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Abstract

Meta-interface models stem from the homogenization, in a low-frequency dynamic regime,
of thin heterogeneous layers that are structured to achieve uncommon properties at the macro-
scopic level. When the layer is composed of a thin periodic array of highly-contrasted inclusions
embedded within a homogeneous background medium then the corresponding effective interface
model is characterized by jump conditions that, in the harmonic regime, involve some singu-
lar frequency-dependent terms. In this context, the article is concerned with the simulation
of transient waves across such resonant meta-interfaces and a numerical method is proposed
to handle the associated resonant jump conditions. To do so, a set of auxiliary variables is
introduced locally along the interface and an augmented system of first-order equations in time
accompanied with local-in-time jump conditions is derived. This system is then discretized on
a Cartesian grid and solved using a high-order finite-difference scheme while the complexity
associated with the geometry of the interface and the jump conditions is handled using an
immersed interface method. A set of numerical examples in 1D and 2D is proposed to illustrate
and validate the overall numerical approach, and quantitative comparisons with semi-analytical
solutions are also provided.

Keywords: resonant microstructures, resonant effective interfaces, frequency-dependent jump
conditions, immersed interface method, ADER scheme.

1. Introduction

Modeling and simulating the wave propagation within a microstructured medium can be
handled efficiently by upscaling approaches such as the common homogenization methods [2,
23]. When the characteristic length-scale of the heterogeneities, which coincides with the period
length in the case of periodic composite, is much smaller than a reference wavelength then
the microstructure can be replaced by a homogeneous effective medium whose constitutive
properties stem from those of the former. In the case where the micro-scale heterogeneities
form a thin microstructured layer, see Figure 1, then dedicated homogenization methods must
be employed [19] to derive effective jump conditions on an equivalent interface [21, 8, 7, 20, 4].
As a result of such a homogenization process, and owing to energy-based considerations, the
heterogeneous layer is substituted by an enlarged interface, in which no calculation is performed
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and no field is defined but on both sides of which effective jump conditions apply. The latter
depond on the material and geometrical properties of the original microstructured layer and
those of the matrix.
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Figure 1: Homogenization process for a single periodic array of inclusions. (top) Original configuration with a
thin microstructured layer, (bottom) Homogenized interface model.

In the case where the heterogeneous layer is composed of inclusions characterized by a large
material contrast, relatively to the properties of the surrounding matrix, then illumination by
an incident wave or an external source can give rise to internal resonances within the microstruc-
ture. By applying a suitable homogenization process to such a configuration, see [22], then this
phenomenon can be modeled at the macroscopic level by effective jump conditions that, in the
harmonic regime, are frequency-dependent. The occurence of such internal resonances, along
with the associated homogenized models, offers new possibilities to control waves at the macro-
scopic level. This corresponds to the current paradigm of metamaterials and, in the present
case, of resonant metasurfaces or meta-interfaces. As an example, resonant metasurfaces can
be designed to optimize sound absorption [18; 24]. Exotic behaviors can also be sought and
exploited, see e.g. the splitting of P- and SV-waves through elastic resonant metasurfaces [26].

In this context, the article aims at building a numerical method to simulate the interaction
of transient waves with such resonant meta-interfaces. By opposition with frequency-domain
approaches, time-domain formulations have two main advantages: i) they allow to simulate
wide-band wave phenomena in a single computation; ii) they pave the way to problems involv-
ing nonlinearities, for which a monochromatic forcing requires to solve numerous Helmholtz
equations due to the generation of harmonics. To perform such time-domain simulations, high-
order finite difference schemes on uniform Cartesian grid are chosen for computational efficiency



and accuracy. However, a straightforward discretization of the interfaces suffers classicaly from
a number of drawbacks: errors of order one are introduced if the interfaces do not coincide with
the mesh grid, naive stair-step discretizations yield spurious diffractions and jump conditions
are not properly handled. To prevent from these drawbacks, the so-called immersed interface
methods have shown to constitute efficient approaches [28]. Previous works have concerned the
development of the Explicit Simplified Interface Method (ESIM) and its application to a vari-
ety of wave propagation problems [15, 6, 16, 13, 11]. In particular, simulation of time-domain
acoustic wave propagation across enlarged effective interfaces have been previously addressed
in [12] but in the case of non-resonant effective jump conditions. In the present study, the
central question therefore concerns the consideration of resonant effective jump conditions that
are frequency-dependent in the harmonic regime along with their implementation for wave
propagation simulations in the time domain.

Handling resonant meta-interfaces introduces a number of difficulties compared to the case
of non-resonant interfaces. The effective jump conditions associated with the former are indeed
characterized by frequency-dependent terms in the harmonic regime that yield a convolution
product when transposed in the time domain. Their implementation would therefore require
to store the entire history of the traces of the solution along the enlarged interface while the
computation of the time convolution integral itself would substantially increase the computa-
tional cost in a naive extension of the ESIM. As a consequence, it is required to develop a
specific approach to handle efficiently this type of resonant interface models numerically. For
this purpose, the auxiliary variables formalism, which has been previously employed in [1] in
the case of bulk dispersive metamaterials in acoustics, is adapted here to deal with the resonant
meta-interfaces considered. In particular, a set of auxiliary variables is introduced locally along
the enlarged interface to handle the resonant behavior of the wavefield. Due to the coupling of
these additional variables with the original solution fields of the wave equation, the proposed
approach involves substantial modifications of the ESIM. In counterpart, the resulting com-
putational performances of the proposed approach is comparable with those obtained in the
reference case of non-resonant interfaces.

The article is organized as follows. In Section 2, the model associated with the resonant
meta-interfaces considered is presented in acoustics. The auxiliary variables formalism is then
introduced and implemented to obtain an equivalent augmented system of first-order equations
in time with transformed jump conditions that are local in time. Section 3 focuses in detail on
a numerical implementation in 1D: the fourth-order finite-difference scheme ADER is used in
combination with the ESIM. A local error analysis is performed and sufficient conditions under
which a given order of accuracy can be obtained are stated. Then Section 4 provides an overview
of the extension of the proposed numerical method in 2D. Numerical experiments in 1D and
2D are finally presented in Section 5, while comparisons with semi-analytical solutions allow
to assess quantitatively the performance of the approach developed. Comparisons with non-
resonant jump conditions are also given to investigate the effects associated with the resonant
behavior of the meta-interfaces considered.

2. Physical model

2.1. Governing equations for resonant meta-interfaces

Consider the propagation of acoustic waves in a background matrix €2, C R? that contains
an infinite array of inclusions €2; arranged periodically with a spacing h, see Figure 1. The media



considered are assumed to be homogeneous and isotropic so that their constitutive parameters,
being the mass density p and the compressibility y, are piecewise constant:

p®) = pmla, (®) + pilo,(x)  and  x(®) = xmla, (@) + xilo,(®) (1)

for all x = (21, 29) € R? and with 1p being the indicator function of a given domain D. Note
that the compressibility parameter y is related to the classical wave velocity ¢ by the relation
x = (pc?)~1. In the frequency-domain, the governing equations for the acoustic velocity and
pressure fields, denoted as v = (v1,v) and p respectively, read:

i p(2) 9(2,w) = ~Vi(,w) o)
lw X(CU) ]5(.’13, w) = —div 'IA](:E? w)?

where w is the angular frequency and f being the Fourier transform of a field f. Moreover, p
and v - v are assumed to be continuous at the matrix/inclusion interfaces 0€2; with normal v.
The equations (2) have to be completed with initial conditions and proper radiation conditions
at infinity to ensure well-posedness. External sources terms may also be considered. Note that
the system (2) is here considered in the acoustic case but it is also relevant to other physical
configurations, such as linear anti-plane elasticity for which the fields v, p and the parameters y;,
1/p would stand instead for stress vector, velocity, mass density and shear modulus, respectively.

In this setting and defining the background wave velocity c,, = 1/y/pmXm, it is further
assumed that the characteristic length-scale h of the microstructure is small compared to the
wavelength A\ = 27¢,, /w within the matrix, i.e. h < A, a condition which places the physical
configuration considered in the low-frequency homogenization regime. For some values of the
compressibility and the mass density, the wavelength within an inclusion is of order h. For
a particular scaling between material parameters, the original problem defined above can be
replaced by a resonant homogenized model that consists in a set of resonant effective jump
conditions as shown in [22]. These conditions apply on an enlarged straight interface of width
a, see Figure 1, and within which no calculation is performed and no field is defined. In the
non-resonant case, it has been shown in [20] using an energy-based analysis that the width a of
the enlarged interface must be at least equal to the width e of the microstructure. We follow
the same criterion here, which leads, for an enlarged interface centered at x; = 0, to the model
considered here:

i () = — V(2 0) (1] > /2,5 € R)
iw xmp(x,w) = —divo(e,w) (|z1] > a/2,29 € R) 3)
[p], = B1(01D)a + B2(02D)a (z4 € R)
[01], = C11(0101)a + C12(0201)q + Co2(0202) 4 + RD(w)(div D), (22 € R),
where 0;- = a% while

@], = F(a/2.0) — f(~a/2,2), (F@)ha=5(F (0/2.02) + f(~a/2,22)) (&

denote the jump and the mean value of a given field f relatively to the enlarged interface,
respectively. In addition, the constitutive parameters By, By, C1, C12 and Cy, featured in (3)
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depend only on the geometry of the inclusions €2; and on the material parameters of the matrix
and inclusions. Moreover, the term D(w) is a frequency-dependent parameter that encapsulates
the resonant behavior of the inclusions. Remarkably, this term can be expanded as:

) = — Z@ w2’ (5)

r>1

where {w; },>1 is a set of resonant frequencies associated with real-valued coefficients {o, }>o.
Note that the non-resonant effective interface model considered in [12] can formally be recovered
by setting a,, = 0 for all » > 0. Lastly, with the purpose of simulating transient waves using
the above meta-interface model, we assume that the sum in (5) can be truncated to a finite
number Ny of resonances based on the analysis of the frequency content of a given illuminating
wave. In the realistic applications studied so far, a number of resonances between 5 and 8 is
enough to do time-domain simulations that already go beyond the assumptions made to derive
the model.

