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Bayesian 3D Reconstruction of Complex Scenes from Single-Photon Lidar Data\ast 

Juli\'an Tachella\dagger , Yoann Altmann\dagger , Ximing Ren\dagger , Aongus McCarthy\dagger , Gerald S. Buller\dagger ,
Stephen McLaughlin\dagger , and Jean-Yves Tourneret\ddagger 

Abstract. Light detection and ranging (Lidar) data can be used to capture the depth and intensity profile
of a 3D scene. This modality relies on constructing, for each pixel, a histogram of time delays
between emitted light pulses and detected photon arrivals. In a general setting, more than one
surface can be observed in a single pixel. The problem of estimating the number of surfaces, their
reflectivity, and position becomes very challenging in the low-photon regime (which equates to short
acquisition times) or relatively high background levels (i.e., strong ambient illumination). This
paper presents a new approach to 3D reconstruction using single-photon, single-wavelength Lidar
data, which is capable of identifying multiple surfaces in each pixel. Adopting a Bayesian approach,
the 3D structure to be recovered is modelled as a marked point process, and reversible jump Markov
chain Monte Carlo (RJ-MCMC) moves are proposed to sample the posterior distribution of interest.
In order to promote spatial correlation between points belonging to the same surface, we propose
a prior that combines an area interaction process and a Strauss process. New RJ-MCMC dilation
and erosion updates are presented to achieve an efficient exploration of the configuration space. To
further reduce the computational load, we adopt a multiresolution approach, processing the data
from a coarse to the finest scale. The experiments performed with synthetic and real data show that
the algorithm obtains better reconstructions than other recently published optimization algorithms
for lower execution times.
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1. Introduction. Reconstruction and analysis of 3D scenes have a variety of applications,
spanning earth monitoring [16, 35, 28], underwater imaging [27, 18], automotive [36, 41], and
defense [14]. Single-photon light detection and ranging devices acquire range measurements
by illuminating a 3D scene with a train of laser pulses and recording the time-of-flight (TOF)
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of the photons reflected from the objects in the illuminated scene. Using a time correlated
single-photon counting (TCSPC) system, a histogram of time delays between emitted and
reflected pulses is constructed for each pixel. For a given pixel, the presence of an object is
associated with a characteristic distribution of photon counts in the histogram. The position
and number of counts provide depth and reflectivity information, respectively. In scenarios
where the light goes through a semitransparent material (e.g., windows or camouflage) or
when the laser beam is wide enough with respect to the object size (e.g., distant objects), it is
possible to record two or more surfaces in a single pixel. The recovery of multiple objects per
pixel is thus very important in many applications, such as tree layer analysis [48] or detection
of hidden targets behind camouflage [19].

In order to reconstruct the 3D scene from single-photon Lidar data, it is necessary to
discriminate the photon counts associated with each surface from the ones linked to the back-
ground illumination. When the background level can be neglected, the traditional approach
consists, under the single-peak assumption, of log-match filtering the Lidar waveforms and
finding the maximum of the filtered data for each pixel [44], which is the maximum likelihood
(ML) solution for a Poisson noise assumption (a matched filter is used for Gaussian noise).
While this method obtains good results for high photon counts, it gives poor estimates when
the background illumination is high or the number of recorded photons is low. Several studies
have focused on improving the ML estimates in the single-depth estimation problem. Altmann
et al. [5] proposed a Bayesian approach, whereas Shin et al. [42], Halimi et al. [17], and Rapp
and Goyal [38] suggested three different optimization alternatives. The method introduced in
[42] estimates the reflectivity and depth information independently, considering a rank-ordered
mean censoring of background photons as a preprocessing step. The optimization method in
[17] assumes a negligible background and estimates the depth and reflectivity jointly using an
alternating direction method of multipliers (ADMM) algorithm. The algorithm proposed in
[38] uses an adaptive superpixel approach to censor background photons and improve depth
and reflectivity estimates. In the multiple-surface-per-pixel configuration, Hernandez-Marin,
Wallace, and Gibson [23] proposed a pixelwise reversible jump Markov chain Monte Carlo
(RJ-MCMC) algorithm. While this approach is able to find an a priori unknown number of
surfaces and compute associated uncertainty intervals, it involves a prohibitive computation
time. Moreover, it performs poorly when photon counts are relatively low, as it does not
account for spatial correlation between neighboring pixels. In later work, Hernandez-Marin,
Wallace, and Gibson [24] proposed an extension to the latter algorithm, where a Potts model
was used to regularize spatially the number of surfaces per pixel. However, the computational
load of their algorithm was prohibitive for large images and the correlation between the am-
plitude and position of each object was not modelled a priori. There have been other attempts
to derive statistical models for Lidar waveforms with an unknown number of objects per pixel,
such as Mallet et al. [29] with full waveform topographic Lidar, where a marked point process
was considered for each pixel separately. While they defined interactions between pulses in
the same pixel, no spatial interaction between points of neighboring pixels was considered.
Recently, new optimization approaches have been proposed to tackle the multiple-object-per-
pixel problem: Shin et al. [43] introduced an \ell 1 norm regularization for the recovered peak
positions, followed by a postprocessing of the 3D point cloud. Halimi et al. [19] improved it
by considering a total variation (TV) operator and the \ell 21 norm.
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Figure 1. (a) depicts a synthetic 3D point cloud with Nr = 99 rows, Nc = 99 columns, and T = 4500
bins. The scene consists of three plates with different sizes and orientations and one ball-shaped object. The
intensity represents the mean number of photons associated with each 3D point. (b) illustrates the depth of the
first object for each pixel. (c) shows the intensity of three different pixels. The observed photon counts and
underlying Poisson intensity of a pixel with three surfaces are shown in (d).

In this work, we introduce a new spatial point process within a Bayesian framework for
modelling single-photon Lidar data. This novel approach considers interactions between points
at a pixel level and also at an interpixel level, in a variable dimension configuration. Here,
we consider each surface within a pixel as a point in the 3D space, which has a mark that
indicates its intensity. Natural Lidar point clouds exhibit strong spatial clustering, as points
belonging to the same surface tend to be close in range. Conversely, points in a given pixel
tend to be separated as they correspond to different surfaces. Figure 1 shows an example
of a synthetic Lidar 3D point cloud to illustrate this phenomenon. This prior information is
added to our model using spatial point processes: repulsion between points at a pixel level is
achieved with a hard constraint Strauss process, and attraction among points in neighboring
pixels is attained by an area interaction process, as defined in [47]. Moreover, the combination
of these two processes implicitly defines a connected-surface structure that is used to efficiently
sample the posterior distribution. To promote smoothness between reflectivities of points in
the same surface, we define a nearest neighbor Gaussian Markov random field (GMRF) prior
model, similar to the one proposed in [31]. Inference about the posterior distribution of points,
their marks, and the background level is done by an RJ-MCMC algorithm [10, Chapter 9],
with carefully tailored moves to obtain high acceptance rates, ensuring better mixing and
faster convergence rate. In addition to traditional birth/death, split/merge, shift, and mark
moves, new dilation/erosion moves are introduced, which add and remove new points by
extending or shrinking a connected surface, respectively. These moves lead to a much higher
acceptance rate than those obtained for birth and death updates, as they propose moves
to and within regions of high posterior probability. To further reduce the transient regime
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of the Markov chains and reduce the computational time of the algorithm, we consider a
multiresolution approach, where the original Lidar 3D data is binned into a coarser resolution
data cube with higher signal power, lower number of points, and same data statistics. An
initial estimate obtained from the downsampled data is used as the initial configuration for
the finer scale, thus reducing the number of burn-in iterations needed for the Markov chains
to convergence. We assess the quality of reconstruction and the computational complexity
in several experiments based on synthetic Lidar data and three real Lidar datasets. The
algorithm leads to new efficient 3D reconstructions with processing times similar to those
of other existing optimization-based methods. This method can be successfully applied to
scenes where there is only one object per pixel, thus generalizing other single-depth algorithms
[42, 5, 19, 38]. Moreover, the proposed algorithm can also be applied in scenes where each
pixel has at most one surface and it generalizes other target detection methods [6]. We refer
to the proposed method as ManiPoP, as it aims to represent 2D manifolds with a 3D point
process. In summary, the main contributions of this paper are

1. a new Bayesian model based on a marked point process prior for modelling spatially
correlated 3D point clouds,

2. new reversible jump moves proposed for sampling the posterior distribution more
efficiently,

3. a multiresolution processing approach to improve the convergence rate, which also
allows for a rapid information extraction using only the coarser scales.

The remainder of this work is organized as follows. Section 2 presents the Bayesian
model considered for the analysis of multiple-depth Lidar data. Section 3 details the sampling
strategy using an RJ-MCMC algorithm. Section 4 discusses the proposed multiresolution
approach and other implementation details to reduce the computational load of the algorithm.
Results of experiments conducted on synthetic and real data are presented in section 5. Finally,
section 6 summarizes our conclusions and discusses future work.

