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ABSTRACT

Two new chemosensors for lead (II) were synthesized based on 5-((anthracen-9-ylmethylene) 

amino)quinolin-10-ol (ANQ): (10-(8-hydroxyquinolin-5-ylimino)methyl)anthracen-9-yl)methyl 

methacrylate (ANQ-MMA) and ((10-((4-vinylbenzoloxy)methyl)anthracen-9-

yl)methyleneamino)quinoline-8-ol (ANQ-ST). Complexation of those molecules with Pb2+ was studied

at room temperature using UV-Visible absorption and fluorescence spectroscopies. Thanks to the UV-

visible absorption spectroscopy it appeared that ANQ-MMA formed 1:1 and 1:2 complexes with lead 

(II) and ANQ-ST only 1:1 complex. For both molecules, the fluorescence excitation-emission matrices

(EEM) signal intensity increased from 0 to 100 µmol.L-1 of lead (II) followed by a saturation for 

higher concentrations. The decomposition of the obtained EEMs gave a set of empiric fluorescent 

components that have been directly linked to the distribution of lead complexes obtained with the UV-

visible absorption spectroscopy study. This correlation allowed to evidenced metal/ligand complex 

stoichiometry and emerge as a new method to identify empiric components. Moreover, the two ligands

showed a promising selectivity for Pb2+, turning them interesting probes for this hazardous metal. 
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Introduction

Lead is one of the most toxic metal for humankind and the environment. Lead naturally exists in 

Earth’s crust but its presence in the environment is mainly due to human activities such as fuel 

combustion and industrial processes [1]–[3]. This trace metal can accumulate in water and soil 

organisms and influence the global balances and food chains [4]. Taken up from food, air or drinking 

water, lead causes inhibition of brain development, kidney and physical growth impairments [5], [6]. 

The maximum concentration level in drinking water is set at 10µg.L-1 [7]. The development of probes 

and sensors to detect lead therefore appears to be necessary especially for its most toxic species, the 

ionic lead (II) form. Fluorescence probes for the detection of trace metal ions is getting attention due 

to easy signal transduction and high sensitivity [8]. Fluorescent ligand for lead (II) have been recently 

developed based on fluorescein [9], rhodamine [10], [11], crown ether derivates [12], [13] or scaffold 

molecules [14]–[16]. 

Typical fluorescent chemosensors, also called fluoroionophores, include a recognition site or chelating

group responsible for the efficiency of the binding and a fluorescent part that converts the ion 

recognition into a fluorescent signal. Upon ion complexation, their fluorescence response can be either

quenched or enhanced but the turn-on response is preferable in order to avoid interferences with 

external factors that can be observed in the case of turn-off response [17]. One of the possible 

mechanism responsible for a turn-on fluorescence response is the photoinduced electron transfer 

(PET) process [18]–[20]. This process is based on a quenching of the fluorescence response of the 

fluorophore moiety by an electron transfer from the ionophore. Upon ion binding, this electron transfer

is prevented and consequently fluorescence intensity is enhanced.

Anthracene is widely used as a fluorophore to design chemosensors, owing to the ease to modify its 

structure [21]. Anand et al. synthesized 5-((anthracen-9-ylmethylene)amino)quinoline-10-ol (ANQ), 

based on an anthracene platform, to detect lead (II) with a turn-on fluorescence response based on PET

process [22]. 

In the present study, ANQ was modified to design two new fluorescent ligands for lead (II): (10-(8-

hydroxyquinolin-5-ylimino)methyl)anthracen-9-yl)methyl methacrylate (ANQ-MMA) and ((10-((4-

vinylbenzoloxy)methyl)anthracen-9-yl)methyleneamino)quinoline-8-ol (ANQ-ST). The formation of 
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the complexes between lead (II) with ANQ-MMA and ANQ-ST was first investigated using UV-

visible absorption spectroscopy and the distribution of the various complexes (free metal, 1:1 

complex, 1:2 complex, 1:3 complex and free ligand) was calculated. In parallel, the fluorescence 

response of the two ligands upon the addition of lead (II) was analysed. Within this step, the recovered

fluorescent signal was decomposed into a combination of fluorescent components. These components 

were then correlated to the above-mentioned possible 1:1 and 1:2 complexes. Such innovative 

correlation allowed to associate a modelled fluorescent signal with a complex of known-stoichiometry,

an approach that opens a range of possibilities in the field of material synthesis.

