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ACYCLIC ORIENTATIONS WITH PATH CONSTRAINTS ∗

Rosa M. V. Figueiredo1, Valmir C. Barbosa2,

Nelson Maculan2 and Cid C. de Souza3

Abstract. Many well-known combinatorial optimization problems can

be stated over the set of acyclic orientations of an undirected graph.

For example, acyclic orientations with certain diameter constraints are

closely related to the optimal solutions of the vertex coloring and fre-

quency assignment problems. In this paper we introduce a linear pro-

gramming formulation of acyclic orientations with path constraints,

and discuss its use in the solution of the vertex coloring problem and

some versions of the frequency assignment problem. A study of the

polytope associated with the formulation is presented, including proofs

of which constraints of the formulation are facet-defining and the in-

troduction of new classes of valid inequalities.

Keywords: Acyclic orientations, path constraints, combinatorial op-

timization problems, facets of polyhedra
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Introduction

Let G = (V, E) be an undirected graph, V its set of vertices, and E its set of
edges. An orientation of G is a function ω with domain E such that ω([i, j]) ∈
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{(i, j), (j, i)} for all [i, j] ∈ E. That is, ω assigns a direction to each edge in E.
Given an orientation ω, let Gω be the directed graph obtained by replacing each
edge [i, j] ∈ E with the arc ω([i, j]). An orientation is said to be acyclic if Gω

contains no directed cycle.
Many combinatorial optimization problems can be solved by determining an

optimal orientation of a graph with respect to some measure of optimality. One
example is the linear ordering problem [7], also called the permutation problem or
the triangulation problem, and closely related to the acyclic subdigraph problem
[8]. Given a complete directed graph Dn = (Vn, An) on n vertices and arc weights
cij for each arc (i, j) ∈ An, the linear ordering problem consists in finding a
spanning acyclic tournament in Dn such that the sum of the weights of its arcs is
as large as possible. The spanning acyclic tournament in Dn is equivalent to an
acyclic orientation of the complete undirected graph with n vertices.

Another problem whose solution is given by an optimal orientation is discussed
in [2]. Given an undirected graph G and an orientation ω, not necessarily acyclic,
the distance dist(i, j) from a vertex i to another vertex j is the length of the shortest
path from i to j in Gω. The diameter of Gω is defined in [2] as maxi,j∈V dist(i, j).
An annular network is a graph that can be represented as a two-dimensional grid
consisting of a number of concentric circles around a center and some straight
lines crossing all the circles. The problem of finding an orientation of minimum
diameter when G is an annular network is useful in various applications [2].

A communications network can be modeled as the undirected graph G if vertices
represent processors and edges communications links between pairs of processors.
Each vertex in V must be assigned a set of buffers in order to store messages which
move through the network. For every network there exists a lower bound on the
number of buffers which have to be maintained at each vertex to allow deadlock-
free routing. In [3] an approach to prevent deadlocks is investigated in which
finding the minimum number of buffers is related to finding an optimal acyclic
orientation ω of G. The optimality criterion used in this case is to minimize the
maximum number of changes of orientations on some directed paths in Gω.

Knowledge about acyclic orientations can also be useful in the solution of the
vertex coloring problem. Roy [10] and Gallai [6], independently, showed that,
given an undirected graph G, the length of a longest elementary path of each
possible orientation of G yields an upper bound on the chromatic number of G.
Also, they proved that the exact value of the chromatic number is accomplished
by the minimum bound over the set of all orientations of G. In a subsequent
work [5], Deming showed that it is sufficient to consider just the set of acyclic
orientations of G. In the same work, Deming also showed that using another
measure of optimality, again over the set of the acyclic orientations of G, it is
possible to find the maximum independent set of that graph. In this case, and for
ω an acyclic orientation, the criterion is to maximize the size of a minimum chain
decomposition of Gω.

Since frequency assignment problems are closely related to the vertex coloring
problem, it would be expected that an orientation-based approach could also be
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proposed for that problem. This is done in [4], where a two-stage integer program-
ming model is proposed in which the outer stage consists of an acyclic subdigraph
problem with additional longest-path constraints. Also, in [9] an orientation model
is pointed at as a promising way to obtain good lower bounds to be incorporated
into a metaheuristic approach to the frequency assignment problem.

