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Small eigenvalues of the Witten Laplacian with Dirichlet
boundary conditions: the case with critical points on the
boundary

Dorian Le Peutrec* and Boris Nectoux T

Abstract

In this work, we give sharp asymptotic equivalents in the limit A — 0 of the
small eigenvalues of the Witten Laplacian, that is the operator associated with
the quadratic form

Ve HA Q) — h2/ |V (et Fy)|* e 77,
Q

where Q = QU0 is an oriented C> compact and connected Riemannian man-
ifold with non empty boundary 9 and f : @ — R is a C* Morse function. The
function f is allowed to admit critical points on 0€), which is the main novelty
of this work in comparison with the existing literature.
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1 Introduction

1.1 Setting

Let (Q,g) be an oriented C* compact and connected Riemannian manifold of di-
mension d with interior 2 and non empty boundary 9, and let f : Q@ — R be a
C™ function. Let us moreover denote by d the exterior derivative acting on functions
on 2 and by d* its formal adjoint (called the co-differential) acting on 1-forms (which
are naturally identified with vector fields). For any h > 0, the semiclassical Witten
Laplacian acting on functions on ) is then the Schrodinger operator defined by

App = djpdrn = WA+ |Vf?+hApf,

where Ay = d*d is the Hodge Laplacian acting on functions, that is the negative of
the Laplace—Beltrami operator, and

L f
hdehn

d¢p = he rhder and d}7h:h6%d*6_£

are respectively the distorted exterior derivative and co-differential. This operator
was originally introduced by Witten in and acts more generally on the algebra of
differential forms. Note also the relation

v

App = he 2 (hAg +VV -V)e2r  where V =2f, (1)

where the notation VV - V stands for ¢(VV,V-). It is then equivalent to study the
Witten Laplacian Ay, acting in the flat space L*(2) = L?(Q2, dVolg) or the weighted

Laplacian
LV,h = hAyg+VV .V = d*V,hd

acting in the weighted space L%((, ef%dVolQ).

Let us now consider the usual self-adjoint Dirichlet realization AJ? ,, of the Witten
Laplacian Ay, on the Hilbert space L%(£2). Its domain is given by

D(AR,) = H(2) N HY(9),



where, for p € N*, we denote by HP(2) the usual Sobolev space with order p and
by H}(Q) the set made of the functions in H'(Q) with vanishing trace on 9Q. We
refer for instance to [33] for more material about Sobolev spaces on manifolds with
boundary. The operator A? 5, has a compact resolvent, and thus its spectrum O'(A]? b
is discrete. This operator is moreover nonnegative since it satisfies:

I _2f
v e D(ARL), (AR )2 = ldrntliie@ = »° /Q d(ery) e, (2)

where A'L2(2) denotes the space of 1-forms in L?(£2) and ||df,hw||?\1L2(Q) = [ ldsnt)?.
Let us also mention here that the (closed) quadratic form @ associated with AJQ h
has domain H}(2) and satisfies, for every ¢ € H}(9),

Q) = Qual ) = Wyt usaay = 1 [ fdwls [ (V5P+hans) ol @)

Remark 1. From standard results on elliptic operators, the principal eigenvalue of
. . " . _f .
Aﬁh, which is positive since et ¢ H}(Q) (see (2)), is moreover non degenerate and

any associated eigenfunction has a sign on S (see for example (12,15]).

1.2 Spectral approach of metastability in statistical physics

f i .
The operator Ly = %eﬁ Ay pe h, where we recall that V = 2f (see ), is the
infinitesimal generator of the overdamped Langevin process

dX; = —VV(X;)dt + V2h dB; (4)

which is for instance used to describe the motion of the atoms of a molecule or the
diffusion of impurities in a crystal. When the temperature of the system is small,
i.e. when h < 1, the process is typically metastable: it is trapped during a long
period of time in a neighborhood of a local minimum of V', called a metastable region,
before reaching another metastable region.

When one looks at the process (4) on a metastable region © with absorbing bound-
ary conditions, the evolution of observables is in particular given by the semigroup

_tLD f I . .. . . .
e tLV,h, where L\e,h = %e‘ﬁ Afhe_ﬁ is the Dirichlet realization of the weighted

Laplacian Ly, in the weighted space L?(§2, 8_%dV01Q), see . A first description
of the metastability of the process with absorbing boundary conditions is then
given by the behaviour of the low spectrum of the Dirichlet realization AJQ , of the
Witten Laplacian in the limit A~ — 0. The metastable behaviour of the dynamics
is more precisely characterized by the fact that the low spectrum of A? ,, contains
exponentially small eigenvalues, i.e. eigenvalues of order O(e_%) where C' > 0. The
first mathematical results in this direction probably go back to the works of Freidlin-
Wentzell in the framework of their large deviation theory developed in the 70’s and
we refer in particular to their book [14] for an overview on this topic. In this context,



when )\, is some exponentially small eigenvalue of A?’ 5, the limit of hln Aj, has been
investigated assuming that (see [14, Section 6.7])

|V f| # 0 on 0. (5)

The results of [14] imply in particular that, when 9,f > 0 on 92 and € contains a
unique critical point of f which is non degenerate and is hence the global minimum
of f in €, the principal eigenvalue \; 5 of AJQ ,, satisfies
%ii%hln)\l,h = -2 (rgsl]nf — mﬁlnf)

The asymptotic logarithmic behaviour of the low spectrum of A? ;, has also been
studied in [26] dropping the assumption (5). When f and f|sq are smooth Morse
functions and holds, precise asymptotic formulas in the limit h — 0 have been
given by Helffer-Nier in [17] where they prove in particular that under additional
generic hypotheses on the function f, any exponentially small eigenvalue \p of A? h
satisfies the following Eyring-Kramers type formula when h — 0:

Mo = AR e P (14 0(h)), (6)

where A > 0, E > 0, and ~ are explicit with moreover ~ € {%, 1}, and the error term
O(h) admits a full asymptotic expansion in h. The constants E’s involved in @ are
the depths of some characteristic wells of the potential f in Q. The results of |17],
obtained by a semiclassical approach, were following similar results obtained in the
case without boundary in [5,6,/20,28] by a probabilistic approach and in [16] by a
semiclassical approach. We also refer to [19,27] for a generalization of the results
obtained in [16] in the case without boundary (see also [23,21] for related results),
to [11]|I| for a generalization of the results obtained in |17] in the case of Dirichlet
boundary conditions (see also [4,24,[25,30] for related results), and to [23,26] in the
case of Neumann boundary conditions. Finally, we refer to [1| for a comprehensive
review on this topic.

1.3 Motivation and results

Motivation. This past few years, several efficient algorithms have been designed
to accelerate the sampling of the exit event from a metastable region €2, such as for
instance the Monte Carlo methods [7,/13,31,32,38,/39] or the accelerated dynamics
algorithms [35-37]. These algorithms rely on a very precise asymptotic understand-
ing of the metastable behaviour of the process (X¢):>0 in a metastable region 2
when h — 0, and in particular on the validity of Eyring-Kramers type formulas of the
type @ in the limit A — 0. Moreover, though the hypothesis considered in [10,(17]
is generic, in most applications of the accelerated algorithms mentioned above, the
domain 2 is the basin of attraction of some local minimum of f for the dynamics
X = —Vf(X) so that the function f admits critical points on the boundary of €.

'This work corresponds to the first part of the preprint [10].



In this work, we precisely aim at giving a precise description of the low spectrum
of Af 5, in the limit » — 0 of the type @ in a rather general geometric setting
covering the latter case (though we assume 2 to have a smooth boundary). This
establishes the first step to precisely describe the metastable behaviour of the over-
damped Langevin process with absorbing boundary conditions in  when 0
admits critical points. Though the spectrum of A? , (or equivalently of L‘I/), 5) has
been widely studied this past few decades, up to our knowledge, this setting has not
been treated in the mathematical literature. Let us point out that the existence of
critical points of f on 0f) is a major obstacle to the use of the large deviation tech-
niques, see for instance |14, Chapter 6] and references therein. In this work, we use
techniques coming from semiclassical analysis and, in Section below, we detail
various difficulties arising when considering critical points of f on 02 with such tech-
niques.

Results. We recall that we assume that Q is a C™ oriented compact and connected
Riemannian manifold of dimension d with interior €2 and boundary 99 # (), and that
f:Q — Risa C>® Morse function. For u € R, we will use the notation

{fgﬂ}:{l‘EQ, f(x)g:uh {f<:u}:{$€§7 f(a:)<,u},

and

{f=nt={2€Q, f(z)=n}
Moreover, for all z € 99, ng(z) will denote the unit outward vector to 9 at z.
Finally, for 7 > 0 and y € Q, B(y,r) will denote the open ball of radius r centered in
y in Q:

B(y,r):={2€Q, ly—z| <r},

where, for y € Q, |y — z| is the geodesic distance between y and z in Q.

Since stating our main results, which are Theorems [2{and [3] (see Section , requires
substantial additional material, we just give here simplified (and weaker) versions of
these results. We first give a preliminary result stating that the number of small
eigenvalues of a Morse function f : & — R is the number of its local minima in €.
This requires the following definition.

Definition 2. Let us assume that f : Q — R is a C> Morse function. The set of
local minima of f in Q is then denoted by Ug and one defines

mg = Card(Uo) € N.

Theorem 1. Let us assume that f : @ — R is a C* Morse function. Then, there
exist cg > 0 and hg > 0 such that for all h € (0, hg):

dim Ran g cop) (A?,h) = dim Ranw(o e (Agh) = mo,

)

where, for a Borel set E C R, WE(A?JL) denotes the spectral projector associated with
Afh and E, and the nonnegative integer mg is defined in Definition @
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Let us emphasize that according to Theorem [1} the potential local minima of f be-
longing to 0S) do not take part in the number of small eigenvalues of AJQ p, in the limit
h — 0. This preliminary result is expected from works such as [17,{18] but we did not
find any such statement in the literature in our setting when the boundary admits
critical points of f. Theorem [I] will be proven in Section [2|

In the sequel, when mg > 0, we will denote by
0 < Aip < A < o0 < Amgih

the mg exponentially small eigenvalues of A? ,, in the limit ~ — 0 (see Theorem .
The second main result of this paper is Theorem [2] which is stated and proven in
Section [5.4l Here is a simplified version of this result, in a less general setting. The
notation Hess f(z) at a critical point z of f below stands for the endomorphism of
the tangent space T, canonically associated with the usual symmetric bilinear form
Hess f(z) on T,Q x T,Q via the metric g.

Theorem [2]. Let us assume that the number of local minima mg of the Morse func-
tion f is positive, that f|sq has only non degenerate local minima, and that at any
saddle point (i.e. critical point of index 1) z of f which belongs to 9, nq(z) is an
eigenvector of Hess f(z) associated with its unique negative eigenvalue. Then, there
exists C' > 0 such that one has in the limit h — 0:

1
Vi€l mo}, kY e B < Ny < ChYie iBi (7)

where, for j € {1,...,mo}, A; > 0, E; > 0, and vy, are explicit with moreover
i € {%7 1}

The above constants F;’s are the depths of some characteristic wells of the potential f
in  which are defined through the map j constructed in Section [3] Note that they
give the logarithmic equivalents of the small eigenvalues of Ag 5, since the relation
obviously implies:

Vjé{l,...,mo}, }lll%hln)\l’h = —2Ej.

Note also that when 2 is the basin of attraction of some local minimum (or of some
family of local minima) of some Morse function f for the flow of X = —V f(X) and z
is a saddle point of f which belongs to 9€, the following holds: 952 is a smooth mani-
fold of dimension d— 1 near z and ng(z) is an eigenvector of Hess f(z) associated with
its unique negative eigenvalue. More precisely, 0€) coincides with the stable manifold
of z for the dynamics X = —V f(X) near the saddle point z (see (9) in Section .
The related hypothesis in the statement of Theorem (and of Theorem [2)) then just
requires that the boundary 92 of our actual domain {2 is, at z, tangent to the stable
manifold of z.

Finally, the last main result of this work is Theorem (3| which is stated and proven
in Section It states that, under the hypotheses of Theorem [2 which, we recall,



are a little more general that the ones of Theorem plus additional hypotheses on
the separation of the characteristic wells of f which are defined through the map j
constructed in Section (3] one has in the limit h — 0 sharp asymptotic estimates of
the type @ on all or part of the smallest eigenvalues of A? 5. To be more precise, we
state below a simple consequence of Theorem [3] which can be stated with the material
introduced in this section.

Theorem . Let us assume that f is a Morse function, that {f < mingg f} is non
empty, connected, contains all the local minima of f in ), and that

8{f<n(r91&i]nf}ﬂ8(2 = {f<rral}2nf}l’189 = {z1,...,2n},

where N € N* and, for k € {1,...,N}, z is a saddle point of f such that ng(zy)
is an eigenvector of Hess f(z) associated with its unique negative eigenvalue \(zy).
The principal eigenvalue of Agh then satisfies the following Eyring-Kramers formula
in the limit h — O:

2 Z}ivzl |A(zr)| | det Hess f(zk.)\*%
" > (det Hess f(y))_%

y€arg ming f

B e~ 7 (minag f—ming f) (1 + O(\/E)) - (8)

Ay =

It follows moreover from our analysis that the error term O(v/h) in (8) is optimal (see
Remark (38| below) but we do not prove in this work the possible existence of a full
asymptotic expansion of the low spectrum of AJQ 5 Let us also mention that adopting
the 1-form approach (see the following subsection for details in this connection), one
could obtain, as in [27] where the author treats the case of general Morse functions in
the case without boundary, the existence of an Eyring-Kramers type formula for each
small eigenvalue of AJQ ,, under the assumptions of Theorem This would however
require a substantially finer analysis of the wells of the potential f in the spirit of [27]
since in the general case, some tunneling effect between the characteristic wells of f
mixes their corresponding pre-exponential factors. We refer to [27] for more details
in this connection.

1.4 Strategy and organization of the paper

In works such as |104/16,|17,/19,123,/27], a part of the analysis relies on the construc-
tion of O-forms (i.e. functions) quasi-modes supported in some characteristic wells of
the potential f and of 1-forms quasi-modes supported near the saddle points of f,
and, in [10}/17,[23], near its so-called generalized saddle points on the boundary. Very
accurate WKB approximations of these local 1-forms quasi-modes then finally lead
to the asymptotic expansions of the low spectrum of the Witten Laplacian acting
on functions. This approach is based on the supersymmetric structure of the latter
operator, once restricted to the interplay between 0- and 1-forms.

Near the generalized saddle points on the boundary as considered in [17,23], where one
recalls that |V f| # 0 there and actually where the normal derivative On,, f does not



vanish, this construction means solving non characteristic transport equations with
prescribed initial boundary conditions, see in particular [17,22,23]. Near a usual sad-
dle point z in 2 (i.e. a critical point z with index 1), this construction follows from
the work [18] of Helffer-Sjostrand and means solving transport equations which are
degenerate at z (see in particular Section 2 there). In this case, the problem is well-
posed only for prescribed initial condition at the single point z. In particular, when
one drops the assumption and z is a usual saddle point which belongs to 02, the
corresponding transport equations, which are the same as for interior saddle points,
are uniquely solved as in |1§], but the resulting WKB ansatz does not in general sat-
isfy the required boundary conditions, except its leading term when the boundary 0f2
has a specific shape near z. To be more precise, and to make the connection with
the hypotheses of Theorems [2| and [3]| (and Theorems [2| and , the leading term of
this WKB ansatz satisfies the required boundary conditions if and only if 9 coin-
cides near z with the stable manifold of z for the dynamics X = —Vf(X) (see ©
in Section . This compatibility condition imposes in particular that ng(z) spans
the negative direction of Hess f(z). Note in passing that this condition is natural
regarding the accelerated dynamics algorithms [35-37]. The fact that the remaining
part of the WKB ansatz does in general not satisfy the required boundary conditions
for a compatible boundary 9€) arises from the curvature of this boundary.

The above considerations show that, when z € 9 is a saddle point of f and ng(z)
does not span the negative direction of Hess f(z), the classical WKB ansatz con-
structed near z will not be an accurate approximation of the local 1-form quasi-mode
associated with z. They also imply that the potential existence of full asymptotic ex-
pansions of the small eigenvalues of A? 5, Will in general not follow from the existence
of these WKB ansatz when f admits saddle points on the boundary. Moreover, we
expect that the sharp asymptotic equivalents given by are not valid in general
when ng(z) does not span the negative direction of Hess f(z) at the relevant saddle
points z € 0. In the latter case, we expect that the corresponding possible sharp
asymptotic equivalents should also rely on the angle between ng(z) and the negative
direction of Hess f(z).

