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Visuo-Motor Control Using Body Representation of a Robotic Arm
with Gated Auto-Encoders

Julien Abrossimoff', Alexandre Pitti' and Philippe Gaussier

Abstract— We present an auto-encoder version of gated
networks for learning visuomotor transformations for reaching
targets and representating the location of the robot arm. Gated
networks use multiplicative neurons to bind correlated images
from each others and to learn their relative changes. Using
the encoder network, motor neurons categorize the induced
visual displacements of the robot arm when applying their
corresponding motor commands. Using the decoder network,
it is possible to infer back the visual motion and location of
the robot arm from the activity of the motor units, aka body
image. Using both networks as the same time, near targets can
simulate a fictious visual displacement of the robot arm and
induce the activation of the most probable motor command for
tracking it. Results show the effectiveness of our approach for 2
d-of and 3 d-o-f robot arms. We discuss then about the network
and its use for reaching task and body representation, future
works and its relevance for modeling the so-called gain-field
neurons in the parieto-motor cortices for learning visuomotor
transformation.

I. INTRODUCTION

To move in space, we need to correlate the variations
occuring between the sensory space and the motor space.
Within the brain, neural circuits in the parieto-motor areas are
involved in learning these co-variations across multimodal
signals. For instance, observations of the motor neurons have
showed their tuning to particular visual motion direction in
space [1], [2], [3], [4]. These visuomotor primitives can serve
then toward aligning one body limb to one orientation with
respect to a target [5] or to minimize the relative distance to
it [6]. Interestingly, the way it is done is by multiplicative
interaction across the different sensorimotor signals to con-
volve conditionally variables from each other [7], [8], [9]. As
for probability variables, the resulted joint distributions can
serve then to construct body-centered reference frames (e.g.,
eye-, head-, torso-, or hand-centered) to ease the locating and
the controlling of the body limbs toward targets [10], [11].

There is some mathematical advantages to manipulate
product of variables for learning transformations through
multiplicative networks. For instance, it has been emphasized
that they can discriminate better than deep networks affine
transformations [12]; see Fig. 1 a). In computer vision, this
technique has been applied extensively by Memisevic to
the learning of optical flow, of rotational shifts as well as
of spectral filters and spatio-temporal patterns for action
recognition [12], [13], [14].

Nonetheless, in these researches, the transformation from
unseen images is assumed to be hidden to the experimenter
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and is estimated afterwards [15]. However, in the case of
robotics, we know exactly which actions have been per-
formed and which effects have been caused on sensors. In
comparison, knowing the extra information of having motors
can serve multiplicative networks to estimate better which
transformation has been performed between co-variating
sensorimotor signals (inverse model) and to predict better
how the sensory signals will evolve based on the learned
transformations and current motor activity (forward model);
resp. the blue and red networks in Figs. 1 b-c) and Fig. 2.
On more advantage is that these learned transformations can
be applied to totally new data and contexts, making them
similar to generative networks.

We propose to exploit these properties in robotics es-
pecially in form of multiplicative auto-encorders, in order
to learn inverse and forward models, see Fig. 2. On the
one hand, the encoder part of the network will learn the
different visuomotor transformations by estimating which
motor primitive caused the visual displacement; e.g. sensor-
to-motor mapping. On the other hand, the decoder part of
the network will serve to reconstruct the visual signal by
anticipating the visual displacement and location of the arm
caused by the selected motor primitive; e.g. motor-to-sensor
mapping, something similar with motor simulation, body
image or action observation. Combining the encoder and
decoder networks will permit to control the arm using its
generated body image, in a similar fashion with inverse-
forward networks in [16], [17], [18].

In this line, [19], [20] proposed to employ multi-layered
perceptrons as auto-encoders for the learning of body image
and motor simulation whereas [21], [22], [23], [24], [25],
[26] used other techniques focusing ranging on Bayesian
networks and gaussian mapping with the detection of images
difference or of the extra tactile information for learning the
effects of actions on the body or on objects. Considering
the robot learning of body image and motor simulation,
[21] and [23] proposed that affordances as learning the
effects of actions on objects; for instance, by using a “speed
of movement” feature. To our knowledge, only few teams
proposed the use of gated networks in robotics [17]; recently
Sigaud and colleagues for categorization and retrieving of
motor sequences with the ICub robot [27], [28] and Pitti and
colleagues for audio-visual and visuomotor integration [29],
[30] and adaptation as during tool-use [31]. A precedent
work has been done in [32] applied on a 3-link robot arm
simulation, showing the validy of our method for reaching
tasks. The current research is extending it to a real robot.

