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HALF-SPACE THEOREMS FOR THE ALLEN-CAHN EQUATION AND
RELATED PROBLEMS

FRANÇOIS HAMEL, YONG LIU, PIERALBERTO SICBALDI, KELEI WANG,
AND JUNCHENG WEI

Abstract. In this paper we obtain rigidity results for a bounded non-constant entire
solution u of the Allen-Cahn equation in Rn, whose level set {u = 0} is contained in a half-
space. If n ≤ 3 we prove that the solution must be one-dimensional. In dimension n ≥ 4,
we prove that either the solution is one-dimensional or stays below a one-dimensional
solution and converges to it after suitable translations. Some generalizations to one phase
free boundary problems are also obtained.

1. Introduction and main results

We are interested in rigidity results for bounded entire solutions of the Allen-Cahn
equation

(1) −∆u = u− u3, x = (x1, · · · , xn) ∈ Rn.

In the simplest case n = 1, equation (1) reduces to an ODE and has a heteroclinic solution

H(x) = tanh

(
x√
2

)
.

Phase plane analysis tells us that up to a translation, H is the unique monotone increasing
solution in R. The one-dimensional solution H actually plays an important role in the
theory of Allen-Cahn equation in general dimensions. Indeed, De Giorgi [10] conjectured
that for n ≤ 8, if a bounded solution u to (1) is strictly monotone in one direction, say xn,
then it must be one-dimensional, which then means that u is identically equal to H(x·e+a)
for some unit vector e, with en > 0, and some real number a. This conjecture has been
proved to be true for n = 2 (Berestycki, Caffarelli and Nirenberg [4], Ghoussoub and
Gui [18]), n = 3 (Ambrosio and Cabré [3]), and for 4 ≤ n ≤ 8 (Savin [26]) under the
additional limiting condition

lim
xn→±∞

u(x′, xn) = ±1

pointwise in x′ = (x1, · · · , xn−1) ∈ Rn−1. This condition implies that the level sets {x ∈
Rn : u(x) = µ}, for every µ ∈ (−1, 1), of the function u are entire graphs with respect to
the first n− 1 variables. On the other hand, for n ≥ 9, Del Pino, Kowalczyk and the fifth
author [13] constructed monotone solutions which are not one-dimensional, showing that
the condition n ≤ 8 in the De Giorgi conjecture cannot be relaxed.

The De Giorgi conjecture can be regarded as a rigidity result for the Allen-Cahn equa-
tion. The second rigidity result we would like to mention here is about the classification of
the solutions which are global minimizers of the associated energy functional. Savin [26]
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proved that global minimizers are one-dimensional up to dimensions n ≤ 7. The second,
fourth and fifth authors constructed in [21] counterexamples in dimension 8, i.e. global
minimizers which are not one-dimensional. For related rigidity results for the solutions to
the Allen-Cahn equation, we refer to [2, 7, 15, 16] and the references therein.

In this paper, we are interested in rigidity results for the Allen-Cahn equation when the
zero level set

Γ0 := {u = 0} =
{
x ∈ Rn : u(x) = 0

}
of the solution is contained in a half-space, say {xn > 0} := {x ∈ Rn : xn > 0} up
to translation and rotation. However, we point out that we make no assumption on the
monotonicity of u in a direction nor on its stability or minimizing properties.

Our first result is the following half-space rigidity result:

Theorem 1. (Weak half-space theorem) Let n ≤ 3 and u be a bounded non-constant
solution of (1). Suppose that the zero level set {u = 0} is contained in {xn > 0}. Then u
is one-dimensional. More precisely, there exists a ∈ R such that either u(x) = H(−xn+a)
for all x ∈ Rn, or u(x) = H(xn + a) for all x ∈ Rn.

Note that, in any dimension n ≥ 1, if u is a bounded solution of (1), then necessarily

−1 ≤ u ≤ 1 in Rn

from the maximum principle. Furthermore, if {u = 0} is empty, then by constructing
suitable comparison functions as in the first part of the proof of Theorem 3 (see Section 2
below), we can show that u ≡ ±1 in Rn. Therefore, if u is bounded and non-constant,
then {u = 0} 6= ∅ and −1 < u < 1 in Rn from the strong maximum principle. Moreover,
if u ≥ 0 (resp. u ≤ 0) in Rn and {u = 0} 6= ∅, then u ≡ 0 in Rn from the strong maximum
principle. Hence we can assume without loss of generality that the three sets {u = 0},
{u > 0} and {u < 0} are not empty.

