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Optimization problems consist of either maximizing or minimizing an objective function. Instead of looking for a maximum solution (resp. minimum solution), one can find a minimum maximal solution (resp. maximum minimal solution). Such "flipping" of the objective function was done for many classical optimization problems. For example, Minimum Vertex Cover becomes Maximum Minimal Vertex Cover, Maximum Independent Set becomes Minimum Maximal Independent Set and so on. In this paper, we propose to study the weighted version of Maximum Minimal Edge Cover called Upper Edge Cover, a problem having application in genomic sequence alignment. It is well-known that Minimum Edge Cover is polynomial-time solvable and the "flipped" version is NP-hard, but constant approximable. We show that the weighted Upper Edge Cover is much more difficult than Upper Edge Cover because it is not

) in edge-weighted graphs of size n and maximmm degree ∆ respectively. Indeed, we give some hardness of approximation results for some special restricted graph classes such as bipartite graphs, split graphs and k-trees. We counter-balance these negative results by giving some positive approximation results in specific graph classes.

Introduction

Considering a MaxMin or MinMax version of a problem by "flipping" the objective is not a new idea; in fact, such questions have been posed before for many classical optimisation problems. Some of the most well-known examples include the Minimum Maximal Independent Set problem [START_REF] Bourgeois | Fast algorithms for min independent dominating set[END_REF] (also known as Minimum Independent Dominating Set), the Maximum Minimal Vertex Cover problem [START_REF] Boria | On the max min vertex cover problem[END_REF], the Minimum Maximal Matching problem (also known as Minimum Independent Edge Dominating Set) [START_REF] Yannakakis | Edge dominating sets in graphs[END_REF], and the Maximum Minimal Dominating Set problem (also called Upper Dominating Set) [START_REF] Aboueisha | A boundary property for upper domination[END_REF].

However, to the best of our knowledge, weighted MaxMin and MinMax versions have not been considered so far, except for Minimum Independent Dominating Set [START_REF] Chang | The weighted independent domination problem is NP-complete for chordal graphs[END_REF][START_REF] Lozin | More results on weighted independent domination[END_REF], and weighted upper dominating set problem [START_REF] Boyaci | Weighted upper domination number[END_REF]. MaxMin or MinMax versions of classical problems turn out to be much harder than the originals, especially when one considers complexity and approximation. For example, Maximum Minimal Vertex Cover does not admit any n 1 2 -ǫ approximation [START_REF] Boria | On the max min vertex cover problem[END_REF], while Vertex Cover admits a simple 2-approximation. Minimum Maximal Matching is NP-hard(but 2-approximable) while Maximum Matching is polynomial.

The focus of this paper is on edge cover. An edge cover of a graph G = (V, E) is a subset of edges S ⊆ E which covers all vertices of G. The edge cover number of G = (V, E) is the minimum size of an edge cover of G. An optimal edge cover can be computed in polynomial time, even for the weighted version where a weight is given for each edge and one wants to minimize the sum of the weight of the edges in the solution (called here the weighted edge cover number). An edge cover S ⊆ E is minimal (with respect to inclusion) if the deletion of any subset of edges from S destroys the covering property. Minimal edge cover is also known in the literature as an enclaveless set [START_REF] Slater | Enclaveless sets and mk-systems[END_REF] or as a nonblocker set [START_REF] Dehne | NONBLOCKER: parameterized algorithmics for minimum dominating set[END_REF].

In this paper, we study the computational complexity of the weighted upper edge cover number, denoted here uec(G, w), that is the solution with maximum weight among all minimal edge covers. Formally, the associated optimization problem called the Weighted Upper Edge Cover problem asks to find the largest weighted minimal edge cover of an edge-weighted graph.

Weighed Upper Edge Cover

Input: A weighted connected graph G = (V, E, w), where w(e) ≥ 0 for all e ∈ E. Solution: Minimal edge cover S ⊆ E. Output: Maximize w(S) = e∈S w(e).

Hence, if S * is an optimal solution of Weighed Upper Edge Cover on (G, w), then w(S * ) = uec(G, w). The unweighted value of the optimal solution is uec(G) (denoted upper edge cover number). To the best of our knowledge, the complexity of computing the weighted upper edge cover number has never been studied in the literature, while a lot of results appear for the unweighed case (corresponding to w(e) = 1 for all e ∈ E) [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF][START_REF] Athanassopoulos | An improved approximation bound for spanning star forest and color saving[END_REF][START_REF] Chen | Improved approximation algorithms for the spanning star forest problem[END_REF][START_REF] He | Improved approximation for spanning star forest in dense graphs[END_REF]. The unweighted variant was firstly investigated in [START_REF] Manlove | On the algorithmic complexity of twelve covering and independence parameters of graphs[END_REF], where it is proven that the complexity of computing the upper edge cover number is equivalent to solve the dominating set problem because uec(G) = |V |γ(G) where γ(G) is the size of minimum dominating set of graph G. We will consider the implications of this important remark afterwards in the paper.

We will now define a related problem useful in the following because it is proved in [START_REF] Manlove | On the algorithmic complexity of twelve covering and independence parameters of graphs[END_REF] that S ⊆ E is a minimal edge cover of G = (V, E) iff S is a spanning star forest of G without trivial stars (i.e. without stars consisting of a single vertex).

Maximum Weighted Spanning Star Forest problem (MaxWSSF in short)

Input: An edge-weighted graph (G, w) on n vertices where G = (V, E) and w(e) ≥ 0 for all e ∈ E. Solution: Spanning star forest S = {S 1 , . . . , S p } ⊆ E. Output: maximizing w(S) = e∈S w(e) = p i=1 e∈Si w(e).