In this work, we follow a different strategy based on the constructions of very accu-
rate quasi-modes for A? 5- This approach, which is partly inspired by the quasi-modal
construction made in [9] (see also [5}21,130]), means a careful construction of these
functions quasi-modes around the relevant (possibly generalized) saddle points z of
f, whereas these points were not in the supports of the corresponding quasi-modes
constructed in [10,/16,(17,(19,23,27]. One advantage of this method is to avoid a careful
study of the Witten Laplacian acting on 1-forms which would finally lead to slightly
more stringent hypotheses on f and on f|gq, that is precisely to the hypotheses made
in the statement of Theorem Nevertheless, when one does not work with the Wit-
ten Laplacian acting on 1-forms, one cannot hope in general proving a full asymptotic
expansion of the low spectrum of A? 5, With the techniques used in this work.



The rest of the paper is organized as follows. In Section [2] we prove Theorem (1] about
the number of small eigenvalues of A? n- This is done using spectral and localization
arguments. Then, in Section [3] we construct the map j characterizing the relevant
wells of the potential function f. This permits to construct our very accurate quasi-
modes in Section [ and then to state and prove our main results, namely Theorems
and [3} in Section |5 As in [10,164{17,/19,23.127], the analysis of the precise asymptotic
behaviour of the low spectrum of AJQ h= d?}l*d?’ p, 1s finally reduced to the computation

of the small singular values of d? h-

2  On the number of small eigenvalues of A?’ b

This section is dedicated to the proof of Theorem [I, Before going into its proof, we
briefly recall basic facts about smooth (Morse) functions on a manifold with bound-

ary Q = QN oQN.

Let z € 0f). Let us consider a neighborhood V., of z in Q and a coordinate system
peEV, = x= (2,2 € R? = R~ x R_ such that: z(z) =0, {p € V., z4(p) <
0} = QnNV, and {p € V,, z4(p) = 0} = 92N V,. By definition, the function f
is C*° on V; if, in the z-coordinates, the function f : x(V,) — R is the restriction
of a C* function defined on an open subset O of R? containing z(V,). Moreover,
z € 0N is a non degenerate critical point of f : @ — R of index p € {0,...,d} if
it is a non degenerate critical point of index p for this extension. Notice that this
definition is independent of the choice of the extension. A C* function f: Q — R is
then said to be a Morse function if all its critical points in { are non degenerate. In
the following, we will also say that z € Q is a saddle point of the Morse function f if
it is a critical point of f with index 1. Lastly, for a critical point z € Q of the Morse
function f : @ — R, the sets W (z) and W~ (2) will respectively denote the stable
and unstable manifold of z for the dynamics X = —V f (X). In other words, denoting
by X, (t) the solution to %Xy(t) = —V f(X,(t)) with initial condition X,(0) =y, one
has:

WE(z) = {yeqQ, Jim X, (1) = 2} (9)

2.1 Preliminary results

In order to prove Theorem [I one will make use of the following proposition which
results from [18, Théoreme 1.4].

Proposition 3. Let O be an oriented C*> compact and connected Riemannian man-
ifold of dimension d with interior O and non empty boundary 00, let ¢ : O — R be a
C*> Morse function, and let xo be a critical point of ¢ in O with index ¢ € {0,...,d}
such that xo is the only critical point of ¢ in O. Then, the Dirichlet realization
Agh(O) of the Witten Laplacian acting on functions on O satisfies the following



estimate: there exist ng > 0 and hg > 0 such that for all h € (0, hy),
Ran (g pon) (Agh(O)) = 07,0-
The following result is a direct consequence of Proposition [3|

Corollary 4. Let O, ¢, xg, and £ € {0,...,d} be as in Proposition @ Let us assume
that £ = 0, di.e. that xg is a local minimum of ¢ in O, and that ¢ only attains
its minimal value on O at xg. Let moreover, for every h small enough, ¥ > 0 be
the L*(0)-normalized eigenfunction of A?h(O) associated with its unique eigenvalue
An in (0,moh] (see Proposition [3 and Remark [1). Lastly, let & € C°(0,[0,1]) be
a cut-off function such that € = 1 in a neighborhood of xog in O. Then, defining

1
o Ee h?
T e 7]

L2(0)

, there exists ¢ > 0 such that for every h small enough:

U=x+ O(e_%) in L*(0) and 0< X\, < quj,thf\lLQ(O <eTh. (10)

)
Proof. The proof of is standard but we give it for the sake of completeness. As
in the statement of Corollary [4] let us define
gen?
X =17 "Iaon -
[€e h¢HL2(O)

From the definition of £ and the Laplace method together with the fact that ¢ only
attains its minimal value on O at g, it holds

(wh)?

—2¢(x0) 1
h +O(h)).
detHessgb(:L‘g)e ( Q)

_1
[€e h¢}|i2(0) =

According to Proposition |3 there exist 79 > 0 and hg > 0 such that for all h €
(0, h0), T[0,noh) (A?h(O)) is the orthogonal projector on Span{¥}. Moreover, using the
following spectral estimate, valid for any nonnegative self-adjoint operator (T, D(T"))
on a Hilbert space (H, || - ||) with associated quadratic form (g7, Q(T)),

V>0, VueQ(T),

oy < T, (1)

it holds (see and (3))

2 < Hd¢thH/2\1L2(O) B ﬁ fo|df|26_%¢

D
HX = o (A7) 12(0) ~ noh e i,

Hence, since £ = 1 in a neighborhood of zy and thus, for some ¢ > 0, ¢(y) > ¢(zo)+c¢
for every y € supp d€, one has for every h > 0 small enough,

<e h, (12)

. 2
qub,hXHile(o) <e n and HX ~ T[0,m0h) (Agyh(o))x’ L2(0)

10



where ¢ > 0 is independent of h. Since ||x||z2(0) = 1, the first relation in together
with the Min-Max principle leads to (see (2))

M < (AZLO0)X X)r2(0) = qub,hXHing(o) < e,

Moreover, using the second relation in and the Pythagorean theorem, one obtains
for every h > 0 small enough:

17 0.n0m1 (Agﬁ(o))XHLQ(O) =1+0(e#). (13)

In conclusion, from (12, (13)), and since x and ¥ are nonnegative, it holds, in L?(0),
for some ¢ > 0 and every h > 0 small enough:

mio.m0n] (Agn(0)) X

U = =x+0(eh).
1710.m0m) (Aﬁh(o))XHLZ(O)
This concludes the proof of and then the proof of Corollary 1

We are now in position to prove Theorem

2.2 Proof of Theorem

Let {x1,...,2,} be the set of the critical points of f in €, i.e.

{21,...,2,} = {z€Q, |Vf(z)|=0}.

From the preliminary discussion in the beginning of Section [2, there exist an oriented
C°° compact and connected Riemannian manifold Q of dimension d with interior Q
and boundary 8?2, and a C'* Morse function f : 0 — R such that

f|ﬁ:f, Q C 6 and {xl,...,aﬁn} c Q.

We recall that mg denotes the number of local minima of f in Q (see Definition ,
and thus that 0 < mg < n. When mg > 0, the elements x1,...,x, are moreover
ordered such that

{$1,...,1‘m0} = Uo.

In addition, one introduces for every j € {1,...,mg} a smooth open neighborhood
O, of x; such that @ C Q and such that z; is the only critical point of f in @
as well as the only point where f attains its minimal value in @ Similarly, when
xj € ) is not a local minimum of f, one introduces a smooth open neighborhood O;
of z; such that 07j C Q and such that x; is the only critical point of f in Oij Lastly,
when z; € 9, one now introduces a smooth open neighborhood O; of z; in Q such
that 07j C Q and such that xj is the only critical point of fin @ When such a z;
is a local minimum of f, the set O; is moreover chosen small enough such that the
minimal value of f in O; is only attained at x;. Let us also introduce a quadratic
partition of unity (X;)jeq1,..n+1} Such that:

11



1. Forallje{l,....,n+1}, x; € 000(6, [0,1]) and Z;Lill X? = 1on Q.

2. Forallj € {1,...,n}, x; = 1 near z; and supp x; C O;. In particular, supp x; C
2 when z; € Q.

3. For all (i,7) € {1,...,n}?, i # j implies supp x; N supp x; = 0.

In the following, we will also use the so-called IMS localization formula (see for
example [8]): for all ¢ € HZ (), it holds

n+1 n+1
Qra) = > Qralx; ) = > P [[1Vx51¥ 20y (14)
P =1

where Q¢ is the quadratic form defined in (3)).

Step 1. Let us first show that there exists ¢y > 0 such that for every h small enough,
it holds

: D
dim Ranw(o,e*?)(A h) = mo. (15)

This relation is obvious when mg = 0. When mq > 0, the family (O, f \Of]_, x;) satisfies,
for every j € {1,...,mo}, the hypotheses of Corollary Then, according to , the
function

= 7
Ixje " L2(0;)

satisfies, for some ¢; > 0 and every h > 0 small enough (see ),

Qrn(j) < e

Since the v;’s, j € {1,...,mqg}, are unitary in L?(Q) and have disjoint supports, it
follows from the Min-Max principle that AJIP ,, admits at least mg exponentially small
eigenvalues when h — 0, which proves .

Step 2. Let us now show that there exists ¢, > 0 such that for every h small enough,
it holds
dim Ran W[O,cf)h} (Aﬁh) < mg . (16)

According to the Min-Max principle, it is sufficient to show that there exist hg > 0
and C > 0 such that for every h € (0, hg|, there exist u, ..., um, in L?(2) such that
for any ¢ € D(A?h) = H}(Q), it holds

mo

Qrn(¥) = Ch|¥li2q) — Y (W, ui)Tz () - (17)

i=1
Analysis on supp xn+1-

Since supp xn+1 M does not meet {x1,...,z,}, there exists C > 0 such that |V f| >

12



3C on supp Xn+1 N Q. It then follows from that there exists C' > 0 such that for
every h small enough and for every v € H}(£2), it holds

Qf7h(Xn+1¢) > <Xn+1¢> (|Vf’2 + hAHf)Xn+1w>L2(Q)
> 2C HXn+1¢HQL2(Q)- (18)

Analysis on supp x;, j € {1,...,mp}.

We assume here that mg > 0. We recall that for every j € {1,...,mg}, (O;, f|ofj, xj)
satisfies the hypotheses of Corollary {4 ' and we denote, for h > 0, by ¥; > 0
the L?(0;)-normalized eigenfunction of A f. P, (0;) associated with its principal eigen-
value )\j (which is positive, and exponentially small when h — 0). It then follows
from Proposition [3] and Corollary [ that for some C' > 0 and every h > 0 small
enough, it holds, for every j € {1,...,mq} and for every ¢ € H}(€2),

Qralxi¥) > N, (xi, V) 720y + 2Chlx% — (x5, ¥3) 51720
> 2Ch HXj¢HL2(Q)_2Ch<Xj¢, j>L2Q
= 20h |xj¥ll72(0) — (¥, u5)72(q) » (19)

where one has defined u; := v2Ch x;¥;

Analysis on supp x;, when z; € ) is not a local minimum of f.

In this case, applying Proposition 3| with O; and AJQ 1, (0;), it follows that for some
C > 0 and every h > 0 small enough, it holds, for every ¢ € HZ(Q),

Qra(xj) = 2Ch x93z - (20)

Analysis on supp x;j, when z; € 0Q is not a local minimum of f.

In this case, applying as previously Proposition! 3| with O; but here with A (O )

and denoting by Q ; FhO; its associated quadratic form, it follows that for some C' >0

and every h > 0 small enough, it holds, for every v € H} (Q),
2
Qfno,(Xs¥) = de,hijHAlm(oj) > 2Ch HXJWLQ(Q

Let us now consider the application ¢ € L?(Q) Ve LQ(Q), where 1 extends 1
on ) by @Z|S~)\§ = 0. Since ¥ belongs to HE(Q) for every ¢ € H}() with moreover
(di))| ag = 0, it holds, for every h small enough and for every v € Hg(Q),

2 TN[12
Qrn(xj¥) = "df,h(xj¢)“A1L2(Q) - Hdﬁh(XW)HML?(oj)
200 X9 3eg = 2Ch Ix¥l7em - (21)

v

Analysis on supp x;j, when z; € 0Q is a local minimum of f.

13



Let us now consider, as previously, the extension map ¢ € H}(Q) — = H&(ﬁ)

by 0 outside 2, and let ¥; > 0 be the L?*(O;)-normalized eigenfunction of A?h(oj)

associated with its principal eigenvalue )\fl (see Remark. Then, according to Propo-
sition |3} one has for some C > 0, for every h small enough, and for every ¢ € H&(Q),

Qrrlx¥) = Qfpo,(G¥)

MG, U5) T2 (0, + 6ChIXY = (39, ¥5) %5720,

6Ch (X970, = 6Ch (X, ¥;)72(0,)

6Ch |x;j¥ll72(0) — 6Ch (X%, ¥;)72(0n0,) - (22)

AV

Moreover, applying Corollary 4l with O = O;, ¢ = f ‘OT" and £ = xj, it follows from
that for every h small enough, one has

HXje—%fH;(Q 0,) e
H\IJjHiQ(QﬂOj) = 172 — +0(e™ ).
[xje™n HL2(oj)

From the Laplace method together with the fact that f only attains its minimal value
on 07] at xj, it then holds in the limit & — 0:

2 1
H‘I’me(moj) ) +o(1).
According to , this implies, using the Cauchy-Schwarz inequality
2 2 2
(XY, )12 < HXWHH(Q)H‘I’J’Hm(moj)7
that for some C' > 0, for every h small enough, and for every 1 € H}(€2), it holds:

Qra(xj¥) = 2Ch|xj¥ll72(q) - (23)

Conclusion.
Adding the estimates (18) to and , we deduce from the IMS localization

formula that there exists C' > 0 such that for every h small enough and for every
Y € HE(Q), it holds

n+1 n+1
2
Q) = ZQf,h(Xjﬂf) —Zh2 H|VXjWHLz(Q)
j=1 j=1
n+1 mo
> > 20Xl 7 — D (W i) Ta i) + OB ¢l 720
P =1
mo
> Chlxj¥lTzg) = D (W, 1))
=1

where, for j € {1,...,mo}, we recall that u; = v2Ch x;¥;. This implies the rela-
tion and then , which concludes the proof of Theorem
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3 Study of the characteristic wells of the function f

In this section, one constructs two maps, j and C;. The map j associates each local
minimum of f in € with a set of relevant saddle points, here called separating saddle
points, of f in €, and the map C; associates each local minimum of f in Q with
a characteristic well, here called a critical component, of f in Q (see Definition
below). Our construction is strongly inspired by a similar construction made in [19]
in the case without boundary, where the notions of separating saddle point and of
critical component were defined in this setting. The depths of the wells Cj(x), « € Uy,
which can be expressed in terms of j(z), will finally give, up to some factor —2, the
logarithmic equivalents of the small eigenvalues of A?,h (see indeed Theorems i
and . The maps j and C; will also be used in the next section to define accurate
quasi-modes for A?, -

This section is organised as follows. In Section one defines the principal (charac-
teristic) wells of the function f in Q. Then, in Section one defines the separating
saddle points of f in © and the critical components of f. Finally, Section is
dedicated to the constructions of the maps j and G;.

3.1 Principal wells of f in ()

Definition 5. Let f : Q — R be a C™ Morse function such that Uy # (). For all
z € Uy (see Definition[d) and X > f(z), one defines

C(\,x) as the connected component of {f < A} in Q containing z.
Moreover, for every x € Uy, one defines
A(x) :=sup{A > f(z) such that C(A\,z)NIA =0} and C(z):=C(A\(x),x).

Since for every x € Up, = is a non degenerate local minimum of f in €2, notice that
the real value A\(z) is well defined and belongs to (f(x),+o0). The principal wells of
the function f in € are then defined as follows.

Definition 6. Let f : Q — R be a C™ Morse function such that Uy # 0. The set
C={C(z), z € Up}

is called the set of principal wells of the function f in Q. The number of principal
wells is denoted by
N; := Card(C) S {1, ceey mo}.

