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Email: firstname.lastname@u-cergy.fr

Abstract—This paper presents a neural network architecture
allowing a robot to recognize patterns in a multimodal way
(aurally and visually) following a developmental approach.
Thanks to this recognition, the robot can interact socially with
a partner (by means of facial expressions), as an infant would.
To allow that recognition, a learning is performed by exploring
several perception-action associations with a auto-supervised re-
inforcement learning. This network allows an imitation behavior
with a partner using perception and synchronization to link the
different modalities. We show that the robot can use redundant
information from the different modalities to make decisions. For
instance, if a sensory signal is not efficient enough, the other
one compensates for it. We will show that our architecture is
more robust than the unimodal ones and works in unfavourable
environments where many people move and talk all the time.

I. INTRODUCTION

Our main goal is to understand how social skills can
be acquired by a robot in an autonomous fashion, as it is
for infants during development. Based on observations and
findings on the developmental stages of infants, we put
forward the important aspects of two cognitive mechanisms.
Firstly, multimodal integration allows the robot to learn
online and in a auto-supervised manner because the amount
of expressions is known in advance. Secondly, enaction1

allows it to be responsive to physical and social signals of
other agents due to the fact that it is able to emit those
signals itself.

On the one hand, it is known that audio-visual integration
is important to recognize and locate faces [2]. Other
works [3] use this same idea. On the other hand, speeches
and facial expressions are important signals to mimic
others, and mimicking others is an important social skill
that allows, for example, to learn by imitation. These two
features are important for the start of verbal and non-verbal
communications. Combining them, we can build a cognitive
architecture based on multi-modal integration to learn social
interactions.

We propose to use a robot’s head that we named Tino that
combines three modalities : (1) hearing through microphones
(in plastic ears), (2) sight through cameras controling eye

1Enactivism argues that cognition arises through a dynamic interaction
between an acting organism and its environment. It claims that our environ-
ment is one which we selectively create through our capacities to interact
with the world.[1]

gaze and eyelid, and (3) proprioception through a mechanic
mouth and eyebrows which generate facial expressions.
Other works allow robots to have these modalities. For
example, Bonnal [4] and Garcia [5] use binaural information
to locate specific objects and add visual features to locate
goals [6]. Regarding sound localization, Eui-Hyun Kim’s
works [7] concentrate on optimizing computations. Burger’s
study [8] is complementary to our work : he presents a
companion robot that uses auditive and visual clues for
multiple purposes, including speech recognition. Another
interesting work using neural network is Droniou’s [9],
where he uses deep unsupervised learning for multimodal
perception. However, their algorithm is based on a non-
biological approach with important computations and
requiring a semantic lexicon to work (and only allowing to
recognize visual letters).
A lot of other multimodal works, based on labelled
signals, exist with the aim of optimizing algorithms and
performances. Instead, the aim of this study is to create
a simpler neural network that may resemble the infants
multimodal integration development. The redondancy across
the modalities will allow our network to be efficient even in
the real world.

This paper presents a neural controller that attempts
to follow a plausible developmental approach to learn the
redundant correlations between the different sensorimotors
signals in order to have a structured multimodal interaction.
Our neural network integrates both modalities through the
learning of bimodal neurons, which is in agreement with the
fact that deaf persons have the same activated multimodal
areas than non-deaf persons. [10]
We show how audiovisual primitives are learnt in a
self-organized manner with a conditional signal driven
by the robot’s behavior. An interesting point of this
experiment is that the robot recognizes vowels even in
an inadequate environment. The quality of our robot’s
recognition proves that multimodal integration outperforms
single-modality learning. We then discuss the relevance of
our developmental neural architecture to have a multimodal
and social interaction.

II. HARDWARE : TINO’S ROBOTIC HEAD

In our experiments, we used our hydraulic robot called
Tino. This experiment only requires its head, which allows



Fig. 1. Tino’s head. Its eyes, composed of two pan/tilt cameras, its mouth,
allowing it to display facial expressions (9 degrees of freedom) and one of
its ears, created by a 3D printer and containing microphones.