Experimental

1.1. Reagents and Instruments

Anthraquinone, sodium hydride (60% in oil dispersion), lithium bromide, triethylamine, 4-

vinylbenzylchloride, 18-crown-6 ether and 5-amino-8-hydroxyquinoline dihydrochloride were 

purchased from Sigma-Aldrich (reagent grade). 

AgNO3, CaCO3, ZnSO4 and NaNO3 were purchased from Fisher Scientific (Analytical grade), 

Al(NO3)3, CdSO4, Co(NO3)2 and CuSO4 were from Merk (pro analysis grade), Pb(NO3)2 and Fe(NO3)3 

were purchased from Carlo Erba (Analytical grade).

All other chemical reagents and solvents were purchased from Acros Organics (reagent grade). Dry 

solvents were purchased as extra dry grade (Acros Organics). 

1H, 13C and 1H - 13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance 

(NMR) measurements were obtained on a Bruker 400 MHz Ultrashield spectrometer.

Mass spectra were measured on Bruker Esquire 6000 instrument.

Melting points were determined on Bushi M-560 apparatus.

UV-visible absorption spectra were obtained with Shimazu UV-2501 spectrometer.
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1.2. Synthesis of (10-(8-hydroxyquinolin-5-ylimino)methyl)anthracen-9-yl)methyl 

methacrylate (ANQ-MMA) 

Step 3: Synthesis of   (10-formylanthracen-9-yl)methyl methacrylate  

2.51 mL of freshly distilled methacryloyl chloride (26 mmol) were added to a solution of 10-

(hydroxymethyl)anthracen-9-carbaldehyde (3.04 g, 13 mmol) and triethylamine (10.76 mL, 77 mmol) 

in tetrahydrofuran cooled at 0°C. The solution mixture was stirred at 0°C for 2h and then at room 

temperature for 20h. The solvent was distilled off under reduced pressure. The crude product was 

solubilized in dichloromethane, washed five times with 100 mL of a saturated potassium carbonate 

solution and then twice with 100 mL of distilled water. The product was finally dried over magnesium 

sulphate to give 3.48 g of (10-formylanthracen-9-yl)methyl methacrylate. (Scheme 1a) Yield: 89 %. 

Melting point: 132.7°C

1H NMR (400 MHz, DMSO-d6, δ in ppm), δ: 11.45 (s, 1H, CHO), 8.90 (dd, J = 7.6, 2.2 Hz, 2H, 

position 4), 8.54 (dd, J = 7.5, 2.1 Hz, 2H, position 7), 7.73 (m, 4H, position 5 and 6), 6.25 (s, 2H, 

CH2), 5.94 (s, 1H, position 13), 5.63 (s, 1H, position 13), 1.83 (s, 3H, CH3). (Fig. A)

13C NMR (400 MHz, CDCl3, δ in ppm), δ: 194.05 (C10), 167.37 (C11), 135.93 (C2), 134.15 (C12), 

131.14(C8), 130.66(C3), 128.39(C5), 127.74(C9), 126.82 (C6), 126.53 (C13), 124.92 (C7), 124.24 (C4), 

58.94 (C1), 18.39 (C14). (Fig. B)

LC-MS: calculated: 304. Found: 305.13 ((10-formylanthracen-9-yl)methyl methacrylate + H)+ (Fig. C)

Step 4: Synthesis of (10-(8-hydroxyquinolin-5-ylimino)methyl)anthracen-9-yl)methyl methacrylate 

(ANQ-MMA)

100 mL of an ethanolic solution containing (10-formylanthracen-9-yl)methyl-methacrylate (1.10 g, 