Remark 1. The derivation of the effective model is beyond the scope of the present study and
the model (3) will be considered as such to perform wave propagation simulations hereafter. In
particular, the featured constitutive parameters will be chosen independently of a microstructure.
Moreover, even if the effective jump conditions are obtained [22] for configurations with zero
curvature, they will be employed in Section 4 for 2D configurations involving curved enlarged
interfaces as well. In this case, they will be properly expressed using a curvilinear coordinates
system.

2.2. Auziliary variable-based time-domain formulation

Owing to the frequency dependence of the term D(w) in (5), then the transposition of the
system (3) to the time domain brings up a convolution integral in time. Handling numeri-
cally such a non-local term is very costly and would therefore reduce the computational gains
associated with the treatment of the microstructured layer through an effective model.

To circumvent this difficulty, the auxiliary variable approach can be used to obtain a set of
equations in a local form, see [1] for the application of the latter to dispersive metamaterials in
bulk. Accordingly, let define locally on the enlarged interface, the so-called auxiliary variables
J. and G,, which are associated with the resonance index r € {1,...,Ng} and satisfy the
following equations:

{(w —w?)J, (xz, w) = 2w (div o (x, w))a
) =

2
" for z5 € R. (6)
(‘1.27 )

iw Jy (9, w

Setting 511 = (C41 + hay and 522 = (95 + hap while combining (3) and (6) then yields the
following system in the time domain for all £ > 0 by a formal application of the inverse Fourier



transform:

( 1

Ow(x,t) = —p—Vp(a:,t) (|z1] > a/2,22 € R)
1

Op(x,t) = ——divo(x, t) (|z1] > a/2,22 € R)

0,G (19, 1) = —w2J,(19,1) + (e ) (Adivo(z,t))a (x2 e R, r=1,...,Ng)
(7)
atJT(x%t) - Gr(x%t) (1'2 € Ra r= 17 ) NR)

[[p]]a = Bl <81p>a + B2<82p>a (SL’Q - R)

~ ~ Ng
[v1], = C11(01v1)q + C12(02v1)a + C22(Oav2)q — h)_J. (22 € R).
r=1

\

Note that, to be consistent with the definition (6), the auxiliary variables J, are not averaged
in the last equation of the above system.

Remark 2. The auziliary variables {J,} are defined through (6) for all w # w,. Therefore, in
order to apply the inverse Fourier transform, care must be taken and a suitable approach relies
on the introduction of an artificial damping parameter that is taken to zero once in the time
domain. Studying such a limit amounts to investigate the question of the existence of a limiting
absorption principle for the system considered, which is however beyond the scope of this work.
Reference can be made to, e.q., [5] for the treatment of this question for dispersive media in
electromagnetism.

Starting from the original variable set w = (p,v) ", the set w = ({J,},{G,})" of auxiliary
variables is introduced locally along the enlarged interface to allow the derivation of the sys-
tem (7). The latter consists of first-order equations in time that are complemented by jump
conditions that are local in time. Considering the complete set of variables @ = (u,w)" then
(7) can be written in a compact form for all ¢ > 0 as:

atu—i-Ajaju:O (|I1| ZCL/Q,I’QER),
Oyw + B<8]28[U/>a +Cw=0 (z3 €R), (8)
[[’l,l,]]a = ]D)j ((9ju>a + Ew (Ig c R),

using the Einstein summation convention for repeated indices and where the matrices A;, B,
C, D; and E concatenate the parameters characterizing the resonant meta-interface model
considered.

3. Numerical modeling: detailed implementation in 1D

3.1. Preliminaries

In this section, we describe the numerical implementation of the system (7) in a one-
dimensional configuration which is representative of the propagation of a plane wave illuminat-
ing a straight enlarged interface at normal incidence in 2D. The velocity reduces to the scalar



field v(x) = v(z) e; where x = x - e; with (e}, e;) being the canonical basis of R?. In this
setting, the system (7) is recast for all £ > 0 as:
(

ru(.t) = - Bupla, (12| > a/2), (90)
Oup(a.t) = —Ximaxu(;c,w (J2] = a/2), (9b)
QG (t) = —wiJo() + (cmon)* (030 (, 1)) (r=1,...,Ng), (9¢)
<@JT(,5) G (r=1,....Np). (9d)
[p(z,t)], = Bi(9sp(z;1))a, (9e)
[v(z, )], = Cir (e ()0 — hiﬁ(t). (9f)

\
According to the condensed form (8), we introduce the matrix

= (om0 .

so that summing up (9a) and (9b) yields
du+Ad,u=0 (|x] > a/2). (11)

3.2. ADER-K scheme

The solution w is discretized with a mesh size Az and a time step At. We denote as u
the approximation of u at the point x; = iAx and time t,, = nAt. The explicit finite-difference
ADER-K scheme [25, 17|, with K an even integer, is used to solve numerically (11). When
applied to an equation such as (11) in a homogeneous domain, this scheme is of order K in
both space and time for sufficiently smooth initial data and, for K = 4, it is stable under the
CFL condition At < Azx/c,,. Its time-marching scheme writes:

+K/2 K
n+1 Z ZVKms<£ ) ?—&—sa <12>

s=—K/2m=1

where the vk, s are a set of coefficients such that, if the solution w is of class C¥| then its
m-th order derivative can be approximated as [11]:

(_1)m+1 K/2
O u(wy, tn) = = ——m! > Ukms(@ips ta) + O(ALT), m=1,.. K. (13)
s=—K/2

Inserting Taylor expansions for w(xjis,t,) at (z;,t,) and up to the order K in the previous
expression leads to the following relations that are satisfied by the coefficients vk ,, s for 0 <
k<Kand1l<m<K:

K/2 m+1 -
L (—1) if k=m
m.sS. = 14
Z VEm,sS {0 else. (14)
s=—K/2

For now on, we choose the ADER scheme with K = 4 which we consider to allow a good
compromise between accuracy and ease of implementation.

7



3.3. Numerical scheme at the interfaces

Considering the time-marching scheme (12), two types of points can be distinguished, see
Figure 2: (i) regular points that are the grid nodes for which the stencil does not intersect the
enlarged interface, and (ii) irreqular points that are the nodes whose stencil includes at least one
node within the enlarged interface where the solution is actually not defined. Such grid nodes
x; lying within the enlarged interface are referred to as phantom points. For time-marching at
the irregular points, the scheme (12) is modified: phantom values u* have to be defined and
used at the phantom points x; within the enlarged interface while standard numerical values
can be used otherwise. In the framework of the Explicit Simplified Interface Method (ESIM),
these phantom values are defined as smooth extrapolations of the solution at the phantom
points from the values of the solution at the physical points £a/2. In the case of the ADER-4
scheme, they are given by

q
1 m
u*(zi, t,) = Z% <x, + 2) ar'u (—%,tn> fori=1,+1, I + 2,

m=0 2
. (15)
a\m™ a
u*(xz,tn)zz%<wz—§> (921’11,(5,1571) fori:IR—l, [R—Q,

where I, and I are the indices of the grid nodes that are the closest to the enlarged interface on
each side and ¢ > 1 is a user-chosen parameter that controles the accuracy of the approximation.

Remark 3. Note that in the definition (15) of the phantom wvalues, the point x; is a grid
node that is situated in the enlarged interface while +a/2 is a physical point that may not
coincide with a grid node. This is the whole point of the ESIM, which allows to implement
Jump conditions at interfaces whose geometry may be independent of the computational grid of
the finite-difference scheme considered.

This methodology has been implemented in the case of non-resonant effective interface
models in [12]. Tt is extended here to the case of resonant models, which requires substantial
modifications due to use of auxiliary variables. In the sections 3.4 and 3.5, it is shown how the
computation of the phantom values through (15) rely both on the use of the jump conditions
(9e-9f) and on Taylor expansions on both sides of the enlarged interface.

< > stencil

X regular point
irregular point

OO point used in Taylor exp.

x phantom point

—e~ numerical solution

Figure 2: Nodes surrounding the enlarged interface for the ADER~4 scheme.



3.4. High-order jump conditions

The phantom values u* in (15) are expressed in terms of the spatial derivatives 0'u at
+a/2. To compute the latter, one is required to derive g-th order jump conditions relating the
traces of the spatial derivatives of the solution, up to its ¢g-th derivative. Some notations are
introduced: the vectors U{ (t,) and UZ(t,) concatenate gy = (2¢ + 2) unknowns which are the
traces of the spatial derivatives of the fields p and v up to order ¢ and on each side as

Ui(tn) = (p£(tn), Ozp+(tn), .-, agpﬁ:(tn)v Vi (tn), Oxv+(tn), .., agvi(tn))T € R, (16)

where pi(t,) = p(+a/2,t,) and vL(t,) = v(£a/2,t,) and employing the same notation for the
spatial derivatives. Index numbering starts at 1 for all the vectors and matrices considered in
this paper. Moreover, the vector Z contains the 2Ny auxiliary variables at time ¢, i.e.