2. Proposed Bayesian model. Recovering the position and intensity of the objects from
the raw Lidar data is an ill-posed problem, as the solution is not uniquely identified given the
data (e.g., the histogram of Figure 1d). This problem can be tackled in a Bayesian framework,
where the data generation mechanism is modelled through a set of parameters \bfittheta that can be
inferred using the available data \bfitZ . The probability of observing a Lidar cube \bfitZ is given by
the likelihood p(\bfitZ | \bfittheta ). The a priori knowledge of the unknown parameters \bfittheta is embedded in
the prior distribution p(\bfittheta | \Psi ) given a set of hyperparameters \Psi . Following Bayes' theorem,
the posterior distribution of the model parameters is

(2.1) p(\bfittheta | \bfitZ ,\Psi ) =
p(\bfitZ | \bfittheta )p(\bfittheta | \Psi )\int 
p(\bfitZ | \bfittheta )p(\bfittheta | \Psi )d\bfittheta 

.

2.1. Likelihood. A 3D point cloud is represented by an unordered set of points

(2.2) \Phi = \{ (\bfitc n, rn), n = 1, . . . , N\Phi \} ,
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where N\Phi is the total number of points, \bfitc n = (xn, yn, tn)
T \in \BbbR 3 is a coordinate vector, and

rn \in \BbbR + is the intensity1 of the nth point. For clarity in the notation, we will also denote
the set of point coordinates as \Phi c = \{ \bfitc n, n = 1, . . . , N\Phi \} and the set of intensity values as
\Phi r = \{ rn, n = 1, . . . , N\Phi \} .

According to [23], in the presence of distributed objects, the observed photon count in
bin t and pixel (i, j) follows a Poisson distribution, whose intensity is a mixture of the pixel
background level bi,j and the responses of the surfaces present in that pixel, i.e.,

(2.3) zi,j,t| (\Phi , bi,j) \sim \scrP 

\left(  \sum 
n:(xn,yn)=(i,j)

gi,jrnh(t - tn) + gi,jbi,j

\right)  ,

where t \in \{ 1, . . . , T\} , T is the number of histogram bins, h(\cdot ) is the known temporal instru-
mental response, and gi,j is a scaling factor that represents the gain/sensitivity of the detector
in pixel (i, j). Assuming mutual independence between the noise realizations in different time
bins and pixels, the full likelihood can be written as

(2.4) p(\bfitZ | \Phi ,\bfitB ) =

Nc\prod 
i=1

Nr\prod 
j=1

T\prod 
t=1

p(zi,j,t| \Phi , bi,j),

where \bfitZ is the full Lidar cube with [\bfitZ ]i,j,t = zi,j,t, \bfitB is the background 2D image, and Nr

and Nc are the numbers of pixels in the vertical and horizontal axes, respectively. Note that
p(zi,j,t| \Phi , bi,j) in (2.4) is the Poisson distribution associated with (2.3).

2.2. Markov marked point process. The set of points \Phi is defined inside the 3D space
\scrT = [0, Nr] \times [0, Nc] \times [0, T ]. Interactions between points can be characterized by defining
densities with respect to the Poisson reference measure, i.e.,

f(\Phi c) \propto f1(\Phi c) . . . fr(\Phi c),

where \propto means ``proportional to."" A more detailed definition of the point process theory can
be found in section SM1. In this work, we only consider Markovian interactions between
points. The benefits of this property are twofold: (a) Markovian interactions are well suited
to describe the spatial correlations in natural 3D scenes [32] and (b) inference is performed
using only local updates, which leads to a low computational complexity. We can constrain
the minimum distance between two different surfaces in the same pixel using the hard object
process with density

(2.5) f1(\Phi c) \propto 

\left\{   
0 if \exists n \not = n\prime : xn = xn\prime , yn = yn\prime ,

and | tn  - tn\prime | < d\mathrm{m}\mathrm{i}\mathrm{n},
1 otherwise,

which is a special case of the repulsive Strauss process [47], where d\mathrm{m}\mathrm{i}\mathrm{n} is the minimum
distance between two points in the same pixel. Attraction between points of the same surface in

1The reflectivity of the point, limited to (0, 1], can be obtained as max\{ 1, rn/(\eta N\mathrm{r}\mathrm{e}\mathrm{p}

\sum 
t h(t))\} , where

\eta \in [0, 1] is the quantum efficiency of the detector and N\mathrm{r}\mathrm{e}\mathrm{p} is the number of laser pulses sent per pixel.
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neighboring pixels cannot be modelled with another Strauss process, due to a phase transition
of extremely clustered realizations, as explained in [47, 32]. However, a smoother transition
into clustered configurations can be achieved by the area interaction process, introduced by
Baddeley and van Lieshout in [8]. In this case, the density is defined as

(2.6) f2(\Phi c| \gamma a, \lambda a) = k1\lambda 
N\Phi 
a \gamma 

 - m
\Bigl( \bigcup N\Phi 

n=1 S(\bfitc n)
\Bigr) 

a ,

where \lambda a is a positive parameter that controls the total number of points, \gamma a \geq 1 is a parameter
adjusting the attraction between points, and k1 is an intractable normalizing constant. The
exponent of \gamma a in (2.6) is the measure m(\cdot ) over the union of convex sets S(\bfitc n) \subseteq \scrT centered
around each point \bfitc n. In this way, the density is bigger when the intersection of the convex
sets around two interacting points is closer to the union of them, i.e., if the points are clustered
together. The special case \gamma a = 1 corresponds to a Poisson point process (without considering
a Strauss process) with an intensity proportional to \lambda a\lambda (\cdot ) (see section SM2 for details). In
the rest of this work, we fix \lambda (\scrT ) = 1 and control the number of points with the parameter
\lambda a. The set S(\bfitc n) is defined as a cuboid with a face of Np \times Np squared pixels and a depth
of 2Nb + 1 histogram bins, and m(\cdot ) is the Lebesgue measure on \scrT . This set determines a
cuboid of influence around each point, allowing interactions up to a distance of \lfloor Np/2\rfloor pixels
and Nb bins. As two points in the same pixel generally correspond to different surfaces, we set
d\mathrm{m}\mathrm{i}\mathrm{n} > 2Nb, thus constraining the minimum distance between two surfaces in the same pixel.
The combination of the Strauss process and the area interaction process implicitly defines a
connected-surface structure.

(a) (b) (c)

Figure 2. (a) and (b) show two different point configurations. Each point \bfitc n is denoted by a black dot, and
the corresponding blue rectangle depicts the area of the convex set S(\bfitc n). The configuration shown in (a) has a
lower prior probability than the one shown in (b), as the union of all sets S(\bfitc n) is smaller in (b) with respect
to the Lebesgue measure. (c) shows the connectivity at an interpixel level when Np = 3. The green and blue
squares correspond to pixels with points associated with two different surfaces, while the white squares denote
pixels without points. For simplicity, in this example all points are considered to be present at the same depth.
Note that each pixel can be connected with at most eight neighbors.

Figures 2 and 3 illustrate the connected-surface structure via several examples. The
hyperparameters \gamma a and \lambda a of the area interaction process are difficult to estimate, as there
is an intractable normalizing constant in the density of (2.6) and standard MCMC methods
cannot be directly applied. Although there exist ways of bypassing this problem (e.g., [33]),
we fixed these hyperparameters in all our experiments to ensure a reasonable computational
complexity.
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(a) (b)

Figure 3. In both figures, the red color denotes the space where no other points can be found (Strauss
process), whereas the blue color denotes the volume where other points are likely to appear (area interaction
process with Np = 3). (a) Example of configuration with one point. (b) Example of configuration with three
points.

After defining the spatial priors, the marked point process is constructed by adding the
intensity marks rn to the set \Phi c with the density detailed in the next section. An illustration
of the proposed prior can be found in section SM4.

2.3. Intensity prior model. In natural scenes, the intensity values of points within the
same surface exhibit strong spatial correlation. Following the Bayesian paradigm, this prior
knowledge can be integrated into our model by defining a prior distribution over the point
marks. Gaussian processes are classically used in spatial statistics. However, the underly-
ing covariance structure needs to consider too many neighboring points to attain sufficient
smoothing, which involves a prohibitive computational load. In order to obtain similar results
with a lower computational burden, we propose to exploit the connected-surface structure to
define a nearest neighbor Gaussian Markov random field (GMRF), similar to the one used by
McCool et al. in [31]. First, we alleviate the difficulties induced by the positivity constraint
of the intensity values by introducing the following change of variables, which is a standard
choice in spatial statistics dealing with Poisson noise (see [39, Chapter 4]):

(2.7) mn = log(rn), n = 1, . . . , N\Phi c .