3.62 mmol), 5-amino-8-hydroxyquinoline dihydrochloride (0.84 g, 3.62 mmol) and 5 drops of 

triethylamine was refluxed for 4h. Then the solvent was removed under reduced pressure. The crude 

product was washed with 100 mL of diethyl ether then with 100 mL of a solution containing 

potassium carbonate (0.55 g, 3.98 mmol) and extracted with dichloromethane. After distillation under 

reduced pressure, 1.21 g of the product ANQ-MMA is obtained. (Scheme 1b) Yield: 75 %. Melting 

point: 220.0°C.
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1H NMR (400 MHz, DMSO-d6, δ in ppm), δ: 10.03 (s, 1H, OH), 9.96 (s, 1H, position 10), 8.95 (dd, J 

= 4.1, 1.6 Hz, 1H, position 15), 8.80 (d, J = 9.4 Hz, 2H, position 4), 8.73 (dd, J = 8.5, 1.6 Hz, 1H, 

position 14), 8.54 (d, J = 8.2 Hz, 2H, position 7), 7.78 (d, J = 8.2 Hz, 1H, position 13), 7.67 (m, 5H, 

position 5, 6 and 19), 7.25(d, 1H, position 18), 6.30 (s, 2H, CH2), 5.96 (s, 1H, position 22), 5.65 (s, 

1H, position 22), 1.86 (s, 3H, CH3). (Fig. D)

13C NMR (400 MHz, DMSO-d6, δ in ppm), δ: 167.05 (C20), 159.14 (C10), 153.24 (C17), 149.26 (C15), 

139.58, 138.92, 136.23, 132.80, 130.70, 130.18, 130.01, 127.29, 126.79, 126.30, 125.26, 122.65, 

115.34 (C18), 111.81 (C19), 59.39 (C1), 18.55 (C23). (Fig. E)

LC-MS: calculated: 446. Found: 447.14 (ANQ-MMA + H+) (Fig. F)

1.3. Synthesis of ((10-((4-vinylbenzyloxy)methyl)anthracene-9-yl)methyleneamino)quinoline-

8-ol (ANQ-ST)

Synthesis of 4-vinylbenzyliodide

This synthesis was inspired from Chalal et al. work.[23] A mixture of 4-vinylbenzylchloride (5.0 g, 

32.9 mmol) and NaI (7.0 g, 42.7 mmol) in acetone under argon was refluxed for 20h. After cooling, 

the mixture was poured into water and extracted with dichloromethane. To neutralize the excess of 

iodine, the mixture was washed twice with 100 mL of Na2SO3 satured solution. Then the organic 
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phase was washed twice with 100 mL of water and dried over MgSO4. After removal of the solvent 

under reduced pressure, 7,9 g of product was obtained. (Scheme 2a) Yield: 99 %.

1H NMR (400 MHz, CDCl3, δ in ppm), δ: 7.38 (s, 4H, aromatic H), 6.74 (dd, J= 17.6, 10,7 Hz, 1H, 

position 6), 5.82 (dd, J=17.6, 0.7 Hz, 1H, position 7), 5.32 (dd, 10.7, 0.7 Hz, 1H, position 7), 4.50 (s, 

2H, position 1). (Fig. G))

13C NMR (400 MHz, CDCl3, δ in ppm), δ: 138.95 (C2), 137.32 (C5), 136.39 (C6), 129.13 (C3), 126.81 

(C4), 114.58 (C7), 6.09 (C1). (Fig. H)

1H - 13C HSQC NMR (400 MHz, CDCl3): Expected crosspeaks signals were observed. (Fig I)