Given an instance (G, w) of MaxWSSF, opt MaxW SSF (G, w) denotes the value of an optimal spanning star forest. Authors of [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF] describe in details how to apply MaxWSSF model to alignment of multiple genomic sequence, a critical task in comparative genomics. They also show that this approach is promising with real data. In this model, taking weights into account is fundamental since it represents alignment score. Also, their model uses each edge of the spanning star forest to output the solution. Therefore, having trivial star is probably undesirable, which enforces the motivation of studying Weighed Upper Edge Cover.

The unweighted version (corresponding to the case w(e) = 1 for all edges e) is denoted by MaxSSF. In this case, the optimal value is opt MaxSSF (G). For unweighted graphs without isolated vertices, we have uec(G) = opt MaxSSF (G) since any spanning star forest (with possible trivial stars) can be (polynomially) converted into a star spanning forest without trivial stars (i.e. a minimal edge cover) with same size [START_REF] Manlove | On the algorithmic complexity of twelve covering and independence parameters of graphs[END_REF]. Hence, these two problems are completely equivalent even from an approximation point of view.

Concerning edge-weighted graphs, the relationship between Weighed Upper Edge Cover and MaxWSSF is less obvious. For instance, we only have the following inequality: opt MaxW SSF (G, w) ≥ uec(G, w) because any minimal edge cover is a particular spanning star forest. However, the difference between these two values can be arbitrarily large as indicated in Figure 1 (in the graph drawn in Figure 1.(b), v 4 is an isolated vertex when ε goes to Infinity). This means that isolated vertices play an important role in feasible solutions. Given a spanning star forest S = {S 1 , . . . , S r } of (G, w), we rename vertices such that there is some p, 0 ≤ p < r such that S i = {v i } are trivial stars for all 1 ≤ i ≤ p (if p = 0, then there is no trivial stars), and S j are non-trivial stars whose c j is the center for all j > p (if S j is a single edge, both endpoints are considered as possible centers). We define Triv = {v i : i ≤ p} as the set of isolated vertices of (V, E(S)) where E(S) = ∪ r j>p S j ; moreover, V l and V c are respectively the set of leaves and the set of centers of stars in V \ Triv. Finally, for v ∈ V l , e v (S) = c ′ v ∈ E(S) denotes the edge linking the center c ′ to the leaf v.

We mainly focus on specific solutions of MaxWSSF called nice spanning star forests defined as follows: Definition 1. S is a nice spanning star forest of (G, w) if Triv = {v i : i ≤ p} is an independent set in G and all edges of G starting at Triv are linked to leaves of some ℓ-stars of S with ℓ ≥ 2. Moreover, w(uv) ≤ w(e v (S)) for u ∈ Triv, v ∈ V l . Property 2. Any spanning star forest of (G, w) can be polynomially converted into a nice one with at least the same weight. Proof. The weights of (G, w) are non-negative. Thus, if Triv is not an an independent set or if some vertex of Triv is linked to some center of S, we could obtain a better spanning star forest with less isolated vertices. In particular, it implies that no vertex of Triv is linked to a 1-star (i.e. a K 2 of S). Finally, if w(uv) > w(e v (S)), then S ′ = (S \ {e v (S)}) ∪ {uv} is a better spanning star forest.

⊓ ⊔

It is well known that optimization problems are easier to approximate when the input is a complete weighted graphs satisfying the triangle inequality, like for example in the traveling salesman problem. Here, we introduce a generalization of this notion which works to any class of graphs. Clearly, for complete graphs, cycle and triangle inequality notions coincide. Definition 3 is interesting when focusing on classes of graphs like split graphs or ktrees. In this article, we are also interested in bivaluate weights (resp., trivalued) corresponding to the case w(e) ∈ {a, b} with 0 ≤ a < b (resp., w(e) ∈ {a, b, c} where 0 ≤ a < b < c are 3 reals). The particular case a = 0 and b = 1 (called here binary weights) is interesting by itself because MaxWSSF with binary weights exactly corresponds to MaxSSF and has been extensively studied in the literature. Moreover for instance, binary weighted Minimum Independent Dominating Set for chordal graphs has been studied in [START_REF] Farber | Independent domination in chordal graphs[END_REF], where it is shown that this restriction is polynomial, but bivalued weighted Minimum Independent Dominating Set for chordal graphs with a > 0 is NP-hard [START_REF] Chang | The weighted independent domination problem is NP-complete for chordal graphs[END_REF].

Graph terminology and definitions: Throughout this paper, we consider edge-weighed undirected connected graphs G = (V, E) on n = |V | vertices and m = |E| edges. Each edge e = uv ∈ E between vertices u and v is weighted by a non-negative weight w(e) ≥ 0; K n denotes the complete graph on n vertices; a bipartite graph (resp., split graph) G = (L ∪ R, E) is a graph where the vertex set L ∪ R is decomposable into an independent set (resp., a clique) L and an independent set R. A k-tree is a graph which can be formed by starting from a kclique and then repeatedly adding vertices in such a way that each added vertex has exactly k neighbors completely connected together (this neighborhood is a k-clique). For instance, 1-trees are trees and 2-trees are maximal series-parallel graphs. A graph is a partial k-trees (or equivalently with treewidth at most k) if it is a subgraph of a k-trees. The degree d G (v) of vertex v ∈ V in G is the number of edges incident to v and ∆(G) is the maximum degree of the graph G. A star S ⊆ E of a graph G = (V, E) is a tree of G where at most one vertex has a degree greater than 1, or, equivalently, it is isomorphic to K 1,ℓ for some ℓ ≥ 0. The vertices of degree 1 (except the center when ℓ ≤ 1) are called leaves of the star while the remaining vertex is called center of the star. A ℓ-star is a star of ℓ leaves. If ℓ = 0, the star is called trivial and it is reduced to a single vertex (the center); otherwise, the star is said non-trivial. A spanning star forest