Z(t,) = (Ji(tn), ..., Inp(tn), Gi(tn), ..., Gy(tn)) € R¥VE, (17)

To obtain jump conditions at the order ¢, i.e. a relation between the vectors U{, U? and Z,
the zero-th order jump conditions (9¢) and (9f) are first differentiated in time and the equations
(9a) and (9b) are used to replace time derivatives by spatial derivatives. This yields a relation
between the vectors Uy, U! and Z. This process of differentiating in time the jump conditions
is iterated up to the chosen value of the parameter ¢ while the equation (9¢) is used to expressed
the term 0;G, using J, and (92v), when necessary. The ¢-th order jump conditions so obtained
are written as:

CLU!(t,) + RL(t,) = CLU(t,) + R (t,) + Q1Z(t,), (18)
with CL being gy X gy matrices that depend only on the interface parameters and C% being
invertible in the cases considered hereafter. Q7 is a gy x 2N matrix that depends only on the
physical parameters and on the resonant frequencies. The gy-element vectors R%(¢,) contain
the (¢ + 1)-th order derivatives of p and v.

In the ensuing numerical examples, the values ¢ = 3 and ¢ = 5 are chosen and it is checked
numerically that the corresponding matrices C% are invertible. In the case ¢ = 3 the entries of
the above matrices are given below:

( 3. - 3 Cll
C:I:[Z7Z] = 17 C:I:[576] = :F77
B B
CilL2 =%, Ci6,7 =%,
~ Ngr (19)
C 1/~
Ci[2,3] :¢%7 Ci[7,8] :$§<Cn —hZOﬁ?),
r=1
3 Bl 3. -
\Ci[3,4] =F5 Cili, 5] = 0 else.
( hw?
Qg[Qa]] = hpm lf] € {NR+ 17"'72NR}7 @3[77]] = 6_2] lfj S {17"'7NR}7
hpmw?
Q4 j] = — LN i e {Np+1,.,2NR), Qij]=0  else.
CTI’L
| Q%[5,5] = —h if j € {1,..., Ng},
(20)

Ngr
1/~ B
{Rf’t[él] =F; (C’H —h E af)&ipi, R%[8] = :F?la;lvi, R[i] = 0 else. (21)
r=1

9



3.5. Computation of the phantom values

Consider T} (4a/2) as the 2 x gy matrices of the polynomial forms of the Taylor expansions
at the order ¢ between the grid node with index ¢ and the physical point +a/2, which may not
coincide with a grid point, see Remark 3, i.e.

q (1 (xi£a/2) ... (xita/2)?/q O 0 0
Ti(ia/Q)‘(o 0 0 ! 1 (2;+£a/2) ... (:L‘Z-:lza/Z)q/q!>'

The equation (15) is now recast as

w (20, 1,) = T (—g) U’ (t,) fori=1I,+1,1; +2,
(22)
u(wi,t,) = T (g) U'(t,) fori=Ip—1,I—2.

The vector U{(t,,) can be expressed as a function of U (t,,) using the ¢-th order jump conditions
(18). Now, to determine U (t,) we introduce a user-chosen parameter ¢y according to which
Taylor expansions are written out at the ¢r nodes x; = x5, _4,41, ..., 27, on the left side of the
enlarged interface as

w(zi, ty) = T (—g) U () + O(Az?), (23)

and at the g7 nodes x; = x1,,, ..., Zr,4+4,—1 ON the right side of the enlarged interface as

u(wi,tn) =T} (%) Ul(t,) + O(Az?H) o
=T¢ (g) (C)CLU () + QUZ(t,) + R (1) — R ()] + O(Axt).

In (24), we made use of (18) and, by an abuse of notations, the term O(Az?™) denotes a vector
with entries of the order of Az and whose size may vary from line to line. We introduce the
4g7 X qu matrices M and F? by blocks:

T?L_QT-F].(_%) 0
T¢ (—9) 0
M = q aIL q 2—1 q ’ F? = q /a (C?i-)il? (25>
T7,(3)(CL) CL —T7,(3)
T?R-FQT—l(%)((CZ-)ilCi _T(II'R—l-qT—l(%)
and the 4¢gr-element vectors U(t,,) and A(t,):
Iu’(:EIL—qT-i-la tn)
w(zy,,tn)
Ut,) = : A(t,) = —F7(R%(t,) — Ri(t,)). (26)
w(zr,, tn)

W(T1pygr—1,tn)

10



Then, from (23) and (24), one obtains the following system:
MU (t,) = U(t,) + FIQIZ(t,) — A(t,) + O(AzIH). (27)

When the parameter g is chosen as 4g7 = qu, then M is a square matrix that is formally
checked to be invertible. In order to work as often as possible with a square matrix, ¢ is always
chosen odd in 1D. If 4¢7 > gy then MY is not square and, in such a case, we denote by (M‘?)_1
its Moore-Penrose pseudo-inverse. Therefore, using the g-th order jump conditions (18), we
arrive at the following expressions for the vectors U{(t,):

Ul (t,) = (M) (U(t,) + FIQIZ(t,) — Atn) + O(AzTh), (28)

and
Ul(t,) = (CL)HCLM) T (U(t,) + FIQIZ(L,) — At,) + O(AzT))

+ qu(tn) +RL (tn) - Ri(tn)]

Neglecting the terms that do not depend on U(t,,) or Z(t,) in (28) and (29), and introducing
the gy X qu matrix GY as

(29)

G? = CL(M9)'F! + 1, (30)
then allows us to formulate the numerical approximation (U{)" of the vectors U{ (t,):
(U™ = (M)~ [U" + FQ* 2", (31)
and
U9 = (€} L) U + Gz, (32)

Due to (22), we finally arrive at the approximation below for the phantom values.

Approximation 1. The numerical approzimations (u*)! of the phantom values u*(z;,t,) are
computed using the formulae

(w)r =T (~3) (v0) " +F'Q 2] fori—Ip+ 1,0y +2
(33)
(w)r =T (5) (€7 '[CLM) " U+ G'Q'Z"] fori=1Ir—2,Ir—1,

in terms of the numerical approzimations U", Z™ of U(t,,), Z(t,), respectively.

The quality of this approximation is quantified in Property 1 through a local error analysis. In
practice, the matrices T (+%), CL, F?, G, Q7 and (M9)~" featured in (33) are computed in a
pre-processing step once for all.

The phantom values (33) are used in the ADER-K scheme (12) at irregular points. For
example, the time-stepping at the irregular point x;, on the left side of the enlarged interface
is recast as

n+1 n 0 K m
uy” —up 1 At n
S 2 S (45) v
S=— m= 4
| K2 K At\™ oY
+ EZ mZK’" (AE) w0,
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which can be written as
it = Hy (", Z") (35)

with w4 = {u!'}; being arranged as a vector and Hj, defined by
. At\™
,;L[L(’u,n7 Z”) = ’U,?L — Z Z VK .m,s (AE) u?L""S
K/2 K m
At a 1ym
3 v <AA—x> ™ ., (_§> (M) (36)

X At\™ a
_ Z Z VK m.s (AA_Z') ’]I‘?Hs (—§> (Mq)*llﬁ‘q Q1 Z".

The numerical approximation U™ of U(t,,) defined in (26) can be expressed as a function of u™.
On the right side, we take the example of the irregular point I, where the time-stepping can
be written:

Wit = Halu', Z7) (37
with Hp defined by

- :Zl i_VK,m,s <A§>mT(}R+S (g) (€)'t M) 'un (38)

SIS At\™ a
- Y Yoo (a50) The(5) ) @2

Remark 4. In this article, the computation of the phantom values has been discribed for the
ADER-/ scheme for the sake of simplicity. Yet, the only difference between the different ADER-
K schemes is the number of irreqular points and phantom points to be considered. Therefore,
Hr and Hp at x;, and x,, which are always irreqular points, are introduced above for an
arbitrary ADER-K scheme, with K being an even integer.

3.6. Computation of the auziliary variables

The computation of the phantom values u* through Approximation 1 requires to determine
an approximation Z" of the vector Z(t,) of auxiliary variables (17) at each time step. Assuming
zero initial conditions for J, and G,, which is justified in the case where the enlarged interface
is illuminated by a remote source, then integrating (9¢-9d) yields

{Jr (tn) = A71° (tn) cos(w,ty) — Az(tn) sin(w,t,),

G, (tn) = —w, (AX(t,) cos(wytn) + AL(t,) sin(w,t,)) (39)

where, owing to (9a-9b), one has for i = 1,2:

Ai(t,) = 0 /0 tnei(r)dT with {&"(7):at@m“(ﬂsm(wif (40)

w'rm

12



In practice, the functions A’ in (40) are computed iteratively as

Az‘(to) - O,

| | 02 [ (41)
Niltasd) = At + = [ ()
tn

WrPm

where to = 0 and the integral being computed using the extrapolative Newton-Cotes formulas
[27], i.e.

tn+1 . QI_Q .
/ ((r)dr = AL S Al (tn) + O(ALH), (42)
tn m=0
The values of the parameters ~,, for ¢; = 2,...,5 are reported in Table 1.

o 2 | 3 [ 4 | 5 |
Yo 1 3/2 23/12 | 55/24
" -1/2 | -16/12 | -59/24
Yo 5/12 | 37/24
Y3 —9/24

Table 1: Numerical integration by the Newton-Cotes formulas: values of the parameter ~,, featured in (42).

Moreover, the computation of the terms ¢'(t,_,,) defined through in (40) and used in (42)
requires to approximate the temporal derivative 9;(9%p),(t,_m), which is achieved using the
following finite-difference approximation:

Ot ) = 3 D BulO2haltn ) + O(A). (13)

The values of 8, for qp = 1,...,4 are listed in Table 2.

oo v | 2 | 3 [ 4 |
Bo 1 3/2 | 11/6 | 75/36
B | -1 472 | -18/6 | -144/36
Bs 1/2 | 9/6 | 108/36
Bs 2/6 | -48/36
B 9/36

Table 2: Numerical derivation: values of the parameter 3, featured in (43).