Step 3’: Synthesis of 9-((4-vinylbenzyloxy)methyl)anthracene-10-carbaldehyde

In a 250 mL flask, 287 mg of sodium hydride (7.2 mmol), 35 mg of 18-crown-6 ether and 10 mL of 

dry tetrahydrofuran were added. The mixture was put under argon and cooled down with a water/ice 

bath. Then 1 g of 10-(hydroxymethyl)anthracen-9-carbaldehyde (4.23 mmol) dissolved in 100 mL of 

dry tetrahydrofuran were slowly added. After one hour of stirring at room temperature and under 

argon, the mixture was cooled with a water/ice bath and 1,76 mg of 4-vinylbenzyliodide (7.2 mmol) 

diluted in 10 mL of dry tetrahydrofuran was added dropwise. The mixture was stirred for 24 hours 

under argon at room temperature, then a few drops of water were added and the tetrahydrofuran was 

distilled off under reduced pressure. The crude product was extracted with dichloromethane and dried 

over magnesium sulphate. The dichloromethane was distilled off under reduced pressure to give a 

residue which was washed twice with 50 mL of cold hexane and purified on a silica gel column 

eluting with ethyl acetate–cyclohexane (1:9, v/v).to obtain 490 mg of the product as a yellow oil. 

(Scheme 2b) Yield: 33 %.

1H NMR (400 MHz, CDCl3, δ in ppm), δ: 11.46 (s, 1H, CHO), 8.87 (d, J= 8.8 Hz, 2H, position 13), 

8.36 (d, J=8.8 Hz, 2H, position 14), 7.61 (dtd, 4H, positions 4 and 7), 7.42 (dd, 4H, positions 5 and 6), 

6.78 (dd, J=17.6, 10.9 Hz, 1H, position 16), 5.82 (dd, J=17.6, 0.8Hz, 1H, CH2), 5.42 (s, 2H, position 

1), 5.31 (dd, J=10.9, 0.8 Hz, 1H, CH2), 4.73 (s, 2H, position 11). (Fig. J)

13C NMR (400 MHz, CDCl3, δ in ppm), δ: 193.96 (C10), 137.57 (C2), 137.45 (C15), 136.75 (C12), 

136.60 (C16), 131.28 (C8), 130.53 (C9), 128.45 (C5), 128.33 (C6), 126.82 (C3), 126.46 (C7), 126.36 (C4),

125.23 (C14), 124.07 (C13), 114.18 (C17), 72.71 (C11), 64.05 (C1). (Fig. K)
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1H - 13C HSQC NMR (400 MHz, CDCl3): Expected crosspeaks signals were observed. (Fig L)

Step 4’: Synthesis of ((10-((4-vinylbenzoloxy)methyl)anthracen-9-yl)methyleneamino)quinoline-8-ol 

(ANQ-ST)

100 mL of an ethanolic solution containing 9-((4-vinylbenzyloxy)methyl)antharcene-10-carbaldehyde 

(380 mg, 1.08 mmol), 5-amino-8-hydroxyquinoline dihydrochloride (252 mg, 1.08 mmol) and 10 

drops of triethylamine was refluxed for 4 hours. Then the solvent was removed under reduced pressure

and the crude product was washed twice with 100 mL of diethyl ether. After distillation under reduced

pressure of the filtrate, the product was chromatographed on silica gel 60 eluting with ethyl acetate–

cyclohexane (1:9, v/v). Evaporation of the appropriate fractions gave 160 mg of ANQ-ST.as brown 

powder. (Scheme 2c) Yield: 30%. Melting point: 210°C

1H NMR (400 MHz, CDCl3, δ in ppm), δ: 9.84 (s, 1H, position 10, 8.89 (dd, J=4.2, 1.6 Hz, 1H, 

position 15) 8.85 (dd, j=8.5, 1.6 Hz, 1H, position 13), 8.78 (m, 2H, position 22), 8.44 (m, 2H, position 

23), 7.60 (m, 4H, positions 4 and 7), 7.52 (dd, J=8.5, 4.5 Hz, 1H, position 14), 7.44 (m, 5H, positions 

5, 6 and 19), 7.31 (m, 1H, position 18), 6.77 (dd, J=17.6, 10.9 Hz, 1H, position 25), 5.80 (dd, J=17.6, 