We point out that here it is not assumed that the nodal set {u = 0} is a graph, that is,
the sets {u > 0} or {u < 0} are not assumed to be epigraphs. For rigidity results in the
epigraph case we refer to [14, 17] and the references therein.

As an application of Theorem 1, using the classification result of stable solutions of the
Allen-Cahn equation in the plane, we get the following strong half-space theorem:

Corollary 2. (Strong half-space theorem) Suppose n = 2. Let u1 < u2 be two bounded
non-constant solutions of (1) in R2. Then u1 and u2 are one-dimensional, namely there
exist a unit vector e and some real numbers a < b such that u1(x) = H(x · e + a) and
u2(x) = H(x · e+ b) for all x ∈ R2.

We will also generalize Theorem 1 to a free boundary problem. We refer to Section 4
for the precise statement and its proof.

Our results are inspired by analogous results in the minimal surface theory. A half-space
theorem for minimal surfaces in R3 was proved by Hoffman and Meeks [20]. It states that
connected, proper, minimal surfaces in R3 are necessarily planes. A version of a half-space
theorem for minimal surfaces with bounded Gaussian curvature is proved in [27]. The half-
space theorem plays an important role in the understanding of the structure of minimal
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spaces, and there is a vast literature on this subject. It is used in the proof of the local
removal singularity theorem [23], it is also used to study the properness of minimal surfaces
(see, for instance, [24]). In [9], Colding and Minicozzi proved that the plane is the only
complete embedded minimal disk in R3, by establishing a chord-arc bound and applying
Hoffman-Meeks half-space theorem.

We remark that the half-space theorem is not true for minimal hypersurfaces in Rn with
n ≥ 4. For example the higher dimensional catenoid provides a counterexample. However,
for the Allen-Cahn equation, this question is still open in higher dimensions. In view of
the construction of solutions concentrated on higher dimensional catenoid [1], we turn to
believe that the half-space theorem of the Allen-Cahn equation should be true also for all
n ≥ 4. Intuitively, for solutions of the Allen-Cahn equation there are strong interations
between different ends, while this is not the case for minimal surfaces.

The proof of the half-space theorem for minimal surfaces uses sweeping principle. It
appears that this idea does not work for the Allen-Cahn case, although we can prove partial
results along this direction. Our main result for solutions of the Allen-Cahn equation in
arbitrary dimension with zero level set contained in a half-space is the following:

Theorem 3. Let n ≥ 1 and u be a bounded non-constant solution of the Allen-Cahn
equation (1) in Rn. If u < 0 in the half-space {xn < 0}, then there exists a ∈ R such that

u(x) ≤ H(xn + a)

for all x ∈ Rn, and either

(1) u(x) = H(xn + a) for all x ∈ Rn, or
(2) u(x) < H(xn + a) for all x ∈ Rn and there exists a sequence (yk)k∈N in Rn−1×{0}

such that |yk| → +∞ as k → +∞, and the functions u(·+ yk) converge in C2
loc(Rn)

to the function x 7→ H(xn + a) as k → +∞.

In Theorem 3 and throughout the paper, | | denotes the Euclidean norm in Rn. We also
use the following notations: BR(x) =

{
y ∈ Rn : |y − x| < R

}
and BR = BR(0) for R > 0

and x ∈ Rn, and we denote

dist(x,E) = inf
y∈E
|x− y|

for x ∈ Rn and E ⊂ Rn.
We complete the introduction by listing some corollaries following from Theorem 3.

Corollary 4. Let n ≥ 1 and u be a bounded non-constant solution of the Allen-Cahn
equation (1) in Rn. Then there does not exist a non-degenerate cone containing {u = 0}.

Corollary 5. Let n ≥ 1 and u be a bounded non-constant solution of the Allen-Cahn
equation (1) in Rn. If {u = 0} is contained in a slab {x ∈ Rn : |x · e| < A} for some
unit vector e and some real number A > 0, then there exists a ∈ R such that either
u(x) = H(−x · e+ a) or u(x) = H(x · e+ a), for all x ∈ Rn.

