (i) the translational machinery genes and (ii) novel fertil-
ity genes, otulina and slc29a1a, playing an important role
for fertilization.

Results
Transcriptomic differences between good and bad eggs
in all samples
Among the 136 egg clutches that we collected, we selected
16 clutches each of good and bad quality eggs defined as
those with > 93 and < 38% survival at 48 hpf, respectively,
for microarray analysis using a customized chip contain-
ing 61,657 annotated sequences of the zebrafish transcrip-
tome. Only sequences for which a signal was measured in
at least 80% of the samples from one experimental group
were kept for further analysis, which was thus conducted
on 31,317 annotated sequences. A T-Test (Benjamini-
Hochberg (BH) corrected pval < 0.05) was used to deter-
mine which genes showed a significantly different level of
expression between good and bad quality eggs. This statis-
tical analysis led to the identification of 66 differentially
expressed genes (DEGs, Additional file 1). We observed in
the heat map showing unsupervised clustering (Fig. 1a) of
the 66 DEGs that a majority of them were upregulated (60
genes, yellow signal) with only 6 genes that were down-
regulated (blue signal) in bad quality eggs as compared to
good quality eggs. Additional file 1 lists the 66 DEGs in-
cluding their associated information. Of these 66 genes, 8
were referenced in Ensembl but not annotated (i.e. not as-
sociated with any known gene or protein).

Overrepresentation analyses of gene ontological terms of
the DEGs
We submitted the 66 DEGs to Gene Ontology functional
annotation analysis using the online program, DAVID
[15] with the zebrafish genes in the microarray set as
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background (Fig. 1b). Among the 66 DEGs submitted,
functional terms associated with 55 annotated genes
were identified and therefore classified by the DAVID
program using terms derived from the following re-
sources: UniProtKB keywords (pink circle); Gene
Ontology Biological Process (red circle), Molecular

Function (blue circle), and Cellular Component (yel-
low circle); and KEGG pathways (green circle). The
analysis revealed 2 significant annotation clusters; in
the first cluster (enrichment score: 9.98), the terms
related to ‘ribosome’, ‘translation’, and ‘intracellular’
were enriched between 3- to 83-fold, while the

b

a

Fig. 1 a: Heat map showing unsupervised clustering of the 66 differentially expressed genes (DEGs) between good and bad quality eggs from 32
clutches of fertilized zebrafish eggs. Yellow signal denotes upregulation, blue signal denotes downregulation, and black defines no change in
expression. b: Gene ontology analysis using the DAVID online program of the 55 DEGs with known information. The enriched terms are shown
on the y-axis and the fold enrichment is on the x-axis. Annotated terms are derived from UniProtKB keywords (pink circle); Gene Ontology BP
(red circle), MF (blue circle), and CC (yellow circle); and KEGG pathways (green circle). Statistical significance is represented by the colored squares
next to the enriched terms
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second cluster included terms associated with ‘mito-
chondrial transit protein’, which were enriched be-
tween 3- to 12-fold. The genes that most drastically
changed expression (i.e. ribosome production factor 2
homolog (S. cerevisiae) [rpf2], ribosomal protein S27 (iso-
form 2) [rps27.2], and U1 spliceosomal RNA [U1] with
fold changes of 7.81, 1.90, and − 2.33/− 2.35, respectively)
are associated with ‘translation’ and ‘ribosomes’.

Quantitative real-time polymerase chain reaction (qPCR)
validation of the DEGs
In order to confirm the results obtained by micro-
array analysis, another independent method to detect
gene expression changes was performed. qPCR was
conducted using the same 32 samples that were sub-
mitted to microarray analysis and the primers used
are listed in Additional file 2. Eight genes that under-
went the most drastic changes in microarray analysis
were subjected to qPCR, and their biological function
as well as the p-value and fold change in the micro-
array analysis are shown in Additional file 3. qPCR
confirmed that the expression of rpf2 (1.87 ± 0.33 vs.
0.48 ± 0.20, p = 0.01), spon1b [spondin 1b] (1.61 ± 0.34
vs. 0.49 ± 0.09, p = 0.0003), tspan7b [tetraspanin 7b]
(1.00 ± 0.11 vs. 0.50 ± 0.08, p = 0.001), rps27.2 (2.82 ±
0.18 vs. 1.66 ± 0.13, p < 0.0001), stra13 [stimulated by
retinoic acid 13 homolog/centromere protein X]
(1.20 ± 0.09 vs. 0.87 ± 0.12, p = 0.03), and rtn4ip1

[reticulon 4 interacting protein 1] (1.02 ± 0.07 vs.
0.84 ± 0.04, p = 0.03) was increased in bad quality eggs
as compared to good quality eggs, while that of U1
(21.08 ± 5.81 vs. 4.38 ± 1.28, p = 0.009) and slc29a1a
(1.04 ± 0.05 vs. 1.26 ± 0.06, p = 0.008) were increased
in bad relative to good quality eggs (Fig. 2a-h). Inter-
estingly, despite the statistical significance in the dif-
ferential regulation of U1 (Fig. 2g), the expression of
this gene was regulated in the opposite direction by
qPCR as compared to by microarray analysis. In fact,
we found that U1 expression was decreased on average by
2.3-fold in bad quality eggs relative to good quality eggs as
assessed by microarray, but qPCR results showed that it
was increased by approximately 5-fold in bad as compared
to good quality eggs. Regardless of this difference, we
found by both microarray and qPCR that the transcript
levels of all eight genes were differentially regulated.