0.8 Hz, 1H, CH2), 5.57 (s, 2H, position 1), 5.29 (dd, J=10.9, 0.8 Hz, 1H, CH2), 4.76 (s, 2H, position 

20). (Fig M)

13C NMR (400 MHz, CDCl3, δ in ppm), δ: 158.84 (C10), 151.33(C17), 148.59 (C15), 140.88 (C11), 

138.33 (C16), 137.87 (C2), 137.35 (C21), 136.64 (C25), 133.48 (C13), 132.39 (C24), 130.90 (C9), 130.34 

(C8), 129.69 (C3), 128.38 (C5), 126.67 (C6), 126.41 (C7), 126.22 (C4), 125.52 (C22), 125.19 (C12), 

124.14 (C23), 122.00 (C14), 114.02 (C19), 113.94 (C26), 109.72 (C8), 72.38 (C20), 64.20 (C1). (Fig. N) 

LC-MS: calculated: 494. Found: 495.18 (ANQ-ST + H+) (Fig. O)

1H -13C HSQC NMR (400 MHz, CDCl3): Expected crosspeaks signals were observed. (Fig. P)
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Scheme 2. Indexation of the carbons observed on the 13C NMR spectrum of a) 4-vinylbenzyliodide, b) 9-((4-

vinylbenzyloxy)methyl)anthracene-10-carbaldehyde and c) ANQ-ST

1.4. Lead (II) and ANQ-MMA (or ANQ-ST) species distribution modelling from UV-visible 

spectra

Lead (II) complexation by ANQ-MMA and ANQ-ST was studied in acetone (80%) - water (20%) 

mixture at room temperature. The experiments were performed in 3 mL quartz Suprasil cells. The 

combined concentration of lead (II) (0.01-0.09 mmol.L-1) and ANQ-MMA or ANQ-ST (0.09-0.01 

mmol.L-1) was kept constant (0.1 mmol.L-1), but the ratio ligand/lead was varied from 0.1 to 10 using 

Pb(NO3)2 as lead source. For the two molecules, 14 spectra were recorded using UV-vis spectrometer.

At equilibrium, the distribution of the various species (free metal, 1:1 complex, 1:2 complex, 1:3 

complex and free ligand) was calculated using a commercial program (HypSpec) based on the least-

squares minimization scheme[24], [25]. Stability constants, extinction coefficients and concentrations 

of all absorbing components were simultaneously estimated. For uncomplexed lead (II), the extinction 

coefficients were calculated from independent measurements.
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1.5. Fluorescence Measurements

All experiments and measurements were performed at room temperature, in acetone (80%) - water 

(20%) mixture. AgNO3, CaCO3, NaNO3, CdSO4, Co(NO3)2, CuSO4, Pb(NO3)2, ZnSO4 Al(NO3)3, and 

Fe(NO3)3 were used as metal sources.

1.5.1.  Lead experiments

The fluorescent signal as a function of increasing lead concentration was studied. Solutions containing

50 µmol.L-1 of the fluoroionophore ANQ-MMA or ANQST and 0, 5,10, 30, 50, 100 and 300 µmol.L-1 

of lead (II) were prepared and analysed. 

The fluorescence signal of each the two synthesized molecules in presence of lead or other ions, taken 

separately, was measured. Solutions containing 50 µmol.L-1 of the molecule and 200 µmol.L-1 of lead 

(II) or 200 µmol.L-1 of  silver (I), sodium (I),  calcium (II), cadmium (II), cobalt (II), copper (II), zinc 

(II), aluminium (III) or iron (III) were prepared and analysed for their fluorescence signal. 

Then, the fluorescent signal of a constant lead concentration in presence of interfering ions was 

studied. A solution containing 50 µmol.L-1 fluoroionophore, 100 µmol.L-1 of lead and 100 µmol.L-1 of 

one interfering ion was prepared. The interfering ion was chosen among silver (I), sodium (I), calcium 

(II), cadmium (II), cobalt (II), copper (II), zinc (II), aluminium (III) or iron (III). 