Second, spatial correlation is promoted by defining the following conditional distribution of
the log-intensities:

(2.8) p(mn| \scrM pp(\bfitc \bfitn ), \sigma 
2, \beta ) \propto exp

\left(   - 1

2\sigma 2

\left(  \sum 
n\prime \in \scrM pp(\bfitc n)

(mn  - mn\prime )2

d(\bfitc n; \bfitc n\prime )
+m2

n\beta 

\right)  \right)  ,

where\scrM pp(\bfitc n) is the set of neighbors of \bfitc n, d(\bfitc n; \bfitc n\prime ) denotes the distance between the points
\bfitc n and \bfitc n\prime , and \beta and \sigma 2 are two positive hyperparameters. The set of neighbors \scrM pp(\bfitc n)
is obtained using the connected-surface structure, where each point can have at most N2

p  - 1
neighbors, as illustrated in Figure 2. The distance between two points is computed according
to

d(\bfitc n; \bfitc n\prime ) =

\sqrt{} 
(yn  - yn\prime )2 + (xn  - xn\prime )2 +

\biggl( 
tn  - tn\prime 

lz

\biggr) 2

with lz = \Delta p/\Delta b, which normalizes the distance to have a physical meaning, where \Delta p and \Delta b

are the approximate spatial resolutions of one pixel and one histogram bin, respectively. This
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prior promotes a linear interpolation between neighboring2 intensity values, as explained in
[39]. In this work, we assume that \Delta p is constant throughout the scene. If the scene presents
significant distortion, i.e., objects separated by a significant distance in depth, \Delta p should
depend on the position by computing the projective transformation between world coordi-
nates and Lidar coordinates (a detailed explanation can be found in [13, 22]). Following the
Hammersley--Clifford theorem [20], the joint intensity distribution is given by the multivariate
Gaussian distribution

(2.9) \bfitm | \sigma 2, \beta ,\Phi c \sim \scrN (0, \sigma 2\bfitP  - 1),

where \bfitP is the unscaled precision matrix of size N\Phi \times N\Phi with the following elements:

(2.10) [\bfitP ]n,n\prime =

\left\{       
\beta +

\sum 
\~n\in \scrM pp(\bfitc n)

1
d(\bfitc n;\bfitc \~n)

if n = n\prime ,

 - 1
d(\bfitc n;\bfitc n\prime )

if \bfitc n \in \scrM pp(\bfitc n\prime ),

0 otherwise.

The parameter \sigma 2 controls the surface intensity smoothness, and \beta 
\sigma 2 is related to the intensity

variance of a point without any neighbor. In addition, the parameter \beta ensures a proper joint
prior distribution, as \bfitP is diagonally dominant, thus full rank [39].

2.4. Background prior model. Noncoherent illumination sources, such as the solar illu-
mination in outdoor scenes or room lights in the indoor case, are related to arrivals of photons
at random times (uniformly distributed in time) to the single-photon detector. The level of
these spurious detections is modelled as a 2D image of mean intensities bi,j with i = 1, . . . , Nr

and j = 1, . . . , Nc. If the transceiver system of the Lidar is monostatic3 (e.g., the system
described in [30]), the background image is usually similar to the objects present in the scene
and exhibits spatial correlation, as background photons generally arise from the ambient light
reflecting from parts of the targets and being collected by the system. Hence, we use a hidden
gamma Markov random field prior distribution for \bfitB that takes into account the background
positivity and spatial correlation. This prior was introduced by Dikmen and Cemgil in [12]
and applied in many image processing applications with Poisson likelihood [2, 3]. In [12], the
distribution of bi,j is defined via auxiliary variables [\bfitW ]i,j = wi,j such that

bi,j | \scrM B(bi,j), \alpha B \sim \scrG 
\biggl( 
\alpha B,

bi,j
\alpha B

\biggr) 
,(2.11)

wi,j | \scrM B(wi,j), \alpha B \sim \scrI \scrG (\alpha B, \alpha Bwi,j),(2.12)

where\scrM B denotes the set of five neighbors as shown in Figure 4, \scrG and \scrI \scrG indicate gamma
and inverse gamma distributions, \alpha B is a hyperparameter controlling the spatial regulariza-

2The combination of a local Euclidean distance with a nearest neighbors definition can be seen to approxi-
mate the manifold metrics [45].

3The transceiver system is monostatic when the transmit and receive channels are coaxial and thus share
the same objective lens aperture.



 
 

 

 
 
 
 
 

 
 

 
 
 

 
 
 

 
 
 
 

 

 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

BAYESIAN 3D RECONSTRUCTION FROM LIDAR DATA 529

(a) (b)

Figure 4. (a) illustrates the gamma Markov random field neighboring structure \scrM B. Each bi,j is connected
to five auxiliary variables wi\prime ,j\prime as depicted by the continuous lines, including the one with the same subscript.
Similarly, each wi,j is also connected to five other variables bi\prime ,j\prime as indicated by the continuous lines. (b) shows
the directed acyclic graph of the proposed hierarchical Bayesian model. The variables inside squares are fixed,
whereas the variables inside circles are estimated.

tion, and

bi,j =

\left(  1

4

\sum 
(i\prime ,j\prime )\in \scrM B(bi,j)

w - 1
i\prime ,j\prime 

\right)   - 1

,(2.13)

wi,j =
1

4

\sum 
(i\prime ,j\prime )\in \scrM B(wi,j)

b(i\prime ,j\prime ).(2.14)

We are interested in the marginal distribution of the GMRF p(\bfitB | \alpha B) that integrates over all
possible realizations of the auxiliary variables wi,j . The expression of this marginal density
can be obtained analytically (as detailed in section SM3) as

p(\bfitB | \alpha B) \propto 
\int 

p(\bfitB ,\bfitW | \alpha B)d\bfitW (2.15)

\propto 
Nc\prod 
i=1

Nr\prod 
j=1

b\alpha B - 1
i,j\Bigl( \sum 

(i\prime ,j\prime )\in \scrM B(wi,j)
bi\prime ,j\prime 

\Bigr) \alpha B
.(2.16)

In this work, we fix the value of \alpha B, even if it could also be estimated using a stochastic
gradient procedure as explained in [37], at the expense of an increase in the computational
load. If the system is not monostatic, i.e., there is no prior assumption of smoothness in the
background image, the value of \alpha B is set to 1.

2.5. Posterior distribution. The joint posterior distribution of the model parameters is
given by

(2.17) p(\Phi c,\Phi r,\bfitB | \bfitZ ,\Psi ) \propto p(\bfitZ | \Phi c,\Phi r,\bfitB )p(\Phi r| \Phi c, \sigma 
2, \beta )

\times f1(\Phi c| \gamma a, \lambda a)f2(\Phi c| \gamma st)\pi (\Phi c)p(\bfitB | \alpha B),

where \Psi denotes the set of hyperparameters \Psi = \{ \gamma a, \lambda a, \gamma s, \sigma 
2, \beta , \alpha B\} . Figure 4 shows the

directed acyclic graph associated with the proposed hierarchical Bayesian model.
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3. Estimation strategy. Bayesian estimators associated with the full posterior in (2.17)
are analytically intractable. Moreover, standard optimization techniques cannot be applied
due to the highly multimodality of the posterior distribution. However, we can obtain numer-
ical estimates using samples generated by a Monte Carlo method denoted as

(3.1) \{ \Phi (s),\bfitB (s) \forall s = 0, 1, . . . , Ni  - 1\} ,

where Ni is the total number of samples. In this work, we will focus on the maximum a
posteriori (MAP) estimator of the point cloud positions and intensity values, i.e.,

(3.2) \^\Phi = argmax
\bfPhi 

p(\Phi ,\bfitB | \bfitZ ,\Psi ),

which is approximated by

(3.3) \^\Phi \approx argmax
s=0,...,Ni - 1

p(\Phi (s),\bfitB (s)| \bfitZ ,\Psi ).

In our experiments, we found that the minimum mean squared error estimator of \bfitB , i.e.,

(3.4) \^\bfitB = \BbbE \{ \bfitB | \bfitZ ,\Psi \} ,

achieves better background estimates than the MAP estimator. This estimator can be ap-
proximated by the empirical mean of the posterior samples of \bfitB , that is,

(3.5) \^\bfitB \approx 1

Ni

Ni\sum 
s=N\mathrm{b}\mathrm{i}+1

\bfitB (s),

where N\mathrm{b}\mathrm{i} = Ni/2 is the number of burn-in iterations. In many applications, assessing the
presence or absence of a target at a pixel level can be of special interest (e.g., [19, 6]). Here,
we can use the Monte Carlo samples to estimate the probability of having k objects present
in pixel (i, j) as

(3.6) P (k returns in (i, j)| \bfitZ ,\Psi ) =
1

Ni

Ni\sum 
s=N\mathrm{b}\mathrm{i}+1

1k \mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{s} \mathrm{i}\mathrm{n} (i,j)(\Phi 
(s)).

Remark. If more detailed posterior statistics are needed, it is possible to fix the dimension-
ality of the problem using the estimate \^\Phi and run a fixed dimensional sampler for additional
Ni iterations (see section SM5).

Many samplers capable of exploring different model dimensions, i.e., different numbers
of points, are available in the point process literature (a complete summary can be found in
[10, Chapter 9]). The continuous birth-death chain method builds a continuous-time Markov
chain that converges to the posterior distribution of interest. Alternatively, perfect sampling
approaches generate samples using a rejection sampling scheme, which incurs a bigger com-
putational load. Finally, the RJ-MCMC sampler, introduced by Green in [15], constructs
a discrete time Markov chain, where moves between different dimensions are proposed and
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accepted or rejected in order to converge to the posterior distribution of interest. In this
work, we choose an RJ-MCMC sampler, as this option allows us to design application-specific
proposals that speed up the convergence rate.