S = {S 1 , . . . , S p } ⊆ E of G is a spanning forest into stars, that is, each S i is a star (possibly trivial), V (S i ) ∩ V (S j ) = ∅ and ∪ p i=1 V (S i ) = V . An independent set S ⊆ V of a graph G = (V, E) is a subset of vertices pairwise non-adjacent.
The NP-hard problem MaxIS seeks an independent set of maximum size. The value of an optimal independent set of G is denoted α(G). A matching M ⊆ E is a subset of pairwise non-adjacent edges. A matching M of G is perfect if all vertices of G are covered by M . A dominating set for a graph G is a subset D of V such that every vertex not in D is adjacent to at least one vertex of D. The domination number γ(G) is the number of vertices in the smallest dominating set of G.

Related work : Upper Edge Cover has been investigated intensively during the recent years for unweighed graphs, mainly using the terminologies of spanning star forests or dominating sets. The minimum dominating set problem (denoted MinDS) seeks the smallest dominating set of G of value γ(G). As indicated before, we have uec(G) = nγ(G). Thus, using the complexity results known on MinDS, we deduce that Upper Edge Cover is NP-hard in planar graphs of maximum degree 3 [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF], chordal graphs [START_REF] Booth | Dominating sets in chordal graphs[END_REF] (even in undirected path graphs, the class of vertex intersection graphs of a collection of paths in a tree), bipartite graphs, split graphs [START_REF] Bertossi | Dominating sets for split and bipartite graphs[END_REF] and k-trees with arbitrary k [START_REF] Corneil | A dynamic programming approach to the dominating set problem on k-trees[END_REF], and it is polynomial in k-trees with fixed k, convex bipartite graphs [START_REF] Damaschke | Domination in convex and chordal bipartite graphs[END_REF], strongly chordal graphs [START_REF] Farber | Domination, independent domination and duality in strongly chordal graphs[END_REF]. Concerning the approximability, an APX-hardness proof with explicit inapproximability bound and a combinatorial 0.6-approximation algorithm is proposed in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF]. Better algorithms with approximation ratio 0.71 and 0.803 are given respectively in [START_REF] Chen | Improved approximation algorithms for the spanning star forest problem[END_REF] and [START_REF] Athanassopoulos | An improved approximation bound for spanning star forest and color saving[END_REF]. For any ε > 0, Upper Edge Cover is hard to approximate within a factor of 259 260 + ε unless P=NP [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF]. It admits a PTAS in k-trees (with arbitrary k), although Upper Edge Cover remains APX-complete on c-dense graphs [START_REF] He | Improved approximation for spanning star forest in dense graphs[END_REF] (a graph is called c-dense if it contains at least c n 2 2 edges). In contrast, for edge weighted graphs with non-negative weights, no result for Weighed Upper Edge Cover is known, although some results are given for Maximum Weighted Spanning Star forest problem: a 0.5-approximation is given in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF] (which is the best ratio obtained so far) and polynomial-time algorithms for special classes of graphs such as trees and cactus graphs are presented in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF][START_REF] Nguyen | The maximum weight spanning star forest problem on cactus graphs[END_REF]. Negative approximation results are presented in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF][START_REF] Chakrabarty | On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP[END_REF][START_REF] Chen | Improved approximation algorithms for the spanning star forest problem[END_REF]. In particular, MaxWSSF is NP-hard to approximate within 10 11 + ε [START_REF] Chakrabarty | On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP[END_REF]. Two generalizations of WSSF, denoted MinExtWSSF and MaxExtWSSF, have been introduced very recently in [START_REF] Khoshkhah | Extended spanning star forest problems[END_REF] where the goal consists in extending some partial stars into spanning star forests. In this context, a partial feasible solution is given in advance and the goal is to extend this partial solution. Formally, the problem is defined as follow:

Extended weighted spanning star forest problem (ExtWSSF in short) Input: A weighted graph (G, w) and a packing of stars U = {U 1 , . . . , U r } where G = (V, E) and w(e) ≥ 0 for e ∈ E. Solution:

Spanning star forest S = {S 1 , . . . , S p } ⊆ E containing U. Output: w(S) = e∈S w(e) = p i=1 e∈Si w(e).
In [START_REF] Khoshkhah | Extended spanning star forest problems[END_REF], several results have been given for both minimization (MinExtWSSF) and maximization (MaxExtWSSF) versions of ExtWSSF (denoted MinEx-tWSSF and MaxExtWSSF respectively). Dealing with the minimization version for complete graphs: a dichotomy result of the computational complexity is presented depending on parameter c of the (extended) c-relaxed triangle inequality and an FPT algorithm is given. For the maximization version, a positive approximation of 1/2 and a negative approximation result of 7 8 (even for binary weights) are proposed.

A subset of vertices V ′ is called non-blocking if every vertex in V ′ has at least one neighbor in V \ V ′ . Actually, non-blocking is dual of dominating set and vice versa. For a given graph G = (V, E) and a positive integer k, the Non-blocker problem asks if there is a non-blocking set V ′ ⊆ V with |V ′ | ≥ k. Hence, for unweighted graphs, optimal value of non-blocking number equals the upper edge cover number. In [START_REF] Dehne | NONBLOCKER: parameterized algorithmics for minimum dominating set[END_REF] Dehne et al. propose a parameterized perspective of the Non-blocker problem. They give a linear kernel and an FPT algorithm running in time O * (2.5154 k ). They also give faster algorithms for planar and bipartite graphs.