to modelize three modalities, see Fig. 1.
The first modality is hearing through microphones imple-
mented into plastic ears, themselves created with a 3D
printer. These ears are human like, allowing the robot to
have the same auditory detection capabilities as humans. It
is important to underline that wave reflections are not taken
into account, as shown in a previous work using the same
ears [11].
The second modality is the sight through analogic cameras
with several motors to control the eye gaze and the eyelid.
These eyes perform fast pan and tilt saccadic eye movements.
To do the visual processing, we chose an analogic camera
transmitting images which have a 640× 480 resolution.
The third modality consists of proprioception through a
mechanic mouth, which generates facial expressions and two
motorised eyebrows, allowing the robot to mimic human
face. Nine servomotors, corresponding to the degrees of
freedom, control their movements.
The mouth is composed of five servomotors. Two of them
allow the stretching of the mouth, for instance allowing to
pronounce the vowel /i/. The three others allow the opening
of the mouth : one in the center and two at the ends,
that allow, for example, the pronounciation of /a/ and /o/
vowels, to smile or sulk. Each eyebrow is connected to two
servomotors that allow the robot to frown, be suprised, and
so on.

III. EXPERIMENTAL SETUP

A. Explanation of choices

This experimental setup is based on a previous one [12],
which used only one modality (vision) associated with the
facial expression. Sound treatments and multimodal learning
have then been added to it. It is also inspired by a previous
work [11], which was based on audio-visual integration only.
Figure 2 presents stages of the learning period and the
recognition period.
The robot will learn to make some facial expressions that
look like a human’s when he pronounces the /a/, /o/ and
/i/ vowels, as well as a neutral expression. We chose these
three vowels purposefully, in order to link our research to
the Kuhl and Meltzoff ones [13]. These anterious researches
show that 4-month old newborns are already sensitive to

Fig. 2. Experiment stages. A. The learning stage where Tino babbles and
the human partner mimics. B. The recognition stage where Tino mimics.

phonetic information, even for unknown languages, and are
able to coo (where infants produce sounds that corresponds
to vowels). Moreover, newborns are also able, only few
hours after birth, to imitate more quickly a mouth opening
if it corresponds to the /a/ or /i/ vowel [14]. In order to
complexify the task, we added another vowel.

B. Experimental method

We have performed imitation game experiments where,
during the learning stage (Fig. 2.A), the human partner
imitates the robot’s expression, which corresponded to the
vowel /a/, /o/ or /i/, adding audio information to the
visual one. This imitation is done in a exaggerated way, to
help the robot learn, as it would be for a mother with her
child. The mother performs the child-directed speech named
motherese [15]. The sound is pronounced continuously
for three seconds. To allow the participants to catch their
breath, the robot takes a neutral expression between two
successive expressions. Finally, the robot learns to associate
its own head movements with the partner’s signals (audio
and visual).
During the recognition stage, the partner pronounces a vowel
with exaggerated audio and visual signals. The previous
learning allows the robot to execute the facial movements
that match the input signal. Thus, the robot can mimic the
human expression.

This experiment has first been tested and validated in
the laboratory with researchers. In order to validate it with a
more diverse public, we have collected data during a robot



exhibition named ”Futur en Seine”2 from both children and
adults volonteers. In order to do that, the robot presented
some facial expressions and we took audio-visual data from
the 24 participants, half of whom were younger than 15.
The recognition stage was done as follows :
First, the robot took an expression corresponding to /a/,
/o/ or /i/ vowels. Then, the partner imitated visually and
orally the robot’s facial expression.
We saved 200 images and recorded 1024*20 bytes of sounds
per person to do our statistical study offline. During this
learning stage, we labelled each event (expression change)
and sorted the database according to each vowel’s label.
The data are used for the learning stage in a random way
: an image is first drawn. Its label (/a/, /o/, /i/, or
neutral) allowed to take a snip of sonor signals from the
file corresponding to the same label.
We limited the number of facial expressions to four
(/a/,/o/, /i/, or neutral), although we could have handled
all vowels.

IV. METHODS

Fig.3 represents an overview of our experimental
paradigm.
The robot learns to associate its internal state (its facial
expression) with the audio and visual signals from its human
partner.
In this section, we show how the audio and visual signal
processing are performed. Then, we present the two learning
mecanisms : (1) categorization mechanism : the input signal
is clusterized, (2) recognition mechanism : the clusters from
categorization mechanism are associated to vowels.