Finally, the principal wells of f in Q (i.e. the elements of C) are denoted by:
C={Ci1,....Cin, }-

In Remark [18| below, one explains why the elements of C are called the principal wells
of f in Q. Notice that they obviously satisfy 9C(x) C {f = A(z)} for every = € Uj.
These wells satisfy moreover the following property.
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Proposition 7. Let f : Q@ — R be a C>® Morse function such that Ug # 0 and let
C=A{Ci1,...,Cin,} be the set of its principal wells defined in Definition @ Then,
for every k € {1,...,Ny}, it holds:

{ Cik s an open subset of 2, and (24)

forall e {1,... Ny} with ¢ #k, C;;NCyp=0.

Proof. The proof of is made in |10, Proposition 20]. Let us mention that in |10,
Proposition 20], it is also assumed that f|gq is a Morse function, but this assumption
is not used in the proof of there. ]

3.2 Separating saddle points
3.2.1 Separating saddle points of f in Q

Before giving the definition of the separating saddle points of f in €2, let us first recall
the local structure of the sublevel sets of f near a point z € ().

Lemma 8. Let f: Q — R be a C® Morse function, let z € Q, and let us recall that,
forr >0, B(z,7) := {z € Q s.t. | — 2| < r}. For every r > 0 small enough, the
following holds:

1. When [V f(2)| # 0, the set {f < f(2)} N B(z,r) is connected.

2. When z is a critical point of f with index p € {0,...,d}, one has:

(a) if p=0, i.e. if z € Ug, then {f < f(2)} N B(z,r) =10,
(b) ifp=1, then {f < f(2)}NB(z,r) has precisely two connected components,
(c) if p>2, then {f < f(2)} N B(z,1) is connected.

The notion of separating saddle point of f in Q was introduced in [19, Section 4.1]
for a Morse function on a manifold without boundary.

Definition 9. Let f : Q@ — R be a C™ Morse function. The point z € € is a
separating saddle point of f in Q if it is a saddle point of f (i.e. a critical point of f
of index 1) and if for every r > 0 small enough, the two connected components of
{f < f(2)} N B(z,r) are contained in different connected components of {f < f(2)}.
The set of separating saddle points of f in 2 is denoted by UT*(Q).

With this definition, one has the following result which will be needed later to con-
struct the maps j and Cj in Section

Proposition 10. Let f : Q — R be a C™ Morse function such that Uy # 0. Let
us consider Cy 4 for g € {1,...,N1}. The set Ci4 and its sublevel sets satisfy the
following properties.

1. It holds,

if0C1 N0 =0 (ic. CLyC Q) then 9C1,NUTP(Q) £0.  (25)
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2. Let \q be such that Cy 4 is a connected component of {f < Ag} (see Definitions |
and@. Let A € (minm [, Aq] and C be a connected component of Cy gN{f < A}.
Then,

(CNUTPQ) #0) iff CnNUg contains more than one point.

Moreover, let us define
o= max
yeCNUT®(Q) 1)
with the convention o = ming f when CNUTP(Q) = 0. Then, the following
assertions hold.

o Forallp € (0,A], the set CN{f < p} is a connected component of { f < p}.

o IfCNUTP(Q) # 0, one has CNUy C {f < o} and each of the boundary
of the connected components of CN{f < o} contains a separating saddle
point of f in Q (i.e. a point in UTP(Q)).

Proof. The proof of Proposition (10| is the same as the proof of [10, Proposition 22]
which follows from the study of the sublevel sets of a Morse function on a manifold
without boundary (since the principal wells C; ;’s are included in €2). Again the as-
sumption that f|sq is a Morse function is not used in the proof of [10, Proposition 22].

3.2.2 Separating saddle points of f in

In this section, we specify and extend Definition [J] in our setting by taking into
account the boundary of € and the principal wells {Cy,...,Cn,} of f introduced
in Definition [6] To this end, we first state the following result which describes the
local structure of f near Uke{l,...,Nl} 0Cy 1 N 02 and which will be used to state an
additional assumption on f, assumptionbelow, ensuring that the critical points
of f in OCy N ON are geometrical saddle points of f in Q (see Remark [14] below).

Proposition 11. Let f : Q@ — R be a C™ Morse function such that Uy # 0. Let
ke {l,...,Ni}. Then, for z € 0Cy NI (see Definition @, one has:

(a) If |[Vf(2)| # 0, then z is a local minimum of f|aq and O, f(z) > 0.

(b) If [V f(z)| = 0, then z is saddle point of f. In addition, if the unit outward
normal vector nq(z) to Q at z is an eigenvector of Hess f(z) associated with its
negative eigenvalue, then z is a non degenerate local minimum of f|oq (where
Hess f(z) denotes the endomorphism of T,Q canonically associated with the
usual symmetric bilinear form Hess f(2) : T,Q x T, — R via the metric g).

Finally, it holds,

forall € {1,... N1} with £ #k, Ci,NCyy=0C;,NIC1, CUTP(Q). (26)
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Remark 12. As it will be clear from the proof of Proposition the fact that f :
Q — R is a Morse function is not needed in the proof of item (a) in Proposition .

Proof. Let z € 0Cy;, N OQ. Let V. be a neighborhood of z in Q and let
pGVZr—>:E:(m’,wd)eRd_1 x R_ (27)

be a coordinate system such that z(z) = 0,

{peV., z4(p) <0} =NV, and {peV,, z4(p) =0} =00NV, (28)
and
. 0 0 d
Vi,j € {l,...,d}, gz(%(z)’ 37%(2)) =0;; and %(2) =ngo(z). (29)

The set (V.) is a neighborhood of 0 in R~ x R_. With a slight abuse of notation,
the function f in the coordinates z is still denoted by f. The set x(Cy, NV;) is
included in {z4 < 0} since C; C € (see Proposition . For ease of notation,
the set x(Cy; NV;) will be denoted by Cy 5. Let us now introduce a C*° extension
of f:x(V.) C {x € R% x4 < 0} — R to a neighborhood Vg of 0 in R? such that
VoN{z € RY 24 <0} C x(V.). In the following this extension is still denoted by f.
Note that according to , the matrix Hess f(0) is then at the same time the matrix
of the symmetric bilinear form Hess f(2) : T, x 7,22 — R and of its canonically
associated (via the metric g) endomorphism Hess f(2) : T,Q — T, in the basis
(3%1(2), ceey %(z’) = nq(2)) of T:Q.

Let 7o > 0 be such that {z € RY, |z| < ro} C Vo and let r» € (0,79). To prove
Proposition one will both work with the initial function f and with the above
associated function still denoted by f,

fraz=(d,2q) € Vo CRY— f(z) € R (30)

The proof of Proposition [11]is divided into several steps.

Step 1. Proof of item (a) in Proposition Let us assume that |V f(z)| # 0.
According to Lemma for all 7 > 0 small enough, the set {z € R?, |z| < r and f(z) <
f(0)} is connected. Let us also notice that it clearly holds

0#Cipn{zeRy|z| <7} C{zeRy|z| <rand f(z) < £(0)}.
Let us now prove that
{r e R |z| < rand f(z) < f(0)} C {24 < 0}. (31)

If it is not the case, there exists yo € {x € R? |z| < r} such that x4(y2) > 0 and
f(y2) < £(0). The set {x € R?, |z| <7 and f(z) < f(0)} is connected and thus, since
it is locally path-connected, it is path-connected. Then, let y; € C; ,N{z € RY, |z| <
r} and consider a continuous curve 7 : [0,1] — {z € R? |z| < r and f(z) < f(0)}
such that v(0) = y1 and v(1) = ya. Let us define to := inf{t > 0, z4(7(t)) > 0}.
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Since x4(7(0)) < 0 and x4(y(1)) > 0, it holds ¢ty > 0. Then, for all ¢ € [0, to], it holds
zq(y(t)) < 0 (with equality if and only if ¢t = tg), |y(¢t)] < r, and f(y(¢)) < f(0).
Therefore, since by definition Cy j is a connected component of {g € Q, f(q) < f(2)},
it holds y(to) € Cix C {zq < 0}. This contradict z4(vy(to)) = 0 and proves (31).
Hence, since Cy , is a connected component of {f < f(z)} in £ which intersects the
connected set p({z € R |z| < r and f(z) < f(0)}) C Q, it holds

CipN{z Ry |z| <7} = {z € R |z| < r and f(z) < £(0)}. (32)

Equations and imply that z is a local minimum of f|gq. Using in addition the
fact that |V f(z)| # 0, it holds On, f(2) # 0 and hence Oh, f(z) > 0, since On,, f(2) < 0
would imply that 2 is a local minimum of f in Q which would thus not belong to m
This proves item (a) in Proposition Let us mention that one can prove in addition
that 0€2 and 0C, ), are tangent at z.

Step 2. Proof of item (b) in Proposition Let us now assume that |V f(z)| = 0.

Step 2a. Let us prove that 0 is a saddle point of f : Vo — R. The point 0 is a non
degenerate critical point of f. Moreover, because 0 is not a local minimum of f in
{xq < 0} (since 0 € 9Cy ), Hess f(0) has at least one negative eigenvalue. To prove
that 0 is a saddle point of f, let us argue by contradiction: assume that Hess f(0) has
at least two negative eigenvalues. Then, according to Lemma |8 (with p > 2 there),
for all 7 € (0,79) small enough, the set {x € R%, f(z) < f(0)} N {zr € RY |z| < r} is
connected. In particular, the same arguments as those used to prove and
imply that:

Cipxn{zeRY |zl <r}={z e R |z| <rand f(z) < f(0)} C {xa<0}. (33)
To conclude, let us now prove that
{z e Ry |z| <r and f(z) < f(0)}N{z e R 24 =0} # 0, (34)

which will contradict . To this end, let (ej,es,...,e5) C RY be an orthonormal
basis of eigenvectors of Hess f(0) associated with its eigenvalues (1, ..., puq) ordered
such that 1 < 0 and p2 < 0. Since {z4 = 0} is a d—1 dimensional vector space, there
exists v € {zg = 0} NSpan(e;,e2) \ {0}. An order 2 Taylor expansion then shows that
f(tv) < f(0) for every ¢ > 0 small enough, which implies since tv € {z4 = 0}.
Thus, Hess f(0) has only one negative eigenvalue, i.e. 0 is a saddle point of f.

Step 2b. Let us now end the proof of item (b) in Proposition The point 0 is clearly
a critical point of f[(,,—_o} since it is a critical point, and more precisely a saddle point
by the above analysis, of f : Vg — R. Let us also emphasize here that without any
additional assumption, 0 is not necessarily a non degenerate critical point of f| {24=0}>
nor a local minimum of f[,,—¢ (see indeed Remark (15 below). Let us now make
the following additional assumption: let us assume that the unit outward normal
vector ng(z) is an eigenvector of Hess f(z) associated with its negative eigenvalue.
According to and , this means that e; = (0,...,0,1) € R? is an eigenvector
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of Hess f(0) associated with its unique negative eigenvalue. Since in the Euclidean
space R?, it holds {zq = 0} = e, it follows that Hess f|(,,—0(0) is positive definite
and hence that 0 is a non degenerate local minimum of f| {z4=0}- This concludes the
proof of item (b) in Proposition

Step 3. Proof of the relation . Let us recall that for every £, the set C;, is an
open subset of Q such that for all £ # k, it holds C; 4N Cy 1 = 0 (see Proposition [7),
and hence m NCy = 0Cy N ICy k. The proof of is divided into two steps.

Step 3a. Let us prove that for all £ € {1,...,N1}, £ # k, it holds
8C1,g N 8C1,k C Q. (35)

To this end, let us consider z € Cy ;, N IS2. Let us work again in the z-coordinates
satisfying and , and with the function

fraz= (2 2q) eVo CRY— f(z) €R

which was introduced in .

Let us first consider the case when [V f(0)| # 0. Let us recall that according to
Lemma |8 and (32), for r > 0 small enough, {z € R% |z| < r and f(z) < f(0)} is
connected and equals Cy ;N {x € R%, x| < r}. Let £ € {1,...,Ny}, £ # k. Since in
addition C; N Cy = 0, one has 0 ¢ 9Cy . This concludes the proof of when

IVf(0)] # 0.

Let us now consider the case when |V f(0)] = 0. According to item (b), 0 is a
saddle point of f. According to Lemma [§ and since 0 is a non degenerate saddle
point of f, for 7 > 0 small enough, {x € RY |z| < r and f(z) < f(0)} has two
connected components which are denoted by A; and A,. To prove , let us argue
by contradiction and let us assume that 0 € 0C; , N IC; y, for some £ € {1,...,Ny}
with ¢ # k. Since both Cy ;, and C; » meet A; UAy, the same arguments as those used
to prove and then lead, up to switching A; and As, to

Cixn{zr eRY|z| <r}=A; and Ciyn{zcRy |z <r}=Ay

and to
{z e RY |z| < rand f(z) < f(0)} = AL UA; C {z4 < 0}. (36)

This imposes that the eigenvector eg of Hess f(0) associated with its negative eigen-
value satisfies

€4 € {fd = 0}.

Indeed, if it was not the case, an order 2 Taylor expansion of ¢ — f(teg) at t = 0
would imply that f — f(0) admits negative values in {xg > 0} N {|z| < r} for every
r > 0, contradicting . Thus, eq € {xqg = 0}. Then, the order 2 Taylor expansion of
t— f(teq) at t = 0 shows that f— f(0) admits negative values in {z4 = 0} N{|z| < r}
for every r > 0, which also contradicts (36]). This, concludes the proof of when
IV£(0)] = 0.
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Step 3b. Proof of . According to , for all £ # k, it holds 9Cy ;; N 0Cyp C 2.
Let us now consider z € 9Cy  NIC;y » when the latter set in non empty, which implies
that Cy; and C;, are two connected components of {f < f(z)}. Then, for r > 0
small enough, {f < f(2)} N B(z,r) has at least two connected components, respec-
tively included in Cy j and in C; 4. From Lemma @ z is then a saddle point of f and,
according to Definition |§|, it thus belongs to UT (). This concludes the proof of
and then the proof of Proposition ]

We are now in position to state the following assumption which will be used to
construct the maps j and Cj at the end of this section. Before stating it, let us recall
that from item (b) in Proposition any point z belonging to 9C; ; N 0N for some
k € {1,...,N;} and such that |V f(z)| = 0 is saddle point of f. Using moreover (26)),
such a 2z does not belong to C; , when £ € {1,...,Ny} \ {k}.

Assumption (H1). The function f : Q — R is a C™ Morse function such that Uy #
0 and whose principal wells Cy 1, ...,Cin, defined in Deﬁmtion@ satisfy the following
property: for every k € {1,...,Ni} and every z € 0Cy N OQ such that |Vf(z)| =
0, the unit outward normal vector nq(z) to Q at z is an eigenvector of Hess f(z)
associated with its negative eigenvalue, where Hess f(z) denotes the endomorphism of
T.Q canonically associated with the symmetric bilinear form Hess f(z) : T,Q x T, —
R wia the metric g.

When |[(H1)| is satisfied, according to Proposition the sublevel sets {f < f(2)}
have the following local structure near the points z € U,’;‘;l 0Cy 1 N O

Corollary 13. Let f : @ — R be a C*™ Morse function satisfying . Then, for
all k € {1,...,N1} and for all z € 0Cy , N ONY, one has:

(a) If IV f(2)] # 0, z is a local minimum of flaq and Ong f(2) > 0 (see Figure[l)).

(b) IfIVf(2)| = 0, z is a saddle point of f and the unit outward normal vector ng(z)
to Q at z is an eigenvector of Hess f(z) associated with its negative eigenvalue.
Moreover, the point z is a non degenerate local minimum of f|oq (see Figure @)

Note that when is satisfied, it follows from Corollary that the points z €
U,':';l 0Cy , N 0N such that |Vf(z)|] = 0 are isolated in U,';‘;l 0Cq . N 0N Indeed,
they are non degenerate critical points of f|pg and Ug;l 0Cyq 1, N O is composed of
critical points of f|sn. Note also that this is in general not the case for the points

z € Ug;l 0Cy N OS2 such that |V f(z)| # 0.

Remark 14. When[(HI)| holds, it follows from items (a) and (b) in Corollary[13 that
the elements ofU,'jél (8C1,kﬂ8§2) play geometrically the role of saddle points of f in Q).
Indeed, when f is extended by —oo outside Q (this extension is consistent with the
Dirichlet boundary conditions used to define A?h), the points z € Ug‘;l 0Cy x,NOQ are
local minima of f|aq and local mazima of f|p., where D, is the straight line passing
through z and orthogonal to O at z. Note however that when |V f(z)| # 0, z can
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{f> 1)}
------ -{f = 1)}
0 Ci B V() = 0n f(2) na(2)
RIEEO)

Figure 1: Behaviour of f in a neighborhood of z € 0Cy N 02 when |V f(2)| # 0 and
z s isolated in OCy N OSL.

