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Abstract

In this paper, the use of entangled cross-linked fibers as core material in vibrating sandwich beams is in-
vestigated. The aim is to analyze the effect of this specific core material in terms of damping. The dynamic
shear properties of the material are first studied experimentally. The shear modulus is shown to decrease with
increasing shear strain amplitude at low shear strains. To include an amplitude dependency of the core material
properties in the sandwich beam behavior, an analytical model is proposed. The equations of motion are derived
using Lagrange’s equations. The shearing of the core is introduced in the equations through the use of virtual
work to allow any relationship between shear stress and shear strain, including damping and nonlinearities. Ex-
perimental tests are carried out on sandwich beams with entangled fiber core material. The Frequency Response
Function obtained exhibits decreasing resonant frequency and peak amplitude with increasing load amplitude.
This softening behavior is consistent with the decreasing shear modulus. The proposed model is used take into
account the softening nonlinearity. The FRF is reproduced with a linearly decreasing shear modulus and linearly
increasing loss factor.

1 Introduction

Sandwich panels are widely used in aerospace and automotive structures. They are made of a core bonded to two
stiff facesheets. By separating the two facesheets with the core, the bending stiffness is increased as compared to a
single-material structure of the same weight. While this high stiffness-to-weight ratio is a strong advantage from a
static point of view, it also makes the structures prone to transmit vibrations. In aerospace and automotive fields,
unwanted vibrations can lead to user discomfort or damage to the structures, and vibration damping is thus a
strong concern. The theory of vibration of damped three-layer beams and panels was considered by a number of
authors in the past 50 years. Kerwin [1] analysed the use of constrained layer to damp flexural waves. DiTaranto [2]
and Mead and Markus [3] proposed a model for sandwich beams with arbitrary conditions and a viscoelastic core,
and set the hypotheses that are still in use in the literature. The use of the energy principle (Hamilton’s principle
or Lagrange’s equations) to derive the equations of motion was introduced by Rao [4].

The most commonly used core material is honeycomb, which does not provide much damping. Control must then
be added through either active or passive damping. Active damping consists in the use of sensors and actuators,
which need energy input. Passive damping consists in using adapted materials to increase the overall damping of
the structure. A layer of viscoelastic material can be added to the structure, either by covering the structure with
a constrained or unconstrained viscoelastic layer, or by including the viscoelatic layer between the facesheet and
the core [5]. Another possibility lies in considering new core materials to replace totally or partially the classical
honeycomb material, as by combining honeycomb and viscoelastic material for example [6]. This paper studies the
flexural vibration of sandwich beams with a recently introduced core material. Mezeix et al. [7] developed a new
core material made of short fibers of glass, carbon or aramid, entangled and cross-linked with epoxy resin. Some
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Figure 1: Entangled cross-linked fiber material: shear sample.

vibrations experiments have been carried out by Mezeix [8] and Shahdin [9], but this is the first study focused on
the vibration properties and modeling of sandwich beams with this core material.

Previous models of sandwich beams considered frequency dependent materials, or geometrical nonlinearities,
but no inclusion of amplitude dependent material behavior could be found in the literature.

In this paper, the amplitude-dependency of the dynamic shear properties of the entangled cross-linked fiber
material is observed experimentally. An analytical model of the flexural vibration of sandwich beams is derived
using Lagrange’s equations to include core material nonlinearity. A sandwich beam with entangled cross-linked
fibers as core material is studied experimentally. The proposed model is used to reproduce the observed frequency
response, and analytical and experimental results are compared.

2 Entangled cross-linked fiber material description

After studies of Poquillon et al. [10] on entangled fibers, Mezeix et al. [7] introduced a material in which short
entangled fibers are cross-linked with epoxy resin. Contrarily to most architectured materials, entangled cross-
linked fibers have no periodicity: the fiber orientations are randomly distributed.