In this paper, we propose to exploit these characteristics



of multiplicative networks in an auto-encoder architecture
for visuomotor control and body image; see Fig. 2. We will
present three robotic experiments performed on the Kinova
Jaco arm controlling the shoulder and elbow joints and a
camera. The first experiment consists in learning the motor
transformations from seen visual displacements of the robot
arm; e.g. learning the inverse model (encoder). The second
experiment consists in mapping back the learned motor trans-
formations for estimating the spatial location of the robot;
e.g. learning the forward model (decoder) for prediction of
the body image. The third experiment consists in using the
full auto-encoder for reaching nearby targets in the visual
space by using the body image for motor control. Our results
show that (1) the first network can effectively learn motor
transformations from local displacements of the arm in the
complete visual space with few reconstruction errors, (2)
the second network can estimate the visual displacement
of the body (body image) without any tags on it using the
motor units to predict its location, and (3) the full auto-
encoder can reach objects nearby by merging target position
as body displacement (induced body image) selecting the
most appropriate motor unit.

We will discuss then the relevance of our approach for
reaching, body representation and action observation tasks
as well as its current caveats and our future works.

II. METHODS AND EXPERIMENTAL SETUP
A. Methods

Gated networks are an instance of radial basis functions
networks pre-defined parametrically or learned that produce a
weighted sum of joint probability distributions as output [8].

The output terms Zj are a sum of the product of the
input variables X; and Y; weigthed by coefficients ZZJ’}C
whose cardinalities are respectively z € ngz, © € nx and
j € ny. Since this matrix can be quite large, a way to
reduce drastically the dimensionality of the gated networks
is to factorize the inputs, for instance, by multiplying term
by term each X; and Y; with ¢ = j, if we assume that
X and Y are of same dimension; see the blue network
in Fig. 1 ¢) and Fig. 2. This reduces the dimension of
coefficients W/ for the encoding network, with {i,k} €
{nx,nz}. This is equivalent in image processing to mapping
the energy function between two related images for image
transformation [14]. A second operation is to remove the
mean field X in order to amplify the energy amplitude; this
reduction might be not true for other types of inputs than
images. The output Z; becomes

nx

Vkeng, Zy = Y WiHXixY;i—X;), (1)

The global error E is defined as the euclidean distance
calculated between Z and Z* for all the input examples. The
optimization function used for learning the synaptic weights
of the output layer Z is the classical stochastic descent gradi-
ent without a sparsity cost, which differs slightly from [13],
because our motor variables are not latent and we know
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Fig. 1. Learning the visual transformation of two occuring images and
its use for motor mapping, body image and visuomotor control. (a) The
transformation Z between two related images at time ¢ and ¢t + 1 can be
learned and estimated by processing the pixel-wise multiplication between
the two images, which is seen in (b). An auto-encoder can be used to learn
the motor mapping of the visual displacement (the encoder part or inverse
model) and reconstruct back a predicted image (the decoder part or forward
model); resp., the blue and red lines in (c). In robotics, the estimated Z
function corresponds to visual changes between two images at time ¢ and
t+ 1 induced by the applied motor control (for example hand motion). The
encoder network discriminates the applied motor transformation Z whereas
the decoder network estimates the visual displacement (aka body image).
The full auto-encoder network can be used then to reach one desired target
in the space nearby the robot by simulating a fictious visual displacement
of the robot and by triggering the learned motor command in that direction.
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Fig. 2. Architecture of gated network applied to motor transformation and
body image. The first part of the auto-encoder is a mapping of the observed
visual changes induced by the applied motor commands, the co-occuring
images are multiplied pixel-wise. The second network predicts the visual
displacement of the arm that the motor commands will generate (aka body
image).

exactly which ones have caused the visual transformation
from input images.