In addition, we propose a data augmentation scheme to sample the background levels.
This technique introduces extra auxiliary (latent) variables \bfitu and generates samples in this
augmented model space, (\bfitB (s),\bfitu (s)) \sim p(\bfitB ,\bfitu | \bfitZ ,\Phi , \alpha B), which is easier than sampling the
marginal distribution p(\bfitB | \bfitZ ,\Phi , \alpha B). The resulting samples \bfitB (s) are distributed according to
the desired marginal density (detailed theory and applications of data augmentation can be
found in [10, Chapter 10]).

3.1. Reversible jump Markov chain Monte Carlo. RJ-MCMC can be seen as a natural
extension of the Metropolis--Hastings algorithm for problems with an unknown a priori di-
mensionality. Given the actual state of the chain \bfittheta = \{ \Phi ,\bfitB \} of model order N\Phi , a random
vector of auxiliary variables \bfitu is generated to create a new state \bfittheta \prime = \{ \Phi \prime ,\bfitB \prime \} of model order
N\Phi \prime , according to an appropriate deterministic function \bfittheta \prime = g(\bfittheta ,\bfitu ). To ensure reversibility,
an inverse mapping with auxiliary random variables \bfitu \prime has to exist such that \bfittheta = g - 1(\bfittheta \prime ,\bfitu \prime ).
The move \bfittheta \rightarrow \bfittheta \prime is accepted or rejected with probability \rho = min\{ 1, r

\bigl( 
\bfittheta ,\bfittheta \prime \bigr) \} , where r(\cdot , \cdot )

satisfies the so-called dimension balancing condition

(3.7) r
\bigl( 
\bfittheta ,\bfittheta \prime \bigr) = p(\bfittheta \prime | \bfitZ ,\Psi )K(\bfittheta | \bfittheta \prime )p(\bfitu \prime )

p(\bfittheta | \bfitZ ,\Psi )K(\bfittheta \prime | \bfittheta )p(\bfitu )

\bigm| \bigm| \bigm| \bigm| \partial g(\bfittheta ,\bfitu )\partial (\bfittheta ,\bfitu )

\bigm| \bigm| \bigm| \bigm| ,
where K(\bfittheta \prime | \bfittheta ) is the probability of proposing the move \bfittheta \rightarrow \bfittheta \prime , p(\bfitu ) is the probability

distribution of the random vector \bfitu , and
\bigm| \bigm| \bigm| \partial g(\bfittheta ,\bfitu )\partial (\bfittheta ,\bfitu )

\bigm| \bigm| \bigm| is the Jacobian of the mapping g(\cdot ). All the
terms involved in (3.7) have a complexity that depends only on the size of the neighborhood,
except the prior distribution of the intensity values defined in (2.9). Note that (3.7) involves
the computation of the ratio of determinants of the precision matrices \bfitP and \bfitP \prime , which have
a global dependency on all the points in \Phi r. To keep the computational complexity low,
we address this difficulty by only considering a block diagonal approximation of \bfitP , which
includes only points in local neighborhoods (see section SM7 for more details). The RJ-
MCMC algorithm performs birth, death, dilation, erosion, spatial shift, mark shift, split, and
merge moves with probabilities p\mathrm{b}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{h}, p\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{h}, p\mathrm{d}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}, p\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}, p\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}, p\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k}, p\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}, and p\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}.
These moves are detailed in the following subsections. For ease of reading we summarize
the key aspects of each move, without specifying the full acceptance rate expression of (3.7),
which can be found in section SM8.

3.1.1. Birth and death moves. The birth move proposes a new point (\bfitc N\Phi +1, rN\Phi +1)
uniformly at random in \scrT . The intensity of the new point is computed according to the
following scheme:

(3.8)

\left\{     
u \sim \scrU (0, 1), b\prime i,j = ubi,j ,

emN\Phi +1 = (1 - u)bi,j
T\sum T

t=1 h(t)
.
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This mapping preserves the total posterior intensity of the pixel, since

(3.9) emN\Phi +1

T\sum 
t=1

h(t) + b\prime i,jT = bi,jT,

thus yielding a relatively high acceptance probability. Its reversible pair, the death move,
proposes to remove one point randomly. In this case, the inverse mapping is given by

(3.10) b\prime i,j = bi,j + emN\Phi +1

\sum T
t=1 h(t)

T
.

The acceptance ratio for the birth move reduces to \rho = min\{ 1, C1\} with C1 given by (3.7),
where the posterior ratio is computed according to (2.17), K(\bfittheta \prime | \bfittheta ) = p\mathrm{b}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{h}, K(\bfittheta | \bfittheta \prime ) = p\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{h},

p(\bfitu ) = \lambda (\cdot )
\lambda (\scrT ) and p(\bfitu \prime ) = 1

N\Phi +1 , and a Jacobian equal to 1
1 - u . The death move is accepted or

rejected with probability \rho = min\{ 1, C - 1
1 \} , modifying p(\bfitu ) accordingly (i.e., changing 1

N\Phi +1

to 1
N\Phi 

).

3.1.2. Dilation and erosion moves. Standard birth and death moves yield low acceptance
rates, because the probability of proposing a point in a likely position is relatively low, as the
detected surfaces only occupy a small subset of the full 3D volume \scrT . To overcome this
problem, we propose new RJ-MCMC moves that explore the target distribution by dilating
and eroding existing surfaces. The dilation move randomly picks a point \bfitc n that has fewer than
N2

p  - 1 neighbors, and then proposes a new neighbor \bfitc N\Phi +1 with uniform probability across
all possible pixel positions (where a point can be added). The new intensity can be sampled
from the Gaussian prior, taking into account the available information from the neighbors,
i.e., u is sampled from the conditional distribution specified in (2.8) and mN\Phi +1 = u. The
background level is adjusted to keep the total intensity of the pixel unmodified:

(3.11) b\prime i,j = bi,j  - emN\Phi +1

\sum T
t=1 h(t)

T
.

If the resulting background level in (3.11) is negative, the move is rejected. The complementary
move (named erosion) proposes to remove a point \bfitc n with one or more neighbors. In a similar
fashion to the birth move, a dilation is accepted with probability \rho = min\{ 1, C2\} , with C2

computed according to (3.7). In this case, p(\bfitu ) = p(u1)p(u2) with

(3.12) p(u1) =
1

N\Phi (2Nb + 1)

\sum 
m\in \scrM pp(\bfitc N\Phi +1)

\#\scrM pp(\bfitc m),

where 0 \leq \#\scrM pp(\bfitc m) \leq N2
p  - 1 denotes the number of neighboring points of \bfitc m. The

expression of p(u2) is given by the conditional distribution defined in (2.8), and the Jacobian
term equals 1. The probability of u\prime is given by

(3.13) p(u\prime ) =
1\sum N\Phi +1

m=1 1\BbbZ +(\#\scrM pp(\bfitc m))
,

and the transition probabilities are K(\bfittheta \prime | \bfittheta ) = p\mathrm{d}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} and K(\bfittheta | \bfittheta \prime ) = p\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}. An erosion
move is accepted with probability \rho = min\{ 1, C - 1

2 \} .
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Figure 5. In scenarios where the sampler proposes two points (red line) instead of one (yellow line), the
probability of killing one of them and shifting the other is very low. However, accepting a merge move has high
probability.

3.1.3. Shift move. The shift move modifies the position of a given point. The point is
chosen uniformly at random and a new position inside the same pixel is proposed using a
random walk Metropolis proposal defined as

(3.14) u \sim \scrN (tn, \delta t) ,

and t\prime n = u. The resulting acceptance ratio is \rho = min\{ 1, C3\} , with C3 computed according to
(3.7), whereK(\bfittheta \prime | \bfittheta ) = K(\bfittheta | \bfittheta \prime ) = p\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}, p(u) = p(u\prime ) are given by the Gaussian distribution of
(3.14), and the Jacobian term equals 1. The value of \delta t is set to (Nb

3 )2 to obtain an acceptance
ratio close to 41\%, which is the optimal value, as explained in [10, Chapter 4].

3.1.4. Mark move. Similarly to the shift move, the mark move refines the intensity value
of a randomly chosen point. The corresponding proposal is a Gaussian distribution with
variance \delta m,

(3.15) u \sim \scrN (mn, \delta m) ,

and m\prime 
n = u. In this move, the acceptance ratio is \rho = min\{ 1, r(\bfittheta ,\bfittheta \prime )\} , where K(\bfittheta \prime | \bfittheta ) =

K(\bfittheta | \bfittheta \prime ) = p\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k}, p(u) = p(u\prime ) are given by (3.15), and the Jacobian term equals 1. As in the
shift move, we set the value of \delta m to (0.5)2 to obtain an acceptance ratio close to 41\%.