Contributions: The paper is organized in the following way. We first show in Section 2 that Weighted Upper Edge Cover in complete graphs is equivalent for its approximation to MaxWSSF in general graphs. Then, we study Weighted Upper Edge Cover for bipartite graphs, split graphs and k-trees respectively in Sections 3, 4 and 5. Motivated by the above results mostly negative, we propose a constant approximation ratio algorithm in Section 6 for Weighted Upper Edge Cover in bounded degree graphs. Note that all results given in this paper are valid if G is isolated vertex free instead of connected.

Complete graphs

In this section, we deal with edge-weighted complete graphs. This case seems to be the simplest one because the equivalence between Upper Edge Cover and MaxSSF for the unweighted case proven in [START_REF] Manlove | On the algorithmic complexity of twelve covering and independence parameters of graphs[END_REF] remains valid for the weighted case as proven in the following. Let (G, w) be an instance of MaxWSSF where G = (V, E) is a connected graph with n vertices, edge-weighted using w. We build an instance (K n , w ′ ) of Weighted Upper Edge Cover where K n is an edge-weighted complete graph (V, E(K n )) over n vertices, edge-weighted with w ′ , such that ∀u, v ∈ V with u = v, w ′ (uv) = w(uv) if uv ∈ E and w ′ (uv) = 0 otherwise. Let S ′ ⊆ E(K n ) be a minimal edge cover of Weighted Upper Edge Cover with weight w ′ (S ′ ). The restriction of S ′ to G gives a star spanning forest (with eventually trivial stars) S. Obviously, by construction we have:

w(S) = w ′ (S ′ ) (1) 
Thus, from equality (1) we deduce opt MaxW SSF (G, w) ≥ uec(K n , w ′ ). Conversely, let S * be an optimal star spanning forest of MaxWSSF with value opt MaxW SSF (G, w). By adding some edges from the center of some stars to the isolated vertices of S * , we obtain a minimal edge cover of K n of at least same value. Hence, uec(K n , w ′ ) ≥ opt MaxW SSF (G, w). We can deduce,

uec(K n , w ′ ) = opt MaxW SSF (G, w) (2) 
From equalities (1) and ( 2), we can deduce that any ρ approximation of Weighted Upper Edge Cover for (K n , w ′ ) can be polynomially converted into a ρ approximation of MaxWSSF for (G, w).

• Reduction from Weighted Upper Edge Cover to MaxWSSF in complete graphs.

From an edge-weighted complete graph (K n , w) instance of Weighted Upper Edge Cover, we set (G, w ′ ) = (K n , w) as an instance of MaxWSSF. Since the graph is complete, the weights are non-negative and the goal is maximization, we can only consider star spanning forests without trivial stars, i.e. minimal edge covers. Hence, Weighted Upper Edge Cover is as a subproblem of MaxWSSF, even from an approximation point of view.

⊓ ⊔ From Theorem 4 and from known results on MaxWSSF given in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF][START_REF] Chakrabarty | On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP[END_REF], we deduce the following: Corollary 5. In complete graphs, Weighted Upper Edge Cover is 1/2approximable but not approximable within 10 11 + ε unless P=NP.

Bipartite graphs

Let us now focus on bipartite graphs. We prove that, even in bipartite graphs with binary weights, Weighted Upper Edge Cover is not O(n 1 2 -ε ) approximable unless P = NP. Also, we show the problem is APX-complete even for bipartite graphs with fixed maximum degree ∆. Theorem 6. Weighted Upper Edge Cover in bipartite graphs with binary weights and cycle inequality is as hard 3 as MaxIS in general graphs.

Proof. We propose an approximation preserving APX-reduction from Independent Set (denoted MaxIS) to Weighted Upper Edge Cover. Given a connected graph G = (V, E) with n vertices and m edges where V = {v 1 , . . . , v n }, instance of MaxIS, we build a connected bipartite edge-weighted graph H = (V H , E H , w) as follows (see also Figure 2):

-For each v i ∈ V , add a P 3 with edge set {v i v i,1 , v i,1 v i,2 }.
-For each edge e = v i v j ∈ E where i < j, add a middle vertex v ij on edge e.

w(e) := Let S * be a maximum independent set of G with size α(G). For each e ∈ E, let v e ∈ V \ S * be a vertex which covers e; it is possible since

1 if e = v i v i,1 for some v i ∈ V 0 otherwise.
V \ S * is a vertex cover of G. Moreover, {v e : e ∈ E} = V \ S * since S * is a maximum independent set of G. Clearly, S ′ = {v xy v e : e = xy ∈ E} ∪ {v i,1 v i,2 : v i ∈ V } ∪ {v i v i,1 : v i ∈ S * }
covers all vertices of H and since it doesn't include any P 3 , then S ′ is a minimal edge cover of H. By construction, w(S ′ ) = |S * | = α(G). Hence, we deduce:

uec(H, w) ≥ α(G) (3) 
Conversely, suppose S ′ is a minimal edge cover of H with weight w(S ′ ). Let us make some simple observations of every minimal edge cover of H. Clearly, {v i1 v i2 : v i ∈ V } is part of every feasible solution because v i2 for v i ∈ V are leaves of H. Moreover, for each e = v i v j ∈ E with i < j, at least one edge between v i v ij or v j v ij belongs to any minimal edge cover of H.

If v i v ij / ∈ S ′ , it implies that v j v j,1 /
∈ S ′ is not a part of the feasible solution because of minimality of S ′ . Hence, S = {v i : v i v i,1 ∈ S ′ } is an independent set of G with size |S| = w(S ′ ). We deduce:

α(G) ≥ uec(H, w) (4) 
Using inequalities ( 3) and ( 4) we deduce:

α(G) = uec(H, w) (5) 
In conclusion, for each minimal edge cover S ′ on H, there is an independent set S of G (computed in polynomial-time) such that |S| ≥ w(S ′ ).