To reconstruct back the input variables X and Y, we can
use a second network architecture as eq. 1 but in mirror as for
an auto-encoder to estimate the input distribution X xY —X;
see the red network in Fig. 1 ¢) and Fig. 2. The retrieved
values (Xj x Yy, — Xi)' and Y’ from this second network



Motor index | A¢g | Adg
0 -0.1 -0.1
1 -0.1 0
2 -0.1 +0.1
3 0 -0.1
4 0 +0.1
5 +0.1 -0.1
6 +0.1 0
7 +0.1 +0.1

TABLE I
MOTOR UNIT INDICES AND CORRESPONDING MOTOR SYNERGIES.

are computed from the output values of Z calculated from
the first network or those given by the experimenter Z* and
synaptic weights W°ut:

nz
Vk, (X x Ve = Xi) = Y W5z, 2)
i
nz

i o= (X

K2

W Z:) + Xi) / Xe)3)

In this configuration, the two networks form a coupled
system similar to an auto-encoder [16]. Each neuron Z in
the intermediate layer represents a latent representation of
the input variables X x Y — X: the motor transformation
responsible for the observed visual displacement.

B. Experimental Setup

The experimental setup is as follows. The input of the
network is given by the multiplication of one image at instant
t (image X) and one image at instant ¢t + 1 (image Y'). The
hidden layer of the gated network can be seen as a factored
layer of visual transformations (e.g rotation, translation),
which can be categorized in order to retrieve the motor
command Z.

As described in Fig. 1 and Fig. 2, the first network
receives the pixel-wise multiplication of two images X and
Y, resp. at instant ¢t and ¢ + 1 of dimension [24 x 32],
which corresponds to (X x Y — X), and the hidden layer
consists in eight motor units associated to the motor com-
mand Z defined by different angular displacements of the
shoulder-elbow pair { A¢g, A¢g} of the robot arm Jaco from
Kinova. Each motor unit is defined by discrete values in
the angular interval A¢ = {—0.1,0,+0.1} corresponding
to eight possible motor synergies, see Tab. I. Finally, the
second network reconstructs back the [24 x 32] matrix with
neurons approximating the input image (X x Y — X)’. We
make the note that these eight motor synergies are purposely
exhaustive in order to test our algorithm. This is not a
limitation of our network for which the hidden layer can be
factorized and learned in a sparser code for a higher number
of degrees-of-freedom robot.

The learning set consists on nine different postures
{¢s,0r} € {|0,1],]0,1]} taken in the robot arm space on
which the eight motor synergies {A¢g, A¢g} are applied.
The trajectories describe a eight-branch star pattern around

the nine locations of the end effector in order to ease the
generalization from local transformations.

The dataset collected represents 7000 samples of {X,Y}
consecutive image pairs with their corresponding motor ac-
tivity Z for the learning of the two networks in a supervised
manner. We used for the learning of the weights the stochas-
tic gradient method with sets of 30 samples each, during 900
epochs. The two networks are tested with different samples
and configurations in Section. III.

III. EXPERIMENTS
A. Experiment 1 — Visuo-Motor Control for Reaching

This experiment consists on learning the visuomotor trans-
formations for a reaching task. For this, we provide to the
first gated network the input images (X xY — X)) for various
visual displacements of the robot arm in the eight motor
primitives given in Table. I and in different locations (see
experimental setup for details). After categorization of the
visual transformations into motor commands, the first gated
network is then capable to be used for reaching tasks.

In order to describe the behaviour of the first gated
network after the learning stage, we display in Fig. 3 a) and
b) respectively the prediction of the motor units Z for visual
displacements at different locations in the visual space for
the same motor unit #4 (global generalization) and for visual
displacements around the same location in the visual space
for different motor units (local discrimination). The left chart
corresponds to the input received by the gated network (i.e
X xY — X) as indicated in eq. 1; in order to better visualize
the information, here the input is displayed with a [240x 320]
image but the network uses a scale down version of this
image [24 x 32], as explained in the experimental setup.
The upper right chart shows the motor neurons’ response
associated to the eight motor transformations and the lower
right chart indicates the pairs value {A¢g, A¢g} associated
to the current motor transformation as described in table. I.