Remark 5. Owing to (9¢), the term (03v), can be used in (40) instead of the quantity 0;(0?p),
with mixzed derivatives in time and space. However, in practice, numerical instabilities have been
observed in 2D when the third-order spatial derivative is used, contrary to the mixed approach
described here. Such instabilities were not observed in 1D but we adopt this mized approach for
the 1D case as well for consistency.

13



By inserting (42) and (43) in (41), while keeping track of the approximation order, we get
the following expression for Al:

Al(to) =0,

qr—2 4D (44)

A (tnga) = Z Buw(02D) 0 (tn—m—w) (k)™ 4+ O(Amn(apFLan)

with (k})® = sin(w,t,) and (FLT)S = cos(wrts). For m =0,...,q; —2 and w = 0, ..., ¢p, we know
from (16) that

(OB} altnmw) = 3O (nm) + ULl )13 (45)

where U 3] stands for the third term of the vector U. Using the numerical approximations (31)
and (32), we obtain the approximation of (92p)a(tn_m—w):

(@20 = S (T, + (C}) 7 CL) M) U 4 (M) 4 (€)' 6) @ 23,
(16)

leading to the final approximation below.

Approximation 2. The numerical approximation (AL)"™ of Ai(t,) fori =1, 2 is computed by
the recurrence relation

(A" =0,

u? (47)

(Afn)n+1 Zﬁw n mfw(lii)nfm

with ((0%p)a)* denoting the numerical approzimation (46).
For i = 1, 2, we introduce the function A* defined by
NE((AD)™ u™, ...,u"_m_“’ Z", ., Z" )

ar—2
= (A, Mpm mZ i Zﬁw (T, + (C1) T CL) M)~ U™ [3) ()" 48)
a2 U 2 qp
oo mZ_ vm;%ﬁw (M7)'F* + (C}) 7' G1)Q1Z" ") [8)(s;)" ",
which allows to write that
(ALY = A (ALY, oo™, 27, 27 1. (49)
We now introduce the 2Ng x 2Ng matrix S(¢,,) as follows:
(S]y, j] = cos(wjty),
for j € {1,..., Ng} < S[j + Ng, j] = —w; sin(wjt,), (50)

S
S

+ NR, + Ng] = —wj cos(wjty,),

[,
Sl + Ni| = —sin(wjtn),
y
j
4,

(S[i, j] = else.

so that, owing to (39), we have the following approximation.

14



Approximation 3. The numerical approzimation Z"™ = ({J"}»,{GI'},) of the auxiliary vari-
ables vector Z(t,) = ({J,(tn) }r, {Gr(tn)}r) at the time step t, writes:

Z" = S(t,)A" (51)

with A" = ({(AD)"},, {(A®)"},) being arranged as a vector.

In practice, owing to the formula (47), the computation of the auxiliary variables J', G at
a given time step t, only requires the knowledge of (AL)"~1 (A2)"~! and ((9%p),)" "™ % for
m=20,...,(qs —2) and w=0,...,qp. These quantities constitute a set of memory variables,

which we regroup in the following vector

O = (AL (A2 {(02D)0)" ™ )

of size (qp + 1) X (¢ — 1) + 2Ng. The vector W™ is stored and updated during the entire
simulation. For a given phantom point, once Z™ is computed, the resonant case only requires
an additional matrix vector product with a matrix computed in pre-processing. Therefore, in
terms of computational time, it is negligible compared to the cost of the numerical scheme.

(52)

3.7. Summary of the algorithm
3.8. Numerical analysis

To the Authors’ knowledge, there is no theoretical result available on the numerical stability
of the ESIM. In the non-resonant case, no stability issue has been observed on a large number of
simulations that involved interfaces with various constitutive parameters and positions within
the finite-difference grid [12]. In the resonant case considered in the present study, the stability
is observed in practice to depend on the order of integration ¢; in (42), on the order of derivation
gp in (43) on and the number gy of grid nodes considered for the Taylor expansions (23-24).
In practice, given (¢p,qr), the stability is observed on numerical experiments for the minimal
values of ¢r that are reported in Table 3. The case (qp, q;) = (4,5) is not reported because gr
being too large, the use of the pseudo-inverse of the associated matrix M yields unacceptable
numerical errors. When g7 is chosen according to Table 3, then the CFL condition At < Ax/c,,
of the ADER-4 scheme in a homogeneous domain seems to be the critical threshold for stability
here as well.

wi o 3 4 5
qdp
1 qu/4 | qu/4 qu/4 qu /4
2 qu/4 | qu/4+1 | qu/4+1 | q/4+1
3 qu/4 | qu/4+1 | qu/4+2 | qu/4+2
4 qu/4 | qu/i+1 ]| qu/4+2

Table 3: Minimal value of the Taylor expansion parameter g for which the scheme is observed to be stable in
the numerical experiments considered, given (¢p, ¢r) and with ¢y = (2¢ + 2) as in (16) for ¢ € {3, 5}.

In this context where no stability result is available then global error estimates cannot be
derived for the proposed scheme. Rather, we focus here on a local error analysis. We assume
that the numerical solution is the exact continuous one at time ¢, and evaluate the error

15



Algorithm 1 Time-marching scheme with auxiliary variables and phantom values

I. Pre-processing:

1. Detection of the irregular points surrounding the enlarged interface.

2. Computation of the matrices (M?)™', CZ, ((Ci)fl, F9, GY and Q9.

3. Computation of Tg(—%)(MQ)_I and T?(—2)(M?)"'F4Q¢ for phantom values at the
left side of the enlarged interface.

4. Computation of Tg(%)(@ifl@q_ (M9)~" and T?(%)(Ci)fleQq for phantom values
at the right side of the enlarged interface.

5. Computation of (I, + (C%)™'CL)(M9) ™" and ((M9)~"F¢ + (CL)~'G9)Qv.

a
2

1. Initialization: set the solution u? at ty = 0 while Y = 0 along the enlarged interface.
III. Iterate in time n > O:

1. Computation of the vector A™ from W" using Approximation 2.

2. Computation of S(t,) and then of the auxiliary variables vector Z" from A" using
Approximation 3.

3. Computation of U" in (26) from u}.

4. Computation of the phantom values (u*)? using Approximation 1.
n+1

5. Time-marching using (12) to compute the solution u " for all ¢ with the phantom

values being used where necessary.

6. Computation of (9%p)" using (46) and update of the memory variables vector ¥"*!
in (52).
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commited by the numerical scheme in one time step. The expressions of the local errors on wu,
A and Z at time t,, are introduced as:

vtn), Z(tn
‘C'O,u(xIRu tn) = ’U,(.%'[R, thrl) (u ) tn) (tn

Loni(tn) =AL(tn) = N (AL(tn), w( tn), s w(s tnmmew)y Z(tn),s ooos Z(tnem—uw) tn)
(fori=1,2, andr=1,..., Ng),

(EO,U(xILutn) :u(xILatn+1) (

(-
(-
(53)

Loatn) = {Loar(tn)br, {Loaz(tn) ),
Lo,z(tn) =S(tns1)Loaltn).

These errors are analyzed at the irregular points in the general case of a ADER-K scheme.
These points are chosen as they necessitate a particular treatment which requires to change
the local error analysis that could be done for a regular point. For a regular point, the analysis
is simply the same as in a homogeneous medium. The example of the left irregular point zj,
and the right one x;,, is chosen because they are irregular points regardless of the choice of the
even integer K.

\

Property 1. Let us assume sufficiently smooth initial data, so that the local truncation error
for the ADER-K scheme in a homogeneous domain is O(Ax™). We consider the orders q =
{3, 5} and we set gr = qu/4 so that M? in (25) is a square matriz. Then, considering the
approximations 1, 2 and 3, the local errors (53) satisfy

’Eo,u(l‘lmtn) - O(Axmin(K"‘Lq)),

ACO,u (J:IR, tn) — O(Agjmin(K+1, q))7

qr—2 ‘ (54)
Lo (ta) = O(Az™ o040y L O(Az7) S ()™ (i=1,2,7=1,..., Na),

r
m=0

| Loz(tn) = {O(Agmm @ ety oy {O(Ag™® @b an T}y icong).

Proof. See Appendix A. n

Even if the one lacks of a theoretical stability property for the proposed scheme, we assume
that, if applicable, the global error would be in agreement with the analysis of the local error
and corresponds to the accumulation of the latter over iterations. Accordingly, a cumulative
error at time ¢, can be found from Proposition 1 by repeating the scheme (9( -) times. In
numerical experiments, we are interested in measurements of global errors on u only Conse-
quently, in a second step of the analysis we evaluate the effect of the cumulative error regarding

Z on the local error regarding uw. Therefore, the final local error on u after two time steps is
defined by:

Loy ta) = wles i) — o (1l tas) + Louot) Zlted) + 3 £az(t)),

(55)

Lulorgeta) = g tosz) = Ha (lots) + Loult), Zltwn) + 37 Lazltn))

and one arrives at the following result.
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Property 2. Let us assume that the assumptions in Property 1 are satisfied and introduce the
cumulative error E(t,) = 7 Lay(x:,1,). Then E(t,) = O(Ax®) is obtained with the parameter §
being given by

d=min(K,q—1,q;—1, qp) forq={3,5}. (56)

Proof. See Appendix B. n

If stability holds then we expect the cumulative error £(t,,) to be consistent with the global
error. Considering Property 2 and the above discussion on the numerical stability, then one
can conclude that a third-order accuracy can be reached but the fourth-order accuracy of the
ADER-4 scheme cannot be recovered. In the numerical experiments of Section 5.1, global er-
rors are measured and they are found to be in agreement with the analysis of the local error
provided in Property 2. Note that, even if Property 2 is relative to the 1D case, the numerical
experiments of Section 5.2 suggest that similar results also hold in the 2D case.