Functional analysis of otulina and slc29a1a in zebrafish
In order to validate the in vivo significance of some of
the DEGs, we performed functional analysis by genome
editing using the CRISPR/Cas9 system. We first exam-
ined the tissue localization of our validated differen-
tially abundant transcripts, rpf2, spon1b, tspan7b,
rps27.2, stra13, rtn4ip1, and slc29a1a as well as otulina,
which tended to be over abundant (p < 0.1) in good
quality eggs, using RNA-seq data stored in the
PhyloFish [16] online database (Additional file 4). We

a b c d

e f g h

Fig. 2 Validation of the microarray data by performance of quantitative real-time PCR (qPCR). Eight genes, including (a) rpf2, (b) spon1b, (c)
tspan7b, (d) rps27.2, (e) stra13, (f) rtn4ip1, (g) U1, and (h) slc29a1a were subjected to qPCR using the primers listed in Additional file 2, whereby
LSM couples member 14B (lsm14b), prefoldin subunit 2 (pfdn2), and ring finger protein 8 (rnf8) as well as 18S rRNA, beta-actin (bact), and
elongation factor 1 alpha (EF1α) were used as internal controls. * p-value ≤0.05, ** p-value ≤0.01, *** p-value ≤0.001, **** p-value<< 0.001
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observed that only slc29a1a and otulina were predom-
inantly expressed in ovary, egg, and/or embryo, thus,
functional knockouts of these genes would mostly affect
the female reproduction and the ensuing embryogenesis
with minimal effect on non-reproductive organs. qPCR
analysis for otulina (Fig. 3a) and slc29a1a (Fig. 3b) in
different zebrafish tissues confirmed that both of these
genes were expressed predominantly in the ovary and
therefore good candidates for knockdown. One-cell
stage embryos were injected with the CRISPR/Cas9
guides that targeted either otulina or slc29a1a. Injected
embryos were subsequently raised until sexual maturity.
Mosaic founder mutant females (F0) were identified by
fin clip genotyping and subsequently mated with wild-
type (WT) or Dr_vasa:eGFP C3 (hereafter called vasa:
eGFP) males, and embryonic development was re-
corded. While mutations could be detected in F0 fe-
males, these mutations were not transmitted to the
next generation thus making it impossible to generate
non-mosaic homozygote mutant fish for further ana-
lysis. Since the mutagenesis efficiency of the CRISPR/
Cas9 system was very high [17, 18], the otulina and

slc29a1a genes were however sufficiently knocked-out
in the transgenic mosaic F0 females to study the pheno-
type associated with the partial knock out of target
genes, as previously shown for other maternal genes in
zebrafish [9, 19]. This was evidenced by the substan-
tially lower transcript levels of otulina and slc29a1a in
the eggs of these mutant mosaic females as compared
to those from control WT pairings (Fig. 3c). The de-
crease in maternally inherited transcript levels was es-
pecially high in otulina mutants. Thus, the phenotypes
of otulina (n = 4) and slc29a1a (n = 10) mutants could
be observed even in the F0 generation. All of our obser-
vations were therefore obtained from the F0 generation
using eggs from mosaic mutant females in which target
genes were partially knocked out and corresponding ex-
pression significantly reduced in eggs.
We observed that both otulina and slc29a1a mutant-

derived eggs had a significantly lower developmental
success, defined as the proportion of surviving embryos
at 24 hpf to the total number of spawned eggs (40.0 ±
6.7% and 24.8 ± 6.8%, respectively) in comparison to
controls (74.61 ± 7.9%) (Fig. 3d). Eggs from the cross

a b

c d

Fig. 3 Tissue localization of otulina (a) and slc29a1a (b) based on qPCR assays. c: Expression level of otulina and slc29a1a in spawned eggs from
mutant females mated with WT males as assessed by qPCR. 18S rRNA, beta-actin (bact), and elongation factor 1 alpha (EF1α) were used as internal
controls, and experiments performed in triplicate. d: Developmental success in terms of survival rate of embryos at 24 h post-fertilization (hpf)
from otulina- and slc29a1a-deficient mutant females mated with WT males. N = 4 r different females for otulina and N = 10 different females for
slc29a1a, using eggs from at least three spawns for each individual female
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between each individual mutant female and a vasa:
eGFP male were counted based on their developmental
phenotype, described as non-cellularized (lack of cell
division), partially cellularized (abnormal cell division),
and normal development, as shown in Table 1. As com-
pared to the control embryos that developed normally
from 2 to 24 hpf (Fig. 4a-d), most of the spawned eggs
from the mutant females were non-cellularized such
that they did not undergo any cell division at all
throughout the same time period, and they eventually
all died by 24 hpf (Fig. 4e-l). However, two of the
slc29a1a mutants displayed some heterogeneity in their
offspring; while a proportion of the spawn did not de-
velop and did not undergo cell division as observed
previously, a number of cells underwent abnormal de-
velopment characterized by asymmetrical cell division
and the appearance of a cell mound on top of an en-
larged cytoplasm, which occurred until approximately
4–5 hpf (Fig. 4m and n), after which they began to de-
velop normally albeit slightly slower than their control
counterparts (Fig. 4o-q). To determine if the non-
cellularized eggs were unfertilized or were arrested in
development immediately after fertilization, we per-
formed PCR genotyping for the gfp gene, which would
only come from the vasa:eGFP male and not from the
mutant mother that does not harbour any gfp gene. We
found that the non-cellularized eggs from both otulina
and slc29a1a mutants did not have the gfp gene indi-
cating that they were not fertilized (Fig. 4r).