As shown in the figures, the visual displacement between
two related images is exhausted by the multiplication lo-
calised around the visual displacement of the arm and for
which the corresponding motor units are the most sensitive
with. The motor unit #4 in Fig. 3 a) is associated mostly
to visual displacements in the upper right direction, for most
arm postures. It is noteworthy that the relationship learned
by the first network between visual displacement and motor
command is nonlinear: depending on the spatial location
where the robot arm is, the visual displacements will be
different for the same commands performed in the shoulder
and the elbow. Conversely, when the robot arm is located at
the same posture and different visual displacements are seen
as in Fig. 3 b), the first network is capable to predict the
motor unit associated with this local visual displacement.
The generalization done by the motor units supports the
construction of a repertoire of general movements. In the
figure, the temporal delay used to extract images X and Y
is of 17 ms but we used normally the network with higher
sampling rates, which permits to get more robust results.
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Fig. 3. Categorisation of visual displacements by motor units. The first
gated network discriminates the visual motion between two related images
X and Y (left chart). However, the correspondence between the type of
visual displacements and the motor units are nonlinear (see text). In a) for
different postures of the robot arm but for same motor command, the motor
unit #4 has been correctly predicted (top chart); ie global transformation. In
b) for same initial posture of the robot arm but for different motor command,
various motor units have been predicted; ie local transformation. The red
dots corresponds to real motor unit and the blue line corresponds to predicted
motor unit.

We display in Fig. 4 the error matrix for the eight motor
synergies and for 300 samples of {X,Y} pairs taken from
various location and visual displacements. They correpond
to the configuration of the robotic arm in nine locations on
which we apply the eight motor synergies (e.g., eight visual
directions). We can see that most of the motor categories
are well correlated with some slight errors for two of them,
motor units #0 and #2 —, resp. synergies [—0.1,+0.1]
and [+0.1,+0.1],- which can be considered as a linear
combination of other motor units. For example, motor unit
#7 is the sum of motor units #4 and #6, which is in terms
of synergy equal to [0, +0.1] + [+0.1, 0]. Errors on this map
are due to the use of the max strategy for motor category
selection, however despite theses errors, the max strategy still

Motor error reconstruction
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Fig. 4. Error matrix on motor prediction for 300 samples. High activity
on the diagonal corresponds to correct motor prediction, values outside the
diagonal correspond to motor errors.

permits a good mapping for other categories with low error.

We plot in Fig. 5 the spatial density distribution of the
prediction error estimated by the motor units. As expressed
above, they correspond to the displacement of the robotic
arm in eight-branch star for the eight motor synergies (e.g.,
eight visual directions) and in nine locations. Each black dot
corresponds to the end-effector location in cartesian space
and the intersection of the lines corresponds to one of the
nine locations picked up randomly from the dataset. The
color scale indicates the euclidean distance error made by
the motor units to estimate the visual displacement between
{X,Y} images. All data are projected in the cartesian 2D
plan.

In this map, we can see that we have mainly three singu-
larities (red bumps) due to the visual overlapping between
several postures for which the motor selection cannot be
interpolated easily. We can also notice that we have an area in
the lower right of the working space not learned because we
did not provide any samples due to avoid collision between
the robot with its support. Nevertheless, the density map
shows the robustness of the network for categorizing the
visual transformation with its associated motor unit.

This shows also how each motor unit discriminates visual
transformation and how the first gated network may serve
then to combine linearly these transformations into a forward
model; e.g., motor simulation, see Sec. III-B.

B. Experiment 2 — Body Spatial Representation

Once the learning of the visuomotor transformations in
the first gated network has been done in section III-A, a
second gated network can be used then as a forward model
for action-based prediction of visual information; see the red
network in Fig. 1 c¢) and Fig. 2. We train directly this second
network using eqgs. 3 from the motor neurons Z in order
to predict the images product Y”, the visual displacement.
After the learning stage, the second network can estimate
the density probability of the visual displacement Y’ from
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subsampling of the dataset on these locations. High level errors outside the
workspace are due to unmapping.

the motor neurons Z and image X of the current location of
the robot arm, see Fig. 6. In this figure, we super-imposed
to the image X the filtered neurons output Y’ in four arm
postures. The neurons’ activity corresponds directly to the
location where the body is estimated to be. Depending on
where the arm is located, different density maps of Y’ are
generated. These density maps represent therefore the current
body image of the robot arm in the visual space. Each motor
neuron is not necessary relevant for the image reconstruction
as they did not correspond to a correct motor primitive,
however with respect to the ones found, a good estimation
of the spatial location of where the robot is can be done
without visual tags.

C. Experiment 3 — Reaching in Body-Centered Reference
Frames

The previous experiments in section III-A and III-B
showed that an encoder network can categorize motor units
Z from {X,Y} and that a decoder network can estimate back
images Y’ from motor units Z. In this section, an integrated
inverse and forward model combining both networks is
designed for reaching targets using the body image.