All these applications have motivated us to the study of the acyclic orientations
of an undirected graph. In the present study, we introduce an integer program-
ming formulation of the set of all acyclic orientations with constraints defined over
a set of paths. As we demonstrate in Section 1, there are well-known combina-
torial optimization problems that relate clearly to acyclic orientations with path
constraints.

We close this section by giving the necessary definitions and notations to be
used throughout the paper. Let G = (V, E) be an undirected graph. A coloring
of G is an assignment of labels to each vertex such that the end-vertices of any
edge have different labels. The chromatic number of G is the smallest number
of different labels needed to define a coloring of G and is denoted by χ(G). The
vertex coloring problem is the problem of providing G with a coloring that employs
χ(G) labels. Let D = (V, A) be a digraph. If D is an acyclic digraph, the diameter
of D with respect to a vector c ∈ R

|A| of arc weights is the length of a longest
weighted path in D. Given an arc set B ⊆ A, we denote by D[B] the subdigraph
of D induced by B. If D[B] is an acyclic digraph, then we say that B is an acyclic
arc set of D. For the sake of conciseness, we henceforth use path to refer to an
elementary path and equate a path with its arc set.

The remainder of the paper is structured as follows. In Section 1 we relate the
vertex coloring and frequency assignment problems to orientations with diameter
constraints. A model of acyclic orientations with another kind of path constraints
is presented in Section 2. We prove that this model can also be used to find an
orientation with diameter constraints. In Section 3 we investigate the polyhedral
structure of the polytope associated with the model proposed. Finally, in Section 4
we discuss directions for further investigation.

1. Combinatorial optimization problems and acyclic

orientations with diameter constraints

As noted above, in [6,10] the chromatic number χ(G) of an undirected graph G
is described as an optimization problem over the set of all orientations of G. This
result is revised in [5], where the author proves that it is sufficient to consider only
the set of acyclic orientations, that is,

χ(G) = 1 + min
ω∈Ω

max
p∈Pω

|p|, (1)

where Ω denotes the set of all acyclic orientations of G, Pω the set of paths in Gω,
and |p| the number of arcs in p. Alternatively, (1) asks for ω such that Gω has the
least possible diameter considering arc weights equal to 1, which is then χ(G)− 1.
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Let ω∗ be an acyclic orientation that solves (1). The source decomposition of
the graph Gω∗ gives us, in polynomial time, a coloring of G that uses exactly χ(G)
labels. An acyclic directed graph has a unique source decomposition defined as
a partition of the vertex set V into sets V1, V2, . . . , Vk, where Vi is the set of all
vertices of the subgraph induced by V \ {V1 ∪ · · · ∪ Vi−1} whose in-degree is zero.
Notice that each vertex set Vi in the partition (V1, V2, . . . , Vk) is an independent
set, and then the partition defines a coloring of G. Then, in order to solve the
vertex coloring problem for a graph G it is sufficient to find an acyclic orientation
Gω∗ with minimum diameter. Henceforth, we let q(G) = χ(G) − 1 denote the
length of the minimum diameter over all acyclic orientations of G.

In the literature, different problems can be found under the common heading of
frequency assignment problem (FAP). In all of them, the classic approach relates
the problem to the vertex coloring problem. It then follows from our previous
discussion that we can consider using acyclic orientations also to solve this problem.
This is done in [4], where a new orientation model is proposed for a version of
FAP, and in [9], where the LP bounds of an orientation model are suggested to be
incorporated into a metaheuristic proposed for another version of FAP. In order to
describe the idea of an orientation model for FAP, we next introduce the elements
usually found in the definition of that problem. Let L denote an index set of links,
Fi a set of available frequencies for link i ∈ L, and dij a channel separation that
defines the minimum distance between frequencies assigned to links i, j ∈ L. The
inexistence of a channel separation between links i and j can be imposed by setting
dij = 0. A frequency assignment specifies, for each i ∈ L, a frequency in Fi for
link i.