W (2)
o0
- {f= )
Ar>1@) { }
0 Cix 2o no(2)
- {f>f(2)}

Figure 2: Behaviour of f in a neighborhood of z € 0Cy j, N O when |V f(2)| =0 and
is satisfied. On this figure, W (2) is the stable manifold of z for the
dynamics X = =V f(X).

be a degenerate local minimum of flaq (which can even be constant around z). This
extends the definition of generalized saddle points of f in 0Q as introduced in (17,
Definition 3.2.2] to the case when flaoq is not a Morse function and f has critical
point on 0L). Moreover, when does not hold, the points z € UZ‘;I 0Cy 1 N ON
such that |V f(z)| = 0, which are thus saddle points of f according to Proposition[11]
do actually not necessarily play the role of saddle points of f in € in the above sense,
as explained in Remark [15 below.

Remark 15. Let k € {1,...,N1} and z € 0Cy;, N O be such that |V f(z)| = 0.
We recall that, according to Proposition z 18 a saddle point of f, and that, by
Corollary when nq(z) is an eigenvector of Hess f(z) associated with its negative
eigenvalue, z is a local minimum of flaq and thus a geometrical saddle point of f
in Q in the sense of Remark . We show below that the latter property fails to be
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true in general when z € 9Cy; N OQ is only assumed to be a critical point, and is
hence a saddle point, of f. To this end, let us consider, in the canonical basis (e, ey)
of R?, the Morse function
P(a,y) =y° —a®,

whose only critical point in R? is 0 and is a saddle point. Let us then introduce the
two wvectors

1 1
E(egC E(e;Ij +ey).

In the orthonormal basis (u,v), the function v writes 1 (u,v) = —2uv. Hence, defining

u= —ey) and v =

the smooth curve
T := {p = (u,u?) in the basis (u,v),u € R} (see Figure[3),

it holds Y|r : p = (u,u?) € T = —2u3 and 0 is then not a local minimum of f|r. In
particular, if, in a neighborhood of 0 in R2, 0Q coincides with T' and Q is chosen such
that nq(0) = v, and if f = 1, then, locally around 0 in Q, {f < 0} N {x < 0} is a
connected component of { f < 0} included in Q such that {f < 0} N{z < 0}NIN = {0}
but 0 is not a local minimum of f|aoq (see Figure @

{¢ >0} r
~{w=0}

A .
. 4 ’
A ’

€y
\‘\ A%
{v <0} I< —
o e,
’ u

o {w<o)

’ N
, S
, N
’ N

> 0)

Figure 3: The function 1 and the curve I' in a neighborhood of 0 in R?.

When |(H1)| holds, one extends the definition of a separating saddle point of f in 2
given in Deﬁnition@to our setting by taking into account the points in Ui\':ll 0C;No
which are, according to Remark geometrical saddle points of f in Q.

Definition 16. Let f : @ — R be a C™ Morse function satisfying and let
Ci1y...,CiNy be its principal wells defined in Definition @

1. A point z € Q is a separating saddle point of f in Q if

N1 Nl
either z € U (mﬂ U‘?p(Q)) , 0T Z € U (8C1,k N 89).
k=1 k=1

Notice that in the first case z € ) whereas in second case z € 02. The set of
separating saddle points of f in Q is denoted by U ().
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2. For any o € R, a connected component C of the sublevel set {f < o} in € is
called a critical connected component of f if 9C N UTP(Q) # 0. The family of
critical connected components is denoted by Cepit.

Equation and item 1 in Definition imply the following result which will be
used in the first step of the construction of the maps j and C;j.

Corollary 17. Let f : Q@ — R be a C* Morse function satisfying . Then, it
holds:
for all £ € {1,...,Ny}, 0Cy,NUTP(Q) #£ 0.

3.3 Construction of the maps j and G

Let us now construct the maps j and Cj, which respectively associate each local min-
imum of f in  with a set of UT"(Q) and with an element of Cpit (see Definition .
We closely follow the presentation of |10, Section 2.4] in the case when f does not
have any critical point on the boundary and f|sq is a Morse function and which was
inspired by [19] in the case without boundary.

Let us assume that f : O — R is a C* Morse function satisfying (and thus
such that Uy # 0).) The maps j and C; are then defined recursively as follows.

1. Initialization (¢ = 1). Let us consider the principal wells Cy1,...,Cin, of f
in 2 (see Definition [f]).

For every ¢ € {1,...,N;}, let us choose

x1, € argmin f.
Cie

Then, for all £ € {1,...,N;}, one defines
k1e:=max f, Cj(z1e) :=Ciy, and j(z1,) := 0Ci N UTP(Q). (37)

Cir

From Definitions [5| and |§|, 0Ci(x1) C {f = K1} for all £ € {1,...,Ny}. Accord-
ing moreover to Corollary one has j(z1) # 0 for all £ € {1,...,N;} and thus,
Cj(z1,) € Cerit (see item 2 in Definition . Finally, it holds from ,

Ve #qe{l,...,Ni}? 9Ci,NICy, C UTP(Q).

2. First step (¢ = 2).
From item 2 in Proposition for each ¢ € {1,...,N1}, Ci oNUg # {z1,} if and only
if UTP(2) N Cy e # 0. Consequently, one has:

Uisp(Q) ﬂ (Uy:11 Cl,é) #0 iff {z11,...,21n,} # Uo.

If UTP(Q)N ( Upt, CLg) = () (or equivalently if Ny = mg), the constructions of the

maps j and C; are finished and one goes to item 4 below. If UTP(Q) N (U?‘:ll C17g> £ 0,
one defines

Ko = max f(z) € ( min f, max /£17g>.
zeUTP(Q)N (U?ilcu) U’;ilcl,l el N}
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The set

Ej (CLents < ma})
/=1

is then the union of finitely many connected components. We denote by Ca1,...,Ca N,
(with Ng > 1) the connected components of U'g':ll (Ci,e N {f < k2}) which do not
contain any of the minima {x11,..., 21N, }. From item 2 in Proposition [10| (applied
for each £ € {1,...,N1} with C = Cy N {f < k2} there) and item 2 in Definition [16]

Vil e {1, RN NQ}, Cg’g € Cerit-

Let us mention that the other connected components (i.e. those containing
the points {x11,..., 21N, }) may be not critical. For each 1 < ¢ < Nj, one then con-
siders an element o ¢ arbitrarily chosen in arg minm f = argminc 2t f (the equality
follows from 0Coy C {f = k2}) and one defines:

Cj(x27g) = Cyy and j(x275) =0Cy N UiSp(Q) (#0) C UiSp(Q) N{f = ka}.

3. Recurrence (g > 3).

If all the local minima of f in  have been labeled at the end of the previous step,
ie. if Uizl{fb‘j,l, .szjN,; } = Up (or equivalently if Ny + N2 = mg), the constructions
of the maps Cj and j are finished, all the local minima of f have been labeled and
one goes to item 4 below. If it is not the case, from item 2 in Proposition there
exists m € N* such that

N1
for all ¢ € {2,...,m+ 1}, U@ (cu n{f < mq}) £0, (39
(=1

where the decreasing sequence (kq)q=3,....m+2 is defined recursively by

Kq 1= max f(z) € ( min f, /@q_l).

N
2eUF (@) MU, (Crenff<rg—1}) Uty Cre

Let now m™ € N* be the largest m € N* such that holds. Notice that m* is well
defined since the cardinal of Ug is finite. By definition of m*, one has moreover:

N1
v N U (cu n{f< HWH}) = 0. (39)
/=1

Then, one repeats recursively m* times the procedure described above defining
(CQ,K’j(fo)v Cj(xQ,f))lgggNQ : for q € {27 o 7m* + 1}5 one defines (Cq—i-l,()fé{l,..‘,Nqul}
as the set of the connected components of

N1

U <C1,e Nn{f< f?q+1}>

(=1
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which do not contain any of the local minima U?Zl{xj’l, —oyziN, }oof fin © which
have been previously labeled. From items 1 and 2 in Proposition [10] (applied for each
¢e{l,...,Ni} with C=CyyN{f < Kg41} there),

Vee{1,...,Ngi1}, Corre € Corit-

For £ € {1,...,Ng41}, we then associate with each C,y1, one point x441 ¢ arbitrarily
chosen in argminc_,, , f and we define:

Ci(g+1,0) := Cyp1e and j(wgq1,0) := 0Cqp10 NUTP(Q) (£ 0) C {f = Kgp1}-

From and item 2 in Proposition Uy = U;.”:*f2{:1:j’1, .o ZjN, }- Thus, all the
local minima of f in € are labeled. This finishes the construction of maps j and C;.

4. Properties of the maps j and C;.

Let us now give important features of the map j which follow directly from its con-
struction and which will be used in the sequel. We have been defined two maps

G : Up—Ceir and j : Ug — P(USP(Q)) (40)

which are clearly injective. For every z € Up, the set j(x) is the set made of the
separating saddle points of f in © on 9C;(z). Notice that the j(z), x € Uy, are not
disjoint in general. For all x € Uy, the set f(j(x)) contains exactly one value, which
will be denoted by f(j(x)). Moreover, for all x € Uy, it holds

fG(@) = fz) > 0. (41)

Since U';l:llCLg C Q (see the first statement in (24)), one has Cj(z) C €2 for all z € Uy.
Moreover, only the boundaries of the principal wells can contain separating saddle
points of f on 01}, i.e.:

Vo € Up \ {z1,1,.... 21N, }, J(z) C UTP(Q) (see Definition [9). (42)

In addition, for all z,y € Uy such that z # y, since by construction j(y) N j(x) =
0C;(y) N 9C(x) (see ([26))), one has two possible cases:

(i) either j(z) N j(y) = 0, in which case either Cj(y) N Cj(z) = 0 or, up to inter-
changing = with y, Cj(y) C Cj(z),

(i) or j(z) N j(y) # 0, in which case f(j(z)) = f(j(y)) and the sets Cj(x) and C;(y)
are two different connected components of {f < f(j(z))}.

Finally, for all £ € {1,...,N1} and all € Uy N Cj(z1¢) \ {z1,¢}, note that

f@) = f(@1e), f((x) < f((21e)) and then f(j(2)) — f(z) < f(i(z10)) — f210)-

Let us also mention that the maps j and C; are not uniquely defined as soon as
there exists some Cy¢, k> 1, £ € {1,..., N}, such that f has more than one global
minimum in Cj ;. However, this non-uniqueness has no influence on the results proven
below (in particular Theorems [2[ and .
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Remark 18. For all x € Uy, the set C;(x) has geometrically the shape of a potential
well and the elements of C (see Deﬁm’tion@ are called the principal wells of f in
since they contain all the Cj(x), x € Up.

Let us end this section with the following result which be used to prove the further
Proposition

Lemma 19. Let us assume that f : Q@ — R is a C™ Morse function which satis-

fies[(HL)| Let (Cj(x))zeu, be as defined in and let k > 1. Let us consider, for
somem > 1, {Cl, ce Cm} C {Cj(x;@l), cee, Cj(xk,Nk)} such that

" Clis connected, and
for all C € {Cj(ka), .. -»Cj(xk,Nk)} \ {Cl, .. .,Cm}, cn U?:l Ct =0.

Then, there exist £y € {1,...,m} and z € UTP(Q) such that
2 € dch\ (UZ”:M#O acf). (43)

Proof. Let {Cl, e Cm} be as in Lemma

When k = 1, the set {Cj(z1,1),...,Cj(@1,n,)} is the set of the principal wells of f, i.e.
the set C of Definition [6] and the proof of Lemma [43] follows exactly the same lines
as the proof of |10, Lemma 21].

Let us now consider the case when k > 2. Let us first notice that according to the
construction of the maps j and C;, forall £ € {1,...,m}, C! is a connected component
of {f < K} which has been labelled at the k-th iteration. Since |Jj", C? is connected,
there exists ¢ € {1,...,N;} such that |JJ", C* € C1, = {f < K14}, where, since k >
2, K < K1,4. Since, from Corollary it holds 0 # 9Cy , NUTP () C {f = K14}, one
can define k* € (K, k1,4 as the minimum of the A € (g, £1,4] such that the connected
component of {f < A} N Cy,, containing | J;~, C’ is critical (see Definition . We
then define C* as the connected component of {f < x*} N Cy 4 containing (J;, (<3
By definition, C* is critical, and, from the construction of the maps j and C;, it thus
holds:

c* m U?;ll{l'jJ, N 7$j,Nj} #£ (). (44)

Moreover, since all the C®’s are critical, and thus C* N U$*P(Q) # 0, the definitions
of k* and C* together with item 2 in Proposition [10| applied to C = C* imply that

= < K").
Kk yeC*mmgglgp(Q)f(y)( KY)

Therefore, using again item 2 in Proposition [L0] with C = C*,
{f <kKp}NC* is connected and C*NUyC {f < kei}, (45)
where the first affirmation follows from the fact that, for every A € (kg, k*), C*N{f <

A} is connected.
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To prove , one argues by contradiction assuming that ( is not satisfied. It
then follows from the local structure of the sublevel sets of a Morse function glven in
Lemma I that there exists some open set O C © such that O N {f <k} = U~ C

(see, in [10], the arguments used to prove Equation (50) there for more details). In
other words, the connected set Uznz1@ is open in {f < Kk} and thus, since it is
closed and then closed in {f < ki}, it is a connected component of {f < rg}. It
thus follows from that {f < kp} NC* = U’ZLZI@ contains all the local minima
of f in C*. According to , this implies, since |J;-, OC! does not contain any
local minimum of f, that at least one of the C%s, ¢ € {1,...,m}, does intersect
Uf;ll{;rj,l, --»ZjN, }- This leads to a contradiction since the Chs (0 € {1,...,m})
are labelled at the k-th iteration (k > 2) and thus, each C* (¢ € {1,...,m}) does not
intersect U?;ll{xﬂ, e xj,Nj}. This concludes the proof of Lemma ]

4 Quasi-modal construction

The aim of this section is to construct, for every € Uy, a quasi-mode 1,, associated
with x, or more exactly with C;j(z), and whose energy in the limit A — 0 will be
shown to give the asymptotic behaviour of one of the mg first eigenvalues of A? 5 as
exhibited in Theorems 2f] and 21

More precisely, our quasi-modes (13)zecu, are built as suitable normalisations of aux-
iliary functions (¢z)zeu,, which are first explicitly constructed in a neighborhood of
the elements of j(z) C ©Q, and then suitably extended to Q. This construction is
partly inspired by the construction made in [9] when Q = R?, see also [5,21,30]. We
also refer to [11,|16}/17,(19}23,25,27] for related constructions.

This section is organized as follows. In Section[.I] one introduces adapted coordinate
systems in a neighborhood of the elements of j(z), where 2 € Uy, which then permit
in Section to construct the auxiliary functions ¢, in a neighborhood of j(x). The
functions (¢z)zeu, and (¥z)zcu, are then defined in Section

Before, let us introduce the following assumption which will be used throughout the
rest of this work.

Assumption (H2). The function f : Q — R is a C> Morse function such that Uy #
(. Moreover, for all z € Ug;l 0Cy N0 (see Deﬁm’tion@ such that |V f(z)| # 0 (we
recall that in this case, z is a local minimum of f|aq by item (a) in Proposition[11]),

z is a non degenerate local minimum of f|aq - (46)

When f satisfies the assumptions [(H1)| and [(H2)] it holds

N1
Card( | J 9C1,Nd9) < oo and then Card( U j(x)) < . (47)
k=1 z€Ug
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Indeed, Card( Useu, d(@) N Q) < oo since Useu, d(x) N2 is composed of non degen-
erate saddle points of f in Q (see the construction of the map j in Section and
Definition [9) and, according to item (b) in Corollary [13]and to (46), the elements of

N1
U jx)noQ = U 0Cy , N O are non degenerate local minima of f|pg. (48)
xeUg k=1

In the rest of this section, one assumes that f : Q@ — R is a C° Morse function which
satisfies the assumptions [(H1)| and [(H2)]

4.1 Adapted coordinate systems

Let us recall that for any x € Up, from the construction of the map j made in Sec-

tionand from j(z) contains saddle points of f in Q (see Deﬁnition

which are in finite number and may be of two kinds: the elements z € j(x) N 99,
such that either |V f(z)| # 0 or |V f(z)| = 0, and the elements z € j(x) N €2, such that
IVI(z)] = 0.