3.1.5. Split and merge moves. In Lidar histograms with many photon counts per pixel,
the likelihood function becomes very peaky and the nonconvexity of the problem becomes
more difficult to handle. This nonconvexity is related to the discrete nature of the point
process, similar to problems where the l0 pseudo-norm regularization is used, as discussed
in [49]. In such cases, when one true surface is associated with two points, as illustrated in
Figure 5, the probability of performing a death move followed by a shift move is very low.
To alleviate this problem, we propose a merge move and its complement, the split move. A
merge move is performed by randomly choosing two points \bfitc k1 and \bfitc k2 inside the same pixel
(xk1 = xk2 and yk1 = yk2) that satisfy the condition

(3.16) d\mathrm{m}\mathrm{i}\mathrm{n} < | tk1  - tk2 | \leq attackh(t) + decayh(t),

where attackh(t) is the length of the impulse response until the maximum and decayh(t) is the
length after the maximum until the value where h(t) is negligible. The merged point (\bfitc \prime n, r

\prime 
n)
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is finally obtained by the mapping

(3.17)

\left\{   em
\prime 
n = emk1 + emk2 ,

t\prime n = tk1
emk1

emk1 + emk2
+ tk2

emk2

emk1 + emk2

that preserves the total pixel intensity and weights the spatial shift of each peak according
to its relative amplitude. For instance, if two peaks of significantly different amplitudes are
merged, the resulting peak will be closer to the original peak which presents the highest
amplitude. The split move randomly picks a point (\bfitc \prime n, r

\prime 
n) and proposes two new points,

(\bfitc k1 , rk1) and (\bfitc k2 , rk2), following the inverse mapping

(3.18)

\left\{                     

u \sim \scrU (0, 1),
\Delta \sim \scrU (d\mathrm{m}\mathrm{i}\mathrm{n}, attackh(t) + decayh(t)),

mk1 = m\prime 
n + log(u),

mk2 = m\prime 
n + log(1 - u),

tk1 = t\prime n  - (1 - u)\Delta ,

tk2 = t\prime n + u\Delta ,

which is based on the auxiliary variables u and \Delta . This proposal verifies (3.17), ensuring
reversibility. The acceptance ratio for the split move is \rho = min\{ 1, C4\} , with C4 computed
according to (3.7), where the Jacobian is 1/u(1  - u), K(\bfittheta \prime | \bfittheta ) = p\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}, K(\bfittheta | \bfittheta \prime ) = p\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e},
p(u) = 1

N\Phi 
(d\mathrm{m}\mathrm{i}\mathrm{n}+attackh(t)+decayh(t))

 - 1, and p(u\prime ) is the inverse of the number of points in

\Phi that verify (3.16). The acceptance probability of the merge move is simply \rho = min\{ 1, C - 1
3 \} .

3.2. Sampling the background. In the presence of at least one peak in a given pixel, Gibbs
updates cannot be directly applied to obtain background samples, as the linear combination of
objects and background level in (2.3) cancels the conjugacy between the Poisson likelihood and
the gamma prior. However, this problem can be overcome by introducing auxiliary variables
in a data augmentation scheme. In a similar fashion to [50], we propose to augment (2.3) as

zi,j,t =
\sum 

n:(xn,yn)=(i,j)

\~zi,j,t,n + \~zi,j,t,b,

\~zi,j,t,b \sim \scrP (gi,jbi,j),
\~zi,j,t,n \sim \scrP (gi,jrnh(t - tn)),

where \~zi,j,t,n are the photons in bin \#t associated with the kth surface and \~zi,j,t,b are the ones
associated with the background. If we also add the auxiliary variables wi,j of the GMRF (as
explained in subsection 2.4), we can construct the following Gibbs sampler:

(3.19)

\left\{                 

\~zi,j,t,b \sim \scrB 

\Biggl( 
zi,j,t,

bi,j\sum 
n:(xn,yn)=(i,j) exp(mn)h(t - tn)

\Biggr) 
,

wi,j \sim \scrI \scrG (\alpha B, \alpha Bwi,j),

bi,j \sim \scrG 

\Biggl( 
\alpha B +

T\sum 
t=1

\~zi,j,t,b,
1

T + \alpha B

bi,j

\Biggr) 
,
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Table 1
Move probabilities used in the RJ-MCMC sampler.

p\mathrm{b}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{h} 1/24 p\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{h} 1/24 p\mathrm{d}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} 5/24 p\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n} 5/24

p\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t} 5/24 p\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k} 5/24 p\mathrm{s}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t} 1/24 p\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e} 1/24

where \scrB (\cdot ) denotes the binomial distribution, and wi,j and bi,j are defined according to (2.14)
and (2.13), respectively. The transition kernel defined by (3.19) produces samples of bi,j
distributed according to the marginal distribution of (2.15). In practice, we use only one
iteration of this kernel.

3.3. Full algorithm. The RJ-MCMC algorithm alternates between birth, death, dilation,
erosion, shift, mark, split, and merge moves with probabilities as reported in Table 1. A
complete background update is done everyNB = NrNc iterations. After each accepted update,
we compute the difference in the posterior density \delta \mathrm{m}\mathrm{a}\mathrm{p} in order to keep track of the maximum
density map\mathrm{m}\mathrm{a}\mathrm{x}. After N\mathrm{b}\mathrm{i} = Ni/2 burn-in iterations, we save the set of parameters \Phi that
yield the highest posterior density, and we also accumulate the samples of \bfitB to compute (3.5).
Algorithm 3.1 shows a pseudo-code of the resulting RJ-MCMC sampler.

Algorithm 3.1. ManiPoP.

1: Input: Lidar waveforms \bfitZ , initial estimate (\Phi (0),\bfitB (0)), and hyperparameters \Psi 
2: Initialization:
3: (\Phi ,\bfitB )\leftarrow (\Phi (0),\bfitB (0))
4: s\leftarrow 0
5: Main loop:
6: while s < Ni do
7: if rem(s,NB) == 0 then
8: (\Phi ,\bfitB , \delta \mathrm{m}\mathrm{a}\mathrm{p})\leftarrow sample \bfitB using (3.19)
9: end if

10: move \sim Discrete(p\mathrm{b}\mathrm{i}\mathrm{r}\mathrm{t}\mathrm{h}, . . . , p\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e})
11: (\Phi ,\bfitB , \delta \mathrm{m}\mathrm{a}\mathrm{p})\leftarrow perform selected move
12: map\leftarrow map + \delta \mathrm{m}\mathrm{a}\mathrm{p}

13: if s \geq N\mathrm{b}\mathrm{i} then
14: \^\bfitB \leftarrow \^\bfitB +\bfitB 
15: if map > map\mathrm{m}\mathrm{a}\mathrm{x} then
16: \^\Phi \leftarrow \Phi 
17: map\mathrm{m}\mathrm{a}\mathrm{x} \leftarrow map
18: end if
19: end if
20: s\leftarrow s+ 1
21: end while
22: \^\bfitB \leftarrow \^\bfitB /(Ni  - N\mathrm{b}\mathrm{i})
23: Output: Final estimates (\^\Phi , \^\bfitB )
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4. Efficient implementation. In order to achieve a computational performance similar to
that of other optimization-based approaches, while allowing a more complex modelling of the
input data, we have considered the following implementation aspects.

1. Recently, the algorithm reported in [7] showed that state-of-the-art denoising of images
corrupted with Poisson noise can be obtained by starting from a coarser scale and
progressively refining the estimates in finer scales. We propose a similar multiscale
approach to achieve faster processing times and better scalability with the total data
size. The proposed sequential procedure is detailed in subsection 4.1.

2. In the photon-starved regime considered in this work, the recorded histograms are
generally extremely sparse, meaning that more than 95\% of the time bins are empty.
Therefore, a histogram representation is inefficient, in terms of both likelihood eval-
uation and memory requirements. In [42], the authors replaced the histograms by
modelling directly each detected photon. Similarly, we represent the Lidar data by
using an ordered list of bins and photon counts, only considering bins with at least
one count (see section SM6 for more details).

3. In order to avoid finding neighbors of a point to be updated at each iteration, we store
and update an adjacency list for each point. This list allows the neighbor search only
during the creation or shift of a point.

4. To reduce the search space, we add a preprocessing step that computes the matched-
filter response at the coarsest resolution. The time bins whose values are below a
threshold (equal to 0.05

T

\sum T
t=1 zi,j,t

\sum T
t=1 log h(t)) are assigned zero intensity in the

point process prior, i.e., \lambda (\cdot ) = 0. In this way, the search includes with high prob-
ability objects in pixels with signal-to-background ratio (SBR) higher than 0.05 (see
section SM11 for a more detailed explanation).

5. When the number of photons per pixel is very high, the binomial sampling step of
(3.19) is replaced by a Poisson approximation, i.e.,\sum T

t=1 \~zi,j,t,b \sim \scrP (
\sum T

t=1
bi,jzi,j,t\sum 

n:(xn,yn)=(i,j) rnh(t - tn)+bi,j
).