The most common version of FAP asks for an assignment of frequencies that
minimizes the number of frequencies used, known as the frequency spectrum, while
satisfying the channel separation imposed by dij for all i, j ∈ L. Clearly, when
every dij is equal to zero or one and, for each i ∈ L, Fi = L, then FAP can be
easily cast into the vertex coloring problem and can therefore be solved by looking
for an acyclic orientation of minimum diameter. In other FAP versions, given
a fixed frequency spectrum Φ we must find an assignment of frequencies to the
links that minimizes a cost function, sometimes an interference function, defined
over the channel separation constraints. Next we describe the orientation model
presented in [9] for one of these versions of FAP.

We use a graph G = (V, E) with V being the set of links L. A pair of vertices
i, j ∈ V is connected by an edge [i, j] ∈ E if and only if there is a distance
requirement imposed by a channel separation dij > 0 on the frequencies that are
to be assigned to i and j. Let fi be a positive integer variable specifying the
frequency assigned to link i, ζij a binary variable which is equal to 1 if and only
if the channel separation between fi and fj is not guaranteed, and cij the cost of
violating the channel separation constraint. In order to specify an orientation of
edge [i, j] ∈ E, a binary decision variable oij is introduced and defined as follows:
oij = 1 if edge [i, j] ∈ E is oriented from i to j and oij = 0 if edge [i, j] ∈ E is
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oriented from j to i. The orientation model is as follows:

minimize
∑

[i,j]∈E cijζij

subject to fj − fi + Φζij ≥ dijoij − M(1 − oij), ∀ [i, j] ∈ E (2)

fi − fj + Φζij ≥ dij(1 − oij) − Moij , ∀ [i, j] ∈ E (3)

fi ∈ Fi, ∀ i ∈ V

oij , ζij ∈ {0, 1}. ∀ [i, j] ∈ E

In this formulation, M is an arbitrary, large constant that makes either (2) or (3)
active in case oij is equal to 1 or 0, respectively. These constraints try to impose
the channel separation required for [i, j] ∈ E. In the solution of this orientation
model, oij = 1 means that the frequency assigned to link i will be smaller than
that assigned to link j, unless ζij assumes value 1. Likewise, oij = 0 means that
the frequency assigned to link i has to be greater than that assigned to link j,
again unless ζij assumes value 1. Thus, in this orientation model the variables oij ,
[i, j] ∈ E, define the set of all orientations of graph G.

Notice that we can reformulate the orientation model as follows. For each edge
[i, j] ∈ E, let us define a binary variable oji, besides variable oij , such that oij = 1
if edge [i, j] is oriented from i to j and oji = 1 if edge [i, j] is oriented from j to i.
According to the new set of orientation variables, we rewrite (2) and (3) as

fj − fi ≥ dijoij − M(1 − oij), ∀ [i, j] ∈ E

fi − fj ≥ dijoji − M(1 − oji). ∀ [i, j] ∈ E

Now an orientation of an edge cannot always be defined, but when this happens
the channel separation is imposed by one of the new constraints. In order for the
objective function to retain its meaning, we must require ζij = 1 − oij − oji. It is
not difficult to see that a solution to this alternative model is given by an acyclic
orientation of a subset of E. Additionally, the solution is given by an acyclic
orientation of a subset of E with diameter at most Φ with respect to arc weights
dij = dji.

The orientation model presented in [4] is very similar to the model discussed
above, but with another definition for channel separations and, consequently, an-
other definition for the objective function. The approach presented by the authors
is based on a two-stage integer programming model in which the outer stage so-
lution is related to an orientation of G with diameter constraints. FAP instances
are described with channel separation equal to 1, 2, and 3, but no computational
result is presented. They mention the need for a linear integer formulation for
acyclic orientations of diameter at most Φ with respect to arc weights given by
channel separations, and point out some interesting questions to be answered on
the structure of the associated polyhedron.