In order to make it works, we need to construct the
peripersonal space, which is the space within reach, so that
when we will have a target close enough to the robot arm,
the network will assimilate it as a visual displacement of the
arm, which can serve in return to estimate the most suited
motor units for control.

In the previous experiment in section III-B, the space
surrounding the robot arm was strongly filtered out from the
neural activity so that only the arm location was observed.
Here, we lowered the filtering threshold so that the second
network can estimate the arm location as well as its sur-
rounding space. By doing so, the two networks can estimate

Motor estimation of body location

Fig. 6. Motor-based prediction of body location. Output neurons of the
second gated network estimate the visual displacements and locations Y’
in four different locations. A threshold has been applied to the output units.
The estimation is relatively precise on the location of the robot arm.

dynamically the most suited motor commands that would fit
in return the desired visual displacement to the target.

In this section, we use a different experimental setup with
27 motor neurons to control 3 d-o-f of the robot arm, which
can estimate better this peri-personal space and control better
the arm movement, see Fig. 7. The 27 motor synergies
correspond to the exhaustive combination of the 3 d-o-f
of the robot arm, including the wrist. In this figure, we
superimposed the activity level of the output network Y’ on
the image X. As it can be seen, the visual prediction of the
peri-personal is fuzzier than the one in the previous section
due to use of more motor units to weight the integration.

We display also in Fig. 7 the trajectory of one target
(red square) moving from the bottom of the image to the
center with the robot arm tracking it for ten iterations. The
activity of the motor neurons Z is presented in the bottom
chart for the 27 units. Using the two networks, the robot
arm use its reconstructed body image to follow the target.
During the motion tracking, we can observe that the motor
units are changing dynamically as so for the estimation of
the body image. The precision of the body representation
is dependent on the coherence of the learned motor space,
which is represented sparsely.
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Reaching targets with body image. Sequence of images with a moving target (red dot) from the bottom to the center of the image. The target

is given as input Y to the first network and estimation by the second network of the body image (super-imposed pixels). Experiment done on a 3d-o-f
robot with 27 motor units. Targets near the arm represent ambiguous information of visual displacement of the robot arm between {X,Y} image pairs
(top chart). The inferred motor categories (bottom chart) are generating a dynamic body image to follow the visual displacement (top chart).

IV. CONCLUSION

We have presented a gated auto-encoder network for
learning visuo-motor transformations for reaching targets
with the construction of a body image. Gated networks are
based on multiplicative interaction between related images
for infering the corresponding transformation. In robotics,
these transformations can be discriminated easily as they
correspond to the robot motor activity, which can be learned
through supervised learning. Using an inverse model, one
network predicts the most probable motor command within
a repertoire of eight motor primitives from its visual mo-
tion (27 units in section III-C). This network performs
few motor errors and can be employed for a predictor for
categorizing visual displacements. Using a forward model,
another network uses its motor repertoire as input in order
to estimate the spatial location and displacements of the
robot arm, which corresponds to its peripersonal space. The
combination of the first and second networks permits to track
objects within reach using a dynamic body image, without
having any visual tags on the robot arm.

Interestingly, the cortical parieto-motor neurons are in-
volved in visuomotor transformations and the way they are
coding motion is by binding the multimodal signals with
multiplication [1], [2]. These units, known as gain-modulated

neurons, serve to translate sensory signals from one reference
frame (e.g. retina) into another one (hand-centered) [8]. For
instance, Georgopoulos found that the motor neurons were
aligned to the visual orientation of the arm direction [3].
Graziano studied body-centered receptive fields in retina
coordinates sensitive to the distance of objects nearby and
active even in the dark [33], [34]. Sakata found motor
neurons sensitive to visual motion depth and rotation [35].
These neurons are therefore particularly important for 3D
perception and hand manipulation tasks.

In future works, we will extend our current research to
more complex tasks such as infering 3D directions, depth
and 3D rotations for hand manipulation. We believe that
such network is effective enough for permitting reaching and
grasping tasks with a higher degrees of freedom robotic sys-
tem. As explained earlier, we purposely used an exhaustive
number of motor units for our task but a factorized version
of it can be designed for representating with a sparse code
motor synergies of a higher degrees of freedom robot.
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