From Theorem 6, we immediately deduce that Weighted Upper Edge Cover in bipartite graphs is not in APX unless P=NP. However, using several results [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF] concerning the APX-completeness of MaxIS in connected graph G with constant maximum degree ∆(G) ≥ 3 or NP-completeness of MaxIS in planar graphs, we obtain: Corollary 7. Weighted Upper Edge Cover in bipartite (resp., planar bipartite) graphs of maximum degree ∆ for any fixed ∆ ≥ 4 and binary weights is APX-complete (resp. NP-complete).

Proof. Let us revisit the construction given in Theorem 6. If the instance of MaxIS has maximum degree 3 (resp. is planar with maximum degree 3), then the constructed instance of Weighted Upper Edge Cover is a bipartite (resp., planar bipartite) graph of maximum degree 4.

⊓ ⊔

Using the strong inapproximation result for MaxIS given in [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF], and because the reduction given in previous theorem is indeed a gap-reduction, we also deduce:

Corollary 8. For any ε > 0, Weighted Upper Edge Cover in bipartite graphs of n vertices is not O(n 1 2 -ε ) approximable unless P = NP, even for binary weights and cycle inequality.

Proof. We use the reduction given in Theorem 6 and the inapproximability of MaxIS. MaxIS is known to behard to approximate [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF]. In particular, it is known that, for all ε > 0, it is NP-hard to distinguish for an n-vertex graph G between α(G) > n 1-ε and α(G) < n ε .

In the construction of H (see Figure 2), we know that |V H | = m + 3n and |E H | = 2(m + n) where m, n are numbers of the edges and vertices of G respectively. Hence, we deduce |V H | ≤ 2n 2 , and the claimed result follows.

⊓ ⊔

We also deduce one inapproximability result depending on the maximum degree.

Corollary 9. For any constant ε > 0, unless NP⊆ZPTIME(n poly log n ), it is hard to approximate Weighted Upper Edge Cover on bipartite graphs of maximum degree ∆ within a factor of Θ

1 ∆ 1-ε .
Proof. We will prove that it is difficult for a graph H (even bipartite with binary weights) of maximum degree ∆ to distinguish between the following two cases:

• (Yes-Instance)uec(H, w) ≥ |V (H)| ∆(G) 1+ε , • (No-Instance) uec(H, w) ≤ |V (H)| ∆(G) 2-ε .
Hence, the result consists of showing that the transformation given in Theorem 6 is a gap reduction. It is proved that: Let τ (n) be any function from integers to integers. Assuming that NP ZPTIME(n O(τ (n)) ), there is no polynomialtime algorithm that can solve the following problem [START_REF] Chalermsook | Graph products revisited: Tight approximation hardness of induced matching, poset dimension and more[END_REF] (Theorem 5.7, adapted from [START_REF] Trevisan | Non-approximability results for optimization problems on bounded degree instances[END_REF]). For any constant ε > 0 and any integer q, given a regular graph G of size q O(τ (n)) such that all vertices have degree ∆ = 2 O(τ (n)) , the goal is to distinguish between the following two cases:

• (Yes-Instance) α(G) ≥ |V (G)| ∆ ε , • (No-Instance) α(G) ≤ |V (G)| ∆ 1-ε .
Note that if G is a ∆-regular graph, then graph H resulting of Theorem 6 is a bipartite graph of maximum degree ∆+1 = Θ(∆). 

Split graphs

We will now focus on split graphs. Recall that a graph G = (L ∪ R, E) is a split graph if the subgraph induced by L and R is a maximum clique and an independent set respectively.

Theorem 10. Weighted Upper Edge Cover in split graphs with binary weights and cycle inequality is as hard 4 as MaxIS in general graphs.

Proof. The proof is based on a reduction from MaxIS. Given a graph G = (V, E) of n vertices and m edges where V = {v 1 , . . . , v n } and E = {e 1 , . . . , e m }, instance of MaxIS, we build a split weighted graph H = (V H , E H , w) as follows:

-Put two copies of vertices V in H, indicated by C = {c 1 , . . . , c n } and C ′ = {c ′ 1 , . . . , c ′ n } and make two cliques of size n such that all pairs of vertices in C and C ′ are connected to each other with edges of weight 0. -Connect all pairs c i c ′ j for 1 ≤ i, j ≤ n with edges of weight 1 to make a clique of size 2n.

-Add a set of m new vertices {p 1 , . . . , p m } corresponding to edges of E and connect p i to c j , c k with edges of weight 0 if e i = v j v k ∈ E. -Add a set of n new vertices {t 1 , . . . , t n } and connect each t i to c ′ i with edges of weight 0.

It is easy to check H is a weighted split graph with binary weights and cycle inequality which contains a clique of size 2n and an independent set of size n+m. We claim that G has an independent set of size k iff there exists a minimal edge cover of H with total weight k.