Lastly, in the non-resonant case, no auxiliary variables need to be defined and Z(t,) = 0
can be set in (18). In this case, the integration and derivation steps of Section 3.6 are irrelevant
so that the associated parameters q; and ¢p can be removed from the estimates of Property
2. As a consequence, the error £(t,) = O(Az™™5:4=1) for all ¢ is recovered, which meets the
result proven in [14] for K = 2.

4. Numerical modeling in 2D: an overview

4.1. Setting and implementation

In this section, we formally extend the 2D model (7) to a configuration with a curved
enlarged interface defined by two parallel curves I'; = I';(x1(s), z2(s)), with j = 0,1 and s
being the associated curvilinear abscissa, see Figure 3. The solution is defined in the domains
on each side, which are denoted as €2y and €2y, while as previously no physical field is defined in
the interspace between I'y and I'; of width a. The jump conditions in (7), which are expressed
in Cartesian coordinates are directly transposed in the local frame defined by the normal and
tangent vectors v and T at the interfaces, see Remark 1:

lat'v(a:,t) = —pimVp(a:,t) (x € QU Q)
Op(x,t) = b divo(zx,t) (e QU
01G(5,t) = —w?J(8,1) + (cmay ) > (A divo(z, t))a (seR,r=1,...,Ng)
Oy (s,t) = G,(s,1) (seR,r=1,...,Ng)
[P, = Bi(9.p)a + B2{0rp)a (s € R)

[v1], = C11(Bvvu)a + C12(07 01 )0 + Co2(0-07)a + hap(divv), — h%ljr (s € R)
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where v, = v -v/||v|, v, =v-7/||7] and O, f = V- -v/|v], O.f = Vf-7/|T|. Moreover,
11, and (f), stand for the 2D version of the jump and the mean value of f at the enlarged
interface respectively.

Remark 6. In the proposed extension (57) of the model (7) to a configuration involving a
curved enlarged interface, we have chosen to keep the term (divwv), as such as it has a clear
interpretation relatively to a homogenization process, see (3) and [22]. However, we do not
claim that (57) is a homogenized model and our objective is rather to show that such a model
can be efficiently handled using the proposed approach.

As previously, we use the ADER-4 scheme with a uniform Cartesian grid with «}'; denoting
the numerical value of the solution u = (p,v;,v2)" at the point (z; = iAz,z; = jAz) and
time t,. In this framework, the approach adopted is as in 1D: the irregular points are detected
and phantom values are computed at the grid points that are located in between I'y and Ty
and used by the stencil. For @ being such a point, let QT and 2~ denote the closest domain
and the farthest one respectively (there is no ambiguity in these definitions as the width of the
stencil is systematically chosen to be smaller than the width a of the enlarged interface). Then
Q7 denotes the orthogonal projection of Q on I'* = 90* (see Figure 3).

X X X X X X
O
X X X X X X X X X X
X X X® ® ® ®.X X X X X X
. ® X X X X X
’ A}
4 A
‘l
/Fl

% regular point

'\/ stencil
X X X X X X X X

X X X XX X X X X X
irregular point

v
----------------------------- Aj X phantom point

T ® projected point
X X X X X D
X X X X X X/ X X X X X X X Taylor exp. domain
/I‘o""—_—r’—‘" X/X X X X X X X y QOO point used in Taylor exp.
x
X X'® ® ® ® '®'
X XXX X X X X X x X
Qo X X X X X X X X

Figure 3: Smooth enlarged interface of width a that separates the domains 2y and €27 in 2D. A phantom value
is sought at the point Q whose orthogonal projections onto the interfaces I'y and I'; are denoted as Q—, Q"
respectively.

Extending to the 2D case the definition (15) and (22), a phantom value u* at the point
(@ is defined as a smooth expansion of the value U{(t,) of the solution on the I'* interface at
the time step ¢,. As in (22), this computation relies on a matrix T?(Q, Q") of the polynomial
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forms of the 2D Taylor expansion between the points @ and Q. Moreover, the vectors U (t,)
of size 3(q + 1)(q + 2)/2 contain the 2D derivatives of u(Q*,t,) up to the chosen order g.

4.2. Principal features of the implementation

To compute the phantom values, high-order jump conditions relating UY (¢,) and U%(t,)
have to be used and these are obtained by differentiating in time the original jump conditions, as
it was done in Section 3.4. However, in 2D, high-order derivatives with respect to the curvilinear
abscissa s has to be considered as well. This leads to (¢+1)(g+2) equations overall. From there,
the number of terms in the vectors U{(t,) can be reduced based on ¢(q + 1)/2 compatibility
conditions that can be deduced from the condition V Av = 0, which holds outside the support
of the external sources considered. The under-determined system of high-order jump conditions
so obtained is then solved in the least-squares sense using Singular Value Decomposition.

Next, 2D Taylor expansions are written out at the grid points that are contained in the
domain DT (resp. D7) defined as the intersection of the disk centered at QT (resp. Q~) with
the domain Q% (resp. Q7), see Figure 3. This allows to compute U{(¢,) and finally to derive
a formula for the numerical approximation (u*)fj of the phantom values, as in Approxima-
tion 1, by neglecting the Taylor remainders and the derivatives of order ¢ + 1. This procedure
constitutes an extension of the approach developed in [15] for non-resonant interface problems.

Unlike the non-resonant case, it remains however to compute the numerical approxima-
tions J, GI' of the auxiliary variables J,(s,t) and G,(s,t) along the enlarged interface. This
is achieved by performing numerical integration and numerical differentiation, which extends
Approximation 3 in 2D. Note that we limit ourself to ¢ = 3 because when ¢ > 3 the featured
derivatives with respect to the curvilinear abscissa s involve spatial derivatives of the auxiliary
variables. Each spatial derivative would be a new auxiliary variable satisfying a new ordinary
equation in time. This can be done but we prefer to avoid such technicalities given the sat-
isfying numerical results already obtained for ¢ = 3. In terms of memory requirements, the
computation of the auxiliary variables requires the storage of the vector ¥ defined in (52) for
the 1D case at each orthogonal projection point Q<.

5. Numerical experiments

5.1. 1D case
5 5 - v [ o [ 1 [2[3]4]5]
; 312(();)} 0117;?} (Qm)} o (rads ) 300 | 450 | 600 | 750 | 900
: : o 0314|0462 | 04 [ 0.2 0.1 ] 0.1

Table 4: Interface parameters for the 1D model (9).

Pm (g'm-3) Cm (m’s-l) fs (HZ) T (IH) a (m) Ax (m) C
1000 1500 30 -9 6 1.5 0.95

Table 5: Matrix properties and numerical parameters.

This section aims at validating the numerical method described in Section 3 for the 1D case
and assessing the effects of the resonances for the model considered. The chosen constitutive
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parameters and numerical ones are provided in the Tables 4 and 5 considering a number Ngp = 5
of resonant frequencies. The time step follows from the CFL condition At = (Ax/c,, taken for
¢ = 0.95. The initial conditions are:

w(z,0) = (—pm, —1/cm) gl — ), (58)
where

3
A, sin(2Fz if—c—m<x<0
2 Awsin@') if - <o s (59)

0 otherwise,

with Ag = 1, A} = —21/32, Ay = 63/768, and A3 = —1/512, which entails that g is of class C°.
For the chosen values of ¢,, and Az in Table 5 then the number of grid nodes is approximately
33 per wavelength at the central frequency f,. Moreover, the initialization point x, is chosen
so that the support of the initial time conditions (58) does not intersect the enlarged interface.
The corresponding initial pressure and its Fourier spectrum are shown in Figure 4. The final
simulation time is chosen so that the wave has not hit yet the boundaries of the computational
domain.

g(z) =

1500 f ‘ : ‘ ‘ ‘ 7 20
I
1000
151
500 1
E o0 =10
ST
-500 1
5 .
-1000 -
-1500 & : : ‘ : : 3 0 3¢ % *—% >
-150  -100 -50 0 50 100 150 0 50 100 150 200
& f
(a) Waveform (b) Fourier spectrum

Figure 4: Initial condition (58): (a) pressure field p and (b) associated spectrum with the red crosses indicating
the five resonant frequencies f, = w,. /27 considered.

Figure 5(a) displays the associated acoustic pressure p computed at the final simulation
time t; = 94.05 ms, together with a semi-analytical solution p.., which is derived in Appendix
C. The discrepancy between the two solutions is quantified by defining a global relative error
at the final simulation time t; as follows:

_ ||pref<'7 tf) - p('a tf)||L2(Qobs)
€p(tf) = )
”pref('7 tf) HL2 (Qobs)

where Qops = [Tini; Tena]\[—@/2; a/2], with z;,; and zenq the left and right boundaries of the
computational domain. One measures €,(tf) = 1.5 - 1072 when ¢ = 3, (¢p,q1) = (2,3) and
A/Ax = 33 for the characteristic wavelength A\ = ¢,,/ fs. The relative error €,(¢;) is represented
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1500 1
1000

500 R

-500
- -e- - non-resonant

-1000 _ 1 ——(9,,9,)=(1,2)
©  numerical

1500 - semi-analytical ——(9p,9)=(2.3)
‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ —
-150  -100 -50 0 50 100 150 50 100 150 200 250
x A Az
(a) pret (blue) and p (red) at the final simulation time (b) Relative error €,(t;) in a log-log scale.

ty = 94.05 ms. R: reflected wave, T: transmitted wave.