The Wnt pathway is dysregulated following otulina
deficiency
In a bid to elucidate a possible mechanism that may
govern the function of otulina, we assessed the
spawned eggs from otulina-mutant females crossed
with WT males for the transcript levels of compo-
nents of the wnt (wnt3a, tcf3, tcf7, lef1, and dvl2) and
tnf/nf-κb (nf-kb2, rel, rela, ikkaa, ikkab, and tnfa)
pathways as otulina plays a role in these pathways in
mammalian models [20–22]. Our findings showed
that wnt3a, tcf7, lef1, and dvl2, but not tcf3, transcript
levels were significantly decreased in the otulina
mutant-derived eggs (Fig. 5a-d), while none of the
transcripts belonging to the tnf/nf-κb pathways exhib-
ited a change in transcript levels (Additional file 5).

Identification of gene signatures to predict
developmental competence by statistical modeling using
partial Least Square (PLS) regression and genetic
algorithm (GA)
Findings reported above in the transcriptome analysis
were based on univariate analysis. We additionally
used PLS to model the link between transcriptomic
data and survival rates, and a GA to select subsets of
genes that best predicted survival rates (see Methods
for details). We ran the PLS-GA procedure with 70
populations of 500 potential solutions, i.e. subsets of
1 to 20 randomly selected genes. We thus obtained
35,000 final potential solutions, which we evaluated
by 10 runs of 2-fold cross validation (2-FCV); we de-
fined the average cross-validated R2 values from the
10 runs as the quality criterion for each individual.
To confirm that the selected individuals were rele-
vant, we compared the average 2-FCV R2 values ob-
tained on the actual dataset to the ones obtained on
data generated by randomly permuting the survival
rates of the different observations. Figure 6a shows
that the 2-FCV R2 obtained for the final individuals
using the actual survival rates were significantly
higher than those obtained with the randomized data
(p-value < 2.10− 16; Mann-Whitney U-test). In
addition, we compared the distribution of selection
frequencies of each gene in the final populations
using the actual and randomized data. We did not
observe significant peaks (genes with high selection
frequency) in the randomized data (Fig. 6b, lower
panel) as compared to the actual data (Fig. 6b, upper
panel). The 95th and 99th percentiles of the distribu-
tion of frequencies in the randomized data were then
used as thresholds to identify sets of genes that were sig-
nificantly frequently selected. We identified 156 genes
using the 95th percentile. Table 2 displays the 29 genes
identified using the 99th percentile. Of note, 10 of the 29
genes were identified as differentially expressed in the

Table 1 Characterization of otulina and slc29a1a mutant
phenotypes

Embryos with defects

Total number
of embryos

Non-cellularized† Partially
cellularized ‡

Normal
embryos

otulina-1 210 163 47

otulina-2 213 172 41

otulina-3 92 53 39

otulina-4 116 110 6

slc29a1a-1 104 104 0

slc29a1a-2 100 88 12

slc29a1a-3 660 450 210

slc29a1a-4 451 439 12

slc29a1a-5 245 150 95

slc29a1a-6 152 138 14

slc29a1a-7 361 252 110

slc29a1a-8 80 71 9

slc29a1a-9 85 9 48 28

slc29a1a-10 370 153 24 193

Characterization of otulina and slc29a1a mutant phenotypes from crosses of
otulina or slc29a1a mutant F0 females and WT males. †Embryos did not
develop at all. ‡Embryos had a partially cellularized blastodisc that was sitting
atop an enlarged syncytium (arrow in Fig. 4n)
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microarray analysis. A gene signature with a low number
of genes is desirable for diagnostic or prediction purpose.
Table 3 displays the two best solutions with only 7 and 8
genes and average 2-FCV R2 values equal to 0.9771 and
0.9678, respectively. In conclusion, we identified statisti-
cally robust gene signatures that predicted egg survival
rates from transcriptomic data.