For any z € Ug and z € j(z), we first construct a coordinate systems in a neighborhood
of z as follows.

1.a) The case when z € 92 and |V f(z)| # 0.

Let us recall that z is in this case a non degenerate local minimum of f|sq and that
p = Ong f(2) > 0. Then, according for example to [17, Section 3.4], there exists a
neighbourhood V. of z in Q and a coordinate system

peV.v=(,v9) = (v1,...,04-1,v4) € R X R_ (49)
such that
v(z) =0, {pe V. vilp) <0} =NV, {peV,,v(p) =0}=00NnV,, (50)

and

0 0

Vi, j e {1,...,d}, gz(a—vz(z), 8—%(,2)) =9;; and 8(3(1(2) = nq(z2), (51)

with moreover, in the v coordinates,

F(' vq) = £(0) + pvg + %(v')THess Flivg=01(0) 0" (52)

For §; > 0 and d2 > 0 small enough, one then defines the following neighborhood of z
in 012,
Vi (2) i= {p € V2, va(p) = 0 and [v/(p)| < 62} (see [@9)-(50)) (53)

and the following neighbourhood of z in Q,

V2 (2) = {p € Va, [v'(p)| < 6 and va(p) € [~261,0]}. (54)
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1.b) The case when z € 9Q and |V f(z)| = 0.
Let V. be a neighborhood of z in Q and let

peV,—»uv=, vy e R xR_ (55)
be a coordinate system such that
v(z) =0, {pe V. vi(p) <0} =NV, {peV,,vp) =0}=00NV,, (56)

and

0 0

Vi, je{l,...,d}, gz(—(z),a—vj 0 (2) = na(z). (57)

(z)) =0;; and 30;

8112-

Let us also recall that z is a non degenerate saddle point of f in 02 such that,
according to no(z) is an eigenvector associated with the negative eigenvalue 4
of Hess f(z). Thus, denoting by p1, ..., pg—1 the positive eigenvalues of Hess f(z), the
coordinates v’ = (v1,...,v4-1) can be chosen so that it holds, in the v coordinates,

1 d 1 d—1 1
F) = FO)+5 D w0 +0(ol) = FO)+5 3 sl v =5 lual v +O(0l) . (59)
j=1 j=1

Therefore, up to choosing V., again smaller, one can assume that
argmin (f(v) + |palvg) = {}. (59)
V2

For 1 > 0 and do > 0 small enough, one defines the following neighborhood of z
in 012,
VgQQ(z) :={p € V., va(p) = 0 and [v/(p)| < 2} (see (B5)-(56)), (60)

and the following neighbourhood of z in Q,
VA2 (2) = {p € V., [t/ (p)] < 62 and va(p) € [-261,0]}. (61)

2. The case when z € Q.

Let us recall that in this case z is a non degenerate saddle point of f in €. Let
(e1,...,eq) be an orthonormal basis of eigenvectors of Hess f(z) associated with its
eigenvalues (p1,. .., 1tq) with ug < 0 and, for all j € {1,...,d — 1}, p; > 0. Then,
since ey is normal to W, (z), as in the case when z € 9Q and |V f(z)| = 0 and up to
replacing eg by —eq, there exists a coordinate system

peEV, o= (1) c R xR (62)
such that

v(z) =0, Cj(z)NV. C {p € V., va(p) <0}, {p € V., va(p) = 0} = W (2)NV., (63)

. 0 0 0
Vl,j € {1, e 7d}, gz(ai(Z), 87(2)) = (51 and 87%(2) = €4, (64)
J

Ui
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with moreover, in the v coordinates,

d d—1
F) = FO)+5 S w2 +O(ol®) = F0)+5 3 luglo? — Slual v+ O(of?). (65)
j=1 j=1

Then, up to choosing V, smaller, one can assume that

arg min (f(0) + |palvg) = {z}. (66)

Then, for 61 > 0 and o > 0 small enough, one defines the following neighbourhood

of z in WT(2) (see and (63)),
V2 (2) := {p € V., va(p) = 0 and |/ (p)| < do} C W*(2), (67)

and the following neighbourhood of z in €2,

V2 (z2) = {p € V., |[v/(p)| < 62 and vg € [~251,261]}. (68)
Notice that one has:
argmin f = {z}. (69)
Vi, (2)

Some properties of these coordinate systems.

The sets defined in , , and are cylinders centred at z in the respective
system of coordinates. Up to choosing d; > 0 and d2 > 0 smaller, one can assume
that all these cylinders are two by two disjoint. Schematic representations of these

sets introduced in f are given in Figures and @

Let us conclude this section by giving several properties of the sets previously intro-
duced which will be needed for upcoming computations. Let us recall that, from ,
when z € j(x) for some x € Up, it holds f(z) > f(z). Moreover, by construction of
the map j in Section it obviously holds Uy N Uzcy,j(x) = 0. Therefore, up to
choosing §; > 0 and d > 0 small enough, the following properties are satisfied:

1. When z € 9Q N j(x) for some x € Uy, it holds

min f > f(z), V2%(2)nUg =0, (70)
Va2 () “
and
argmin f = {z} (which follows from ({g)). (71)
Vih(2)

2. When z € QN j(z) for some = € Uy, it holds:

min f > f(z) and V2 (z) N U = 0. (72)
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The parameter do > 0 is now kept fixed. Finally, using , , and up to choosing
01 > 0 smaller, there exists » > 0 such that (see Figures and [6)):

1. For all z € 992N j(x) for some = € U,

{p e V.,|v'(p)| = &2 and vy(p) € [-261,0]} C {f > f(z) +r}. (73)

2. For all z € QN j(x) for some z € Uy,

{p e V., |V (p)| = &2 and vy € [~261,201]} C {f > f(2) +r}. (74)

The parameter d; > 0 is now kept fixed.

/

{F>7G@r 20
-------- _-‘§~§~ V%"SQ(Z) {|U/| = and vg € [_25170]}
- {f = 1)}
Cj(z) ,\’Z v
{F<sG@n} | &
{r > fG)}
o0

Figure 4: Schematic representation of the cylinder V%’(SQ(Z) when z € j(z) N OQ (for
some x € Ug) is such that |V f(z)| # 0. One recalls that j(z) C 0C;(x)
and that, in this case, z is a non degenerate local minimum of f|oa and
O f(2) > 0.

4.2 Quasi-modal construction near the elements of U,cy,j(z)
Let us introduce an even cut-off function xy € C*°(RR, [0, 1]) such that

0 0
supp x C [—d1,01] and x =1 on [— 51, 51} (75)

Let z € Ugey,J(®). Then, the function ¢, associated with 2 and x is defined as
follows:

1. Let us assume that z € 99).
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X 26,
\\\ — {|V| = 62 and vy € [—261,0]}
T V() - {f = f((x)}
Q \\\\
CJ(J,‘) ,:Q Vd
{F<1G@} .~ N
{f>f())}
o0

Figure 5: Schematic representation of the cylinder V%’éz(z) when z € j(x) N O (for
some x € Ug) is such that |V f(z)| = 0. One recalls that j(z) C 0C;j(x)
and that, in this case, z is a non degenerate saddle point of f and a non

degenerate local minimum of flaq.

A= 766} 15,
\\\\ — {|v'| = 82 and vy € [—2871,261]}
v o = FG@)
) S - v
< Gy 4 R S CEIN
{7 > @)
W (z)

Figure 6: Schematic representation of the cylinder V%’(SQ (z2) when z € j(x) N Q for
some x € Ug. One recalls that j(x) C 0Cj(x) and that, in this case, z is a
separating saddle point of f in Q0 (see Definition B}

(a) When |V f(2)| # 0, one defines (see [{9), (50), and (54)):

Jo x()enntdt
fi)%l X(t)e%“tdt’

where we recall that yu = Jn, f(z) > 0. Note that the function ¢, only

Vo = (v, vg) € v(V%’(SQ(z)), 0. (v, vg) ==
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depends on the variable v4. Moreover, it holds (see (75)),

0. € C(v(V2%(2)),[0,1]) and )
V(v vq) € (VééQ(z),wz (V' vg) = 1if vg € [—261, —d1].
(b) When |V f(z)| = 0, one defines (see (55), (56), and (61)):
0 — 3 lmal 2
t)e h dt
Yo = (v, vg) € v(V%’éQ(z)), 0. (v, vg) == fvd x) (78)

J05, x(t) e R lal P

where we recall that ;14 < 0 is the negative eigenvalue of Hess(f)(z). The
function ¢, thus only depends on the variable vy and it holds

{ . € C(v(V7(2)),0,1]) and

79
V0, 04) € v(VEB()), oW ug) = 1 it va € <20, —61) )

2. Let us assume that z € 2. We recall that in this case, z is a separating saddle
point of f in © (by construction of the map j, see also Definition @ Then, one

defines the function (see (62), (63), and (68)):
251 x(t ) wlal ¢ gy
f2gis x(t Flualt? gy’

Vo = (v, vg) € v(V%’EQ(z)), 0. (v, vq) == (80)

where p4 is the negative eigenvalues of Hess f(z). Again, ¢, only depends on
the variable v4 and it holds:

0, € C™ (U(V%’52(z)), [0, 1]) (81)

and for all (v';vy) € U(V%’(;Q(z)),

0. (v, vg) = 1if vg € [-201, —61] and @, (v, vq) =0 if vg € [61,201].  (82)

4.3 Construction of my quasi-modes for A?,h

In the following, one considers some arbitrary
x € Up.

Let us recall the geometry of f near its critical component 9C;(x). Let us consider
a point p € 9Cj(z) \ j(x). Since j(z) = 9C;(x) NUTP(Q) and 9C;(z) N 9N C j(z),
p € Q\ UTP(Q). Thus, there are two possible cases:

e Either p is saddle point of f in Q. From Lemma (8, {f < f(j(x))} N B(p,r) has
then, for » > 0 small enough, two connected components which are included
in Cj(x), since p is not separating (see Figure[g).

e Or p is not a saddle point of f in . According to Lemma 8 {f < f(j(z))} N
B(p, ) is then connected for » > 0 small enough and is thus included in C;(z).
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In conclusion, when p € 9C;(z)\ j(z), {f < f(i(z))}NB(p,r) is included in Cj(z) N Q
for r > 0 small enough. Moreover, one constructed in , , and , disjoint

cylinders in neighborhoods of each z € Uyecy,j(y) which satisfy and 7.
This makes possible the construction used in the definition below.

Definition 20. Let f : @ — R be a C® Morse function which satisfies
and [((H2)| Then Uy # 0 and, for each x € Uy, there exist two C™ connected open
sets Qi(x) and Qa(z) of Q satisfying the following properties:

1. For all z € Uy, it holds

Cj(z) C Qi (x) and argmin f = argmin f.
) (=)

2. For all x € Uy, Qa(x) C Qi(x) and the strip Qi (x) \ Qa(z) equal:

2 (0)\ Q) = |J V5~ U o), (83)

z€j(x)
where there exists ¢ > 0 such that:
Vg € O1(z), f(q) = f(i(z)) +ec. (84)
Notice that item 1, , , and the first statements in and in imply

that argmin f = argmin f = argmin f.
Qi (z) Q(z) Cj(=)

3. For all x,y € Uy such that x # y, it holds (depending on the two possible cases
described in items 4.(i) and 4.(it) in Section|3.5):

(1) If j(y) N j(z) = 0:

{ either C5(y) N Cj(z) = 0 and Qi (x) N Qi ( 0,

y) =
or, up to switching x and y, C(y) C Cj(x) and Q1(y) C Qa(x).

(i) If j(y) N j(xz) # O (in this case, one recalls that f(j(y)) = f(j(z)) and
thus, C;(y) and Cj(x) are two connected components of {f < f(j(x))}),
then:

U@ U= J Va©) U Oue).

z€j(y) Nj(=)

where O2(z) C O1(x) and Oz(z) N V%’éz(z) =0 for all z € j(y) U j(z).

For x € Ug, schematic representations of Q(z), Q2(x), and O (z) are given in Fig-
ures [7|and |8 With the help of the sets Q;(x) and Qo(x) introduced in Definition
one defines a smooth function ¢, : © — [0, 1] associated with each z € Ug as follows.

Definition 21. Let f : Q@ — R be a C® Morse function which satisfies
and|(H2)| For each = € Uy, a function ¢, : Q@ — [0,1] is constructed as follows:
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1. For every z € j(x), ¢y is defined on the cylinder V%"sg(z) (see (54), (61), and
©83)) by
61,0
Vp € VER(2), 6u(p) i= s (0(p), see (), @), and B (35)
2. From (77), (79). (81), (82), and the facts that Qo (x) C Qy(x) (see Deﬁm’tion@)
and holds, ¢, can be extended to Q) such that
¢z =0 onﬁ\Ql(@, ¢z =1 on 92(33)7 and ¢, € Coo(ﬁv [07 1]) (86)
Notice that implies that:
supp do, C Q1 (z) \ Q2(). (87)

Finally, in view of , , , and , ¢z can be chosen on O1 such that
for some C > 0 and for every h small enough (see indeed (96)), (L02)), and (106))

below):
C
Va € Nda |Oé| € {172}7 HaO‘QSIHLOO(Ol(x)) < ﬁ (88)
W (z) 00
{f>fG@)} 27 {f>£G@)} Q)
\ N \\‘\“\V%’&(z )
{f< f(J(ﬂU))}/ ’i:\ Ci(x) o, [
NN
V51,52( ) {f > f(J(iL’))} ( { }

Figure 7: Schematic representation of Qa(x), Q1(z), and O1(x) (see Definition @)
On the figure, j(x) = {z1, 22} with z1 € Q and z2 € I (|Vf(22)] =0).

Let us now define, for each & € Uy, the quasi-mode 1, : @ — R of Ajl? ,, as follows.

Definition 22. Let f : @ — R be a C® Morse function which satisfies
and|(H2)| For every x € Uy, one defines

_ Qp e
Zy

=~

and Zy = ||¢o 6_£HL2(Q)’

Py

where ¢, s the function introduced in Definition |21].
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{f>1G)}

Figure 8: Schematic representation of O1(z) (see (84)) in a neighborhood of a non
separating saddle points z of f on 0C;(x).

By construction of ¢, in Definition ty € C°(Q,RT) and 1, = 0 on 9Q (see
indeed together with the fact that Qq(z) C €, see Definition 20). In particular:

¥y € D(AY),) = H*(Q) N Hy (Q). (89)

5 Asymptotic equivalents of the small eigenvalues of A? b
5.1 First quasi-modal estimates

Let us start with the following result which gives asymptotic estimates on the L2-
norms of d p,(1);) and of A p (1)) around the points z € j(x) in the limit A — 0.

Proposition 23. Let f : Q@ — R be a C®° Morse function which satisfies
and|[(H2)| Let x € Uy, 9, be as introduced in Definition[24, and z € j(z).

1. Let us assume that z € Of).

(a) When |V f(z)] # 0 (recall that in this case z is a non degenerate local

minimum of f|aa and O, f(2) > 0, see item (a) in Corollary[15 and ([46)),
it holds in the limit h — 0:

Lyl el? = e VRO 14 001,

Q

[SIE
—~~
Ne)
(=)
SN—

200, f(2) (det Hess flaa(z))
VT D (det Hess f(q))

gcarg mincj(w) f

where cg , 1=

NI

Furthermore, one has when h — 0:

2 2
/\/61’52(z) ‘Aﬂh %\ = O(hQ) /\/(ﬁ,ég(z) ‘df,h %\ .