Different types of fibers can be used and previous studies considered carbon, aramid and glass fibers [9, 7]. In
this paper, the material is made with carbon fibers which are commonly used in aeronautical applications due to
their high performances in terms of Young’s modulus and tensile strength. The fibers consist in a yarn of stranded
carbon filaments. The diameter of the filaments is 7 µm with a Young’s modulus of 240 GPa.

The fibers are first cut to a length of 40 mm. To achieve a low density material, the filaments of the yarn must
be separated. A blower room is used to obtain the separation and to entangle the fibers, with an air flux of 4 bar
pressure.

Then, the entangled fibers are cross-linked with epoxy resin. Epoxy resin is chosen because of the common use
of carbon/epoxy prepreg as facesheets in aeronautical sandwich structures. A paint spray gun is used to spray the
resin.

Finally, the fiber network is compressed to fit in the mold and polymerized. Figure 1 shows a sample of the
material after polymerization.

The volume fraction of the material is defined as the ratio of the entanglement density (before cross-linking) to
the density of the bulk material:

f =
ρentanglement

ρbulk
(1)

In the present paper, the density of the entanglement is 150 kg/m
3
. The density of the carbon is 1756 kg/m

3
,
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Figure 2: Experimental set-up for dynamic shear test.

so the volume fraction is 8.5%. The epoxy cross-links of a sample represent a density of 30 kg/m
3
. Thus, the final

material has a total density of 180 kg/m
3
.

3 Material identification

3.1 Set-up and samples

This paper focuses on the use of entangled cross-linked fibers as sandwich core material in flexural vibration. As in
a large part of the literature [2, 3, 11], the core material is supposed to be deformed only in shear. The material is
thus characterized in shear only.

The samples have a thickness of 20 mm, a length of 60 mm and a width of 40 mm. One sample is shown
on Fig. 1. The samples are bonded to 3 mm thick aluminum plates on both sides. To ensure that the applied
deformation is in shear only, two samples are tested together. A vertical excitation is applied between the two
samples by a 100N shaker. The vertical displacement of the central aluminum plates is measured with an inductive
displacement sensor and the force is measured with a piezoelectric load cell located at the interface between the
shaker and the aluminum plates. The set-up for dynamic shear testing is presented on Fig. 2.

The shear strain γ and shear stress τ are related to the measured displacement u and load F as follows:

γ =
u

h
(2)

τ =
F

S2
(3)

where h = 20 mm is the thickness of the sample and S2 = 2 × 40 mm× 60 mm the area through which the load
is applied, i.e. the bonded area between the two samples and the central aluminum plates.

3.2 Viscoelastic model

The most classical way to model material including stiffness and damping is to use a viscoelastic modeling, as
described by Nashif et al. [12] and Lakes [13] among others.

In case of harmonic loading, the expression of the oscillatory shear strain is:

γ = γ0 sin(ωt) (4)

Then in the case of linear viscoelastic behavior, the resulting shear stress is also sinusoidal with a phase lag φ:

τ = τ0 sin(ωt+ φ) (5)
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Figure 3: Evolution of shear modulus with the shear strain amplitude.

which is related to the shear strain amplitude by the expression:

τ = G′γ0 sin(ωt) +G′′γ0 cos(ωt) (6)

or

τ = G′γ +
G′′

ω
γ̇ (7)

where G′′ = G′ tan(φ) and ˙ = d
dt . G

′ is the storage modulus, G′′ is the loss modulus, and η = tan(φ) is the loss
factor.

These expressions are often used in a complex form with γ = γ0 exp(iωt). Then τ = G∗γ withG∗ = G′ + iG′′ = G′(1 + iη),
i =
√
−1.