Discussion
In this study, we identified 66 DEGs between good and
bad quality eggs at the one-cell stage, which is a rela-
tively low number as compared to other studies. In fact,
it must be reiterated that all of the couples that were
mated and produced clutches were wildtype without any
particular treatment in contrast to most existing studies

a b c d

e f g h

i

m

r

n o p q

j k l

Fig. 4 Representative images showing the development between 0 and 24 h post-fertilization (hpf) of F1 embryos from wildtype control (a-d),
otulina-deficient (e-h), and slc29a1a-deficient (i-q) females. In the control eggs, the embryos were at 64-cell (A), oblong (b), shield (c), and 24-somite (d)
stages according to Kimmel et al. [56]. Eggs from otulina and slc29a1a mutant females were non-developing and did not under any cell division (E-L).
Some eggs from two slc29a1a mutant females were developing abnormally (M-Q). (a, e, i, m) = images taken at 2 hpf; (b, f, j, n) = images taken at 4
hpf; (c, g, k, o) = images taken at 6 hpf; (P) = image taken at 8 hpf; (d, h, l, q) = images taken at 24 hpf. The arrow demonstrates a partially cellularized
blastodisc that was sitting atop an enlarged syncytium. Scale bars denote 500 μm. R: PCR genotyping for nucleoplasmin 2b (npm2b) and vasa:eGFP in
spawned eggs from WT, otulina-, and slc29a1a-mutant females crossed with vasa:eGFP males to detect fertilization of the eggs. Std = 1 kb ladder;
Con =WT female crossed with vasa:eGFP male
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on fish egg quality. Thus, there may have been multiple
natural causes behind the decline in quality of the eggs
from the different mothers, such as nutrition, density,
age of parents, delay from last spawn, and genetics just
to name a few [1, 23, 24]. Among the 66 DEGs, 7 genes
were verified independently by qPCR. These genes all
play different cellular roles: rpf2 [25] is a ribosome as-
sembly protein that recruit 5S rRNA and ribosomal pro-
teins into nascent large ribosome subunits; rps27.2 [26]
is a structural component of the 40S small ribosome

subunit; spond1b [27] encodes a protein secreted by
floor plate cells during embryogenesis that localizes to
the central spinal canal and has neuroregulatory func-
tions; rtn4ip1 [28] is a mitochondrial protein present in
neurons and astrocytes; tspan7b [29] is a cell surface re-
ceptor signaling molecule that functions in embryonic
development; stra13 [30] has roles in DNA repair and
kinetochore assembly; and slc29a1a [31] is transmem-
brane glycoprotein that mediates the cellular uptake of
nucleosides. Their distinct roles in the cell highlight the

a b

c d

Fig. 5 Evaluation of the expression levels (arbitrary units) of wnt3a (a), tcf7 (b), lef1 (c), and dvl2 (d) in spawned eggs from otulina-deficient
mutant females mated with WT males as assessed by qPCR. 18S rRNA, beta-actin (bact), and elongation factor 1 alpha (EF1α) were used as internal
controls, and experiments performed in triplicate. N = 4 different females, at least three spawns from each female

a b

Fig. 6 a The average 2-fold cross validation R2 values obtained from the actual dataset were compared to the ones obtained from the pseudo-
datasets with permuted survival rates. b: The frequency that each variable was selected in populations from the actual data and from the
randomized data. The 95th and 99th percentiles of the distribution of frequencies in the randomized data were used to obtain sets of genes that
were the most often selected
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fact that embryonic survival is based on many different
cellular processes and suggest that they may serve as
candidate markers of egg quality among unrelated wild-
type females in larger populations.
With regard to the functional characteristics of the

DEGs in the study using all samples, overrepresentation

analyses of the GO terms by the DAVID gene ontology
program found that genes that function in ribosome and
translation were predominantly enriched. A recent study
demonstrated that ribosome was one of the top over-
represented KEGG pathways in the expressed transcrip-
tome of unfertilized zebrafish eggs, which suggests that
the ribosome/translation process plays a major role in
fertilization and subsequent embryonic development
[32]. Further, our results are consistent with previous
findings that showed that translation-related transcripts
were also differentially expressed in seabass eggs of dif-
ferent quality [33]. Interestingly, the findings in this
study correlate with our previous proteomic study which
also demonstrated significant dysregulation of proteins
with functions in protein synthesis in zebrafish eggs of
varying quality [34]. In the proteomic study, peptides
that function in protein synthesis were upregulated in
both good and bad quality eggs, which suggests a gen-
eral dysregulation of the system. In this study, rpf2 and
rps27.2 were found by microarray and confirmed by
qPCR to be increased in bad quality eggs (Fig. 2a and d,
respectively). Both of these genes encode proteins that
function in ribosomes; rpf2 is an assembly factor and
rps27.2 is a structural component of the 40S small ribo-
some subunit as mentioned above. A similar finding was
demonstrated in a previous study that investigated the
transcriptome of eggs after natural and controlled ovula-
tion in rainbow trout (Oncorhynchus mykiss); it was re-
vealed that rpl24 transcript, which encodes a structural
component of the large ribosome subunit, was more
abundant in the latter which had higher mortality [12].
Thus, it appears that eggs of bad quality are associated
with a dysregulation of genes encoding ribosome com-
ponents. Dysregulation of the translational machinery in
zebrafish eggs of different quality appears to be at both
the transcript and protein levels, and may disrupt devel-
opmental competence and impact egg quality. Whether
or not this is simply a consequence of the dysregulation
of the egg formation process in the ovary or the reason
why bad quality eggs have a lower ability to develop
once fertilized is currently unknown and begs for further
investigations.
Obtaining a gene signature to predict the survival rate

is valuable and of practical interest as the identification
of a set of genes that correlates with the rate of survival
can open up avenues for understanding the biological
phenomena to explain egg quality and for future applica-
tions in aquaculture [35]. Existing studies, that used ma-
chine learning to predict egg quality resulted in the
identification of several hundreds of genes [36]. In the
present study, we used PLS to model the link between
transcriptomic data and survival rates, and a genetic al-
gorithm to select subsets of genes that best predicted
survival rates. To our knowledge, such an approach had