Let S be an independent set of G with size |S|. For each e i ∈ E, there is a vertex v ei / ∈ S which covers e i since S is an independent set of G. Consider the set {c ei : v ei / ∈ S} of vertices in C corresponding to vertices of V \ S, S ′ = {c ei p i :

e i ∈ E} ∪ {c ′ i t i : v i ∈ V } ∪ {c i c ′ i : v i ∈ S} is a minimal edge cover of H. By construction, w(S ′ ) = |S|. Hence, we deduce: uec(H, w) ≥ α(G) (6) 
Conversely, let be a minimal edge cover of H with weight w(S ′ ). Since for

1 ≤ i ≤ n, t i 's are leaves in H, {t i c ′ i : v i ∈ V } is a part of S ′ . Moreover, for each e k = v i v j ∈ E with i < j, at least one edge among c i p k or c j p k belongs to S ′ . W.l.o.g., assume that c i p k ∈ S ′ ; this means that c i c ′ j / ∈ S ′ for all 1 ≤ j ≤ n. Furthermore, for each c i ∈ C at most one edge c i c ′ j ∈ S ′ for 1 ≤ j ≤ n. Hence, S = {v i : c i c ′ j ∈ S ′ } is an independent set of G with size |S| = w(S ′ ). We deduce, α(G) ≥ uec(H, w) (7) 
Using inequalities ( 6) and ( 7) we deduce α(G) = uec(H, w). ⊓ ⊔ Corollary 11. Weighted Upper Edge Cover in split 3-subregular graphs is APX-complete and for any ε > 0, weighted upper edge cover in split graphs of n vertices is not O(n 1 2 -ε ) approximable unless P = NP.

k-trees

Recall that a k-tree is a graph which results from the following inductive definition: A K k+1 is a k-tree. If a graph G is a k-tree, then the addition of a new vertex which has exactly k neighbors in G such that these k + 1 vertices induce a K k+1 forms a k-tree. As a main result in this section we prove Weighted Upper Edge Cover is APX-complete in k-trees even for trivalued weights.

Negative approximation result

From Corollary 5, we already know that Weighted Upper Edge Cover is NP-hard to approximate within a ratio strictly better than 10 11 because the class of all k-trees contains the class of complete graphs. However, this lower bound needs a non-constant number of distinct values [START_REF] Chakrabarty | On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP[END_REF]. Here, we strengthen the result by proving the existence of lower bounds even for 3 distinct weights. On the other hand, Weighted Upper Edge Cover in weighted complete graphs and k-trees with binary weights is not strictly approximable within ratio better than 259 260 ≈ 0.9961 because it is proved in [24, Theorem 3.6] a lower bound of 259 260 +ε for MaxSSF. Here, we slightly improve this latter bound to 179 190 ≈ 0.9421 of Weighted Upper Edge Cover with trivalued weights for k-trees.

Theorem 12. Weighted Upper Edge Cover is APX-hard in the class of k-trees, even for trivalued weights.

Proof. We give an approximation preserving reduction from independent set problem. It is known that MaxIS is APX-complete in graphs of maximum degree 3 [START_REF] Alimonti | Some APX-completeness results for cubic graphs[END_REF].

Let G = (V, E) be an instance of MaxIS where G is a connected graph of maximum degree 3 of n ≥ 3 vertices and m edges. We build a weighted graph G ′ = (V ′ , E ′ , w) for Weighted Upper Edge Cover problem where

V ′ = V ′ c ∪ V ′ E and E ′ = E ′ c ∪ (∪ e∈E E ′ e )
as follows:

-V ′ c = {v ′ : v ∈ V } and V ′ E = ∪ e∈E V ′ e where V ′ e = {v e,1 , . . . , v e,(n-1) }. -The subgraph G ′ [V ′ c ] = (V ′ c , E ′ c ) induced by V ′ c is a K n .
-For each e = uv ∈ E, let us describe the edge set E ′ e : • for every i = 1, . . . , n -1, vertex v e,i is linked to u ′ and v ′ .

• vertex v e,1 is linked to the subset S e,1 = V ′ c \ {u ′ , v ′ }. • for every i = 2, . . . , n -1, vertex v e,i is linked to {v e,1 , . . . , v e,i-1 } and an arbitrary subset S e,i ⊂ S e,(i-1) of size ni -1.

The weight w(xy) for xy ∈ E ′ is given by: 

w(xy) =      n -1 xy ∈ E ′ c , 1 xy ∈ E ′ e with e = uv ∈ E and x ∈ {u ′ , v ′ }, y ∈ V ′ e , 0 otherwise. Note that |V ′ | = n + m(n -1) and clearly G ′ can be constructed from G in polynomial time. G ′ is a n-tree because initially all V ′ c ∪ {v e,
G ′ = (V ′ , E ′ .w) (right side) build from a P3 G = (V = {a, b, c}, E = {1, 2}) (left side).
containing v e,i+1 in the subgraph induced by V ′ c ∪ {v e,j : e ∈ E, j ≤ i}. Figure 4 proposes an illustration of this construction for a P 3 .

We are going to prove that any ρ-approximation for Weighted Upper Edge Cover in k-Trees can be polynomially converted into a ( 112 ρ-9 2 )-approximation for MaxIS in graphs of maximum degree 3.

First, consider an arbitrary independent set S of G. From S we build a minimal edge cover F of G ′ of size at least (n-1)(|S|+ m). For each e = uv ∈ E, there is a vertex f (e) ∈ ((V \ S) ∩ {u, v}) because S is an independent set; choose arbitrarily such vertex r ∈ V \ S. We set F = {f (e) ′ v f (e),i : e ∈ E, i ≤ n -1} ∪ {r ′ v ′ : v ∈ (V \ X)} where X = {f (e) : e ∈ E} ∪ {r}. We deduce uec(G ′ , w ′ ) ≥ w(F ) = (n -1)m + (n -1)|S| and considering S as a maximum independent set induces:

uec(G ′ , w ′ ) ≥ (n -1)(m + α(G)) (8) 
Conversely, assume that F is a minimal edge cover of G ′ . We will polynomially modify F into another minimal edge cover F ′ of better weight.

Property 13. We can assume that F the following facts:

(a) for each e = uv ∈ E at least one of u ′ or v ′ is center, (b) for each e = uv ∈ E, any vertex of V ′ e is a leaf and its center is u ′ or v ′ .