Experimentally, G′ and η are measured from stress-strain loops by using the following relationships:

G′ =
τmax

γmax
(8)

η =
τ(γ = 0)

τmax
(9)

In small deformations, viscoelastic models are generally used with G and η being frequency-dependent but
amplitude-independent. Stress-strain loops are then elliptic. However, these models are also used as approximations
to describe an amplitude-dependent behavior by defining the storage modulus and loss factor as functions of the
amplitude, see [14] for example. When the nonlinearity increases, the stress-strain loop is no longer elliptic and
other models must be used.

3.3 Parameter identification

Measurements are made at 20 Hz to stay in a quasi-static configuration. In this paper, the focus is on the ampli-
tude dependency. The dissipation is expected to come mainly from friction between fibers, which is a frequency-
independent phenomenon. The hypothesis of amplitude-dependent and frequency-independent material is consistent
with the work of Pritz on other fibrous materials such as mineral wool [15, 14].

The range of study is from 5.10−5 to 1.10−3 for γ, corresponding to 1.10−3 mm to 2.10−2 mm for the vertical
displacement u.

Figure 3 shows the evolution of the shear modulus with the shear strain amplitude. The modulus descreases
with the amplitude. To describe this evolution, a linear relationship is used:

G = 1.0 · 107 − 1.3 · 109 | γ | (10)
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Figure 5: A section of a sandwich beam in deformed and undeformed configurations.

For γ = 5.10−4 and γ = 1.10−3, a loss factor of η = 0.06 is measured. At lower amplitudes, the loss factor is
too small to be measured.

4 Sandwich beam model

4.1 Geometry and hypotheses

The system studied is a clamped-free sandwich beam with an electrodynamic shaker modeled by its moving mass
and stiffness as shown on Fig. 4.

The sandwich beam is of length L and width B. It is composed of three layers of thickness hβ and density ρβ
with β = t, b or c, respectively, for the top layer, bottom layer and core layer. The beam is clamped at x = 0, and
free at x = L.

The theoretical developments presented here are based on assumptions made by Mead and Markus [3] and
commonly accepted in the literature:

• Displacements are small and occur in the xz plane only.

• Laminates are considered purely elastic, with Young moduli Et and Eb. Laminates are treated as Euler-
Bernoulli beams: shear strains and rotary inertia are neglected.
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• Transverse direct strains in both core and face-plates are also neglected: for a given position x, transverse
displacement w in the z direction is identical in the three layers, which are assumed to be perfectly bonded.
Bonding layer thickness is considered to be null.

• Shear stress and shear strain are constant across the depth of the core.

There is no assumption made on the core material behavior at this point.
The geometry of the beam and notations taken are illustrated on Fig. 5. The longitudinal x-wise displacements

of the mid-planes of the face-plates are ut (x, t) and ub (x, t). The transverse z-wise displacement of the system is
w(x, t).

The shear strain γ in the core is related to the displacements as follows:

γ =
ut − ub
hc

+
d

hc

∂w

∂x
(11)

where

d = hc +
1

2
(ht + hb) (12)

and the longitudinal displacement at the middle of the core is given by:

uc =
1

2

(
ut + ub +

ht − hb
2

∂w

∂x

)
(13)

4.2 Energies and work

4.2.1 Kinetic energy of the system.

The kinetic energy of the system results from the transverse and longitudinal motion of the three layers, neglecting
rotational kinetic energy, and the moving mass of the shaker (subscript s):

T = Tt + Tb + Tc + Ts (14)

where

Tβ =
1

2
ρβhβB

∫ L

0

[(
∂uβ
∂t

)2

+

(
∂w

∂t

)2
]
dx (15)

for β = t, b and c, and

Ts =
1

2
ms

(
∂w

∂t
(xf )

)2

(16)

4.2.2 Potential energy of the system.

The potential energy of the system is due to the deformation of the two elastic laminates and the deformation of
the shaker’s spring:

V = Vt + Vb + Vs (17)

where

Vα =
1

2

∫
Lα

[
EαAα

(
∂uα
∂x

)2

+ EαIα

(
∂2w

∂x2

)2
]
dx (18)

for α = t and b, where Eα is the Young’s modulus of the laminate, Aα = hαB the cross-sectional area and Iα the
second moment of area, and

Vs =
1

2
ksw

2 (19)
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4.2.3 Virtual work in the core.