Table 2 Genes identified from the PLS-GA analysis to be
associated with survival

ENSEMBL gene
annotation

Gene name

ENSDARG00000090871 Si:dkey-210j14.4

ENSDARG00000076419 Si:dkeyp-117b11.2

ENSDARG00000079255 Zgc:174935

ENSDARG00000031366 Reticulon 4 interacting protein 1

ENSDARG00000006982 muscle segment homeobox D

ENSDARG00000071553 Zgc:171500

ENSDARG00000070898/
ENSDARG00000092291

Si:ch211-262 h13.3 / Si:ch211-281 g2.3

ENSDARG00000075318 Solute carrier family 16 (monocarboxylic acid
transporters), member 6a

ENSDARG00000063295 Myosin, heavy polypeptide 9a,
non-muscle

ENSDARG00000082140/
ENSDARG00000082017

U1 spliceosomal RNA

ENSDARG00000089078 Collagen, type XXIII, alpha 1

ENSDARG00000017820 Polymerase (RNA) III (DNA directed)
polypeptide D

ENSDARG00000024687 Polymerase (RNA) III (DNA directed)
polypeptide G

ENSDARG00000089422 CABZ01087562.1

ENSDARG00000056563 Peroxisome proliferative activated receptor,
gamma, coactivator 1, beta

ENSDARG00000076498 Golgi integral membrane protein 4a

ENSDARG00000069425 Heat shock factor binding protein 1a

ENSDARG00000090804 G protein-coupled receptor 155a

ENSDARG00000075434 RNA 2,3,-cyclic phosphate and 5,-OH ligase

ENSDARG00000096436 Si:dkey-118j18.4

ENSDARG00000089677 CABZ01117603.1

ENSDARG00000095796 Si:dkey-87o1.2

ENSDARG00000004898 Zona pellucida glycoprotein 2, like 2

ENSDARG00000020149 Acyl-Coenzyme A oxidase-like

ENSDARG00000027738 Si:ch211-13c6.2

ENSDARG00000080245 5S ribosomal RNA

ENSDARG00000058445 Protein disulfide isomerase-like, testis expresse

ENSDARG00000078785 Transmembrane protein 258

ENSDARG00000093926/
ENSDARG00000095522

Si:dkey-71b5.2 / Si:dkey-71b5.3

List of the 29 genes that were selected from the exhaustive analysis by Partial
Least Square (PLS) regression and genetic algorithm (GA). The 10 genes that
were differentially regulated in our microarray dataset are boldfaced
and italicized
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never been applied to egg quality in fish. We succeeded
in identifying statistically robust gene signatures with
low number of genes (< 10) that predicted egg survival
rates from transcriptomic data.
In an effort to investigate the functional significance of

some of the DEGs, we created CRISPR/Cas9 knockouts
of otulina and sc29a1a due to their ovarian-
predominant expression and dysregulation in bad quality
eggs (Additional file 4, Fig. 2). We used the F0 mosaic
females directly for experimentation since the otulina
and slc29a1a transcript levels were dramatically reduced
in their F1 eggs, which indicated that many of the oo-
cytes in the mosaic females contained the mutant copy
of the gene and thus had reduced gene expression. Our
findings provide evidence that otulina and slc29a1a are
key fertility-related genes playing an important role for
the production of fertilizable eggs. Notably, we demon-
strated for the first time that deficiency in each of these
genes render females subfertile, with complete lack of
development in the spawned eggs, which were shown to
be unfertilized (Fig. 4r). Thus, our data suggested that
otulina and slc29a1a may play roles that contribute to
the factors important for fertilization. Otulina is pre-
dicted to encode for a deubiquitinase, which removes
methionine 1-linked ubiquitin chains, of the OTU family
in zebrafish, and substrate-bound otulin in mammals
has been shown to associate with the linear ubiquitin

chain assembly complex (LUBAC). This ubiquitination-
deubiquitination system is a key regulator of important
signaling pathways, including Wnt, TNF-α, and NF-κb.
The otulin gene, the mammalian ortholog, has been pre-
viously shown to be involved in early development in
mice since a functionally-disruptive gene mutation re-
sults in embryonic lethality due to perturbed Wnt sig-
naling and angiogenesis [20]. In fact, it is known that
Wnt signaling plays a major role in gonad differentiation
in some fish species [37–39] . Further, otulin has also
been shown to be a key factor in regulating inflamma-
tion and immunity through its modulatory role in the
TNF-α and NF-κb pathways [21, 22]. It is known that in-
flammatory signaling is an essential part of early embry-
onic development since many of these components are
part of the maternally-inherited repertoire of transcripts,
and the TNF- α and NF-κb pathways play important
roles in embryonic hematopoietic stem and progenitor
cell production as well as body patterning/specification
[40–42]. Our results showed that there were significant
decreases in the transcript levels of several wnt compo-
nents including wnt3a, tcf7, lef1, and dvl2 (Fig. 5), while
none of the transcripts belonging to the tnf/nf-κb path-
ways showed any changes. Thus, otulina deficiency may
contribute to subfertility in zebrafish via dysregulation of
wnt signaling, in line with our previous study that
showed that the wnt pathway was disturbed at the pro-
tein level in bad quality eggs and with the known func-
tion of wnt in development [34, 43, 44].
On the other hand, slc29a1a is predicted to encode for