4.1. Multiresolution approach. We downsample the input 3D data by summing the con-
tents over N\mathrm{b}\mathrm{i}\mathrm{n} \times N\mathrm{b}\mathrm{i}\mathrm{n} windows. This aggregation results in a smaller Lidar image that keeps
the same Poisson statistics, where each bin can present an intensity N2

\mathrm{b}\mathrm{i}\mathrm{n} bigger (on average).
Hence, a Lidar data cube with higher signal-to-noise ratio, approximately N2

\mathrm{b}\mathrm{i}\mathrm{n} fewer points
to infer, and a similar observational model (if the broadening of the impulse response can be
neglected) is obtained. In this way, we run Algorithm 3.1 on the downsampled data to get
an initial coarse estimate of the 3D scene. This estimate is then upsampled and used as the
initial condition for the finer resolution data. The point cloud \Phi is upsampled using a linear
interpolator for fast computation. Following the connected-surface structure of ManiPoP, each
of the estimated surfaces is upsampled independently of the rest. However, more elaborate
algorithms can be also used, such as moving least squares, as detailed in [26]. These two
steps can be performed in K scales, whereby, for each scale, the Lidar data \bfitZ k is obtained by
aggregating \bfitZ k+1. Algorithm 4.1 summarizes the proposed sequential multiscale approach.
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Algorithm 4.1. Multiresolution ManiPoP.

Input: Lidar scene \bfitZ , hyperparameters \Psi , window size N\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}, and number of scales K
Initialization:
\Phi 

(0)
1 \leftarrow \emptyset 

\bfitB 
(0)
1 \leftarrow sample from (3.19)

Main loop:
for k = 1, . . . ,K do

if k > 1 then
(\Phi 

(0)
k ,\bfitB 

(0)
k )\leftarrow upsample( \^\Phi k - 1, \^\bfitB k - 1)

end if
(\^\Phi k, \^\bfitB k)\leftarrow ManiPoP(\bfitZ k, (\Phi 

(0)
k ,\bfitB 

(0)
k ),\Psi )

end for
Output: ( \^\Phi K , \^\bfitB K)

5. Experiments. The proposed method was evaluated with synthetic and real Lidar data.
In all experiments, we denote the bin length as \Delta b =

Tbc
2 , where c is the speed of light in the

scene medium and Tb is the bin width used in the TCSPC timing histogram. We also indicate
the mean number of photons per pixel as \=\lambda p, which is proportional to the per-pixel acquisi-
tion time. Our method is compared with the classical log-matched filtering solution and two
recent algorithms. The first is referred to as SPISTA [43] and considers an \ell 1 regularization to
promote sparsity in the recovered peaks. The second algorithm, the method presented in [19],
is referred to as \ell 21+TV. It considers an \ell 21 and total variation regularizations to promote
smoothness between points in neighboring pixels. In our experiments, we have slightly mod-
ified both SPISTA and \ell 21+TV to attain better results, as explained in subsection 5.2. The
RJ-MCMC algorithm proposed in [24] was not considered in this work, as its computational
complexity is hardly compatible with large images (for a scene of Nr = 100 = Nc = 100
pixels and T = 4500 bins, the algorithm takes more than a day of computation). The log-
matched filtering solution is the depth ML estimator when the background is negligible and
in the presence of a single peak, i.e., \^ti,j = argmaxti,j\in [1,T ]

\sum T
t=1 zi,j,t log[h(t  - ti,j)]. The

intensity estimator can then be obtained as \^ri,j =
\sum T

t=1 zi,j,t/(gi,j
\sum T

t=1 h(t)). In order to
infer the background levels, we constrain the intensity estimate to the support of h(t) leading

to \~ri,j =
\sum \^ti,j+\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{y}

t=\^ti,j - \mathrm{a}\mathrm{t}\mathrm{t}\mathrm{a}\mathrm{c}\mathrm{k}
zi,j,t/

\bigl( 
gi,j
\sum T

t=1 h(t)
\bigr) 
. The background components can then be com-

puted using the residual photons as \^bi,j =
\sum T

t=1 zi,j,t1h(t - \^tki,j)=0(t)/
\bigl( 
gi,j
\sum T

t=1 1h(t - \^tki,j)=0(t)
\bigr) 
.

The corrected intensity estimate is finally computed as \^ri,j = min\{ \~ri,j  - \^bi,j , 0\} . For visu-
alization purposes, all the intensity results obtained by different algorithms were normalized
(postprocessing step) under the condition

\sum T
t=1 h(t) = 1, such that the estimated intensity

has a value that reflects the number of signal photons attributed to the corresponding 3D
location. In the experiments, we used only two scales, a coarse one using a binning window of
N\mathrm{b}\mathrm{i}\mathrm{n} = 3 pixels and the full resolution. The hyperparameters were adjusted with the following
considerations:

\bullet The cuboid length Nb should be fixed according to the relative scale between the bin
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Table 2
Hyperparameter values.

Hyperparameters \gamma a \lambda a Np Nb d\mathrm{m}\mathrm{i}\mathrm{n} \sigma 2 \beta \alpha B

Coarse scale e2 (NrNr/N
2
b )

1.5 3 3\Delta p/\Delta \mathrm{b}\mathrm{i}\mathrm{n} 2Nb + 1 0.62 \sigma 2/100 2

Fine scale e3 (NrNr)
1.5 3 3\Delta p/\Delta \mathrm{b}\mathrm{i}\mathrm{n} 2Nb + 1 0.62/3 \sigma 2/100 2

width and the pixel resolution.
\bullet The minimum distance between two points in the same pixel can be set as d\mathrm{m}\mathrm{i}\mathrm{n} =

2Nb + 1, thus verifying the condition d\mathrm{m}\mathrm{i}\mathrm{n} > 2Nb.
\bullet The parameters controlling the number of points and the spatial correlation were set
by cross-validation using many Lidar datasets leading to \gamma a = e2 and \lambda a = (NrNc)

1.5.

\bullet For each scale, we scaled the impulse response h\prime (t) = h(t)
\=\lambda p

5
\sum 

t h(t)
, where h(t) is

the unit gain impulse response, such that all intensity values lie approximately in
the interval [0, 10]. The regularization parameters were then fixed to \sigma 2 = 0.62 and
\beta = \sigma 2/100 by cross-validation in order to obtain smooth estimates.
\bullet The hyperparameter controlling the smoothness in the background image \bfitB was also
adjusted by cross-validation yielding \alpha B = 2.

Table 2 summarizes the different hyperparameter values for the coarse and fine scales. All the
experiments were performed using Ni = 25NrNc iterations in the coarse scale and fine scale.

5.1. Error metrics. Three different error metrics are used to evaluate the performance of
the proposed algorithm. We compare the percentage of true detections F\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}(\tau ) as a function
of the distance \tau , considering an estimated point as a true detection if there is another point
in the ground truth/reference point cloud in the same pixel (x\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}n = x\mathrm{e}\mathrm{s}\mathrm{t}n\prime and y\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}n = y\mathrm{e}\mathrm{s}\mathrm{t}n\prime )
such that | t\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}n  - t\mathrm{e}\mathrm{s}\mathrm{t}n\prime | \leq \tau . We also consider the number of points that were falsely created,
denoted as F\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}(\tau ) (i.e., the estimated points that cannot be assigned to any true point at
a distance of \tau ). Regarding the intensity estimates, we focus on targetwise comparison, by
gating the 3D reconstruction between the ranges where a specific target can be found, keeping
only the point with biggest intensity and assigning zero intensity to the empty pixels. We
compute the normalized mean squared error (NMSE) of the resulting 2D intensity image as

(5.1) NMSE\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t} =

\sum Nr
i=1

\sum Nr
j=1(r

\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}
i,j  - \^ri,j)

2\sum Nr
i=1

\sum Nr
j=1

\Bigl( 
r\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}i,j

\Bigr) 2 .

Finally, we consider the NMSE metric for the background image

(5.2) NMSE\bfitB =

\sum Nr
i=1

\sum Nr
j=1(b

\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}
i,j  - \^bi,j)

2\sum Nr
i=1

\sum Nr
j=1

\Bigl( 
b\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}i,j

\Bigr) 2 .

5.2. Synthetic data. We evaluated the algorithm in two synthetic datasets: a simple one,
containing basic geometric shapes, and a complex one, based on a scene from the Middlebury
dataset [40]. Both scenes present multiple surfaces per pixel. The first scene, shown in
Figure 6, has dimensions Nr = Nc = 99, T = 4500, \Delta b = 1.2 mm, and \Delta p \approx 8.5 mm. The
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Figure 6. The 3D scene depicted in Figure 1 consists of three plates with different sizes and orientations
and one paraboloid-shaped object. Left: Number of objects per pixel. Right: Mean background photon count
T\bfitB .

impulse response used in our experiments was obtained from real Lidar measurements, with
attack = 58 bins and decay = 460 bins. The background was created using a linear intensity
profile, as shown in Figure 6. The resulting mean intensity per pixel was \=\lambda p = 11, meaning
that 99.75\% of the bins are empty and approximately 4 photons per pixel are due to 3D
objects. First we evaluated the performance with and without the proposed priors to show
their effect on the final estimates. The algorithm was tested in the following conditions:

1. with all the priors as reported in Table 2,
2. without spatial regularization (\gamma a = 1),
3. with a weak intensity regularization (\sigma 2 = 1002),
4. with a softer spatial regularization for the background levels (\alpha B = 1),
5. without erosion and dilation moves,
6. only using the finest scale, adjusting the number of iterations to yield the same com-

puting time.
The total execution time for all cases was approximately 120 seconds. Figure 7a shows F\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}(\tau )
and F\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}(\tau ) for all the configurations. The number of false points increases dramatically when
the area interaction process is not considered, as the sampler tends to create many points of
low intensity, mistaking background counts as false surfaces. The background regularization
does not affect the detected points significantly, but yields a better estimation of \bfitB , leading
to NMSE = 0.107 for \alpha B = 1 and NMSE = 0.0912 for \alpha B = 2. The number of true points
detected without dilation and erosion moves or using only one scale decreases dramatically to
44\% and 80\%, respectively. Figure 7b compares the estimated intensity of the biggest plate
with different values of \sigma 2. The NMSE obtained with \sigma 2 = 0.62 is 0.058, compared to 0.399
in the absence of correlation (i.e., when \sigma 2 = 1002). Section SM12 shows the performance of
ManiPoP for different SBRs and mean photons per pixel for this specific synthetic scene.