Figure 5: Numerical results for pressure field p in the 1D case: comparison with a semi-analytical solution pye¢.

as a function of A\/Axz whose slope in a log-log scale graph characterizes the global order of
the scheme, see Figure 5(b) for ¢ = 3 and two values of (¢p,qr). The errors obtained in the
non-resonant case, with o, = 0 for r = 0,...,5, are included in Fig. 5(b) for comparison. It is
seen that setting (¢p, qr) = (1,2) yields order 1, which is a drop in accuracy compared to the
non-resonant case for which the global error considered is of order 2. The choice (¢p, q;) = (2, 3)
allows to recover this order with comparable accuracy.

wWilo | 3]4]s Wil ol 3]4]s5
4D qdpD
1 L1 ]1]1 1 1111
9 1222 2 1222
3 1222 3 1233
4 122 4 123

Table 6: Convergence measurements in the 1D case: accuracy orders for ¢ = 3 (left) and ¢ =5 (right).

Table 6 reports the orders of accuracy measured using the global error metric €,(ts) for
g = 3 and ¢ = 5 depending on the chosen values (¢p,q;). The parameter gr is chosen to
be the minimal value given by Table 3 for each value of (¢p,q;). These orders, as well as
Figure 5(b), are obtained with the relative position of the interfaces within the Cartesian grid
being kept while the ratio A/Ax is increased. Even if the one lacks of a theoretical stability
property for the proposed scheme, these numerical results are in agreement with the analysis
of the local truncation error in Property 2. Note that, in practice, for the largest values of
(¢p, qr) considered then the Taylor expansion parameter gr must be increased to maintain the
numerical stability. Doing so, the matrix M? is no longer a square matrix so that Property
2 does not apply anymore. However the corresponding orders measured remain compatible
with the estimates of Property 2. The right bottom boxes are not filled in Table 6 because,
the associated values ¢y being too large, the use of the pseudo-inverse of the matrix MY yields
unacceptable numerical errors.
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0.08 % 0.08 F

0.06 ] 0.06 [

+~ - +~
oo4p 0 E 0.04 ¢
0.02 ¢ - 0.02 F
0 0
-150  -100 -50 0 50 100 150 -100 -50 0 50 100 150
T
(a) Without resonances (o, = 0) (b) With resonances (- from Table 4)

Figure 6: Seismogram of the acoustic pressure p field.

After this validation of the one-dimensional method, we can investigate the effects of the
resonances. Figure 6 displays the seismograms of the pressure field with resonances in the jump
conditions and without (i.e. when a,, =0 for r =0, ...,5). This figure highlights the resonant
behavior of the wavefield, with energy being radiated away from the enlarged interface long
after the passing of the incident wave. This is a consequence of the frequency dependence of
the parameter D(w) in (5) that intervenes in the definition of the jump conditions of the model
(3) considered.

5.2. 2D case

In this section, we validate the method dicussed in Section 4 on three test cases: i) incident
plane wave at normal incidence on a plane enlarged interface, ii) slanted incident plane wave
on a tilted enlarged interface, and iii) incident plane wave on a circular enlarged interface.
Semi-analytical solutions are computed in these three cases, see Appendix C and Appendix D.
The initial conditions are

u(x,0) = (p, vy, vz)T(a:,O) = —(pm, cos 01/, sinHI/cm)Tg((xl—xsl) cos O+ (xo—x49) sinby),

(60)
where ¢ is defined in (59), 6; is the angle between the direction of propagation of the plane
wave and the horizontal axis and the initialization point &, = (xs;, Zs,) is chosen so that the
support of the initial time conditions does not intersect the enlarged interface. The constitutive
and numerical parameters are those of the tables 4 and 5 while the chosen additional interface
parameters that are requested in 2D are reported in Table 7. The proposed numerical method
is implemented taking ¢ = 3 since, as previously discussed, the cases ¢ > 4 are very demanding
in 2D and require to handle additional auxiliary variables.

’ B2 (m) ‘ 012 (m) ‘ 022 (m) ‘
| 0284 | 0284 | 04 |

Table 7: Additional interface parameters for the 2D model (57).
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5.2.1. Incident plane wave at normal incidence

First, we consider the case of normal incidence, i.e. #; = 0, with a wave impacting normally
a plane enlarged interface, in which case the fields are independent of x5. Periodicity conditions
are imposed at the bottom and top boundaries of the computational domain. Physically, the
problem is 1D, but the full 2D algorithm is employed and one sets (¢p, qr) = (2, 3).

150 150
100 100
50 50
0 I 0 R T
-50 -50
-100 -100
-150 -150
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
(a)t=0 (b) ¢t = 94.05 ms

Figure 7: Pressure field p computed for an incident plane wave (I) at normal incidence on the enlarged interface.
R: reflected wave, T: transmitted wave.

Figure 7 displays the pressure field p at the initial time ¢ = 0, at which the initialization
point in (60) is s = (—9m,0m), and at time ¢; = 94.05 ms, while Figure 8 shows the profiles
of the solution at x9 = 0. The discrepancy between the numerical and the semi-analytical
solutions is comparable with the 1D results with €,(¢;) = 4.5 - 1072 for A\/Az = 33. Table 8
reports the measured orders of convergence, which are the same than in 1D.

1000
500 r
£
S¥
-500 -

-1000 o numerical
semi-analytical

-150 100  -50 0 50 100
Z1

Figure 8: Incident plane wave at normal incidence in 2D: semi-analytical and numerical pressure fields ppef
(blue) and p (red) at 2 = 0 and for the final simulation time ¢y = 94.05 ms.
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w9l 3]4]s
4dD
1 1] 1]1]1
2 1]2]2]2
3 1]2]2]2
1 122

Table 8: Convergence measurements in the 2D case: accuracy orders for ¢ = 3.

5.2.2. Slanted incident plane wave on a tilted enlarged interface

The case of an incident wave at oblique incidence, with §; = 10° in (60), on an enlarged
interface tilted from the vertical axis at —7.2° is now considered. It allows us to inspect both
the dependencies of the jump conditions on x5 and the capability of the numerical method to
account for the slope of the interfaces on a Cartesian grid. To perform the simulations, one
imposes the semi-analytical solution of the problem on the domain boundary.

150 150

100 100

50 50
i -/

-50 -50
-100 -100

-150 -150
-150 -100 -50 0 50 100 150 150 -100 -50 0 50 100 150

(a)t=0 (b) tr = 84.55 ms

Figure 9: Pressure field p computed for an incident plane wave (I) at oblique incidence on a tilted enlarged
interface. R: reflected wave, T: transmitted wave.

Figure 9 displays the pressure field computed at the initial time, at which the initialization
point in (60) is s = (—21m, —150 m), and at time ¢; = 84.55 ms when (¢p, q¢;) = (2,3). Figure
10 compares the reference semi-analytical solution and the numerical one, with €,(tf) = 4.1-1072
when A\/Az = 33. This result is comparable to that given in Section 5.2.1, which illustrates
that the dependency of the jump conditions on x5 and the slope of the interfaces are both
accurately accounted for by the proposed numerical method.

5.2.3. Incident plane wave on a circular enlarged interface

The case of an incident plane wave on a circular enlarged interface is now considered. This
example allows to inspect the capability of the method to take into account a curved enlarged in-
terface. A semi-analytical solution is derived in Appendix D in the case B, = C15 = a9 = 0.
Consequently, in this subsection, these interface parameters are set to zero to allow the com-
parison with the semi-analytical solution. The numerical parameters are (¢p, qr) = (2, 3).
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Figure 10: Slanted incident plane wave on a tilted enlarged interface: semi-analytical and numerical pressure
fields prer (blue) and p (red) at o = 0 and for the final simulation time ¢ = 84.55 ms.
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(a)t=0 (b) tf = 63.3 ms

Figure 11: Pressure field p computed for an incident plane wave on a circular enlarged interface.

We consider an incident plane wave with propagation direction along x; and periodicity
conditions imposed on the top and bottom boundaries of the computational domain. The
pressure field at the initial time, at which the initialization point in (60) is s = (—45m,0m),
and at final simulation time t; = 63.3 ms are displayed in Figure 11. The comparison with the
semi-analytical solution is reported in Figure 12 at x5 = 0. The measured error is €, (t;) = 2-1072
when \/Az = 33, which highlights the satisfying performances of the proposed approach with
the circular enlarged interface being accurately handled numerically.