an equilibrative nucleoside transporter. In mammals, it
was shown that slc29a1 transports adenosine, which is a
potent cellular metabolite that functions in cyclic AMP
pathways and also acts directly as a vasoactive mediator,
into fetal cells and has implications in fetal endothelial
functions such that its dysfunction can lead to human
pregnancy-related problems such as gestational diabetes,
intrauterine growth restriction, and pre-eclampsia [45–
47]. In addition, slc29 homologues in chicken play im-
portant roles in rhythm and conduction in developing
embryonic hearts via the ERK/MAP (extracellular signal
regulated kinase/mitogen activated protein) pathways
[48]. However, the function of slc29a1 in fish is still un-
known since these species usually undergo external
fertilization and embryonic growth. Further investiga-
tions into their physiological functions are warranted.

Conclusions
In this report, we show that statistically robust gene sig-
natures exist in the maternally-inherited transcriptome
that could be used to predict development competence.
We also report that poor zebrafish egg quality is associ-
ated with a dysregulation of the translational machinery
genes. Finally, we identified novel fertility-related genes,

Table 3 Two solutions from the parsimonic prediction model

ENSEMBL gene ref. Gene name

Solution 1

ENSDARG00000079255 Zgc:174935

ENSDARG00000089677 CABZ01117603.1

ENSDARG00000090871 Si:dkey-210j14.4

ENSDARG00000076419 Si:dkeyp-117b11.2

ENSDARG00000017820 polymerase (RNA) III (DNA directed)
polypeptide D

ENSDARG00000086485 novel protein coding gene

ENSDARG00000020054 aldehyde oxidase 1

Solution 2

ENSDARG00000079255 Zgc:174935

ENSDARG00000089677 CABZ01117603.1

ENSDARG00000090871 Si:dkey-210j14.4

ENSDARG00000076419 Si:dkeyp-117b11.2

ENSDARG00000017820 polymerase (RNA) III (DNA directed)
polypeptide D

ENSDARG00000016855 Splicing factor 3b, subunit 5

ENSDARG00000088305 CABZ01072929.1

ENSDARG00000087431 Zgc:173962

Two solutions containing 7 and 8 genes that were selected from the
parsimonic model by Partial Least Square (PLS) regression and genetic
algorithm (GA). The 5 common genes between the two solutions are italicized

Cheung et al. BMC Genomics          (2019) 20:584 Page 10 of 14



otulina and slc29a1a, that play an important role to
allow the production of fertilizable eggs.

Methods
Fish husbandry and sample collection
Wildtype zebrafish (Danio rerio) of the AB strain were
maintained at 25 °C in a central filtration recirculating
system with a 12 h light/dark cycle in the INRA LPGP
fish facility (Rennes, France). Breeding pairs were kept in
the same tank overnight separated by a partition, and in
the morning, the divider was removed after which the
female released her eggs to be fertilized by the male.
One hundred and thirty-six clutches of fertilized zebra-
fish eggs at the one-cell stage were harvested and di-
vided into two parts. One part was flash-frozen in TRI
reagent (Sigma-Aldrich, St. Louis, USA) and stored at
-80 °C for molecular biology analyses. The other part
was cultured in modified Yamamoto’s embryo solution
(17 mM NaCl, 400 μM KCl, 270 μM CaCl2.2H2O,
650 μM MgSO4.7H2O, 0.1 μl/ml of methylene blue) and
monitored for up to 48 h, and the number of survivors
was counted at 8, 24, and 48 hpf. Good quality eggs were
defined as embryos that had a very high survival rate (>
93%) at 48 hpf and bad quality eggs were those that suf-
fered a very low survival rate (< 38%) at 48 hpf. Those
percentages were selected to obtain two groups of con-
trasted phenotype (i.e. differential egg quality) with suffi-
cient statistical power.

RNA extraction
Total RNA of the pooled clutches was extracted using
TRI reagent according to the manufacturer’s protocol,
and RNA quality and purity were assessed using the Agi-
lent Nano RNA 6000 assay kit and 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, USA). All samples
were confirmed to have a RIN (RNA integrity number)
of 9–10 which are generally accepted as reflecting very
good quality RNA.