So far we have described how some important, but difficult, combinatorial op-
timization problems relate to the acyclic orientations of a graph with diameter
constraints. The remainder of the paper is devoted to studying a formulation of
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acyclic orientations under binary arc weights. While this can be seen to be im-
mediately useful to the case of vertex coloring and of FAP instances with channel
separation equal to 1, there are no real FAP instances of this type. But channel
separations equal to 2 or 3 can also be handled, since we can construct an equiv-
alent, enlarged instance in which all channel separations are 1. Suppose vertices
i and j have channel separation dij = 2. We define a new vertex vij , new edges
[i, vij ], [j, vij ] with channel separation equal to 1, and eliminate the edge [i, j]. Ad-
ditionally to the constraints of the orientation model, it clearly suffices that we
introduce the following new constraints: oivij

+ ojvij
≤ 1 and ovij i + ovijj ≤ 1. An

analogous transformation can be done in the cases in which dij = 3.
In the next section we enunciate a formulation of acyclic orientations with other

path constraints used to describe acyclic orientations with diameter constraints.
In the sequel, we refer to the diameter under arc weights that equal 1 simply as
diameter.

2. Acyclic orientations with path constraints

Let G = (V, E) be an undirected graph with n = |V | vertices and m = |E|
edges, and κ a positive scalar. We want to describe the acyclic orientations ω of
G that minimize a measure defined over the set of all paths in Gω with κ arcs.
Let D = (V, A) be a directed graph with A = {(i, j), (j, i) | ∀ [i, j] ∈ E}. For each
arc (i, j) ∈ A, we introduce a binary decision variable wij such that wij = 1 and
wji = 0 if ω([i, j]) = (i, j), or wij = 0 and wji = 1 if ω([i, j]) = (j, i). Let Pκ(A)
denote the set of all paths in D with κ arcs. Likewise, let C(A) be the set of all
cycles in D. The formulation follows:

minimize z (4)

subject to wij + wji = 1, ∀ [i, j] ∈ E (5)
∑

(i,j)∈C wij ≤ |C| − 1, ∀ C ∈ C(A) (6)
∑

(i,j)∈p wij ≤ z, ∀ p ∈ Pκ(A) (7)

wij ∈ {0, 1}, ∀ (i, j) ∈ A (8)

0 ≤ z ≤ κ. (9)

The constraints in (5), (6), and (8) define the acyclic orientations of G. Once
we have a vector w ∈ R

2m satisfying these constraints, let Gw = (V, Aw) be the
digraph obtained by directing the edges in E according to the variables wij , i.e.,
a digraph with vertex set V and arc set Aw defined as: (i, j) ∈ Aw if and only if
wij = 1. The variable z is a continuous variable that establishes an upper bound
on the overall number of arcs oriented in the same direction in any path of D
with at most κ arcs. The constraints in (7) and (9) give this meaning to variable
z. Finally, the objective function in (4) makes variable z assume the minimum
possible upper bound. Let us refer to this formulation as AO(G, κ).
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The following propositions will guide us in the search for an acyclic orientation
with minimum diameter using the above formulation. Recall that q(G) = χ(G)−1.

Proposition 2.1. If (w̄, z̄) is a feasible solution to AO(G, κ) with κ ≤ q(G), then

z̄ = κ.

Proof. Let (w̄, z̄) be a feasible solution of the formulation. Let us assume that
z̄ < κ = q(G). From (7) we conclude that the length of each path in Gw̄ is less
than q(G), i.e., the diameter of Gw̄ is less than q(G), and we get a contradiction.
Thus, z̄ ≥ κ. The result follows, since z̄ ≤ κ. �

Proposition 2.2. If (w∗, z∗) is an optimal solution to AO(G, κ) with κ ≥ q(G)+1,
then z∗ < κ.

Proof. Consider an acyclic orientation of G with diameter equal to q(G), and let
(w̄, z̄) be a solution that induces such an orientation. Let p be a path in D with
κ arcs. Since κ ≥ q(G) + 1 and the diameter of Gw̄ is q(G), in each succession
of q(G) + 1 arcs in p there is at least one arc with wij = 0, thus (w̄, z̄) with
z̄ = κ − ⌊κ/(q(G) + 1)⌋ < κ is a feasible solution of AO(G, κ). The result follows,
since the objective function of AO(G, κ) minimizes the value of z. �

Now let UB be an upper bound on the minimum diameter q(G) of G and solve
AO(G, κ) with κ = UB . If (w∗, z∗) is the optimal solution found and z∗ = κ, then
from Proposition 2.2 it follows that q(G) = κ. If z∗ < κ, then by Proposition 2.1
we can reduce the parameter κ by finding the diameter of Gw∗ and assigning its
value to κ. Repeating the entire procedure at most UB times clearly yields an
acyclic orientation of G with minimum diameter.