A. Sound processing

Fig. 4. Frequence variations during the pronunciation of /a//o/ and /i/
vowels

To begin, we present the main speech process researches.
These studies deals with specific information such as tone

2This event took place inside ”Visages du monde” at Cergy Le Haut

and spectral envelope (with the spectogram)[16]. To retrieve
these information, some items are often used : gammatone
filters, the Fast Fourier Transform (FFT[17]) on which we
often apply the Mel Frequency Cepstral Coefficient (MFCC)
that considers only the most important frequences[17][18].
In this study, we want to recognize vowels in a developmental
way, with as simple a neural network as possible, using
only the FFT. This FFT replaces the natural filters that exist
in human ears, done by the cochlea. This FFT is compelling
because the signal amplitude cannot categorize sounds.
First of all, the audio signal is received from two
microphones inserted in the ears. Thus, there are two
channels, with interleaved information. The sample rate is
44100 Hz. 1024 samples of sound intensity are taken per
iteration.
Then, the FFT is computed on the collected samples and its
result is 513 coefficient of frequencies.

Fig. 4 presents the result of this treatment when someone is
pronouncing the vowel /a/ (0 to 6000 iterations), /i/ (6000
to 12000 iterations) and /o/ (1200 to 14000 iterations). We
can see that the coefficient of frequencies changes with the
pronunciated vowel. This first result shows that the robot can
categorize sounds as the result of a low-level process.

B. Vision processing

The visual processing is performed on small images(320×
240) to accelerate the computation time. Points of interest
of these images are spotted to categorize them. We only
consider the grayscales of these images, so that we can treat
them with a Difference Of Gaussian filter. The size of the
mask of this filter is 15×15, with σ1 = 6 (positive coefficient
of the first Gaussian) and σ2 = 3 (negative coefficient of
the second Gaussian). By doing so, important details are
conserved (edges and shapes).
After this treatment, we extract the 10 most important points
of interest. Then, a thumbnail centralized on each of these
points is taken.
Since this exact processing has already be done in previous
researches[19][20], we won’t present any test here.

C. Model of the sensori-motor neural network

Fig. 5. Neural model of audio-visual integration



Fig. 3. Overall architecture

This architecture follows the idea that perception is the
coupling between sensation and action. The action can be
triggered by internal state as well as the sensation (sound
and visual). This idea is an important principle in AI,
allowing the robot to react in a more human way. This is
the PerAc (Perception-action) architecture [21], created in
our laboratory.
This idea is an agreement with the fact that babies are
more sensitive to perception that matches their own motor
movements. Indeed, studies as [14] show that newborns
mimic movements more easily if those match audio-visual
information.

The integration of modalities can be done in several
ways. Due to space conditions, only one of the possible
models is explained here.
All of these models use two learning algorithms presented
in next sections. After being treated by these algorithms,
a winner take all algorithm filters neuronal activities to
maintain only the most active one. Then, an action that is
linked to this recognition is chosen .

Fig. 5 presents one of these models.
Once the signals are pretreated, the categorization (c) is
performed modality by modality, in a separate way thanks to
a neural network name Selective Adaptative Winner (SAW
IV-C).
Then comes the recognition process, annoted (r),
that corresponds to the labelization of the previous
categorizations. During this recognition, the robot learned
to assimilate its internal states (its facial expressions) with
categories activated by the SAW. The recognition uses
two modalities at the same time. The Least Mean Square

(LMS IV-C) mecanism allows this recognition.
After the learning stage, the robot will select the most
recognized label to trigger the associated expression. As a
result, it can mimic the human partner.

Selective Adaptative Winner (SAW)
The SAW is an ART-like neural network [22] that allows

to create categories that are related to inputs. When a new
input is presented, the neural network selects the category
that is the best match. If it is close enough to the input, the
robot adapts this category to be more similar to the input. If
not, the robot creates a new category that perfectly matches
the input. The SAW has the following principle :
If ej are the input values and if the importance of this input
for the output neurons k is given by the weight wkj , then
the activity of this kth neuron of the SAW output equals :
Ak = 1− 1

N ×
∑

j(|wkj − ej |).
The weight wkj is updated with : ∆(wkj) = εSAW (ej−wkj).
Here, εSAW is the learning rate :

εSAW =

{
1 if Ak > vigilence3

0 else

Least Mean Square (LMS)
This learning algorithm called Least Mean Square (LMS)

links the robot internal state to categories that are activated
by the SAW algorithm. The LMS follows this principle :
If ek are the inputs coming from the SAW, Wik the weights
between the kth input of the SAW and the ith output of the
LMS, then the activity of the ith neuron of the LMS output
equals : Oi =

∑
k(Wik × ek)

The weight wik is updated with :
∆(wik) = εLMS(actual expression−Oi)× ek.