1.5.2.  Excitation-Emission Matrix (EEM) of fluorescence Measurement

The EEMs were measured on a HITACHI F4500 spectrofluorimeter. The excitation wavelength 

ranges from 320 to 460 nm, with a step of 10 nm and an excitation slit of 1 nm. The corresponding 

emission spectra were acquired from 350 to 550 nm with a scan speed of 2400 nm.min−1 and a slit of 1

nm. The photomultiplicator tension was fixed 950 V and the integration time set at 0.1 s. The 

extraction of the 5 nm stepped emission was obtained by FL-Solution software. 

9



1.5.3. CP/PARAFAC Analysis

First, all the EEMs were cleaned from the diffusion signals: Rayleigh by cutting the diffusion band (20

nm) and Raman from first and second order by applying Zepp procedure[26]. Then, CP/PARAFAC 

algorithm was used[27], [28]. This algorithm allows the decomposition of a dataset of matrices into a 

set of fluorescent components, considering that all the considered EEM are constituted by a linear 

combination of the same independent components. The correct number of component needed to model

the dataset is defined by evaluating the CORCONDIA score. Users have to test a range of model, i.e. 

number of components, to detect the best number of components.[29] In this work, decomposition 

investigation was done from two to five components and the higher number of component giving a 

CORCONDIA test over 60 %was selected as the optimal component number.[30] Then some 

components given by this decomposition were directly linked to the complexes metal-ligand 

evidenced by the UV-visible study.

2. Results and discussions

2.1. Synthesis and properties of fluoroionophores ANQ-MMA and ANQ-ST

The synthesis of ANQ-MMA and ANQ-ST took place in four steps with an overall yield of 63 % for 

ANQ-MMA and 10% for ANQ-ST (Scheme 3). The preparation of the intermediate, 10-

(hydroxymethyl)anthracen-9-carbaldehyde, was inspired by the work of various authors[31]–[34]. For 

ANQ-MMA, the third step is an esterification reaction catalysed by a tertiary amine, followed by a 

coupling between the intermediate compound and the 5-amino-8-hydroxyquinoline dihydrochloride. 

In order to synthesize ANQ-ST, the intermediate compound, 4-vinylbenzyliodide, was prepared to 

couple 10-(hydroxymethyl)anthracen-9-carbaldehyde by its hydroxyl group with 4-vinylbenzyle 

before the final Schiff-base formation reaction. Molecular structures were characterized by 1H NMR, 

13C NMR, 1H-13C HSQC NMR and LC-MS techniques (see Experimental section). 
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Scheme 3. Synthesis route of ANQ-MMA and ANQ-ST

The photophysical properties of ANQ-MMA and ANQ-ST were investigated. Both molecules showed 

a major absorption band at 405 nm. Upon addition of Pb2+, the absorbance of ANQ-MMA (Fig. 1a) 

and ANQ-ST (Fig. 1b) underwent a red shift of 25 and 3 nm, respectively. This result emphasized a 

photophysical effect of lead (II) complexation by those molecules.

Complex formation was studied by keeping the overall concentration of lead and fluoroionophore 

constant while varying their molar ratio. The distribution of the complexes formed between Pb2+ and 

the two fluoroionophores was calculated using HypSpec, a commercial program, based on the least 

squares minimization method (Fig. 2)[24], using the following equilibrium equations:

M+L
⇔
MLwith KML=

ML
M .L

ML+L
⇔
M L2withK ML2

=
M L2
ML . L

L0=L+ML+2M L0

M 0=M+ML+M L2
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The amount of each complex is given as a fraction of the total distribution and stability constants are 

shown in Table 1. According to the distribution diagrams, for ANQ-MMA, 1:1 and 1:2 complexes 

coexist up to a ratio of 1 between Pb2+ and ANQ-MMA, then only the 1:1 remains in solution. For 

ANQ-ST, whatever the ratio used, only the 1:1 complex is formed in solution. Stability constants 

values proved that the formation of all the complexes is quantitative with a higher Log (β1) value for 

ANQ-MMA. 