As discussed in Section 1, the solution of some FAP variants can be found by
looking for an acyclic orientation with diameter equal to at most a given frequency
spectrum Φ. Notice that, if we consider κ = Φ + 1 and fix z = Φ, then the
constraints of AO(G, κ) describe the acyclic orientations with diameter at most Φ.

3. On the acyclic subgraph with path constraints

polytope

The acyclic orientation with path constraints polytope, defined as the convex
hull of all feasible solutions of the model described in Section 2, is not a full-
dimensional one. Let us then consider the following alternative formulation, which
models an acyclic subgraph with path constraints:

minimize z − (m + 1)
∑

(i,j)∈A wij

subject to wij + wji ≤ 1, ∀ [i, j] ∈ E (10)
∑

(i,j)∈C wij ≤ |C| − 1, ∀ C ∈ C(A) (11)
∑

(i,j)∈p wij ≤ z, ∀ p ∈ Pκ(A) (12)

wij ∈ {0, 1}, ∀ (i, j) ∈ A (13)

0 ≤ z ≤ κ. (14)
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Notice that (10) allows us to not define an orientation of the edges in E. This is
where the alternative objective function comes in, since it penalizes any solution
that does not orient an edge. It is also clear that all feasible solutions of AO(G, κ)
are contained in the set of feasible solutions of this new formulation. Moreover, it
is not difficult to verify that, if (w∗, z∗) is an optimal solution of this formulation,
then w∗ defines an acyclic orientation of G and z∗ is the smallest value of z
satisfying (12). Let us refer to this acyclic subgraph model with path constraints
as AS(G, κ).

The polytope PG,κ associated with AS(G, κ) is defined as

PG,κ = conv{(w, z) ∈ R
2m × R | (w, z) satisfies (10)–(14)}.

Now we turn our attention to the structure of PG,κ, where we recall that κ > 0.
Given an acyclic arc set B of D (i.e., B ⊆ A), the incidence vector wB ∈ R

2m of
B is defined as follows: wB

ij = 1, if (i, j) ∈ B, and wB
ij = 0, if (i, j) 6∈ B. Next, the

dimension of PG,κ is established.

Theorem 3.1. The polytope PG,κ is full-dimensional, i.e., dim(PG,κ) = 2m + 1.

Proof. Since PG,κ contains the null vector, it is sufficient to present other 2m + 1
linearly independent solutions (w, z) ∈ R

2m × R in PG,κ. For each arc (i, j) ∈ A,
let Bij = {(i, j)}. The 2m solutions (wBij , 1), together with the solution (w, 1)
with w being the null vector, are clearly linearly independent. �

The following theorems establish which constraints of AS(G, κ) define facets of
PG,κ.

Theorem 3.2 (Trivial inequalities).

(a) For all (i, j) ∈ A, wij ≥ 0 defines a facet of PG,κ;

(b) for all (i, j) ∈ A, wij ≤ 1 is not a facet-defining inequality for PG,κ;

(c) the inequality z ≥ 0 is not a facet-defining inequality for PG,κ;

(d) the inequality z ≤ κ defines a facet of PG,κ.

Proof. The proof is straightforward. �

Notice now that, in AS(G, κ), the constraints in (10) can be seen as equivalent
to the constraints in (11) with |C| = 2. We then have the following.

Theorem 3.3 (Cycle inequality). Let C ∈ C(A). The inequality

∑

(i,j)∈C

wij ≤ |C| − 1

defines a facet of PG,κ if and only if |C| ≤ κ.