Microarray analysis
Zebrafish gene expression profiling was conducted
using an Agilent 8x60K high-density oligonucleotide
microarray. Labeling and hybridization steps were per-
formed following the Agilent “One-Color Microarray-
Based Gene Expression Analysis (Low Input Quick
Amp labeling)” protocol. Briefly, for each sample, 150
ng of total RNA was amplified and labeled using Cy3-
CTP. Yield (> 825 ng cRNA) and specific activity (> 6
pmol of Cy3 per μg of cRNA) of Cy3-cRNA produced
were checked with the NanoDrop 2000 spectrophotom-
eter (Thermo Fisher Scientific, Waltham, USA). 600 ng
of Cy3-cRNA was fragmented and hybridized on a sub-
array. Hybridization was carried out for 17 h at 65 °C in
a rotating hybridization oven prior to washing and

scanning with an Agilent Scanner (Agilent DNA Micro-
array Scanner, Agilent Technologies) using the standard
parameters for a gene expression 8x60K oligoarray
(3 μm and 20 bits). Data were then obtained with the
Agilent Feature Extraction software (10.7.3.1) according
to the appropriate GE protocol (GE1_107_Sep09) and
imported into GeneSpring GX software (Agilent Tech-
nologies) for analysis. The data were first normalized by
median centering, log-transformed, and and filtered
considering expressed genes those which have a signal
above background in at least 80% of the samples in at
least one of the two conditions. Then differential
expressed genes (DEGs) were determined by perform-
ing a T-Test with a Benjamini-Hochberg (BH) cor-
rected pval < 0.05. Genes and biological samples were
finally classified according to their gene expression
profiles using a hierarchical clustering method (Clus-
ter software) and the results were visualized with
Treeview [49].

Gene ontology (GO) analysis
The differentially expressed genes (DEGs) obtained from
the microarray analysis were subjected to overrepresen-
tation analyses using the DAVID version 6.7 (https://da-
vid.ncifcrf.gov/) [15] online program with Ensembl gene
identifiers to elucidate enriched terms. The DAVID ana-
lyses were conducted using the Functional Annotation
Tool based on terms derived from UniProtKB keywords,
Gene Ontology BP, MF, and CC, and KEGG pathways
with Benjamini multiple test correction (p < 0.05).

Reverse transcription polymerase chain reaction and
quantitative real-time PCR (qPCR)
One μg of RNA was used as template for synthesis of
cDNA using the Maxima First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific) as per the manufacturer’s
protocol. The cDNA samples were then diluted 20-fold
and subjected to qPCR using the primers listed in
Additional file 2. Primers were designed using the on-
line program Primer3 (http://primer3.ut.ee) and ex-
tended across an intron when possible to eliminate the
contribution from genomic DNA. qPCR was performed
in triplicate using the GoTaq qPCR Mastermix kit (Pro-
mega, Madison, USA), which utilizes carboxy-X-
rhodamine (CXR) as the reference fluorochrome, using
the following cycling condition: 95 °C for 10 s and 60 °C
for 30 s for 40 cycles. The data were collected with the
StepOnePlus apparatus (Applied Biosystems, Foster
City, USA) and quantitation of the samples was con-
ducted using standard curves. LSM couples member
14B (lsm14b), prefoldin subunit 2 (pfdn2), and ring fin-
ger protein 8 (rnf8) had the most stable expression in
the microarray dataset and were thus used as internal
controls for qPCR. Further, 18S rRNA, beta-actin
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(bact), and elongation factor 1 alpha (EF1α) were also
used as internal controls for qPCR [50]. The geometric
means of all 6 genes were calculated and for
normalization of the data quantity.

CRISPR-Cas9 genetic knockout
CRISPR/Cas9 guide RNA (gRNA) were designed using
the ZiFiT Targeter online software (version 4.2) [51, 52]
and were made against 3 targets within each gene to
generate large genomic deletions, ranging from 130 to
1500 base pairs, that span exons to induce the formation
of non-functional proteins. The gRNA sequences for
otulina are: 5′ GGAGACGCATGAGGATGAAC 3′; 5′
GGAAACAAACAGCATATTCT 3′; and 5′ GGGT
CAGGTATCAAATAACT 3′. The gRNA sequences for
slc29a1a are: 5′ GGGAGCCGCGTTATCCTT3’; 5′
GGGGCTTGTCAGAAACTA 3′; and 5′ TAGGAAC-
CATATACAAAAAA 3′. Nucleotide sequences contain-
ing the gRNA were ordered, annealed together, and
cloned into the DR274 plasmid. In vitro transcription of
the gRNA from the T7 initiation site was performed
using the Maxiscript T7 kit (Applied Biosystems), and
their purity and integrity were assessed using the Agilent
RNA 6000 Nano Assay kit and 2100 Bioanalyzer (Agi-
lent Technologies). Zebrafish embryos at the one-cell
stage were micro-injected with approximately 30–40 pg
of each CRISPR/Cas9 guide along with 8–9 nM of puri-
fied Cas9 protein (a generous gift from Dr. Anne de
Cian from the National Museum of Natural History in
Paris, France). The embryos were allowed to grow to
adulthood, and genotyped using fin clip and PCR that
detected the deleted regions. The PCR bands of the mu-
tants were then sent for sequencing to verify the dele-
tion. Once confirmed, the mutant females were mated
with wildtype males to produce F1 embryos, whose phe-
notypes were subsequently recorded. Images shown on
Fig. 4 were captured with a AZ100 microscope and DS-
Ri1 camera (Nikon, Tokyo, Japan).