To include any shear behavior of the core, and in particular nonconservative and nonlinear behavior, the contribution
of the core to the energy of the system is written as the virtual work of the shear stress:

δWc =
1

2

∫
V

τδγdV (20)

By using the hypothesis of a constant shear stress through the thickness and width of the beam, the expression is
simplified to:

δWc =
1

2
Bhc

∫ L

0

τδγdx (21)

4.2.4 Virtual work due to the external load.

The virtual work of an external transverse load f(x, t) is:

δWf =

∫ L

0

f(x, t)δw(x, t)dx (22)

4.2.5 Assumed modes.

In order to write Lagrange’s equations of motion, generalized coordinates need to be defined. The assumed mode
method is used to discretize the continuous system. Three sets of admissible functions are used to discretize the
transverse displacement of the beam and the two longitudinal displacements of the laminates. The use of a third
set of admissible functions for ut was introduced by Cai et al. [11]. The time and space dependency are separated
and a vector notation is used to obtain the following relationships:

w(x, t) =

nw∑
i

Wi(x)ψi(t) = WTψ (23)

ub(x, t) =

nb∑
j

Ub,j(x)ξb,j(t) = UT
b ξb (24)

ut(x, t) =

nt∑
k

Ut,k(x)ξt,k(t) = UT
t ξt (25)

The displacement functions Wi, Ub,j and Ut,k are sets of admissible functions, ψi, ξb,j and ξt,k are the new generalized
coordinates, and nw, nb and nt are the number of modes selected respectively for the transverse motion of the system,
the longitudinal motion of the bottom layer and the longitudinal motion of the top layer. If n→∞ for each of the
different displacements, the response is considered to be exact. Superscript T denotes the transpose of a vector.

Classical mode shape functions [16] are chosen as admissible functions, as they satisfy all geometric boundary
conditions. In this study, the three layers are clamped-free beams. For transverse displacement of a clamped-free
beam the corresponding mode shape function is:

Wi(x) = cosh(λix)− cos(λix)− σi [sinh(λix)− sin(λix)] (26)

where

σi =
sinh(λiL)− sin(λiL)

cosh(λiL) + cos(λiL)
(27)

and λ1L = 1.875, λ2L = 4.694, λiL = (i− 0.5)π for i = 3, ..., nw where L is the length of the beam.

7



For longitudinal displacement in a clamped-free configuration:

Ut,i(x) = Ub,i(x) = sin
π (2i− 1)x

2L
(28)

for i = 1, 2, 3...nut
or nub

.
Substituting Eqn. (23)-(25) in the kinetic and potential energy expressions and using Eqn. (13) for the expression

of core longitudinal displacement lead to:

T =
1

2


ψ̇

ξ̇b
ξ̇t


T  Mww MT

ubw
MT

utw

Mubw Mubub
MT

utub

Mutw Mutub
Mutut


ψ̇

ξ̇b
ξ̇t

 (29)

and

V =
1

2

 ψ
ξb
ξt


T  Kww 0 0

0 Kubub
0

0 0 Kutut

 ψ
ξb
ξt

 (30)

The submatrices are presented in Annexe A.