Proof. Let F = {(w, z) ∈ PG,κ |
∑

(i,j)∈C wij = |C| − 1} be the face of AS(G, κ)

defined by the cycle inequality written for the cycle C. We assume that there is
an inequality aT w + bz ≤ c valid for PG,κ such that F ⊆ Fab = {(w, z) ∈ PG,κ |
aT w + bz = c} and show that the inequality defining Fab can be written as a
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positive scalar multiple of the cycle inequality defining F . Let {v1, v2, . . . , v|C|} be
the vertex set of cycle C and pvk→vl

the path from vertex vk to vertex vl on C.
Also, let us assume v|C|+1 = v1. Consider an arc (r, v) ∈ A \ C. Define an acyclic
arc set B1 as B1 = pvk→vk−1

if r = vk ∈ V (C) and v = vl ∈ V (C), or B1 = pv1→v|C|

in the other cases. Also, define another acyclic arc set B2 = B1 ∪ {(r, v)}. From
the solutions (wB1 , κ) and (wB2 , κ) in aT w + bz = c we can conclude that arv = 0.
Now consider the acyclic arc set B3 defined as B3 = pv1→v|C|

. The solutions

(wB3 , κ) and (wB3 , κ − 1) lead to b = 0. Now we prove the relations among the
non-null coefficients in aT w+ bz ≤ c. Suppose av1v2

= γ. Consider the arc (v2, v3)
and define the arc sets B4 = pv2→v1

and B5 = pv3→v2
. The solutions defined by

these sets and z = κ− 1 imply av2v3
= γ. Repeating this argument yields arv = γ

for all (r, v) ∈ C. Finally, the cycle inequality defined by a cycle with |C| > κ is
not a facet-defining one, since in this case constraint z ≤ κ dominates the cycle
inequality. �

The methodology to be used in all facet-defining proofs will be the same as in
the proof of Theorem 3.3. The following theorem establishes the necessary and
sufficient conditions for each inequality in (12) to be facet-defining for PG,κ.

Theorem 3.4 (Path inequality). Let p ∈ Pκ(A) and let s and t be, respectively,

the source and sink of p. The inequality

∑

(i,j)∈p

wij − z ≤ 0

defines a facet of PG,κ if and only if [s, t] 6∈ E.

Proof. Let us assume that {v1, v2, . . . , vκ+1} is the set of vertices defining p. Con-
sider an arc (r, v) ∈ A \ p and define an arc set B1 as follows: (i) if r = vk, k ≥ 2,
and v 6∈ {v1, v2, . . . , vκ+1}: B1 = p \ {(vk−1, vk)}; (ii) if r 6∈ {v1, v2, . . . , vκ+1}
and v = vk, k ≤ κ: B1 = p \ {(vk, vk+1)}; (iii) if r = vk and v = vl, k > l:
B1 = p \ {(vk−1, vk)}; (iv) in any other case: B1 = p \ {(v1, v2)}. Also, define
an arc set B2 = B1 ∪ {(r, v)}. From the solutions (wB1 , κ − 1) and (wB2 , κ − 1)
we can conclude that arv = 0. Now assume av1v2

= γ and define the arc sets
B3 = p \ {(v1, v2)} and B4 = p \ {(v2, v3)}. The solutions (wB3 , κ − 1) and
(wB4 , κ − 1) allow us to conclude that av2v3

= av1v2
= γ. Repeating the same

argument we obtain arv = γ for every arc (r, v) ∈ p. Now consider the arc sets B5

and B6 defined as B5 = p \ {(v1, v2)} and B6 = p. From the solutions (wB5 , κ− 1)
and (wB6 , κ), we conclude that b = −av1v2

= −γ. Finally, we argue that path
constrains cannot be facet-defining when [s, t] ∈ E. Clearly, when [s, t] ∈ E all
solutions satisfying the path inequality with equality also satisfy wts = 0. �

Next we present new valid inequalities for PG,κ which are related to some sub-
structures of D. While a cycle inequality is induced by any cycle in D, the following
theorem introduces another valid inequality induced by cycles with κ + 1 arcs.
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Theorem 3.5 (Cycle-z inequality). Let C ∈ C(A) be such that |C| = κ + 1. The

inequality ∑

(i,j)∈C

wij ≤ z

defines a facet of PG,κ.

Proof. The validity proof is trivial due to (11). The facet-defining proof uses the
notation introduced in Theorem 3.3. Also, using arguments analogous to the ones
in the proof of Theorem 3.3 we can conclude that arv = 0 for every arc (r, v) ∈ A\C
and that arv = γ for every arc (r, v) ∈ C. Now consider the arc sets B1 and B2

defined as B1 = pv1→v|C|
and B2 = B1 \ {(v1, v2)}. From the solutions (wB1 , κ)

and (wB2 , κ − 1), we conclude that b = −av1v2
= −γ. �

Our next theorem establishes a class of valid inequalities induced by paths with
length equal to κ − 1 whose vertices have a common adjacent vertex outside the
path.