Proof. For (a) Otherwise, we could modify F into F ′ by repeating the following process for each edge uv ∈ E where u ′ and v ′ are leaves in F to satisfy (a): if none of centers of u and v are in V ′ e , then t = u else t is one of u, v which its center is in V ′ e . Let S = {ab ∈ F : a ∈ V ′ e ∪ {t}} and S ′ = {tx : x ∈ V ′ e }. Now F ′ = (F \ S) ∪ S ′ remains a minimal edge cover of G ′ that w(F ′ ) ≥ w(F ) and t is a center in F ′ .

For (b) Let e = uv ∈ E and w.l.o.g u is a center in F . Let S = {ab : a ∈ V ′ e } and S ′ = {ux : x ∈ V ′ e }. Now F ′ = (F \ S ′ ) ∪ S is a spanning star forest with possibly trivial stars of G ′ with w(F ′ ) ≥ w(F ) which satisfies (b). Notice after these stages, we may create of some isolated vertices included in V ′ c . However, connecting every isolated vertices in V ′ c to an arbitrary center in V ′ c induces a minimal edge cover with larger weight.

⊓ ⊔

Let I ′ ⊆ V ′ c be the leaves of the stars of F ′ . By considering (a) in Property 13, I = {v : v ′ ∈ I ′ } is an independent set of G. Since for each minimal edge cover F , there exist a minimal edge cover F ′ such that:

w(F ) ≤ w(F ′ ) = (m + |I|)(n -1) ≤ (m + α(G))(n -1) (9) 
Hence by considering inequality ( 8) uec(G ′ , w ′ ) = (m + α(G))(n -1).

Let F be a ρ-approximation for Weighted Upper Edge Cover for (G ′ , w ′ ) and I be an independent set of G which made by F ′ then:

ρ ≤ w(F ) uec(G ′ , w ′ ) ≤ w(F ′ ) uec(G ′ , w ′ ) = (n -1)(m + |I|) (n -1)(m + α(G)) = m + |I| m + α(G) (10) 
since G is connected of maximum degree 3, we know n ≤ 3α(G) (using Brook's Theorem and n ≥ 5), and then m ≤ 9 2 α(G). Using this: Proof. The proof uses an approximation preserving reduction from MaxWSSF which polynomially transform any ρ-approximation into a k-1 k+1 ρ-approximation for weighted upper edge cover. Then, using the 0.5-approximation of MaxWSSF given in [START_REF] Nguyen | Approximating the spanning star forest problem and its application to genomic sequence alignment[END_REF], we will get the expected result.

⇒ 1 -ρ ≥ α(G) -|I| m + α(G) ≥ α(G) -|I| 11/2α(G) ⇒ 11 2 ρ - 9 2 ≤ |I| α(G) or equivalently |I| α(G) ≥ 11 2 • w(F ) uec(G ′ ,w ′ ) - 9 
Consider an edge-weighted k-tree (G, w) where G = (V, E) and assume G is not complete. Let S = {S 1 , . . . , S r } ⊆ E be a nice spanning star forest of (G, w) (see Property 2) which is a ρ-approximation of MaxWSSF, that is:

w(S) ≥ ρ • opt MaxW SSF (G, w) (11) 
Now, we show how to modify S into a minimal edge cover S without loosing too much.

Before, we need to introduce some definitions and notations. A vertex-coloring C = (C 1 , . . . , C q ) of a graph G is a partition of vertices into independent sets (called colors). The chromatic number of G, denoted χ(G), is the minimum number of colors used in a vertex-coloring. If G is a k-tree, it is well known that χ(G) = k + 1 and such an optimal vertex-coloring can be done in linear time; hence, consider any optimal vertex-coloring C = {C 1 , . . . , C k+1 } of G. Moreover, in k-trees we know that each vertex u ∈ C i of color i is adjacent to some vertex v ∈ C j of color j for every j = i. We color the edges of E(S) incident to every isolated vertices of Triv using the k+1 colors where the color of such edge is given by the same color of its leaf. Formally, let E ′ = {uv ∈ E : v ∈ Triv} ⊆ E(S) be the subset of edges incident to isolated vertices Triv and let E i = {cv = e v (S) ∈ E(S) : v ∈ C i \ Triv} for every i ≤ k + 1 where c is some center of S. The key property is the following: Property 16. for any i < i ′ , by deleting some edges of E i ∪ E i ′ and by adding edges from E ′ we obtain a minimal edge cover.

Proof. It is valid because each vertex of color i is adjacent to some vertices of every other colors. Formally, fix two indices 1 ≤ i < i ′ ≤ k + 1. Iteratively apply the following procedure: consider v ∈ Triv; there is u ∈ V \ Triv such that u ∈ C i ∪ C i ′ (say C i ) and vu ∈ E. By hypothesis, u is a leaf of some ℓ-star S r of S. If at this stage ℓ ≥ 2, then add edge uv ∈ E ′ and delete edge uc ∈ E i of color i; otherwise ℓ = 1 and we just add edge uv ∈ E ′ . At the end, we get a minimal edge cover. ⊓ ⊔

Now, consider i 1 , i 2 with i 1 < i 2 such that w(E i1 ∪ E i2 ) = min{w(E i ∪ E i ′ ) : 1 ≤ i < i ′ ≤ k + 1}.
Using Property 16 we can polynomially find a minimal edge cover S of (G, w). By construction, k+1 i=1 w(E i ) ≤ w(E(S)) and then:

w(E i1 ∪ E i2 ) ≤ 2 k + 1 w(E(S)) (12) 
Hence using inequalities [START_REF] Chang | The weighted independent domination problem is NP-complete for chordal graphs[END_REF] and ( 12), we get:

w(S ′ ) ≥ w(E(S))-w(E i1 ∪E i2 ) ≥ k -1 k + 1 w(E(S)) ≥ k -1 k + 1 ρ•opt MaxW SSF (G, w)
Finally, since opt MaxW SSF (G, w) ≥ uec(G, w) we get the expected result. ⊓ ⊔

6 Approximation for bounded degree graphs

In this section, we propose some positive approximation results for graphs of bounded degree in complement to those given in Corollary 9.