Here, εLMS is the learning rate.
Thus, this learning algorithm adapts weights Wik in order
to match the actual expression variable (that is the internal
state of the robot) to the computed expression Oi.

D. Results
First of all, our experiment took place in our laboratory

(University of Cergy Pontoise / ETIS).

The database is composed of 200x24 images that
corresponds to the 20 changes of vowels produced by
Tino during its babbling, when 10 pictures per change were
taken for each of the 24 participants. This same database is
used for the learning stage and the recognition one.
Figure 6 attests directly that the multimodal learning allows
more robustess than the unimodal ones.

Fig. 6. Correct recognition percentages for all vowels and all learning
models

This figure shows that the visual envionnement wasn’t
adequate, with a weak percentages of recognition for
all vowels (22% in average). Even with that bad visual
input, the multimodal learning allows good performance,
with an average recognition percentage above 90%. This
percentage is even higher than the audio-modality one,
that has a recognition average of 60%. It is interesting
that audio-modality seems to be sufficient to recognize
expression even if the environment was very noisy.
We will now go into details.

All the next figures are about neuronal activity. The
following explanation is necessary to undersand these
figures.
Each vowel is represented by a control (centroid of all the
same labelled signals). We use this control to determine
what each new signals should be labelled. You can imagine
that each label (vowel) is associated with a neuron, and that
the neuronal activity of each label increases as the signal is
close to its control.
To help you to understand, the next two figures are focused
on the neuronal activities during the pronunciation of the
/o/ vowel.

Fig. 7. Activity of neurons specialized in the recognition of vowel /a/ in
red, /o/ in light blue and /i/ in darkblue during the pronunciation of the
/o/ vowel

Fig. 7 shows the neuron’s activity in function of iterations
(time) during the pronunciation of the /o/ vowel.
The most activated neuron corresponds to the vowel that the
robot recognizes.
Three activities are presented : the vowel /a/ in red, /i/ in
darkblue and /o/ (the pronounced one) in lightblue.
Unimodal recognitions are weak (as we expected), due
to the environmental perturbations during the experiment.
Indeed, for these two learnings, it recognizes each neurons
at the same proportion (the variance inter-class is very
weak). Moreover, for the visual modality, it is even the /a/
instead of the /o/ that is recognized.
The multimodal learning is more powerful since the
recognized vowel is always correct (in this sample) and it
offers a bigger inter-classe variance for the recognition than
any unimodal learning.

Now, Fig. 8 presents the recognition rate using a histogram
of neuronal activities during the pronunciation of vowel
/o/.

This figure also proves previous observations, such
as the weak visual recognition. Moreover, it specifies
the bound values and average neuronal activities. The
visual recognition is totally deficient, with the /a/ vowel
recognized (instead of the /o/ vowel). Slightly better, the
sound recognition recognizes the right vowel, but with an
unstable recognition rate : the neuron’s activity can go
below 0.2 even though its maximum activity is equal to 1.
Its average activity is equal to 0.55.
At the bottom, the multi-modal learning allows to recognize
the pronounced vowel with more stability than any
unimodal learning recognition. Indeed, there are less
recognition variations, with an average equal 0.5.
As expected, the maximum rate of the multimodal
recognition is weaker than that of the hearing recognition
because of poor visual data that influenced the robot’s



Fig. 8. Neurons’ activity rate for all vowels and for all types of learning
during the pronunciation of the vowel /o/

perception (0.65 vs 1.0). Indeed, the robot takes both
modalities into account to recognize the facial expressions.
However, it is obvious that the multimodal learning is more
robust than the auditive one thanks to three things : (1) the
minimum activity of the multimodal recognition is higher
than that of the auditive one, (2) the intra-class variance
of the multimodal recognition is lower than the auditive
one, (3) the inter-class variance (the variance between all
neurons’ activity) of multimodal recognition is higher than
that of the auditive recognition.

Fig.9 shows the activity rate of the recognition, but
this time when the recognition works. This is done for each
learning (visual only, auditive only or multimodal) and for
each of the three vowels.

Fig. 9. Neuronal activity rates for each vowel.