Theorem 3.6 (Path-(κ− 1) inequality). Let p be a path in D with κ− 1 arcs and

{v1, v2, . . . , vκ} its vertex set. If a vertex u ∈ V \ {v1, v2, . . . , vκ} exists such that

[vk, u] ∈ E for all k ∈ {1, 2, . . . , κ}, then the inequality

∑

(i,j)∈p

wij +
∑

k∈{1,...,κ}

(wuvk
+ wvku) − κ + 1 ≤ z

is valid for PG,κ.

Proof. Let (w̄, z̄) be a feasible solution in PG,κ. If
∑

k∈{1,··· ,κ}(w̄uvk
+ w̄vku) < κ,

then the inequality is trivially satisfied. Assuming this is not the case, the result
follows from noticing that, for any feasible orientation of the edges [vk, u] ∈ E
with k ∈ {1, 2, . . . , κ}, a suitable path inequality exists involving vertices u and
v1, . . . , vκ. �

Paths in D with κ − 2 arcs also induce valid inequalities for PG,κ, as the next
theorem demonstrates.

Theorem 3.7 (Path-(κ− 2) inequality). Let p be a path in D with κ− 2 arcs and

{v1, v2, . . . , vκ−1} its vertex set. If vertices u, r ∈ V \ {v1, v2, . . . , vκ−1} exist such

that [v1, u], [vκ−1, u] ∈ E and [r, u] ∈ E, then the inequality

∑

(i,j)∈p

wij + wur + wru ≤ z

is valid for PG,κ.

Proof. Let (w̄, z̄) be a feasible solution in PG,κ. If w̄ur + w̄ru < 1, then the
validity of the inequality follows trivially. Assuming this is not the case, the result
follows from applying (12) to p extended by {(vκ−1, u), (u, r)} if w̄ur = 1, and to
p preceded by {(r, u), (u, v1)} if w̄ru = 1. �
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A cycle in D having length κ gives rise to yet another class of valid inequalities
for PG,κ.

Theorem 3.8 (Cycle-arcs inequality). Let C ∈ C(A) be such that |C| = κ and

{v1, v2, . . . , vκ} be its vertex set. Suppose in addition that {r1, r2, . . . , rκ} ⊂ V and

A′ = {e1, e2, . . . , eκ} ⊂ A exist such that:

(i) {r1, r2, . . . , rκ} ∩ {v1, v2, . . . , vκ} = ∅,
(ii) either ek = (rk, vk) for all 1 ≤ k ≤ κ or ek = (vk, rk) for all 1 ≤ k ≤ κ.

Then the inequality

∑

(i,j)∈C

(⌊κ/2⌋wij + wji) +
∑

(i,j)∈A′

wij − κ ≤ ⌊κ/2⌋z

is valid for PG,κ.

Proof. Consider the cycle-arcs inequality rewritten as

⌊κ/2⌋(z −
∑

(i,j)∈C

wij) + κ −
∑

(i,j)∈A′

wij ≥
∑

(i,j)∈C

wji. (15)

We first argue that z −
∑

(i,j)∈C wij ≥ 0; by (11), written for the cycle C, an arc

(vi, vj) exists for which wvivj
= 0, so the latter inequality follows from (12), written

for the path C\{(vi, vj)}∪{ei}. We start with the cases where z−
∑

(i,j)∈C wij = 0.

Since z =
∑

(i,j)∈C wij , we can conclude that
∑

(i,j)∈A′ wij ≤
∑

(i,j)∈C wij (if this

were not the case, there would be a path p, with p∩A′ 6= ∅, for which (12) would
lead to the contradiction of z >

∑
(i,j)∈C wij). This observation, together with

(10), written for each edge [i, j] such that (i, j) ∈ C, yields

κ −
∑

(i,j)∈A′

wij ≥ κ −
∑

(i,j)∈C

wij ≥
∑

(i,j)∈C

wji.