Theorem 17. In general graphs with maximum degree ∆, there is an approximation preserving reduction from Weighted Upper Edge Cover to Max-ExtWSSF with expansion c(ρ) = 1 ∆ • ρ.

Proof. Consider an edge-weighted graph (G, w) of maximum degree ∆(G) bounded by ∆ as an instance of Weighted Upper Edge Cover. We make an instance (G, w, U ) of MaxExtWSSF by putting all pendant edges of G in the forced edge set U . Property 2 also works in this context since U is the set of pendant edges. In particular, we deduce opt ExtW SSF (G, w, U ) ≥ uec(G, w) because U belongs to any minimal edge cover. Let S = {S 1 , . . . , S r } ⊆ E be a nice spanning star forest of (G, w) containing U satisfying:

w(S) ≥ ρ • opt ExtW SSF (G, w, U ) ≥ ρ • uec(G, w) (13) 
For each t ∈ Triv, we choose two edges incident to it with maximum weights e t 1 = tx t and e t 2 = ty t in E \ E(S) (since by construction d G (v) ≥ 2), i.e., w(e t 1 ) ≥ w(e t 2 ) ≥ w(tv) for all possible v; let W = t∈Triv (w(e t 1 ) + w(e t 2 )) be this global quantity. Also, recall that V c and V l are the set of vertices labeled by centers and leaves respectively according to S. We build a new vertex weighted graph G(S) = G ′ = (V ′ , E ′ , w ′ ) with maximum degree ∆(G ′ ) ≤ ∆(G) -1 as follows:

• V ′ = V l .
• uv ∈ E ′ iff there exists t ∈ Triv with tx t = tu and ty t = tv.

• For v ∈ V ′ , we set w ′ (v) = w (e v (S)) 5 .

Clearly, G ′ is a graph with bounded degree ∆-1. We mainly prove that from any independent set I ⊆ V ′ we can polynomially build an upper edge cover S I of G satisfying: w(S I ) ≥ w ′ (I) + W -t∈Triv w(e t 1 ) ≥ w ′ (I) [START_REF] Corneil | A dynamic programming approach to the dominating set problem on k-trees[END_REF] Let I ⊆ V ′ be maximal independent set of G ′ . This implies V ′ \ I is a vertex cover of G ′ . By construction of G ′ , for every t ∈ Triv, at least one vertex x t or y t is not in I (say x t in the worst case). Recall e xt (S) is the edge of spanning star forest incident to x t (since x t ∈ V l ). We will iteratively apply the following procedure for all t ∈ Triv to build S I : if the current ℓ-star S r of S containing e xt (S) satisfies ℓ ≥ 2 (it is true initially by hypothesis), then delete edge e xt (S) from S, add edge e t 1 and update spanning star forest S. Otherwise, ℓ = 1 and only add e t 1 . At the end of the procedure, we get a minimal edge cover S I of G satisfying inequality [START_REF] Corneil | A dynamic programming approach to the dominating set problem on k-trees[END_REF]. Now, apply as solution of I the greedy algorithm of MaxIS for G ′ taking, at each step, one vertex with maximum weight w ′ and by removing all the remaining neighbors of it. It is well known that we have:

w ′ (I) ≥ w ′ (V ′ ) ∆(G ′ ) + 1 ≥ w(S) ∆(G) (15) 
Hence, using inequalities ( 13), ( 14) and ( 15), we get the expected result.

Using the 0.5-approximation of MaxExtWSSF given in [START_REF] Khoshkhah | Extended spanning star forest problems[END_REF], we deduce:

Corollary 18. Weighted Upper Edge Cover is 1 2∆ -approximable in graphs with bounded degree ∆.

Conclusion

In this article we gave positive and negative approximability aspects of Weighted Upper Edge Cover for special classes of graphs. We considered different types of weight function w for edges of input graph. Hardness of approximation on complete graphs when w satisfies cycle inequality remains open. Also for graphs with bounded degree ∆, we have shown that our problem is 1 2∆ -approximable while we proved it can not be better than Θ 1 ∆ . Finding a tighter approximation algorithm depending on ∆ or on the average degree can be interesting.
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 1 Fig. 1. (a) : The weighted graph G = (V, E, w). (b) : Optimal solution of MaxWSSF(G, w). (c) : Optimal solution of Weighted Upper Edge Cover for G with value uec(G, w) = 2.
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 3 An edge weighted graph (G, w) where G = (V, E) satisfies the cycle inequality, if for every cycle C, we have: ∀e ∈ C, 2w(e) ≤ w(C) = e ′ ∈C w(e ′ )
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 2 Fig. 2. Construction of H from G. The weights are indicated on edges.

  Thus, since α(G) = uec(H, w) and |V (H)| = 3|V (G)| + |E(G)| = Θ(∆|V (G)|), we get the expected result. ⊓ ⊔
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 33 Fig. 3. Construction of split graph H = (VH, EH) from a P3. The weights of thick edges in H are 1 and for the others are 0.
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 14 Fig. 4. The constructed weighted graph G ′ = (V ′ , E ′ .w) (right side) build from a P3 G = (V = {a, b, c}, E = {1, 2}) (left side).
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The reduction is actually a Strict-reduction and it is a particular A-reduction which preserves constant approximation.

The reduction is actually a Strict-reduction and it is a particular A-reduction which preserves constant approximation.

We recall ev(S) is the edge of S linking leaf v to its center.
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