Log (β1) Log (β2)
ANQ-MMA 7.2 11.8

ANQ-ST 5.1 /
Table 1. Stability constants of the complexes formed with lead for ANQ-MMA and ANQ-ST

Fig. 1. Absorbance spectra of a) ANQ-MMA and b) ANQ-ST (50 µmol.L-1) in acetone-water (4:1, v/v) solution and in presence of 100 

µmol.L-1 of Pb2+.
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Fig. 2. Metal and ligand species distribution calculated from UV-vis spectra using HypSpec program[25] for lead and a) ANQ-MMA or b) 

ANQ-ST. Solvent: acetone-water (4:1, v/v).

2.2. Fluorescent detection of Pb2+

The fluorescence of the molecules was monitored upon the addition of lead (II). The EEMs show a 

massive peak located at (λex/λem) = 388/425 nm for ANQ-MMA (Fig. 3) and at (λex/λem) = 380/420 nm 

for ANQ-ST (Fig. 4). For both molecules, the fluorescence signal increased with increasing lead 

concentration (Fig. 5). The relative peak intensity of the EEMs underwent an important increase from 

0 to 100 µmol.L-1 of lead (II) followed by a saturation for higher concentrations. 
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Fig. 3. EEMs obtained for acetone-water (4:1, v/v) solutions containing 50 µmol.L-1 of ANQ-MMA and a)0, b)5, c)10, d)30, e)50, f)100 or 

g)300 µmol.L-1 of Pb2+

Fig. 4. EEMs obtained for acetone-water (4:1, v/v) mixtures solutions containing 50 µmol.L-1 of ANQ-ST and a)0, b)5, c)10, d)30, e)50, 

f)100 or g)300 µmol.L-1 of Pb2+
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Fig. 5. Relative fluorescence intensity of acetone/water (4:1, v/v) solutions containing 50µmol.L-1 of a) ANQ-MMA or b) ANQ-ST upon the 

addition of lead ion and the modelled curves.

For ANQ-ST ligand, PARAFAC treatment gave optimum results for two components (CORCONDIA 

= 94 %). CORCONDIA scores obtained for 2 to 5 components decomposition are given in Table A. 

Component 1 showed a maximum located at λex/λem = 385-405/430-440 nm. Component 2 showed a 

maximum located at λex/λem = 370-385/405-420 nm (Fig. 6a). Once those components extracted, the 

contribution to fluorescence of each component to each EEM was calculated (Fig. 6b). Each 

component fluorescence contribution is proportional to their concentration and to a quantum yield of 

fluorescence [35]. Coupling PARAFAC decomposition with the species distribution (see section 2.1), 

it seemed difficult to directly linked an empiric component to species with known stoichiometry. 

Indeed, the two empiric components given by the decomposition had the same contribution evolution. 

Correlating components contribution to Pb(ANQ-ST) complex concentration, both components had a 

good correlation with the formed complex (Fig. 6c). In other terms, it appeared that PARAFAC 

decomposition was not able to identify and separate real substances. It was probably because of the 

too close fluorescence fields of the real species. Indeed, a small 3 nm red-shift was observed on 

absorbance spectra when lead (II) was added to ANQ-ST (Fig. 1) meaning that free ANQ-ST and 

complexed ANQ-ST have probably close fluorescence fields. 
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Fig. 6. Component 1 and 2 obtained with PARAFAC decomposition with an optimum CORCONDIA score, b) their pseudo-concentration for

ANQ-ST lead range study and c) their pseudo-concentration correlated to Pb(ANQ-ST) concentration

For ANQ-MMA ligand, PARAFAC treatment decomposition gave an optimum result for three 

components (CORCONDIA = 77 %). CORCONDIA scores obtained for 2 to 5 components 

decomposition are given in Table A. Component 1 presented an excitation wavelength maximum at 

365-385 nm and emission maximum at 420-440 nm. Component 2 presented an excitation wavelength

maximum at 385-400 nm and emission maximum at 495-505 nm. Component 3 showed two maxima: 

one located at λex/λem = 410/450 nm and the other one located at λex/λem = 345-350/445-455 nm (Fig. 