6. Conclusion

In this study, our objective was to handle enlarged interfaces characterized by frequency-
dependent jump conditions and consequently jump conditions that are non-local in time when
formulated in the time domain. A time-domain numerical method was proposed and imple-
mented for this type of model. To the best of our knowledge, this constitutes the first effort
to simulate transient wave propagation across such resonant meta-interfaces. The proposed
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x

Figure 12: Incident plane wave on a circular enlarged interface in 2D: semi-analytical and numerical pressure
fields pres (blue) and p (red) at xo = 0 and for the final simulation time ¢ = 63.3 ms. The vertical black lines
denote the position of the enlarged circular interface.

approach relies on the following key points: (i) A set of auxiliary variables is introduced locally
along the enlarged interface, which allows to formulate a first-order system in time with jump
conditions that are local in time. (ii) An immersed interface method is developed to handle
numerically such a system by using a high-order finite differences scheme on a Cartesian grid
while offering a subcell resolution through a proper discretization of the enlarged interface.
Local error estimates were derived to assess the optimal values of the featured numerical pa-
rameters. The proposed numerical method was then illustrated and validated considering 1D
and 2D configurations involving plane waves illuminating straight or curved enlarged interfaces.
Moreover, the solutions to these problems were derived and used for quantitative comparisons.
Future directions of work concern the validation of the time-domain interface model consid-
ered itself. Indeed, as it has been discussed in the introduction, such resonant meta-interface
models can be constructed systematically from the homogenization of a microstructured layer
containing inclusions whose constitutive properties have a particular scaling with respect to
these of the background medium. With the proposed numerical method at hand then the va-
lidity of such effective meta-interface models can be assessed through comparison with full-field
simulations. Another perspective concerns the design of meta-interfaces through the optimiza-
tion of an underlying microstructured medium to reach some objective effective properties.
This is of particular interest in view of, e.g., noise reduction by thin resonant metasurfaces
[18, 24]. A promising strategy relies on the topological optimization tools developed in [9, 3].
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Appendix A. Proof of Property 1

Appendiz A.1. Estimation of Lo,
Ly, is defined in (53) for the two irregular points z;, and xzj,. These local errors can be
expressed as:

£07u<x1L7tn) = u('r[LvtrrFl) —Uu 'TILa + Z Z VKms ( ) u(xIL+57tn)

s=—K/2m=1

(A1)
K/2 K m
+ZZVKms ( > ﬂ*($1L+5,tn),
s=1 m=1
and
LO,’LL(IIRutTL) = U($]R,tn+1) ZL’]R, Z Z VK m,s <A_) ’&’*(xIR-i-Svtn)
s=—K/2m=1 (A2>

K/2 K
+ZZVKms( > u(xIRJrs:tn)?

s=0 m=1

where @*(x;,t,) denotes the phantom value obtained when replacing the numerical values
(u, A, Z)" by their exact counterparts in Approximation 1. These fields are assumed to be
as smooth as necessary.

To estimate (A.1) and (A.2), one first evaluates the approximation of the phantom values
u*(x;,t,). From Approximation 1, these quantites write:

@ (21, 10, t) = T (—g) (M)~ [U(t,) + FIQIZ(t,)] fors=1,..., K/2,
@ (21, 4e tn) = T (%) (C)7CL (M) Ut,) + GIQIZ(L,)] for s = —K/2,...,—1.
(A.3)
Using (28) and (29), one gets
(@ (@1 art) = T (“) U (tn) + T9, (‘5) (M)~ [A(t,) + O(Az")]
fors=1,...,K/2
(A.4)

@ @rprstn) = Th (5) ULt) =T (5) (€7 G(RE () — RL(1))
+C. (M) 'O(AzY)] for s = —K/2,...,—1.

\

Symbolic computations are then performed using Maple to estimate the leading contributions
of the entries of the vectors in (A.4). Doing so provides, for ¢ = 3 or 5:

(1%, (-3) <Mq>*1A<t ) = O(aa?),

w( ) '0(Ax) = O(Aa), N
1o (2) (©)7GHRL (1) - RLG,) = O(2a%), o
T ., (g) 109 (M) O(AITY) = O(AztHY).
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One notes that the first and third of the above estimates make use of the definition (21) of
R (t,), which are expressed in terms of the exact solution, and it is assumed that the latter is
sufficiently smooth. Therefore, for ¢ = 3 or 5, we finally obtain the following estimate for the
approximation of the phantom values:

@ (zi,t,) = T (:Fg) UL(t,) + O(Ax?). (A.6)

The top (resp. bottom) sign corresponds to the left (resp. right) case, the order of this
approximation being the same for both sides. Consequently, from now on we will only consider
x1, to evaluate the order of Ly, but the final result will apply to any irregular point. We use
Taylor expansions and (A.6) for each term of (A.2) to get:

q
W(Trpps,tn) = Z gll (x1R+S — g)g(?ﬁu (g;%) + O(Ax™H),
(A7)

q
s 1 a\® ., ra
W (Trts,tn) = Z i <x1R+s — 5) J,u (i’tn) + O(Az?).
Since At = O(Ax) holds from the CFL condition of the ADER-K scheme, then one can write
Low(Trpstn) = LY (T1p,t0) + ZLM (21,,,tn) + O(AZT), (A.8)

when defining form=1,..., K :
‘Cg,u(xfm tn) :u(xfzw tn+1> - u(xfzw tn),

Ly (Tt %2 VKmS( ii)ngl' <$1R+s_g>£3f" (g,tn>.

s=—K/2

(A.9)

From a Taylor expansion at the order K in time and using (11) in combination with Taylor
expansions at the order (¢ — m) in space, we can write

m am
U(IE[R,tn+1) =u xlm + Z At Z % (IIR B %)ga;n—%u (g’tn> (A 10)
=0 '

+ O(AzTT) + O(AZEHh).

Combining (A.9) and (A.10), we can rewrite Lo(xp,,t,) as follows:

0 KA mam : 1 ayim o ra
Loulwintn) = > Tr(CO"A™ Y s (o0 =3) 2 (Got) (A.11)

m=1 l=m

+ O(AzT) + O(AzEHh).

Summing LZ « and the terms Ly, yields:

Low(@rnstn Z AT AT Z et mOiu ( ) + O(Agmin(ETLa)y (A.12)
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where, for m=1,..., K and ¢ =0, ..., ¢, the parameter ¢, is defined as

K/2

—1)m /—m 4
Eom = m'((ﬁ—jm)' (mR - g) Somm + Z Kmsg,A (xIR . g +3A:v> L (A13)

with 9>, = 0 if £ < m and dy>,, = 1 else. Expanding the second right-hand side term using
the binomial expansion entails

m _ 4 m . K/2
Etm = ﬁ (10 - g)e _— Z A:cﬂ ( ) S_Zm Viamsst. (A.14)
For 0 < j < K then (14) implies that it holds:
U O S i s S
ml (0= ) \Tn 5)  demt Z | ( 5 5_2;(/2 Vs = 0. (A1)

Therefore, if / < K then €y, = 0 and when ¢ > K then (A.13) reduces to

¢ ij_m . KJ/2 K/2 y S]
E _— E m 2 : 2 : Kms
5£7m: j (g_]) ( - > VKmsS - e
j=K+1 s=—K/2 J=K+1s= K/2

For all (¢, m) the results for these two cases can be summarized as follows:
Epm = O(Amzim)5g>[(. (A16)

This allows to conclude the proof of the first part of Property 1 since, using (A.16) in (A.12),
then for ¢ = 3 and ¢ = 5 one gets:

L(z1,,t,) = O (AgmmETLa) (A.17)
and the same holds for xj,, or any other irregular point.

Appendiz A.2. Estimation of Lo a:

Lo ai is defined in (53) and can be expressed using Approximation 2 as

' qr—2 [“>} '
Loni(tn) = A (tnt1) — W p Z Tm Z Bu((029)) (tamm—) (51" (A.18)
TrFm m=0

where @%)a(ts) denotes the trace value obtained when replacing the numerical values (u®, A*, Z*)
by the exact continuous solutions in (46). This term writes:

(02p)a(tn-m—w) = %[(Hqﬁ(ci)IC“i)(M")_lu(tn—m—w)ﬂ(M")_qu+(Ci)1Gq)@"Z (tn—m—w)][3],
(A.19)
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Using (45), (28) and (29), one gets

(02D a(tn-m—w) = (0?D)a) (tnm—uw)

5[ (C) T IR (b ) — R b)) + (M) Altn 03] (A.20)
— 3, + (€)7o O(A ] 3

Symbolic computations are then performed using Maple to estimate the leading contributions
of the entries of the vectors in (A.4). Doing so for ¢ = 3 or 5 yields:

{[_(Cq )_le(Rg (tn-m-w) = R (tn—m-w)) + (Mq)_lA(tn—m—w)H?’] = O(qu_1>v

. 1 ) (A.21)
(I, + (CL)" " CL)(M?) " O(Az")][3] = O(Az9).

Using (A.20) and (A.21) combined with (44) in (A.18) leads to the third estimate of Property
1:
Loai(tn) = O(Ag™™0r a0ty 4 O(Az") Y (k)" (fori=1,2, andr =1,..., Ng).
m=0

(A.22)

Appendiz A.3. Estimation of Lo z
Ly 7z is defined in (53). To compute it, we have to notice, using trigonometric formulas, that

S(tn—kl)({(ﬂi)n—m}ra {(Hz)n_m}r) = _({Wr(m + 1>O(At)}ra {WTO<1)}T) (A23>

Using (A.22) and (A.23), one gets the last estimate of Property 1

Loz(t,) = ({O(Ag™@@aathy, . {O(Ag™ @ banat Yy icon,). (AL24)

Appendix B. Proof of Property 2
Due to the expression of Hy, in (36) then L, (zy,,t,) defined in (55) can be expressed as

Luloryta) = Loulory tasn) = Ha ( Loult), 53 Loz(t). (B.1)

and the same holds for the right side.

Thus, we aim at evaluating the order of H(Lowu(:, tn), 2;L0,z(tn)) and Hr(Low (-, tn), 2;L0.z(tn))-
To do so, symbolic computations are then performed using Maple to estimate the leading con-
tributions of the entries of the vectors in Hy, (36) and Hg (38). Doing so provides, for ¢ = 3 or

5:

(17,..(-5) M)~ = o),

e (-5) M9T'FQ = Ba, s
?R+5< ) C?F _I(CZ(I\\/JICIY1 = 0(1)7 ( . )
e (3)

L IR+S

T
T
T

NN

(CL)
(CL)7'GIQ? = Ba,,
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with Ba, being a 2 x 2Ng matrix defined by

O(Az?) forie{l,...,Ng}and j € {Ng+1,...,2Ng},
Bao[i,j] = < O(Az) fori € {Ng+1,...,2Ng} and j € {1,..., Ng}, (B.3)
0 else.