Thinking that the visual recognition works better than
the multimodality recognition would be a mistake. Indeed,
even if the recognition rates are more important in this
learning than in the multimodal one, remember that the
other vowel recognition rates (that mismatch the pronounced
one) are also more important in the visual learning. It is

the intra-class variance that allows the robot to choose the
expression. Thus, comparing the activity recognition rates
between the different learnings is pointless.
A revelant information is the stability in the recognition :
the multimodal recognition is more stable. Thus, inter-class
variance is really weak. Moreover, when we saw the
minimum rate, represented by the bottom extremity of the
thin bars, in all these three learnings, we could see that the
multimodal one is the most activated. Thus, our architecture
is really more robust than an architecture based on one
modality only.
To present this result in a simpler way, the figure10 presents
the mean difference of recognition between the pronunced
vowel and the average of other vowels. It is this information
that the robot uses to select an action (face expression).

Fig. 10. Difference of recognition between the pronunced vowel and the
average of the two others

Vowel /a/ is presented in red, /o/ in blue and /i/ in
green. The thick bars stand for the mean difference. For
example, if the vowel /a/ is produced, red bars are computed
as follows : 1

N

∑
(a.activity − o.activity+i.activity

2 ).
The figure also shows the variance of each data (by means
of thin lines).
The result highlights the fact that there are a lot of
mistakes in the visual-only recognition, with the /o/ vowel
unrecognized. Sound-only is correct most of the time, but its
variance for the /o/ vowel shows that it can make mistakes
too.
Finally, the bars corresponding to the multimodality learning
show that the mean difference is always positive, with little
variance.

These results prove that our architecture allows an important
robustness since the experiment’s environment was definitely
unadapted (there were people talking, laughing, trying to get
into Tino’s sight area, and there was even a piano playing
music near our robot). We have shown that bimodal neurons
can recover information from a degraded sound signal with
the use of visual signal, and the other way around. Thanks
to the bimodal neurons in our system, we show that the



robot’s performance is better than if it was using only one
modality.

V. DISCUSSIONS

In this paper, we have presented a developmental
scenario for a robot to learn social interaction with the
help of partners. Our neural network allows to recognize
multimodal stimuli patterns even if one of the two modalities
(sound or vision) is missing. We show that multimodal
neurons are robust enough to recognize the inputs better
than to unimodal ones, even though our signal preprocessing
was rather fast and easy. Moreover, the results show that
our sensory-motor neural network allows the multimodal
integration to work even in an unadapted environment.
We will then check the performances of our model with
more complex audio-visual signals such as syllables or all
vowels.

This study has many interesting perspectives and discussions.
For instance, we could create a totally unsupervised model.
Indeed, we expect the robot will be able to learn, in a
self-organized manner and without indication, visual and
sound repertoiries associated with the robot’s proprioception.
Thus, proprioception would be an input signal like the other
ones, but directly linked tto the robot internal state.
In our neural network, the three modalities have been learnt,
in the same mulimodal neurons. Many other models for
multimodal integration exist, such as a model that integrates
visual-proprioception and audio-proprioception modalities
in a separate way.
Another interesting work would be to add gestual modality.
Indeed, babies use gestual clues in addition to acoustic and
facial clues to understand langages [23]. Our ongoing work
raises the question of how to combine multimodal learning
with the mechanisms of intentionality in a unified model,
based on complementary works that perfomed a sensory-
motor neural network to understand intentionality [24][25].
An interesting experiment will be to show the advantages
of developmental robotics over probabilistic robotics by
comparing our results with those observed in cognitive
development researches. (1) It is known that infants begin to
learn sound information in utero, where he is differentiating
/ba/ and /ga/ sounds. A hypothesis suggests that newborns
match these auditive information with visual ones [26]. We
could test a corresponding model and see if it is efficient
enough. (2) It is also well known that babies are already
sensitive to the McGurk effect. We will test our robot’s
sensitivity to this effect. (3) In the same conditions than
in [27], we will do a mismatch negativity or a contingency
detection measure to see if our robot is sensitive to
contingent information. To do that, we will have our robot
focus on the objects that are the best match in term of
auditory and visual modalities. (4) It would be interesting
to check that the robot uses visual clues which are localized
around the mouth, eyebrow, menton and jown because these
clues are used by infants to understand langages [28], [29],

[30], [31].
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