Q Q
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(b) When |V f(z)| =0 (recall that in this case z is a saddle point of f in S,
see item (b) in Corollary , it holds in the limit h — 0:

2 (e
/\/61,52( ) ‘df:h¢x| = C%Zhe h(f(J( ))—1( ))(14_0(\/%»7
g (=

_1
2 | pql | det Hess f(2)| 2 (91)
where ¢z , = )

g > (detHess f(q))

gearg mincj(z) f

N

where we recall that pg < 0 is the negative eigenvalue of Hess f(z). More-
over, when h — 0, one has:

2 _ 2 2
/\/591762(2) |Afnthz|” =O(h )/\/2,52(2) el

2. Let us assume that z € Q) (recall that in this case z is a saddle point of f in Q).
Then, it holds in the limit h — 0:

/\,51,52( | ldyp tho]? = cpe he RUGEIT@) (1 1 O(n)),
a z

1
| al | det Hess f(2)| 2 (92)
where c; , == —— )

g > (detHess f(q))

gearg mincj () f

N

where we recall that pg < 0 is the negative eigenvalue of Hess f(z). Finally,
when h — 0, one has:

Ay t]® = O(h? / dsn gl
/\/‘2’52(@’ el * v‘g"b(z)‘ el

Remark 24. The remainder term O(V/h) in follows from the Laplace method
applied to [pa AB(0,r) P2 e~ 7 when |[Vp1(0)] =0, Hess p1(0) > 0, and 0 is the unique

minimum of 1 on B(0,7), see (103) and the lines below (when d = 1, this is also
known as Watson’s lemma). On the other hand, the O(h) in arises from the

standard Laplace method, i.e. when considering fB(o r) P2 e"H. In particular, these

remainder terms are optimal.

Proof. Let € Ug. Then, according to Definitions 22] and 21} one has

zi= [ et [ geti= [ ety | F et
Q Q1 () Qo () Q1 (2)\Q2(z)

Let us recall that by construction 0 < ¢, < 1 on 2. Moreover, from the first
statements in and together with and , there exists ¢ > 0 such that
f > f(x)4+con Q(z)\ Qa2(z). Thus, it holds, for some C' > 0 independent of h:

/ 62t < Cem U@t
1 (2)\Q2(z)
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In addition, since ¢, =1 on Qa(x) (see (86])) and

argmin f = argmin f = argmin f (see item 2 in Definition
Q1 (x) Qa(z) Cj(x)

consists in a finite number of non degenerate local minima ¢ of f in € such that
f(q) = f(x) (since by construction of Cj, z € argming,(,) f), one has when h — 0,
using the Laplace method,

d
_2 (mh)2 _2
p2enl = — ¢ hf(z)l—l—O(h).
/92(93) ! qeagninf det Hess f(q) ( )
Cj(ac)
Therefore, when h — 0,

Zo=@ni( Y (detHessf(q)f%)Ee_%f(x)(1+0(h)). (93)

gcarg mincj(x) f

Let now z belong to j(x). The rest of the proof of Proposition [23|is divided into two
steps, whether z € 90Q2 or z € Q.
Step 1.a) The case when z € Q2 and |V f(z)| # 0.
In this case, from Definition [22] one has
f 81,02 ‘dﬁbx‘?e_%f
gl = 20 (94)
V%,52(2) fih Yz 72 :

Moreover, according to and to , it holds:

0
/ |do,|? e iF = S8 Jua=-2
* - 2
VoL () ( S5, X()eir! dt)

where we recall that 1 = O, f(2) > 0, and dgv = y/det g dv denotes the Riemannian
volume form. A straightforward computation (see (75))) implies that there exists ¢ > 0
such that in the limit A — 0,

|dvg|? X2 (vq) e 7 (F=2uva) dgv

, (95)

0 2., _i 67%
N. = /251 X(ehrtit = o (1+ 0 H). (96)

Moreover, from the Laplace method together with, , , and , one has when
h — 0:
2

0 4L o~ 21(0)
/ / ’dvd‘z X2 (Ud) 6_%(f_zlwd) dg’U — i (7Th) 2 e h
e 24 (det Hess f15, 03 0)

(1+0(n)),

N

(97)
where we recall that with our notation, f(0) = f(z) = f(j(x)) since z € j(x) (see
item 4 in Section [3.3). The relations (94)-(97) and lead to the first statement
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of item 1.(a) in Proposition [23] Let us now prove the second statement of item 1.(a).
Since Ay, = oheh ( %AH +Vf- V)e£, one has

h

2heh (b 2he
Appte = (580 + V-V )b = ——(5d'do, +df (V) ). (98)

Thus, according to and to , it holds on V%’éQ(z),

f
2he™n , h
Apntbe = = —(5d"dg. + df(Ve:))
f
2he™ % s h
~ Z,N <§d*( — X(va)er ¥ idug) — pdvg(x(va)et ™ 1Vug) + O(Ivl2))
f 2
2he ™ n entvd h 9
= = (00 + g xwa) dua(Gy 1 Vea) — pdva(x(va)Va) + O )
1
h efﬁ(ffzu‘vd)
= —— (0 +0(), (99)

where N, is defined by . It then follows from that for every h small enough,
it holds

/Val,%()mf,m\z = O )Whe tUD=I@) = o(n?) /
a z

51,69
Vg (z

2

)

)}df,h%

which concludes the proof of item 1.(a) in Proposition [23]
Step 1.b) The case when |V f(z)| = 0.
From Definition [22] it holds

2 _2¢
}d 1/} ‘2 . h2 fV%’@(Z’) ‘dqsx‘ e n (100)
virsa gy T Zy ’

where, according to and ,
0
‘ e_%f _ f\v’|§52 fvd:—251

/\/61,62( ) }dgbx 0 ,l| |12 2
a (f_%1 x(t) e ik dt)

where we recall that pg is the negative eigenvalue of Hess f(z) and a straightforward
computation (see ) implies that there exists ¢ > 0 such that in the limit h — 0,

|dva)? X2 (va) e—%(fﬂudlv?l)dgv

, (101)

x(t) e wlmal t? gy —

—25, 2./l

Furthermore, from, , , , and together with the Laplace method, one
has in the limit h — O:

0
/| <8 / 5 [ dval? X (va) e~ H U H el o) =
u|<d2 J —261

N, = /0 ; Vh (14 0(e 7). (102)

(Wh)ge_%f(o) 1

\/Ml"'/ﬁdfllﬂd|(2

+O0(Vh)), (103)
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where p1,...,uq—1 are the positive eigenvalues of Hess f(z). Let us point out that
the integral in (103) has the form [pa AB(O.r) 2 (v) e~ #91 (" dy. Hence, the terms of

ty Hess ¢1(0)

the type fRd AB(0,1) v ek Ydv which appear when performing the Laplace

method do not cancel (up to an exponentially small error term) when |«| is odd,

contrary to the terms fB(o ") v e~ "vHess@1(0)

Ydv appearing in the standard Laplace
method (by a parity argument) as used to get . This justifies the optimality of
the O(v/h) in (see Remark [24] above).

Equations f and lead to the first statement in item 1.(b) of Proposi-
tion Let us now prove the second statement in item 1.(b). Doing the same com-

putations as to obtain , one deduces from , , and that on V%’aQ(z),

f
2he”n  h 1ty
Agatbr = 2 (54 (= xa)e™ Haidug) + |al vadva(x(va)e™ iV u) + O(o) )
1 2
oh e~ w (FHlnalvg) h 1
== (O(h) — 5 X(va) dva(5; l1al Vi) + l1aal vadva(x(va) Voa) +0(yv\2))

1 2
oh e~ x (FHlnalvg) N
== (ot +o(u).
where N, is defined by (102). It then follows from (102)), (93), and that in the
limit A — 0,

L 1Bsl = 00 RIS 0 [ g
Vg (2) Vo2

This proves the second statement of item 1.(b) in Proposition
Step 2. The case when z € ().

According to Definition 22} one has
‘2 _2

f 51 52 ‘d¢m
/51 52, ‘ f,hwx‘ = ) (104)
Q

Ly

where, from and , one has:

261 2 2 (f+]palvd)
, s |dval®* X*(vg) e R @ dgv
/ }d¢> ‘2 _2 f\v |<2 f'Ud 201 g , (105)
V51 52( )

(S xye il o)’

where 4 is the negative eigenvalue of Hess f(z) and a straightforward computation
(see (75))) implies the existence of ¢ > 0 such that in the limit h — 0,

261 1 2 V 7Th c
o e—ﬁ| alt S e h)).
N, = /_251 x(t) e~ ikl gy — (1+0(e r)) (106)

Moreover, from, , , , and the Laplace method, one has in the limit
h — O:

261 4 —2£(0)
/ / (dval2 x2(vg) e~ EUHal) g oy — (TH)2E (1+0(h)), (107)
v |<62 Jvg=—261 M1 pd 1|Md\
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where 11, . .., 1g—1 are the positive eigenvalues of Hess f(z). The relations f
and imply the first statement of item 2 in Proposition Let us lastly prove
the second statement in item 2. From , , and , the same computations as
those used to obtain imply that on V%’(Sz (2),

2h y e~ ([ Hlnalvd)
Zx N,

and the relations , (1106, and then lead to

Appie = (o) + o)

2
/M |Apn |’ = O(R?) e i UE=IE) — O(h?) /51,52 \dpn b’
Vs (2) Vs (2)

This concludes the proof of Proposition ]
For every x € Ug, one defines the following constants:

Kiz = Z Cz> and Ko, = Z Ca,zs (108)

zej(q;) Zej(aﬁ)
IV f(2)#0 IV f(2)|=0

where the constants c; . are defined in , , and , with the convention
>0 = 0. Let us recall that {z € j(z),|Vf(2)| # 0} C 0Q. Finally, for y # 2 € Uy,
one defines:

Kepy = Z V/Cz,21/Cyz, SEE —. (109)

z€j(z)Nj(y)
Let us mention that since for all € Uy, one has j(z) # 0, it holds (K; 5, Kz z) # (0,0).
Proposition 25| has the following consequence.

Proposition 25. Let f : @ — R be a C®° Morse function which satisfies
and [(H2)| Let = € Uy and ¢, be as introduced in Definition [23

1. In the limit h — 0, one has:
ldatbel}s oy = (VI K11+ O()) + Ko (1 -+ O(VR)) e FIGED T,

where the constant K1 5 and Kg, are defined in (108) and, when j(z) NOSY does
not contain any critical point of f, the term O(V'h) is actually of order O(h).
Moreover, it holds in the limit h — 0:

8]l = OB e a0y

2. Lety € Uy be such that y # x. Then, for each of the two possible cases described
in items 4.(i) and 4.(ii) in Section it holds in the limit h — 0O:

(i) When j(z) Nj(y) =0, (drntbe, drntdy) g1 g2y = 0-
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(ii) When j(x) Nj(y) # 0,
(dpatben dpaiby) oy = — Koy e R CIEES@=I0) (14 O(h)),

where Ky, is defined in (109)).
Proof. Let x € Uy.
Let us first prove item 1 in Proposition From Definition [22| and ,

dfnihz = z ! fuf%cl@lC is supported in Q;(x) \ Qa(x). (110)

Moreover from (84)), , and , there exists ¢ > 0 such that for h small enough,
o Jou () 1492l e*zf = o( ( U@)=F@)+e)) " Thus, using in addition (T10)
and ., there exists ¢ > 0 such that for h small enough,

/’df,hwz E /6 5 ‘dfhlbgc‘Q—i-O(e h( ([G(=z))— f(:E)Jrc))
2(
zEJ

The first statement in item 1 in Proposition [25]is then a direct consequence of Propo-
sition 23] Let us now prove the second statement in Proposition To this end,
note first that according to (110)),

A pthe = df pdy piby is supported in Qy(z) \ Q2(z).

Thus, from , , together with , it holds for some ¢ > 0 and every h
small enough,

/‘Af,hf‘/}w Z /6 5 |Afhwx’ +O(e h (fQ(=))— ()JFC))

z€j(x

Together with Proposition @ this proves item 1 in Proposition
Let us now prove item 2 in Proposition Let us consider y € Uy such that y # x.

According to and .,

hre ifdg,-do, |
7o,

dppte-dppihy = is supported in Ql )\ Qo(z m Qi (y) \ Q(y

Thus, using item 3 in Definition it holds:

(i) When j(z) Nj(y) = 0, then, either Qi(z) N Qi(y) = 0 or, up to switching x
and y, Q1(y) C Qa(x). In any case, this implies [, dgp 1, - dfp by = 0.

(i) When j(x)Nj(y) # 0, one has,

h2
/Qdf,h Yo dyptby = —

=Y

/ doy-dp, e it
Vﬁ’éQ(z) ¢$ ¢y€

2€j(y)Nj(z) " "' a

+ h / Aoy - do, el (111)
2" e .
ZeZy )0y () Y
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Since Oz(z) C O1(x), from (84)), (88), and (93), there exists ¢ > 0 such that for
h small enough:
h2
7.7,

/ déy-dd, e tF = O(c HOIU@ ~T@—Tw)+e)), (112)
()

where we used f(j(y)) = f(j(z)). Moreover, using item 1 in Definition for
all z € j(z) Nj(y) (C Q), dpa = —dg, on VI*(2). Thus, from (T10), for all
z € j(xz)Nj(y), it holds:

h? / 2 Iy
ddy-d ehf:—/ djn ol
Zny V%’SQ(z) Y Zy V%’éQ(z)’ f |

Then, item 2.(ii) in Proposition 25 is a consequence of (111)) and (112)) together
with and item 2 in Proposition

This concludes the proof of Proposition 1

5.2 Linear independence of the quasi-modes

Let us recall that according to Theorem [I| there exists ¢y > 0 such that for every h
small enough:
dim Ran g ¢on) (A?h) = mg.

In the following, for ease of notation, one denotes

Th += To,cn] (AFh)- (113)

In this section, one proves that for every h small enough, (mﬂ/}x)x cUo is linearly inde-
pendent, and hence a basis of Ran 7, and that (d f,hﬂh¢x)x is linearly independent

in A'L%(Q). Let us start with the following result.

cUg

Proposition 26. Let f : Q — R be a C* Morse function which satisfies
and [(H2)| Let x € Uy and v, be as introduced in Definition [24 Then, there exists
C > 0 such that for every h small enough:

H(l — Wh)waLQ(Q) <C dethIHLQ(Q)

and
e g1 gy = Ndpatial g1 oy (1 + O(B).

Proof. Let ¢y > 0 be the constant used to define 7, in ( - According to Theorem
for every h small enough, A? 5, has mg eigenvalues smaller than coh which are moreover
exponentially small. Let C($h) C C be the circle centred at 0 of radius §h. Then,
there exists ¢ > 0 such that for every h small enough, all the points in C(%h) are at
a distance larger than ch of the spectrum of AJQ - Thus, by the spectral theorem, it

holds:
olds 1

sup |[(z — A[?h)*l < —. (114)
seC(0n) H f HL2(Q)—>L2(Q) ch
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Moreover, since 1), € D(A?’h) for all z € Ug (see (89)), it holds

1 —1 D \—1
(1 —mp) e = o C’(%Oh)(z — (2= Afp) )wx dz
1 -1 D \—1AD
=—— - A A dz.
TR G
Thus, using ((114) and the second estimate in item 1 in Proposition one obtains
that H(l - Wh)waLQ(Q) < C||df7hq/)mHA1L2(Q) for some C' > 0 independent of h. Let us
now prove the second asymptotic estimate of Proposition Since the orthogonal

projector m;, and A?h commute on D(Ay ) and ), € D(A?h), one has

de,h(”hww)uilp(g) = (Thtba, Af,hw$>A1L2(Q)
= (Yo, Apnthe) 12y — (1= T0)Pa; Apntbe) pi g
- de,h%Hilem) + O(”(l - ”h)%Hm(Q)HAM%HLQ(Q))
= ldsae 3z + OWldgntellss 1agay

where one used at the last line the second asymptotic estimate in item 1 in Proposi-
tion [25| and the first asymptotic estimate in Proposition This concludes the proof
of Proposition |

Remark 27. Note here that using the estimate to obtain an upper bound on
H(l —Wh)ij)zHLg(Q), one would obtain H(l —wh)qﬁxHLQ(Q) < ﬁ”dﬁh@bxump(m- This
would finally lead to a remainder term of order O(V/h) instead of the O(h) appearing
in ([131)) in Theorem[3 below.

Definition 28. Let f : Q@ — R be a C® Morse function which satisfies
and [(H2)l Let x € Uy and 1, be as introduced in Definition [24 Then, one de-
fines the 1-form.:

0. dfpta
T g pthell a2 )’

which is C* on 0 and supported in Q1(z) \ Qa(x) (see (110)). Moreover, for every
h small enough, one defines:

T — 7Th wﬂ?
0 mn el e

and OF = Ay p(mnts) ,
g n(Trtbe)llarL2 )

which are well defined for every h small enough (see indeed Proposition@) and where
we recall that the orthogonal projector mj, on L*(Q) is defined by (113)).