7a). The contribution of each component to each EEM measurements is depicted in Fig. 7b. Coupling 

PARAFAC decomposition with the species distribution (see section 2.1), it was possible to directly 
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linked an empiric component to species with known stoichiometry. By correlation it can be assumed 

that component 3 is directly linked to the predominant complex Pb(ANQ-MMA). Indeed component 3

contribution is increasing starting from zero. Moreover correlating components contribution to 

Pb(ANQ-MMA) complex concentration, it appeared that components 1 and 3 could be linked to this 

complex (Fig. 7c). But the 25 nm red-shift observed on absorbance spectra when lead (II) was added 

to ANQ-MMA (Fig. 1) indicated that component 3 was more likely to be associated to Pb(ANQ-

MMA) complex. As a matter of fact, the fluorescence emission field of this component, higher than 

that of free ANQ-MMA, explained the 25 nm red-shift. In that case, it was therefore possible to link 

the fluorescent modeled component to an existing complex and to further demonstrate its 

stoichiometry. 

Fig. 7. Component 1, 2 and 3 obtained with PARAFAC decomposition with an optimum CORCONDIA score and b) their pseudo-

concentration for ANQ-MMA lead range study and c) their pseudo-concentration correlated to Pb(ANQ-MMA) concentration

2.3. Competition analysis 

In a preliminary study, the fluorescence properties of ANQ-MMA and ANQ-ST were measured in 

presence of different metal ions, showing that both fluoroionophores could almost selectively 

recognize Pb2+ via fluorescence “off-on” responses. Indeed, an exaltation of the fluorescence intensity 

on the EEMs was observed only when Pb2+ was added to ANQ-MMA or ANQ-ST. For ANQ-MMA, a 
17



fluorescent signal was also recorded in presence of Na+ (Fig. Q) and for ANQ-ST in presence of Co2+ 

(Fig. R) but the extent of the measured fluorescence was clearly below that obtained in presence of 

Pb2+.

To determine the effect of other metal ions on the selectivity of ANQ-MMA and ANQ-ST for Pb2+, 

competition experiments were carried out by measuring the fluorescence behaviour of the molecules 

in presence of Pb2+ ions and another metal ion (Ag+, Na+, Ca2+, Cd2+, Co2+, Cu2+, Zn2+, Al3+ or Fe3+) 

(Fig. S and Fig. T). As seen in Fig. 8, for both molecules, all solutions containing an interfering ion, 

except for Fe3+, showed very weak variation of fluorescence intensity compared to the fluorescence 

intensity of the solution containing lead (II). These results demonstrate that ANQ-MMA and ANQ-ST 

can act as selective probes for fluorescence detection of Pb2+ 

Fig. 8. Competition analysis of a) ANQ-MMA and b) ANQ-ST (50 µmol.L-1) in acetone-water (4:1, v/v) at room temperature

3. Conclusion

Two fluorescent ligands specific to lead (II) were synthesized: ANQ-MMA and ANQ-ST. Their turn-

on fluorescence response upon the addition of Pb2+ was modelled with good correlation coefficients. 

The decomposition of the fluorescence excitation-emission matrices allowed to give the number of 

fluorescent components involved in the fluorescent signal. The coupling those results with the 

complex distribution of ANQ-MMA and ANQ-ST with lead (II) given by a UV-visible study allowed 

to link a modelled fluorescent component to a real complex of a known stoichiometry. Comparing 

fluorescence decomposition and UV-visible study appeared to be a new promising way to identify 
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species. Moreover, the two synthesized ligands showed interesting properties which could turn them 

as interesting probes, specific for lead (II). As a matter of fact, in addition to their modelled turn-on 

fluorescence responses upon the addition of lead (II), the performed competition analysis 

demonstrated their selectivity.
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