4.3 Equation of motion

4.3.1 Lagrange’s equations.

Lagrange’s equations can be written as follows:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk (31)

where k = 1, 2, ..., Ndof , L = T − V is the Lagrangian and Qk represents the generalized forces for the kth

generalized coordinate, defined as:

Qk =
δW

δqk
(32)

For an external force applied locally at x = xf , f(x, t) = f(t)δ(x− xf ), the expression of the virtual work after
discretization is:

δWf =

nw∑
i

δψi(t)

∫ L

0

f(t)δ(x− xf )Wi(x)dx (33)

Hence, from Eqn. (32), the generalized forces due to the transverse force are:

Qf =

 f(t)Wx=xf

0
0

 (34)

For the core, the variation and discretization of Eqn. (11) gives:

δγ =
1

hc

(
UT

t δξt −UT
b δξb

)
+

d

hc
δψ

(
∂W

∂x

)
(35)

which is introduced in Eqn. (21) and Eqn. (32) to obtain the generalized force:

Qc =


−Bd

∫ L
0
τW,xdx

B
∫ L
0
τUbdx

−B
∫ L
0
τUtdx

 (36)
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Figure 6: Experimental set-up for flexural vibration.

In the case of viscoelasticity, the expression of τ given by Eqn. (7) yields:

Qc =


−Bd

∫ L
0

(
Gγc + G

ω γ̇c
)
W,xdx

B
∫ L
0

(
Gγc + G

ω γ̇c
)
Ubdx

−B
∫ L
0

(
Gγc + G

ω γ̇c
)
Utdx

 (37)

While this expression simplifies when the core is linearly viscoelastic, i.e. G does not depend on γ, in the case of
nonlinear viscoelasticity the expression has to be integrated at each step.

Finally, the equation of motion for the generalized core behavior is:

 Mww MT
ubw

MT
utw

Mubw Mubub
MT

utub

Mutw Mutub
Mutut


ψ̈

ξ̈b
ξ̈t

+

 Kww 0 0
0 Kubub

0
0 0 Kutut

 ψ
ξb
ξt


=

 Qc,w + Qf

Qc,ub

Qc,ut


(38)

5 Experimental study and discussion

5.1 Experimental set-up and specimen

The beam studied has a length L = 264 mm and width B = 40 mm. The sandwich is symmetrical with core
thickness hc = 20 mm and facesheet thickness ht = hb = 2 mm.

The core is made of entangled carbon fibers with a volume fraction f = 8.5%, cross-linked with epoxy resin
for a total density ρc = 180 kg/m

3
. The facesheets are made of seven plies of prepreg carbon fabric used in the

aeronautical industry. The density and Young’s modulus are measured experimentally: ρb = ρt = 1.5 · 103 kg/m
3

and Eb = Et = 3.26 · 1010 Pa.
The beam is clamped at x = 0 and free at x = L. Excitation is applied with an electrodynamic shaker at

xf = 37 mm. The excitation is close to the clamped end to minimize coupling between the shaker and the beam. Ac-
celeration is measured at four points on the top of the beam which positions are x = [37 mm, 104 mm, 171 mm, 238 mm].

The electrodynamic shaker’s moving mass is ms = 2 · 10−2 kg. The stiffness is ks = 576 N.
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Figure 7: Frequency response function of the sandwich beam with entangled carbon fiber core for different load
amplitudes (a) experimental results (b) model for G = 1.05 · 107 − 1.5 · 1010 | γ | and η = 1.2 · 10−2 + 6.5 · 102 | γ |.

5.2 Experimental results

A sinusoidal load of constant amplitude is applied to the moving mass of the shaker with stepped frequency.
Different amplitudes are applied to observe the effect of the amplitude-dependency of the core properties on the
overall beam behavior: F0 = [0.04 N, 0.1 N, 0.2 N, 0.4 N, 1 N, 2 N].

The resulting Frequency Response Function (FRF) is shown on Fig. 7(a) for the fourth accelerometer, at
x = 238 mm. The same behavior is observed for the four accelerometers.

The FRF shows a strong dependency of the resonance peak on the load amplitude. Both the resonance frequency
and peak amplitude decrease when the load amplitude increases. Moreover, the peak is asymmetrical.

This softening nonlinear behavior is consistent with the observation made in the first section that the shear
modulus decreases with increasing shear strain amplitude.