A consequence of Proposition [26| on the families (z/;g ) introduced

in Definition |28|is the following.

seUy and (@g)xeuo
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Proposition 29. Let f : @ — R be a C*° Morse function which satisfies
and ((H2)| Let x,y € Ug. Then, there exists ¢ > 0 such that for every h small
enough:

<1/};:T71/}Z7/r>L2(Q) = <¢x7¢y>Lz(Q) + 0(67%)7
and

<@§, @§>A1L2(Q) = <®xa @y>A1L2(Q) + O(h)'

Proof. Let us recall that the orthogonal projector 7, and A?h commute on D(Ayp)
and that ¢, € D(Agh). Then, for every x,y € Uy, it holds

(mﬂbx, ﬂ'hwy>A1L2(Q) = <w$7 ¢y>A1L2(Q) —((1 = mp)tu, ¢y>A1L2(Q)’

and

(dyn(The), df,h(ﬂhwy»/\lp(g) = (dy nu, df,h1/}y>A1L2(Q)— (A=), Af,h¢y>A1L2(Q)-

Proposition 29]is then a direct consequence of these identities together with Proposi-

tions 25| and [26] (see also (41)). |

The Gram matrices of the families (wf)x cUs and (©y),cy, are not necessarily quasi-
unitary, i.e. of the form Id + o(1), when h — 0. For the family (I/Jz)xeuo, this
follows from the fact that a global minimum of f in supp, can also be a global
minimum of f in supp v, (see item 4.(i) in Section. For the family (0z),¢y,, this
follows from the fact that (dspis, df’hwy>A1L2(Q) can be of the same order as both
‘|df7h7/’x||?\lL2(Q) and de,hd’wH?\lL?(Q) (see item 2.(ii) in Proposition . However,
according to Proposition [32] below, these families are, in the limit h — 0, uniformly
linearly independent in the sense of the following definition (see [19]).

Definition 30. Let H be a Hilbert space, n > 1 be an integer smaller than dim H,
and B’ be a family of n elements of H depending on a parameter h > 0. The family
B’ is said to be uniformly linearly independent in the limit h — 0 if there exists C' > 0
and hg > 0 such that for all h € (0, hg), the family B’ is linearly independent and for
some (and thus for any) orthonormal family B of Span(B’) and for some (and thus
for any) matriz norm || - || on R™*™ it holds

HMat&B/(Id)H <C and HMatB/ﬁ(Id)H <C.

Remark 31. Since the Gram matriz GB of B writes GF' = "Matp 5(Id) Matp 5(1d),
the family B' is uniformly linearly independent in the limit h — 0 if and only if
there exists a constant C' > 0 independent of h such that, for every h small enough,
% < GP' < C in the sense of quadratic forms.

Proposition 32. Let f : @ — R be a C° Morse function which satisfies
and |(H2). Then, the family of functions (@Z)g)zeuo (resp. the family of 1-forms
(©%F)zeu,/) introduced in Definition is uniformly linearly independent in L?(Q)
(resp. in ALL%(Q)) in the limit h — O (see Definition @) In particular, (V7)
a basis of Ranmy, for every h small enough.

zeUg t§
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The following lemma, which is a direct consequence of Proposition item 1 in
Proposition 25 and Definition 28] will be used in the proof of Proposition

Lemma 33. Let f : Q — R be a C* Morse function which satisfies|(H1)| and [(H2)|,
and x € Uy.

1. When there exits z € j(x) such that |V f(z)| # 0 (in this case z € 02), one has
in the limit h — 0,

C
102 , = == 1+ 0(1)),
M2V E) Y i), v )20 Co ( )

where the constant c, . is defined in (90) and V%"SQ (z) is defined in .

2. When |Vf(z)] = 0 for every z € j(x), one has in the limit h — 0, for every
z€j(@),
Ce,z

o . Cax
[ HAlL2(v‘51 2(2))) Zpej(r) Cap

(1+0(1)),

where the constants c, . are defined in and and V%’az(z) in
and .

Proof of Proposition[33 In view of Proposition 29 and of Remark Proposition
is equivalent to the fact that the family (wx)m cUo (resp. (Oz),ecy,) is uniformly
linearly independent in L2() (resp. in A'L?(Q2)), in the limit h — 0. Moreover,
the proof of this property for (sz)x cUo is exactly the same as the one made in 19|
Section 4.2]. Let us now prove that (©;),cy, is uniformly linearly independent in
A'L%(Q) in the limit A — 0. The following proof is inspired by the analysis done
in [19, Section 4.2]. Let us recall that according to the construction of C; made in
Section one has:

( ero U {C xkl (xk Nk)}

E>1
where the sum over k is actually finite. For all £ > 1, let us divide
{Cj(xk71), .. .,Cj(:%Nk)} into ny groups (ng < Ng):

Nk
{Cj(xk,1)7 ey Cj(xk,Nk)} = U{Ci,ﬁﬂ ey CZ%
which are such that for all £ € {1,...,n},

{ the set J“ C] ..o is connected, and (115)

VCG{CJ:E]CJ,. kak}\{Ckb" Cmg} CﬁLJTmZ C?cé_(b

Let x,y € Uo Let k, k', ¢, and ¢’ be such that C;(z) € {Ci,g, 5 G} and G(y) €
{Cllc',f/? o Cp Z/} Let us recall that j(z) Nj(y) # 0 is equivalent to f(j(z)) = f(j(y))
(which imphes k = k') and Cj(y) N Cj(x) # O (which implies ¢ = ¢'). Therefore,
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when Cj(z) and Cj(y) belong to different groups, i.e. when (k',¢) # (k,¢), it holds
jx)Njly) = Q) Thus, according to item 2.(i) in Proposition [25| and to Definition

it holds (©,, >A1L2(Q) = 0. This implies that in A'L2(Q), it holds:

1 1
Span( (0z),cy, ) = @ { @ Span (0,  s.t. Cj(z) € {Cp, . ,C%})} (116)

E>1 0=1,...n

According to Definition in order to prove that (0;),cy, is uniformly linearly
independent in the limit h — 0, it then suffices to prove that for all £ > 1 and
¢ € {1,...,ng}, the family (0., zs.t. Cj(z) € {C}C’Z,...,CZ% ) is uniformly lin-
early independent in the limit A — 0. To this end, let £ > 1 and ¢ € {1,...,nt}.
For ease of notation, we denote my; by m, {C}M,...,C%} by {C!,...,C™}, and
(@m, z s.t. G(x) € {CM,...,C%}) by (01,...,0,,). For h small enough, let us
then consider some ¢ = p(h) € Span{©1,...,0,,}:

p= Zai(h) ©;, where for all i € {1,...,m}, a;(h) € R. (117)

From ((115) and using Lemma up to reordering {C!,... C™}, there exists z; €
UTP(Q) such that z; € 9CH\ (U,0C"). Let us now choose such a point z; as follows:

~ When {p € 9C' NUTP(Q) s.t.[V f(p)| # 0} = 0, one chooses any z; in UTP(Q) N
aCct\ (U?;Q OCZ) (and it holds [V f(z1)| = 0).

— When {p € 9C' N UTP(Q) s.t. |[Vf(p)| # 0} # 0, then C! is a principal well
of f (see (4 ) and thus C!,...,C™ are principal wells of f. In this case, one
chooses 21 € UTP(Q) N {p € 8C1 s.t.|Vf(p)] # 0} C 6Q and from (26), it holds
p ¢ Ur,oC.

In both cases, according to Lemma one has when h — 0,
”elHAlLZ(V%la‘SZ(zl)) =c(l+o(1)),

where ¢; € (0,1) is independent of h. Since z; € Ct\ (U, C') and since all
the cylinders defined by (54] ., ., and . are two by two disjoint, the cylinder
V%’é2 (z1) does not meet any of the cylinders assomated with the 2z € UTP(Q)nuU™,aC".
Therefore, by definition of ©; (see Definition and item 3 in Definition it holds
©; = 0 on V%’52(z1) for all ¢ € {2,...,m}. Taking the A'L?-norm of in
V%,&(zl), one has for h small enough, [|¢||a172(0) > HapHAlLQ(V%,aQ(ZI)) > Slai(h)|.
Thus, for h small enough, it holds:

2
lay(h)] < aH@HAlm(Q)- (118)

Let us now get a similar upper bound on |az(h)]. Since U™, C is connected (see (115)),
up to reordering {C2, ..., C™}, it holds C:NC2 # (), and one chooses 2 € USSP(Q)ﬂan
as follows:
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— When {p € 9C2NUTP(Q) s.t.|Vf(p)| # 0} = 0, one chooses any z, € 9C2NICL.

— When {p € 9C2 N UTP(Q) s.t.|Vf(p)| # 0} # 0, one chooses z2 € {p € IC? N
USP(@) 5.6V £ (p)] £ 0.

In both cases, z3 € UTP(Q)NAC?\ (UL, 9C"). Therefore, it holds ©; = 0 on V%’&"(ZQ)

for all i € {3,...,m} while, from Lemma H@QHAILQ(V%ﬁQ(ZQ)) = c2(1 4 o(1)) in

the limit » — 0 and for some cy € (0,1) independent of h. Taking the A!L2norm

of (117)) in V%’(SQ(ZQ) and using the fact that ||®1||A1L2(V‘sl’52(z2)) <1 lead to
Q

C2
lellanzate) = Nl paquins oy = —lar(®)] + Zlas(h)

for every h small enough. Using in addition (118]), one obtains
2 2
jaz(m)] < = (14 =) lellarzeo.
Repeating this last procedure m — 2 times leads to the existence of some C' > 0 such
that for every h small enough, it holds » ;" [a;(h)| < C'[|¢l[a112(). Using (L17), it

follows that the family (©1,...,0,,) is uniformly linearly independent in the limit
h — 0, which concludes the proof of Proposition ]

5.3 An accurate interaction matrix

Let f : © — R be a C*® Morse function which satisfies [(H1)| and |(H2). In
the rest of this section, one chooses for ease of notation an arbitrary labeling of

Up = {z1,...,7m,} and one assumes that (Vz),cy, = (¥1,--.,Pm,) and (Oz),cy, =
(0©1,...,0m,) (see Definitions [22| and are ordered according to this labeling.

Let us recall from Proposition [32[ that for every h small enough, (w;r)j {1 mo} and
(O7)c {1,...mo} 1€ uniformly linearly independent (see Definitions 28| and , which

implies in particular, according to Theorem |1}, that
Span (¢7) ey

Let us now consider an orthonormal basis By of Ran(n,) in L?(€2) and an orthonormal
basis By of Span (07 );c(1 i,y in ALL2(Q). The eigenvalues of A]?h which are smaller
than coh for h small enough are then the eigenvalues of the matrix M50 of A? p in

the basis By, and hence the singular values of the matrix S50t defined by
BB . — Matg, 5, (df,n), (119)

which follows from the relation M50 = t§B0.B1650.5B1  This reduces the analysis of
the asymptotic behaviour of the my smallest eigenvalues of A]l? p in the limit A — 0
to the study of the asymptotic behaviour of the singular values of the matrix S50-51,
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Note moreover that according to Definition the matrix S%051 defined by (119)
has the form
GBo.BL — tom g™ on (120)

where

CF .= Mat, (on Id), CF := Mat
1 a Bl’(ei )ie{l ..... mo}( ) 0 ° BO’(w;)je{l ~~~~~ mo }

and

(drnT, dpntl) pi o

for all i,j € {1,...,mo}, S7; =
orall 4,5 € { mo}, S s n 7 || g1 12 (122)

= de,hl/’?HAlem%@?’ @?>A1L2(Q)'

In order to give asymptotic estimates on the entries of the matrix S™ in the limit
h — 0, let us introduce the square matrix S defined by:

(dsnj, df7h¢i>A1L2(Q)

for all 4,5 € {1,...,mo}, Sij:=
rall g € Lol Sigi = (123)

= Hdﬁh%HAle(Q)(@jv9i>A1L2(Q)'

From Propositions and one has the following asymptotic result on the
entries of the matrices S and S™.

Proposition 34. Let f : @ — R be a C®° Morse function which satisfies
and|(H2)|, and i,5 € {1,...,mg}. We then have the following estimates when h — 0:

1. When j(z;) Nj(z;) =0, S;; = 0.

2. When j(z;) Nj(x;) # 0 and i = j,
l .
S = bt (i, (1+0(h)) +h Ko, (1+O(WR)))* e #UU =/
and, when j(x;) Nj(z;) # 0 and i # j,

WKz,
(i (1+O(h)) + h2 Ko, (1 + O(VR)))

where the constants Ky y,, Koz, and Ky, o, are defined in (108)) and (109)).

Sij=— o~ i (Fl(x)=F(z;))

’

N

3. Finally, it holds in any case
SZJ' = Si,j + O(h)SjJ‘.

In order to suitably factorize the matrix S™, let us first write S = T'D, where D and T’
are the following my x my matrices (defined for every h small enough):
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e the matrix D is the diagonal matrix such that for all j € {1,... ,mg},
D;j = hPi e—%(f(j(ﬂﬁj))—f(:vj))’ (124)

where 1 1
=g when Ky ;; # 0 and p; = 5 when Ky ;; =0, (125)

e the matrix T is the matrix SD™!, i.e.
Sij

forall 4,5 € {1,...,mo}, Tj;:= D (126)
J:

It then follows from ([124))—(126]) and Proposition 34| that in the limit h — 0,
S™ = (T+R)D with R=S"D'—T=(S"—-S)D"!=0(h)

and T' = O(1). Moreover, according to Lemma below, T' is invertible and its
inverse satisfies 7-1 = O(1). Thus, the matrix S™ factorizes as follows:

S™ = (T4O0(h))D = (Imy+O(R)T " NTD = (In, +O(h))TD = (I, +O(h))S. (127)

We conclude this section by stating and proving Lemma [35| which led to ((127)).

Lemma 35. Let f : Q — R be a C> Morse function which satisfies|(H1)| and [(H2)|
Let || - || be a matriz norm on R™M0*™M0_ Then, for every h small enough, the matriz T
defined by (126)) is invertible and there exists C' > 0 independent of h such that

IT| < C and || T7Y| < C.

Proof. We already noticed the relation ||T|| = O(1) in the limit h — 0. To prove
the relation ||[T7!| = O(1), let us first notice that from (123)), (124), (126), and
Definition [28] it holds

T=SD'=G°UD™,

where
U = Diag (||dpnthr[ i 120y 1dgmtmoll 1 12)) = Diag (Si1s-- - Smo,mo)

and G® is the Gram matrix of the family (©1,...,0my,) in A'L2(Q). Moreover, ac-
cording to , , and Proposition there exist positive constants cy, ..., cm,
such that limy_,o UD~! = Diag (c1,...,cm,) and thus DU~! = O(1). Lastly, let us
recall from Proposition [32| that the family (01,...,0m,) is uniformly linearly inde-
pendent in the limit h — 0 and then, according to Remark (GOt =0(1). It
follows that 7—' = DU~ (G®)~! = O(1), which concludes the proof of Lemma |
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5.4 Asymptotic behaviour of the small eigenvalues of A?h

In this section, one states and proves the main results of this work, Theorems [2] and [3]
below, on the precise asymptotic behaviour of the small eigenvalues of A? 5 in the
limit A — 0.

The proofs of these results make both use of the weak form of the Fan inequalities

stated in the following lemma (see for instance [34, Theorem 1.6]).
Lemma 36. Let A, B, and C be three my X mg matrices. It then holds:
¥i € {l,....mo}, nj(ABC) < |[A]|[|C][n;(B),

where, for any matric U € RMoXMo n (U) > -+ > nm, (U) denote the singular values
of U and ||U|| := /maxo(tUU) = n1(U) is the spectral norm of U.

In Theorem [2| one gives a precise lower and upper bound on every small eigenvalue
of A?h in the limit A — 0 under the sole assumptions |(H1)| and |(H2)l

Theorem 2. Let f : Q@ — R be a C™ Morse function which satisfies|(H1)| and|(H2)|,
and thus such that Ug # (0. Let us order the set Uy = {x1,...,2xm,} such that

— the sequence (f(j(z;)) — f(a:j))je{l o} 88 decreasing,

— and, on any J C {1,...,mo} such that (f(j(xj)) - f(:cj))jej is constant, the
sequence (pj)jeg 1s decreasing (see (125)).