The second dataset was created with the ``Art"" scene from [40]. In order to have multiple
surfaces per pixel, we added a semitransparent plane in front of the scene. We simulated
the Lidar measurements, as if they were taken by the system described in [30]. The scene
consists of Nr = 183, Nc = 231 pixels, and T = 4500 histogram bins. The bin width is
\Delta b = 0.3 mm and the pixel size is \Delta p \approx 1.2 mm. In this complex scene, we compared
the proposed method with the optimization algorithms SPISTA and \ell 21+TV. SPISTA relies
on the specification of a background level that was set to the true background value. It
is important to note that this information is not available in real Lidar applications, as the
background levels depend on the imaged scene. We also show the results for the regularization
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Figure 7. (a) shows the percentage of true (left) and false (right) detections. (b) shows the intensity
estimates for the vertical plate: Ground truth (left), estimates with \sigma 2 = 0.62 (center), and \sigma 2 = 1002 (right).

parameter that attained best results among many trials (the empirical rule for setting this
parameter provided in [43] achieved worse results). We noticed that SPISTA provides large
errors in the intensity estimates, as the gradient of the Poisson likelihood is not Lipschitz
continuous and the gradient step iterations may diverge in very low photon scenarios [21, 11].
This problem can be solved by using the SPIRAL [21] inner loop to compute the step size (see
section SM9 for details), yielding a new algorithm, which we name SPISTA+. The \ell 21+TV
algorithm has two regularization parameters that were adjusted in order to obtain the best
results. It also relies on a thresholding step on the final estimates, as the output of the
optimization method is not sparse. Again, the thresholding constant was adjusted to achieve
the best results. To further improve the results of \ell 21+TV, we included a grouping step,
similar to the one described in [43], which reduces the number of false detections by pairing
similar ones in the same pixel. Instead of taking the maximum intensity as in [43], we summed
the intensities of the grouped detections, as this achieved better intensity estimates. Figure 8
shows the 3D point clouds obtained for each algorithm, whereas Figure 9 shows F\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}(\tau ) and
F\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}(\tau ). SPISTA finds 18\% of the true points and around 5033 false detections, whereas
SPISTA+ improves the detection to 34\% and 4267 false detections. \ell 21+TV improves the
detection rate to 57\%, but also increases the false detections to 106. The grouping technique
improves the results provided by \ell 21+TV, reducing the false detections by a factor of 200. The
proposed method obtains the best results, finding 92\% of all the true points and 1852 false
detections. As shown in Table 3, the proposed algorithm yields the best intensity estimates
with the lowest execution time. Figure 10 shows the intensity estimate of the scene behind
the semitransparent plane for each algorithm. SPISTA fails to provide meaningful intensity
results, whereas SPISTA+ yields better estimates. As all the points behind the plane are
grouped to yield a 2D intensity image, there is no difference between the \ell 21+TV and \ell 21+TV
with grouping. Both SPISTA+ and \ell 21+TV with grouping show a negative bias in the mean
intensity, which may be attributed to the effect of the \ell 1 and \ell 21 regularizations, respectively.
As both SPISTA+ and \ell 21+TV with grouping improve the results of the original algorithms
in all the evaluated datasets, we show only their results in the rest of the experiments.

5.3. Real Lidar data. We assessed the proposed algorithm using three different Lidar
datasets: the multilayered scene provided in [43, 1] recorded at the Massachusetts Institute of
Technology, the polystyrene target imaged at Heriot-Watt University [5], and the camouflage
scene from [19].
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Figure 8. Estimated 3D point cloud by the proposed algorithm, SPISTA, SPISTA+, \ell 21+TV, and \ell 21+TV
with grouping.
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Figure 9. Upper row: Percentage of true detections for different algorithms as a function of maximum
distance \tau , Ftrue(\tau ). Bottom row: Number of false detections, Ftrue(\tau ).

Table 3
Performance of the proposed method, SPISTA, SPISTA+, \ell 21+TV, and \ell 21+TV with grouping on the

synthetic data.

Method Total time [seconds] NMSE intensity

SPISTA [43] 712 > 1

SPISTA+ 8161 0.993

\ell 21+TV [19] 2453 0.845

\ell 21+TV group 2455 0.845

ManiPoP \bfsix \bfthree \bfzero \bfzero .\bfzero \bfnine \bfnine \bfnine 

Figure 10. Intensity estimates of the surfaces behind the semitransparent object.
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Figure 11. Estimated 3D point cloud by ManiPoP, SPISTA, \ell 21+TV, and \ell 21+TV with grouping.

MANIPOP SPISTA+ L21+TV group

2900

3000

3100

ground truthDepth [mm]

Figure 12. Depth estimates of the mannequin. From left to right: Long acquisition reference, ManiPoP,
SPISTA+, and \ell 21+TV with grouping estimates.

5.3.1. Mannequin behind a scattering object. The first scene consists of a mannequin
located 4 meters behind a partially scattering object, with Nr = Nc = 100 pixels and T = 4000
bins. This Lidar scene is publicly available online [1]. The mean photon count per pixel is
\=\lambda p = 45, and the dimensions are \Delta p \approx 8.4 mm and \Delta b = 1.2 mm. In [43], a Gaussian-shaped
impulse response is suggested. However, we used a data-driven impulse response that yields
better results (see section SM10 for a detailed explanation). Figure 11 shows the reconstructed
point clouds for each algorithm. ManiPoP achieves a sparse and smooth solution, whereas the
estimate of SPISTA presents more random scattering of points. The \ell 21+TV output presents
more spatial structure than SPISTA, but also fails to find the border of the mannequin.
The dataset contains a reference depth of the mannequin obtained using a long acquisition
time. This reference was computed using the log-matched filtering solution of a cropped Lidar
cuboid where only the mannequin is present. Figure 12 shows the ground truth depth and the
estimates obtained by ManiPoP, SPISTA+, and \ell 21+TV with grouping. The proposed method
outperforms the SPISTA+ and \ell 21+TV outputs, finding 97.9\% of the reference detections,
whereas SPISTA+ only detects 74.8\% and \ell 21+TV with grouping finds 92.8\%, as shown in
Figure 13. The SPISTA+ and \ell 21+TV with grouping algorithms detect 225 and 206 false
points, respectively, compared to the 432 points found by ManiPoP. This increase in false
detections can be attributed to the scattering object that was (probably) removed when the
reference dataset was obtained. The scattering effect can be also seen in Figure 11, as it is
possible to find some parts of the low intensity surface behind the mannequin. Despite not
having a reference for reflectivity values of the target, we can say that the proposed method
attains significantly better visual results, as shown in Figure 14. Both SPISTA+ and \ell 21+TV
with grouping underestimate the mean intensity. The total execution time of ManiPoP (146
seconds) was around 20 times less than SPISTA+ (2871 seconds) and slightly shorter than
\ell 21+TV with grouping (202 seconds).
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Figure 13. Percentage of true detections at a maximum distance \tau , Ftrue(\tau ), for ManiPoP, SPISTA+, and
\ell 21+TV with grouping. The number of false detections, Ffalse(\tau ), is shown in (b).
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Figure 14. Estimated intensity by ManiPoP, SPISTA+, and \ell 21+TV with grouping. The colorbar illus-
trates the number of photons assigned to each point. Both SPISTA+ and \ell 21+TV show a negative bias in the
mean intensity.
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Figure 15. From left to right: True number of surfaces per pixel and probability of having k = 0, 1, 2 objects
per pixel for an acquisition time of 1 ms, respectively.