The term Ly, (%;,t,) is determined in Property 1 for z; an irregular point. For a regular
point, the error analysis of a ADER-K scheme in a homogeneous medium can be used and
Lo (i t,) = O(AZETY). L4 7(t,) is also determined in Property 1. Using these results com-
bined with (B.2) in (36) and (38), we finally obtain

L:u(xILa tn) = O<A$min(K+l7q7qhqD+l))v (B'4)

and the same holds for z,,, or any other irregular point. Therefore, the final estimate given by
Property 2 writes: .
Et,) = O(Agminta=lar—lap)) (B.5)

Appendix C. Semi-analytical solution for a plane wave on a plane interface

Figure C.13: Incident plane wave (I) illuminating the enlarged interface and leading to reflected (R) and
transmitted (T) plane waves.

We consider an incident plane wave at an angle ; with the horizontal axis and an enlarged
interface located between the physical points z; = z; and x; = =z,, see Figure C.13. The
initial conditions are given in (60). To calculate the solution to the 2D problem (57) in this
configuration, we consider its frequency-domain formulation (3). The wavefield solution @ (x, w)
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is then decomposed into incident 4, reflected ur and transmitted wy waves, ie 4 = u; + g +

up. It is assumed that these are plane waves that write

4 —Pm
Uy = —cosfr/c,, | exp(—k; - (x —xy)) §(w),
—sinf;/cp,

_pm
Up= | —cosbp/cn |exp(—kgr-(®—,))j(w)R(w),
—sinfOg/cm

_pm
ur = | —cosOr/c, |exp(—kr-(x—xs)) §g(w) T(w),
—sinfr/cy,

\

(C.1)

with k7, kr and k7 being the corresponding wavevectors that are of norm w/c,, and whose
direction is normal to the wave fronts. Using the jump conditions in (3) and introducing the

following parameters

(

2
Cm
2

a(w) = 2L ((C11 4+ hD(w)) cos(0r)* — ChasinOp cos O + (Caz + hD(w)) sin(0r)?)

az(w) = QL ((C11 4+ hD(w)) cos(0r)* — Cizsin by cos O + (Coz + hD(w)) sin(b7)?)

Cn
as(w) = ﬁ ((Cuy + WD(w)) cos(01)? — Ciasin by cos O + (Cas + WD(w)) sin(6;)%)
B = Qme (Bicosbr + Bysinfg),
p; . (C.2)
By = E(Bl cos O + By sinOr),
B3 = %(Bl cosf; + Bysinfy),
dr(w) = exp (ii(xl cos 0y — x; cos GR)> ,
dr(w) = exp <ii(xl cosf; — x, cos GT)) ,
L m
then we get the following system concerning the reflected and transmitted waves:
cos 6 _ cos ¢ , cosfr .

(pm —lw 51) 5R(W)R(w) - (pm + iwﬁ?) 5T(W)T(w) = —pm + 1w Gs.
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Introducing the parameters
(71 = pmCm cos by,

Zy = PmCpm €OS O,

Ci(w) =, <pma1(w) + pmas(w) + ] cosf — B cos QT) ,

m cm

B2 33
m m - 9 — 0 5
< Pm03(W) — proa(w )+Cm Cos 1+Cm cos O (C.4)
(pmal — pmas(w) — f—B cosfr + Cﬁ—l cos HR) ,
Mi(w) = cp(as(w) B — a1 (w)Ba),
Ma(w) = ¢ (ag(w)Bz — az(w)ps),
(M (w) = ¢, (ar1(w) B3 — az(w)Br),
we get the reflection coefficient and the transmission coefficient
Zl—ZQ+iWC2+W2M2 LW
R(w) = 2 T 7y - Ce M, exp —z—m(xl cos; — x;cosbR) |,
. 2 (C-5)
T(w) = 22, 1wy + w My ex —ii(w cos Oy — x, cosOr)
_Z1+Zg+iwC1+w2M1 P m : ! " T ’

with 0p = 7/2 + 07 and 07 = ;. These expressions used in (C.1) give the sought expression
for w(x,w). An inverse discrete Fourier transform in time provides the semi-analytical time-
domain solution considered in Section 5. It can be shown that the 1D semi-analytical solution
is recovered when setting 0; = 0, 9 = 0 and vy, = 0 in the 2D solution.

Remark 7. When the enlarged interface is tilted of an angle —¢ with the horizontal azis then
the calculation of the associated scattering coefficients follows the same lines in the rotated
coordinate system (C,n) = (cospxy — sinpxy,sin pxq + cospxs). A rotation of angle —¢ is
then necessary after the inverse discrete Fourier transform to express the vectorial field v in
the basis (x1, 3).

Appendix D. Semi-analytical solution for a plane wave on a circular interface

We consider an incident plane wave at an angle #; with the horizontal axis and an enlarged
circular interface defined by two circles of centers (z.,y.) and radii ¢~ and a¥, with a= >
a®. The initial conditions are given in (60). The approach presented here applies to the
particular interface parameter values By = C15 = oy = 0, the other parameters being arbitrary.
The method employed in [15] for fluid-solid circular interface is applied here: to calculate the
solution, we consider its frequency-domain formulation (3). The wavefield solution @(x,w)
is then decomposed into incident, reflected and transmitted waves. They are written on a

truncated basis of Bessel functions using the Jacobi-Anger decomposition and the associated
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diffraction coefficients are derived from the jump conditions. We start by introducing the
harmonic acoustic potential ¢ such that

A ~

1 A
p = —iw p, P, 0, = 0,9, U, = —0,9. (D.1)
r

The harmonic potential of the incident plane wave is:

i)[(xl, To,w) = €xXp (—E (21 cos 01 + xqsin 91)) g.(w)' (D.2)

m

We introduce a polar coordinates system (r, ¢) such as 1 = z. + r cos ¢ and x5 = y. + 7 sin ¢,
so the above potential reads:

@I(ajl,azz,w) = F'Sexp (—ikrcosa), (D.3)

with F' = g(w)/iw, S = exp(—ik(z.cos0; + y.sinb;), « = ¢ — 0y and k = w/c,,. The Bessel
functions of the first-kind 7, satisfy the Jacobi-Anger expansion, see e.g. [10]:

exp (—ir cos @) Z €n(—1)" cos(na) I, (r), (D.4)

n=0
with €, = 1 if n = 0, 2 else. From (D.3) and (D.4), we therefore express the potential ®; as:

~

O (21, 70,w) = FS e, (—i)" cos(na) J (kr). (D.5)

To satisfy the Sommerfeld condition, which is satisfied by the radiated wavefield at infinity
in the classical acoustic medium, the harmonic acoustic potential dp of the reflected wave is
written on the basis of Hankel functions of the second-kind H,,. To prevent singularities from
occurring at r = 0, the harmonic potential dr of transmitted waves is written on the basis of
the Bessel functions of the first-kind, i.e.

g2y, 29, w ZR cos(na) H, (kr), Dy (1, 20, w) = ZT” cos(na) Jn(kr),  (D.6)

n=0

where R,, and T, are the coefficients of reflexion and transmission that have to be detelzmined.
The velocity © = (9,,9,)" and the pressure p fields are deduced from the potential ® using
(D.3). From (D.1), (D.5) and (D.6), we deduce the components of the incident, reflected and
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transmitted waves as follows:

(

Pr = —iw pm F'S Z en(—1)" cos(na) T, (kr),

n=0

U5, =kFS Z en(—1)" cos(na) T, (kr),

Vpp = —— FSZen "nsin(na) T, (kr),

(

Pr = —iw ppm Z R, cos(na)H,, (kr),

n=0

Opy = k Z R, cos(na)H,, (kr), (D.7)

n=0

1 o0
0 T — T n I n k )
\UR . ngz R,nsin(na)H,(kr)
)

ﬁT = —iw Pm Z Tn COS(?”LO-’)jn(kT)a

n=0

Oy =k ZTn cos(na) T (kr),

1
Oy = — ;Tnn sin(na) J, (k).

\

In the case where By = C1s = oy = 0 an identification is possible, then the coefficients R,, and
T, are deduced from the jump conditions in (57), which for all 0 < ¢ < 27 read:

B
priat,®) = (br +pr)(a™,0) = = (Obr(a®, 6) + (0pr + Obr) (0", 0)),
and
@TV(a+v (b) - (@IV + @Ru)(a_v ¢) = C;1 (8 UTV(a+7 Qb) + (arﬁlu + 8T@RV)(Q_, ¢))
C. 1 1
+ %(aja¢@:r7(a+a ) + ——(0401r + Dy0rr)(a”, 9)),
k2h
+ P 4 6) + (51 + )™, 0)
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From there, one obtains the following system satisfied by the coefficients R, and T,, for all
n > 0:

([ (kat) -

Cn
2

kQJé’(kaJr) + —
+ [—kH, (ka™) k%—lg(k:a*) + —
= PSen(-)" kT, (ka™) + TR k) — T2 () g (ha”) + KA D()Ta(ka ),

(Tn(ka™) — %k‘j,{(ka*)]Tn + [-Hn(ka™) — —kH, (ka™ )R,

| = FSea ()" [u(ka™) + 22k (ha ).

(D.8)
In practice, one considers a finite number Npege 0f modes. The coefficients R,, and T,, are
computed from the associated systems (D.8) and (D.7) is finally used to obtain the wavefield
solution @(x,w) in the frequency domain. A discrete inverse Fourier transform in time yields
the semi-analytical solution considered in Section 5.2.3.
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