Now we consider the cases where z −
∑

(i,j)∈C wij = 1. The inequality in (15)

is trivially satisfied if
∑

(i,j)∈C wji ≤ ⌊κ/2⌋. Let us assume that
∑

(i,j)∈C wji ≥

⌊κ/2⌋ + 1. Thus, from (10) and (12) we can conclude that

z ≥ ⌊κ/2⌋ + 1 (16)

and ∑

(i,j)∈C

wij ≤ κ −
∑

(i,j)∈C

wji ≤ ⌊κ/2⌋. (17)

Notice that the only way to have z −
∑

(i,j)∈C wij = 1 is to have κ odd and also

(16) and (17) satisfied with equality. In this case, it follows from satisfying (16)
with equality that ∑

(i,j)∈C

wji = z = ⌊κ/2⌋ + 1. (18)
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From (18) we can conclude that
∑

(i,j)∈A′ wij ≤
∑

(i,j)∈C wji, and from this we

arrive at the desired result, since

κ −
∑

(i,j)∈A′

wij ≥ κ − ⌊κ/2⌋ − 1 = ⌊κ/2⌋.

Finally, in the cases where z −
∑

(i,j)∈C wij ≥ 2, the inequality in (15) is trivially

satisfied, since
∑

(i,j)∈C wji ≤ κ − 1. �

Notice that the faces defined by the inequalities introduced in Theorems 3.6,
3.7, and 3.8 are not facets of PG,κ, since their solutions belong to some face defined
by (10). Nevertheless, those inequalities can be computationally useful, since their
solutions are feasible solutions to AO(G, κ).

Our last theorem establishes that a structure of G constructed from two paths
of length κ and having some common arcs can induce a valid inequality for PG,κ.

Theorem 3.9 (Adjacent paths inequality). Let pI and pII be paths in D with κ
arcs. Let {vI

1, . . . , v
I
κ+1} and {vII

1 , . . . , vII
κ+1} be the respective vertex sets. Suppose

pI and pII are such that

(i) vI
k = vII

k for 1 ≤ k ≤ l ≤ κ, l > 1,
(ii) there exists an edge [vI

r, v
II
r ] ∈ E with l + 1 ≤ r ≤ κ + 1.

Then the inequality

wvI
1
vI
2
+

∑

2≤k<l

2wvI
k
vI

k+1
+

∑

l≤k≤κ

(wvI
k
vI

k+1
+ wvII

k
vII

k+1
) + wvI

rvII
r

+ wvII
r vI

r
≤ 2z

is valid for PG,κ.

Proof. Consider the path inequalities (12), written for the paths pI, pII, {vI
2, . . . , v

I
r,

vII
r , . . . , vII

κ+1}, and {vII
2 , . . . , vII

r , vI
r, . . . , v

I
κ+1}, each with κ arcs. Also, consider the

inequality (10), written for the edge [vI
r, v

II
r ]. Adding up these five inequalities and

dividing the result by two we obtain

wvI
1
vI
2
+

∑

2≤k<l

2wvI
k
vI

k+1
+

∑

l≤k≤κ

(wvI
k
vI

k+1
+ wvII

k
vII

k+1
) + wvI

rvII
r

+ wvII
r vI

r
≤ 2z + 1/2.

The validity of the adjacent paths inequality follows from rounding down the right-
hand side of the inequality above. �

To finalize, we mention that a result similar to Theorem 3.9 also holds if the arcs
considered in the statement of the theorem are oriented in the opposite direction.

4. Concluding remarks

We have introduced a formulation of acyclic orientations with path constraints.
Our formulation is related to a more general formulation with diameter constraints
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and is, therefore, also related to several combinatorial optimization problems that
seek optima on the set of acyclic orientations. We also presented a partial study of
the polytope associated with the formulation, introducing further valid inequalities
as well.

The results we have presented open up several possibilities for continued re-
search. One of them is to develop separation algorithms that can be used effi-
ciently in a cutting-plane framework. Once results are obtained on this front, a
first candidate for a study on applications seems to be the FAP instances with
channel separation 1, 2, or 3, as discussed in Section 1. In order to handle the
enlarged FAP instances, we first need to develop some preprocessing techniques,
such as in [1].
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