5.3.2. Polystyrene head. The second dataset was obtained in Heriot-Watt University and
consists of a life-sized polystyrene head at 40 meters from the imaging device (an image can
be found in [5]). The data cuboid has size Nr = Nc = 141 pixels and T = 4613 bins. The
physical dimensions are \Delta p \approx 2.1 mm and \Delta \mathrm{b}\mathrm{i}\mathrm{n} = 0.3 mm. A total acquisition time of 100
milliseconds was used for each pixel, yielding \lambda p = 337 with approximately 23 background
photons per pixel. The scene consists mainly of one object per pixel, only with two surfaces
per pixel around the borders of the head. We compare the proposed method with the log-
matched filtering solution and the SPISTA+ algorithm for different acquisition times, i.e.,
many values of \lambda p. As no ground truth is available, we used as reference the log-matched
filter solution, manually dividing the Lidar cube into segments with only one surface, using
the largest acquisition time (100 ms). Although the dataset seems to have only one active
depth per pixel, two surfaces per pixel can be found in the borders of the head, as shown
in Figure 15. As only a few pixels contain two surfaces, we also compared with [38], which
is a state-of-the-art 3D reconstruction algorithm under a single-surface-per-pixel assumption.
Figure 16 shows the reconstructed 3D point clouds for an acquisition time of 1 ms, whereas
Figure 17 shows F\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}(\tau ) and F\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}(\tau ) for acquisition times of 10, 1, and 0.2 ms. In the 10
and 1 ms cases, ManiPoP outperforms the other methods, finding almost all true points and
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Figure 16. Estimated 3D point clouds using the polystyrene head dataset with an acquisition time of 1 ms.
SPISTA+ and \ell 21+TV underestimate the mean intensity, whereas ManiPoP, the log-matched filter solution,
and [38] obtain a similar intensity mean.
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Figure 17. Ftrue(\tau ) and Ffalse(\tau ) for the polystyrene head using acquisition times of 10 ms (top), 1 ms
(middle), and 0.2 ms (bottom). While all methods obtain good reconstructions in the 10 ms case, ManiPoP
and [38] also achieve good reconstructions with acquisition times of 1 ms and 0.2 ms.

providing relatively few false estimates. The log-matched filter solution (of the complete Lidar
cube) shows a significant error in depth estimates and fails to find 10\% of true points, as it
is only capable of finding one object per pixel. In the 0.2 ms case, there are only \lambda p = 0.7
photons per pixel on average. Thus, the best performing algorithm is [38], as the single-surface
assumption plays a fundamental role in inpainting the missing depth information. ManiPoP
performs in second place, finding 14\% fewer true points than [38].

As shown in Table 4, the fastest algorithm is the log-matched filtering solution with less
than 20 seconds in all cases. However, ManiPoP still requires less computing time than
SPISTA+ and \ell 21+TV with grouping. It is worth noticing that the \ell 21+TV algorithm has a
memory requirement proportional to 6 times the whole data cube due to the ADMM algorithm,
which can be prohibitively large when the Lidar cube is relatively big. The sparse nature of
the ManiPoP algorithm only requires an amount of memory proportional to the number of
bins with one photon or more plus the number of 3D points to infer.

To further demonstrate the generality of the proposed method, we studied the case where
only one surface is present per pixel, but not all the pixels contain surfaces, which occurs in
most outdoor measurements. If a single-surface-per-pixel algorithm is used, such as [25, 5, 42,
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Table 4
Computing time of the proposed method, SPISTA+, \ell 21+TV, log-matched filtering, and [38] on the

polystyrene head dataset.

100 ms 10 ms 1 ms 0.2 ms
Algo./Acq. time (\lambda p = 337) (\lambda p = 33.7) (\lambda p = 3.4) (\lambda p = 0.7)

SPISTA+ [43] 6769 6981 7191 8461

\ell 21+TV group [19] 793 697 705 535.4

ManiPoP 322 229 201 173.4

Log-matched filter \bfone \bfeight \bfone \bfone \bfseven .\bfeight \bffive .\bfsix 

Rapp and Goyal 2017 [38] 196.87 40 37 38.4
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Figure 18. Ftrue(\tau ) and Ffalse(\tau ) for the polystyrene head without backplane using an acquisition time of 1
ms are shown on the left. The 3D reconstructions are shown on the right.

17, 38], a nontrivial postprocessing step is necessary to discriminate which pixels have active
depths. We also included the results obtained by the Bayesian target detection algorithm
[6], which assumes at most one surface per pixel. To recreate this case using the polystyrene
head dataset, we removed the backplane from the 1 ms dataset, obtaining a new 3D Lidar
cube that only contains the polystyrene head. Figure 18 shows the results obtained using
ManiPoP, [6], and [38]. In the latter, we applied a global thresholding based on the recovered
reflectivity values, such that only the target would be present in the final results. The value
of the threshold was manually chosen to obtain the best results. ManiPoP obtains the best
results, finding 95.2\% of the points with only 24 false detections, whereas [38] finds 93.1\% of
the points and 542 false detections and [6] obtains 86.0\% of the points and 849 false detections.
As shown in subsection 5.3.2, the estimates of [38] degrade significantly towards the borders of
the target, as the single-surface assumption imposes a false correlation with the background
photons in neighboring pixels where no surface is present. While [6] performs similarly to
ManiPoP in terms of true and false point detections, the depth and reflectivity estimates are
worse. This result can be attributed to the lack of prior spatial correlation for the depth and
reflectivity values in [6].

Note that the samples generated by the proposed RJ-MCMC method are asymptotically
distributed according to the posterior (2.17) and can thus be used to compute various uncer-
tainty measures. For instance, Figure 15 shows the probability of having k = 0, 1, 2 peaks for
an acquisition time of 1 ms, computed according to (3.6). Another example is displayed in
Figure 19, which shows the position and log-intensity histograms that were computed using
the samples from additional Ni = 400NrNc iterations in a fixed dimension (only allowing
mark and shift moves).
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Figure 19. The center and right plots show the position and log-intensity histograms for the point encircled
in violet in the left plot, using an acquisition time of 1 ms.

Figure 20. Estimated 3D point clouds using the camouflage dataset for per-pixel acquisition times of 3.2
ms (top row) and 0.32 ms (bottom row).

5.3.3. Human behind camouflage. The last dataset consists of a man standing behind
camouflage at a stand-off distance of 230 meters from the Lidar system. An in-depth descrip-
tion of the scene can be found in [46, 19]. An acquisition time of 3.2 ms was used for each
pixel, obtaining \lambda p = 44.6 photons per pixel on average, where approximately 13.3 photons
correspond to background levels. The Lidar cube has Nr = 159 and Nc = 78 pixels and
T = 550 histogram bins. The physical dimensions are \Delta p \approx 2.1 mm and \Delta \mathrm{b}\mathrm{i}\mathrm{n} = 5.6 mm. We
evaluated the performance of the algorithms for the per-pixel acquisition times of 3.2 ms and
0.32 ms. Figure 20 shows the reconstructions obtained by ManiPoP, SPISTA+, and TV+\ell 21
with depth grouping. In both cases, ManiPoP obtains a more structured reconstruction,
without spurious detections and more dense reconstructions in the regions where the target
is present.

6. Conclusions and future work. In this paper, we proposed a new Bayesian spatial
point process model for describing single-photon depth images. This model promotes spa-
tially correlated and sparse structures, which can be interpreted as a structured l0 pseudo-
norm regularization. From a compressive sensing viewpoint, structured sparsity priors can
yield the lowest number of necessary measurements to reconstruct a signal [9]. Finding the
MAP estimate of the proposed model is an NP-hard problem [34]. We overcame this problem
by developing a stochastic RJ-MCMC algorithm with new moves that find a solution rela-
tively fast. In addition, a multiresolution approach improved the estimates and reduced the
execution time. The proposed method yielded good 3D reconstructions, with better depth
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and intensity estimates. In our experiments, we noted that for each dataset, a different set
of hyperparameters and thresholding values is needed for both SPISTA and \ell 21+TV, thus
making user supervision compulsory, whereas the proposed algorithm uses the same set of
hyperparameters across all datasets. In extremely low photon cases, i.e., less than one photon
per pixel on average, ManiPoP might fail to recover the surface, thus performing worse than
other single-surface 3D reconstruction algorithms [38]. As shown in Figure SM9, the algo-
rithm performs relatively well for an SBR higher than 1 and more than one photon per pixel.
Excluding the aforementioned extremely low photon or extremely low SBR cases, ManiPoP
generalizes other single-surface-per-pixel and target detection algorithms, as it can provide
accurate estimates in scenes with only one surface per pixel and scenes where the target is
present in a subset of pixels. The algorithm requires less execution time when compared to
other optimization [43, 19] and RJ-MCMC approaches [23, 24]. Although there is a signifi-
cant increase in computational time with respect to the classic log-matched filtering solution, a
C++ implementation with efficient handling of the connected-surface structure would reduce
the computing time considerably. A profiling analysis of the present code shows that around
70\% of the total computational time is due to these computations. In addition, the Markovian
structure of the algorithm could be further exploited to perform multiple parallel moves.

Scenes containing scattering media may present a broadening of the impulse response.
Moreover, surfaces with normals that have a significant angle with respect to the laser beam
might also show a broadening of h(t). In such cases, the proposed method might have a reduced
performance. Future work will be devoted to estimating the degree of broadening of each
point. Moreover, the hard constraint on the minimum distance between two surfaces within
a pixel (2.5) may not apply in some scenes, such as dense foliage or scenes with extremely
close objects. In this setting, the hard constraint Strauss process should be modified for a soft
constraint process [47]. Another important direction of future work is the extension of the
proposed model to handle multispectral Lidar data, by considering jointly L > 1 bands and
classifying the 3D point cloud according to different materials. Our model is easily extendible
to this configuration, as we can add a mark to each point that labels the spectral signature
of the object. We note that the presented model can be also used for single-photon imaging
[25, 4]. Finally, we note that ManiPoP can be used as a first processing step to recover
denoised 3D point clouds from raw Lidar data to then perform other higher-level computer
vision tasks.
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