Finally, for j € N*, let us denote by A;j, the j-th eigenvalue of A?h counted with
multiplicity. Then, there exist C' > 0 and hg > 0 such that for every j € {1, ceey mo}
and every h € (0, hg), it holds

1 B2Pi o= (FG(e)—f(z5) < A < Ch%i o7 (FG(x)—F(25))

C - T
Proof. For any matrix U € RM*M0 we will denote by ||U|| the spectral norm of
U and by [|[U]| = m(U) > -++ > Nme(U) the singular values of U. Let us recall
from Section that the mg smallest eigenvalues of A]? ;, are the singular values of
the matrix SPoP1 = ICTSTCT € R™0*™M0 where CF, CT, and S™ are defined in (121)

and in (122]). Moreover, using Proposition there exists ¢ > 0 such that for every h
small enough, it holds

max ([|¢5 . () et len ™)) < (128)

Thus, using Lemma[36] there exists ¢ > 0 such that for every h small enough, it holds
1

Vie{l,...,mp}, - ;i (S™) < n;(SBP) < en;(S™). (129)

Moreover, let us recall that S™ = (I, + O(h))TD according to (127) and then, using
Lemmata |35 and there exists ¢ > 0 such that for every h small enough,

Vi€ {1, mo}, —ni(D) < 0(57) < eny(D), (130)
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Finally, according to the ordering of the elements of Uy considered in the statement
of Theorem [2| the singular values of D satisfy (see indeed ([124])),

V] S {1, ey mg}, ’I7m0+1,j(D) = Dj,j = hpje_%(f(j(mj))_f(xj)).

Together with (129) and (130]), this implies the statement of Theorem 1

Lastly, in the main result of this work stated below, one gives asymptotic equiva-
lents of the smallest eigenvalues of A? 5, under additional assumptions on the maps j
and C;j built in Section which ensure that the wells Cj(x), € Ug, are adequately
separated.

Theorem 3. Let f : Q — R be a C> Morse function which satisfies|(H1)| and|(H2)|
and thus such that Uy # (. Let us assume that there exits m* € {1,...,mg} and a
labeling of Up = {x1,...,zm,} such that (see Section[3.3 for the constructions of the
maps j and C;):

1. It holds

fG() = flx) = ... 2 f((@me)) = flame) > max f(j(zi)) — f(zi),

i=m*-+1,...,mg

with the convention —max  f(j(x;)) — f(x;) = 0.

i=mg+1,mq

2. For all j € {1,...,m*}, j(z;)N U j(z) =0 (i.e. 9C5(xj) does not
i€{1,..,mo },i]
contain any separating saddle point which belongs to another 0C;(x;), i # j).

3. For all k,¢ € {1,...,m*} such that k # £ and C;j(z¢) C Cj(xy) (notice that this
implies f(x¢) > f(xk) by construction of C;), it holds f(xg) > f(xk).

For j € N*, let us denote by \;, the j-th eigenvalue of Afh counted with multiplicity.
Then, there exists ¢ > 0 such that in the limit h — 0, it holds

Amet1,n = O(€™ ") Ame .
Moreover, there exists hy > 0 such that for every h € (0, hy), there exists a bijection
Ap:{z1,..  eme ) — O’(A?h) N[0, Am= 4],

where the spectrum is counted with multiplicity, such that, for every j € {1,...,m*},
it holds when h — 0:

An(ag) = (VK s, (1 O() + Ko, (1 + O(VR)) Je UGS (131)

(A +VRAj, \/ﬁ —2(f((a;))—F(=5))
= (Bt o)y T e,
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where Ky 5, and Kz, are defined in (108), B; := > (det Hess f(q))_%,

gearg mincj(zj) f

20n,, f (2 1 1+ 15q(z
An= Y JE Aa= 0 ¥ (1+1o9(:)) lnal
seitay (det Hess flon(2)) T .&iwy |detHess f(2)[2
|V f(2)]|#£0 |V f(z)|=0

=

where 1pa(z) = 1 if z € 0Q and 1pq(z) = 0 if not, and pg denotes the negative
eigenvalue of Hess f(z) when z € j(z) and |V f(2)| = 0.
Finally, when j(x;)NOSY does not contain any critical point of f, the above error term

O(Vh) is actually of order O(h) in (131)).

Remark 37. The first statement of Theorem [3 is a simple consequence of its first
item together with Theorem @ (or even of Theorem |1] when m* = mg). Moreover,
when in addition f(j(x1)) — f(z1) > ... > f(j(zm=)) — f(xm=), the eigenvalues
AL by« Am=n are respectively Ap(x1),...,Ap(m*). They are then simple and, for
every £ € {1,...,m* — 1}, there exists ¢ > 0 such that it holds Np11p = 0(6*%))\&h
in the limit h — 0. In general, the situation is slightly more involved and, when for
ezample Theorem|[3 applies with m* = 2 and f(j(z1))— f(z1) = f(i(z2))— f(z2), The-
orem 3 permits to discriminate which eigenvalue among Ap(x1) and Ap(x2) is A
if and only if (A1,1/B1,A12/B1) # (A21/B2, A22/B3), even though A, is simple
(see [24] in this connection when f is a double-well potential).

Remark 38. The term O(v/h) in (I31) is in general optimal, see Rema'r’k and item 1
in Proposition [25.

Proof. Let us work with the labeling of Uy = {z1,...,2m,} considered in the state-
ment of Theorem Note in passing that the labeling of {zm+11,...,Zm,} is ac-
tually arbitrary. Let us moreover order (vz),cy, = (¥1,---5%m,) and (Oz),cy, =
(©1,...,0m,) according to this labeling of Uy. The proof of Theorem [3|is divided
into several steps and is partly inspired by the analysis led in [19, Section 7.4] which
generalizes the procedure made in [16}/17] (see also |29} Section C.3.1.2]).

Step 1. Let us first choose an adapted orthonormal basis By of Ran(wy,) in L?(Q)
and an adapted orthonormal basis B; of Span (G)Tr)ie{1 mo} 10 AL L2(Q).

i /ied{l,...,
Step 1.a) Choice of the basis By.
Let us first prove that items 2 and 3 in Theorem |3| imply the existence of ¢ > 0 such

that for every h small enough,

Vij € {1,....m"}, (i, ¥5)12q) = 8ij + O(e 7). (132)

To this end, let us recall that from and Definition one has

Vi e {]‘7"'7m0}7 supp 1/% - Ql(xl) (133)

and let us consider 7, j € {1,...,m*}. According to item 2 in Theorem it thus holds
j(z;) Nj(z;) = 0 and, according to item 4.(i) in Section there are two possible
cases which finally lead to ((132):
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— either C5(x;) NC;(x;) = 0, in which case, according to item 3.(i) in Definition
and to ([133)), the supports of ¢; and v; are disjoint and thus (v, %;)r2(q) = 0,

— or, up to switching 7 and j, Cj(z;) C Cj(x;), in which case, according to item 3.(i)
in Definition Qi(xj) C Qa(z;) C Qi(z;). In this case, it then follows from
Deﬁnition , and , that

S, (o) Gi0j € f
(Vi ¥j)r2(0) = i) 7

Zy; Za, < Chfg 67%(2f(wj)*f(:ri)ff(xj))’

where we also used the relation minm f= minm [ = f(z;) arising from
the construction of the map C; and item 1 in Definition Moreover, using
item 3 in Theorem |3 it holds f(x;) > f(x;), and thus, there exists ¢ > 0 such
that when A — O:

(Wi, ¥j) 200y = O(e ™).

Then, according to (132)) and to Proposition there exists ¢ > 0 such that for all
i,7 € {1,...,m*}, it holds in the limit h — 0:

(T, T ) arre() = 0ij + OeH). (134)

Let us now consider the standard Gram-Schmidt orthonormalization By := (e1, ..., em,)
of the family (¢7,...,97 ) in L?(Q). According to (134), it thus holds, for all

Ee{l,...,m"}
k—1

e = (1+ O(e_%))w;r + ZO(e_ﬁ) Vg -
q=1
Thus, the matrix C§ defined by has the block structure

I+ +O0(e™ ) [CF2

0 | (135)

where I« is the identity matrix of R™ ™" [CF], € RMo=m")x(mo=m") jg an in-
vertible matrix (since, according to Proposition C{¥ is invertible), and [Cfl2 €
R™ *(mo—m") " One then defines the mg x mg matrix Cy by

I+ [CF2

Co = : (136)

so that, according to Proposition Cy is invertible and

I+ —[Cl2[CF15

- = O(1), and C;1CF = I, +0 (e #). (137)
0 [00]4 1 0 0 0 ( )

Co=0(1), Cyjt = [

Step 1.b) Choice of the basis B;.
According to Definition item 2 in Theorem (3| and to item 2.(i) in Proposition
it holds, for every h small enough:

Vj € {1,. ce m*}, Vi € {1, .. .,mo}, <@i7@j>A1L2(Q) = 52'73'. (138)

95



Thus, using in addition Proposition it holds, for every h small enough:
Vj € {1,...,m*}, Vi € {1,...,m0}, <®?7®?>A1LQ(Q) :5i7j+0(h). (139)

Let us now consider the standard Gram-Schmidt orthonormalization B; := (Y1,..., Tm,)
of the family (67,...,0F, } in A'L?(Q). It thus holds in the limit h — 0,

k—1
Vke{l,....,m*}, Tp=(1+0(h)6F + > O(h) O]
q=1

and, for some real numbers ay 4(h), k € {m*+1,... ,mg} and ¢ € {m* +1,...,k},

m* k
Vke{m +1,...,mo}, Yp=) O(Mh)OF+ >  ary(h)6].
q=1 g=m*+1

Hence, with this choice of B;, the matrix CT defined by (121)) has the block structure

In- +O(h) O(R)

0 [CTh|’ (140)

Ccr =

where [CT]y € R(mo=m")x(mo—m") i ap invertible matrix (since CT is invertible, see
indeed Proposition and, according to (128)), [CT]4 = O(1) and [CT];! = O(1) in
the limit h — 0. Finally, let us define the mg x mg matrix C; by

- 0
Cy = , 141
S by
so that, in the limit h — 0, it holds
C1=0(1) and C;'=0(1) (142)

and
ICT " (Img +O (1) CT || = 140(h) and |[(CT) ™" (Imy +O(R)) Ci|| = 1+O(h). (143)

Step 2. Let us recall that in the limit A — 0, the mg smallest eigenvalues of A]]?’ h
are the singular values of the matrix S50t = tCT ™ CF € R™0X™o where CJ, CT,
and ST are defined in and in . Moreover, the relation leads to the
factorization (see for the definition of the matrix .S)

SBoBL = (O (Imy + O(R))CT) 'C1 S Cy (C5 A CF).
Using , , and Lemma it follows that
Vi€ {l,....mo}, n;(SPP) =n;({C1SCy) (1+O0(h)). (144)

Hence, the mg smallest eigenvalues of A?’ ,, are, up to a multiplicative term of order
(1 + O(h)), the squares of the singular values of the matrix ‘Cy S Cp.
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In order to prepare the precise computation of these singular values made in the
following step, let us first suitably decompose the matrices taking part into ‘C7 S Cj.
To this end, let us introduce

k* e {1,...,m"}

and write the diagonal matrix D defined by (124) and (125 as follows:

Dy 0
D = [01 DJ : (145)

where D is the square diagonal matrix of size k* defined by

Dy = Diag(hpl e—%(f(.i(ﬁfl))—f(ﬂm))7 o P 6—%(f(.i($k*))—f($k*))) (146)

and Do is the square diagonal matrix of size mg — k* defined by

Dy := Diag(hP<+1 e~ 1 (FG@e 1)) = flzega) , hPmo e*%(f(j(wmo))*f(wmo))). (147)

5.

Moreover, according to (138]), the matrices S = ("df7h¢j|’A1L2(Q) <9i,®j>A1L2(Q))ij
and T = SD~! defined in (123) and in (126)) have the block structure

Si 0 T, 0
S = !01 52] and T = 01 - (148)
where:
— T1 and S are square diagonal matrices of size k* defined by
Sy := Diag(Si1,...,S¢uk) and Ty:=S; D7}, (149)
— Ty, Sy € RMo—k)x(Mo—k") 41 according to Lemma
Ty = Sy Dy! is invertible and T, ' = O(1). (150)

Using in addition (136]) and (141)), the matrices Cp, C; and thus 'C1SCy have the
block structures

Ie U Ie 0O . S SU
Co = C, = d th C1SCy= , (151
=lo v ™ [0 W]’ and thus “CySCo =1 ) gy (151)
where, according to (137)) and (142), it holds in the limit A — 0:
UV=0@1), V'=001) and W,W~1=0(1). (152)

Note lastly that when k* = m*, one has U = [C{]2, V = [C{l4, and W = [CT]4.

Step 3. We are now in position to prove Theorem [3| To this end, we will compute
the smallest singular values of the matrix 'C; S Cy that we have seen to be, up to a
multiplicative error term of order 1+O(h), the square roots of the smallest eigenvalues

of A? , (see indeed (144)).

o7



In the following, one uses the block decompositions exhibited in (145)—(151) and, for
¢ € N, one denotes by || - ||2 the Euclidean norm on R’. Moreover, for every h small
enough, one chooses the ordering of the set {z1,...,2Zm«}, depending on h, such that

the sequence (SM) is increasing.

je{lv"'vm*}

According to (144)), (149), and to Proposition it then suffices to show that there
exists ¢ > 0 such that it holds in the limit h — 0,

VOe{1,....m* ), Nmg—es1("C1 S Co) = Sy (1+0(e™#)). (153)

To this end, we recall that by the Max-Min principle, one has for every £ € {1,...,mg},

Mmo—t41("C1.8 Cp) = permo S pg et | *C1 S Coyl|, (154)
= min max ||'C1 S Coyl|,. (155)

ECR™0, dim E=¢ yeE;|y|l2=1

To obtain the upper bound in (153)) for some arbitrary ¢ € {1,...,m*}, we apply (155))
which gives, according to (151]) applied with k* = ¢ and to ((149)):
t t
Nmo—t+1("C1 S Cpy) < max Cy SCh(y,0,...,0) = max S1y
e yeR? ; [ly2=1 | I yeR?; [yll2=1 IS,
= Spy. (156)

)

Let us now prove the lower bound in ((153)) for some arbitrary ¢ € {1,...,m*}. For that
purpose, let us introduce y* € R™ such that [|y*|s = 1, y* € (R x {0,...,0})"*,
and

1P S5 Covlle = g™y gyt |95 PVl
Note that according to , it holds in particular
Mmo—t+1('C15Co) > ||'CLSCoy*|, (157)
Let us also introduce k* € {¢,...,m*} such that
£Gwe)) = Fee) = ) = floe) > s fGiGe) — f@). (59

Note that this is indeed possible by the first item of Theorem [3| Let us then write
y* = (y,y;), where y; € R¥ and y; € R™~K" and let us prove that there exists
¢ > 0 such that when h — 0,

lyi ||z = O(e™F). (159)

According to (157)), (151 applied with k*, and to the triangular inequality, one has

Mmo—t+1("C1 .S Co) > ||1C1 S Co (i, v, = ||*CL S Co (0, 93) |, — || C1 S Co (v, 0)],
=[|*C15Co (0,55) |, — || S1vall,-

Using in addition (156) and (149) with k*, it follows that in the limit h — 0:

1°C18Co (0,55)[|, < See+lISillllyzllz < 2 S e (160)
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Moreover, according to (151)), one has

1
Iersco@ull, = (| Uil + | WSV uil3)" = | WSV ui,

where, using (150)) and (152, it holds for some C' > 0 in the limit h — 0,

* * 1 —1||— *
HtWSQVyb = HtWT2D2Vl/bH2 > EHDQ 1” 1HZ/bHZ-

I

It then follows from (160) that in the limit A~ — 0, it holds
lyzll2 < 2C D3 || Sie s

which leads to according to item 2 in Proposition , and to .
Then, using (157), with k*, and together with the fact that U = O(1)
(see ([152])), we obtain the existence of ¢ > 0 such that it holds in the limit A — 0,
Mmo—+1('CLS Co) 2 [|*CLS Coy™ ||, = [[Suwall, = [S1U s,
= [IS1zll, = 151110 (e™F).
Hence, using in addition ||y}|l2 = 1+ O(e_%) (which follows from and ||y*||2 =

1), yiy = - = Yoy = 0 (since y* € (R x {0,...,0h)F), (49), item 2 in
Proposition and (|158]), it holds in the limit h — 0,

Nmo—t4+1(1C18 Co) > Spp(14 O(e™h)) — Sie s 0(67%) > See(1+ O(e2r)),

which concludes the proof of (153|). The proof of Theorem [3]is thus complete. ]
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