Genotyping by PCR
Genotyping of F0 and F1 animals was performed by har-
vesting fin clips from adult mosaic females as well as F1
animals under anesthesia (0.1% phenoxyethanol) and F1
eggs (1–2 cell stage) from mosaic females crossed with
vasa:eGFP males. These samples were lysed with 5%
chelex containing 100 μg of proteinase K at 55 °C for 2 h
and then 99 °C for 10 min. The extracted DNA was sub-
jected to PCR using the AccuPrime system (Promega)
for slc29a1a, Advantage 2 system for nucleoplasmin 2b
(npm2b), and Jumpstart Taq polymerase (Sigma-Aldrich)
for otulina and vasa:eGFP. The primers are listed in
Additional file 2.

Statistical analyses
Statistical analysis of the difference in the expression of
each gene between bad and good quality embryos was
performed using a Student’s t-test whenever possible
after determination of normality of distribution using
the Anderson-Darling test. When a t-test could not be
used, a Mann-Whitney’s U-test was used. All statistical
determinations were conducted using Prism version 7
(GraphPad, La Jolla, USA). Data are presented as mean ±
standard error (SEM). A p-value < 0.05 was considered
as statistically significant.

Analyses by partial least squares (PLS) regression and
genetic algorithm (GA)
We first filtered uninformative genes by performing a
correlation test between each gene expression levels and
survival rate; genes with p-values > 0.1 were discarded.
We then computed the Pearson correlation coefficient
for the expression levels of each pair of genes. We con-
sidered genes with pairwise correlations higher than 0.95
as redundant and kept only the gene with the highest
correlation to the survival rates in each subset of corre-
lated genes.
We implemented a GA to select optimal individuals,

i.e. subsets of genes whose expression levels predict sur-
vival rate. We generated the initial population of poten-
tial solutions by selecting 500 subsets of p genes
(1 ≤ p ≤ 20) randomly among the 5410 filtered genes
[53]. We applied PLS regression to each subset, which
combined linearly the expression levels of the different
genes of one subset to estimate the survival rate. We
evaluated the quality of the different individuals using
the squared Pearson correlation coefficient between the
actual survival rates and the estimates [54]. We per-
formed two-fold cross-validation (2-FCV) to prevent
over-fitting; we randomly split the observations into two
equal subsets d0 and d1. We applied the PLS model to
d0 and assessed the quality of the model on d1, and vice
versa. We calculated the squared Pearson correlation co-
efficient, 2-FCV R2, between the actual survival rates
and the estimates obtained by the 2-FCV procedure. We
ranked the 500 subsets according to the 2-FCV R2

values. We selected the best individuals by associating
each individual with a selection probability that was pro-
portional to its rank [55]. We altered the selected indi-
viduals through ‘mutation’ and ‘cross-over’. We mutated
90% of the individuals by randomly adding, removing or
replacing a gene. We crossed-over 50% of the individuals
by randomly splitting each of two potential solutions
into two subsets of genes and exchanging one subset be-
tween them to obtain new individuals. We repeated this
procedure for 200 generations and submitted the indi-
viduals selected in the final generation to extensive
evaluation using 10 runs of 2-FCV. We used the average
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R2 obtained for each individual as the final criterion to
quantify the quality of each final subset of genes.
To assess the relevance of the procedure, we applied

the same GA to randomized datasets obtained by ran-
domly permuting the survival rate of the different obser-
vations. Genes involved in egg survival are expected to
appear often in the final subsets. The distribution of the
selection frequency of each gene in the randomized
datasets was computed. Genes with selection frequency
in the actual data higher than the 95th or 99th percentile
of the selection frequencies in the randomized data were
considered as relevant. The distributions of the average
2-FCV R2 of the final individuals obtained on the actual
and randomized data were also compared. The relation-
ship between gene expression and survival rate was con-
sidered significant when the actual R2 values were
significantly higher than the R2 values of the randomized
dataset. To compare their distributions, a Mann-
Whitney test was used.

Additional Files

Additional file 1: The complete list of the 66 DEGs including the gene
description, Ensembl annotation, corrected p-value, and fold change.
Analysis was performed with the GeneSpring GX program. (XLSX 13 kb)

Additional file 2: Sequences of the primer pairs that were used in this
study. (XLSX 13 kb)

Additional file 3: List of differentially expressed genes (DEGs) in bad
quality eggs as compared to good quality eggs that were the most
modified among the 66 DEGs found by microarray analysis. (XLSX 10 kb)

Additional file 4: Tissue localization of (a) rpf2, (b) spond1b, (c) tspan7b,
(d) rps27.2, (e) stra13, (f) rtn4ip1, (g) slc29a1a, and (h) otulina transcripts by
RNA-seq retrieved from the Phylofish online database. (PDF 606 kb)

Additional file 5: Evaluation by qPCR for transcripts of wnt, tnf, and nf-
kb pathways in otulina mutant-derived eggs. Transcript levels of (a) tcf3,
(b) tnfa, (c) ikkaa, (d), nf-kb2, (e) rel, and (f) rela were investigated by qPCR
(PDF 76 kb)
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