The asymmetry of the peak prevents the use of a classical loss factor definition. However, the observed decreasing
amplitude of the acceleration over load ratio indicates that the loss factor increases with increasing shear strain
amplitude. This kind of softening core material can be interesting at higher load amplitudes as compared to classical
core materials.

5.3 Comparison with the model

To compare the analytical model with the experimental data, Eqn. (38) is integrated in the time domain for different
load amplitudes. The focus is made on the first bending mode. The number of modes used is nw = nb = nt = 2.
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For fast computation, the spatial integration for the generalized force Q is made using the midpoint rule:∫ L

0

f(x)dx ≈ L

n

n∑
k=1

f

(
k + 1

2

n
L

)
(39)

The present computation is made with n = 4.
Figure 7(b) shows the obtained FRF for the following storage modulus and loss factor functions:

G = 1.05 · 107 − 1.5 · 1010 | γ | (40)

η = 1.2 · 10−2 + 6.5 · 102 | γ | (41)

These results show that the proposed model allows to capture the behavior of a sandwich beam with core
material nonlinearities. The modeling of G and η by a linear dependency with shear strain amplitude is sufficient
to yield the observed behavior.

The parameters can be optimized to fit exactly the measures, but it was not the purpose of this work. The
difference in the values between the shear test and the sandwich beam test can be explained by the heterogeneity of
the material, that leads to a strong sensitivity to the sample size. The fact that very small strains are experienced
inside the sandwich beam (from 10−6 to 10−4), smaller than what is measured in the material identification, can
also be part of the explanation.

6 Conclusion

The vibration behavior of entangled cross-linked fibers used as sandwich core material was studied.
First, experimental shear tests showed that for this material the shear modulus decreases with the amplitude

at low shear strains.
Lagrange’s equations were used to derive an analytical model of a sandwich beam in which the core presents

amplitude-dependent shear properties. The expression of strain energy of the core was replaced by a more general
expression of the virtual work due to strain, allowing any material behavior to be taken into account.

A sandwich beam with entangled cross-linked fibers as core material was tested. The first mode was observed
for increasing load amplitude. The resulting Frequency Response Function showed a softening nonlinear behavior.

This behavior could be reproduced with the proposed model. A linearly decreasing shear modulus and linearly
increasing loss factor were used to obtain the Frequency Response Function, which is consistent with the shear test
results.

The effect of different parameters of the material (density, type of fiber) need to be investigated to gain a better
understanding of the phenomena leading to the observed softening behavior. The sensitivity to sample size will
also have to be quantified to be included in the property models. From a more general point of view, the model
introduced will allow the use of more complex models to describe the vibration behavior of the materials used in
sandwich beams. These models include a more precise description of the shape of stress-strain loops when they are
not elliptic.
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Appendix A: Submatrices for the energy expressions

Mww = (ρbhb + ρtht + ρchc)B

∫ L

0

WWTdx

+
(ht − hb)

2

16
ρchcB

∫ L

0

W,xW
T
,xdx

+msWx=xfW
T
x=xf

(42)

Mubub
= ρbhbB

∫ L

0

UbU
T
b dx+

1

4
ρchcB

∫ L

0

UbU
T
b dx (43)

Mutut = ρthtB

∫ L

0

UtU
T
t dx (44)

Mubw =
ht − hb

8
ρchcB

∫ L

0

UbW
T
,xdx (45)
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Mutw =
ht − hb

8
ρchcB

∫ L

0

UtW
T
,xdx (46)

Mutub
=

1

4
ρchcB

∫ L

0

UtU
T
b dx (47)

Kww = (EbIb + EtIt)

∫ L

0

W,xxW
T
,xxdx+ ksWx=xfW

T
x=xf

(48)

Kubub
= EbhbB

∫ L

0

Ub,xU
T
b,xdx (49)

Kutut = EthtB

∫ L

0

Ut,xU
T
t,xdx (50)

The subscript , x denotes one derivative and , xx two derivatives with respect to x, respectively.
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