Corollary 5 is similar to Theorem 2.1 by Farina [14]. Actually, the same conclusion was
obtained in [14] under the additional assumption that both sets {u > 0} and {u < 0} are
unbounded with respect to the direction e. We actually show in the proof of Corollary 5 at
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the end of Section 2 that this last property is necessarily satisfied under the assumptions
of Corollary 5, thanks to Theorem 3.

We remark also that Corollary 5 points out the difference between minimal surfaces
and level sets of Allen-Cahn solutions from the point of view of half-space theorems: for
n ≥ 4 the minimal catenoid is contained in a slab, while bounded entire solutions of the
Allen-Cahn equation cannot have the zero level set contained in a slab. In particular, the
zero level set of the solutions obtained in [1] is not contained in a slab, although such level
set approaches the minimal catenoid in a compact region.

Corollary 6. Let n ≥ 1 and u be a bounded non-constant solution of the Allen-Cahn
equation (1) in Rn. If there exists a closed half-space E such that {u = 0} ⊂ E and
{u = 0} ∩ ∂E 6= ∅, then there is a ∈ R such that u(x) = H(x · e+ a) for all x ∈ Rn, where
e is a unit vector orthogonal to ∂E.

It should be interesting to link such kind of half-space results to the De Giorgi conjecture.
In this sense, an open question is to understand if Theorem 1 can be true in all dimensions,
at least with the hypothesis of the monotonicity of the solution in one direction. Note, in
particular, that the zero level sets of the xn-monotone and non-planar solutions of (1) in
Rn with n ≥ 9, constructed by Del Pino, Kowalczyk and the fifth author in [13], are not
included in any half-space.

Remark 7. Theorem 1 and Corollary 4 and 5 do not hold good if the zero level set
{u = 0} is replaced by another level set {u = µ} with µ 6= 0. Similarly, Theorem 3 does
not hold good either if one assumes that u < µ in {xn < 0} for some µ > 0. Indeed,
equation (1) admits solutions uL which vanish on (LZ)n with L > π

√
n, are 2L-periodic

with respect to each variable xi, which satisfy maxRn |uL| → 0 as L
>→π
√
n, and which are

not one-dimensional!

Outline of the paper. Section 2 is devoted to the proof of Theorem 3 and its corollaries.
The proof of Theorem 3 is itself used in the proof of Theorem 1 and Corollary 2 done
in Section 3. Lastly, Section 4 is concerned with a half-space theorem for a related free
boundary problem.

2. Half-space theorems in general dimension: proof of Theorem 3 and its
corollaries

The half-space theorem of minimal hypersurfaces in Rn is not true when n ≥ 4, because
the higher dimensional catenoids lie in a half-space. For the Allen-Cahn equation (1), we
still do not know whether there is version of the half-space theorem in dimension n ≥ 4.
We have obtained partial classification results in this direction, based on the maximum
principle.

We start this section with a general property holding in any dimension n ≥ 1. This can
essentially be found in [5, Lemmas 3.2 and 3.3] and [14, Lemma 2.3].

Proposition 8. Let n ≥ 1 and u be a bounded non-constant solution of (1) in any dimen-
sion n ≥ 1. Then {u = 0} 6= ∅ and |u(x)| → 1 as dist(x, {u = 0})→ +∞.
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Proof. The proof is standard, we briefly sketch it for the sake of completeness. We recall
from the introduction that u necessarily satisfies −1 < u < 1 in Rn and {u = 0} 6= ∅.
Consider any R > 0 and x ∈ Rn such that

dist(x, {u = 0}) > R

(hence, B(x,R) ∩ {u = 0} = ∅).
Let λR be the principal eigenvalue of −∆ in the ball BR with Dirichlet boundary con-

dition, that is, there is a function ϕR ∈ C2(BR) such that −∆ϕR = λRϕR in BR, ϕR = 0
on ∂BR, and ϕR > 0 in BR. From the classical radial symmetry result [19], the function ϕR
is radially symmetric and decreasing with respect to the distance from the origin. There-
fore, up to multiplication by a positive constant, one can assume without loss of generality
that ϕR(0) = 1 = maxBR ϕR. Notice also that λR = λ1/R

2. Since the conclusion is con-
cerned with the limit as dist(x, {u = 0})→ +∞, one can assume without loss of generality
that R > 0 is large enough so that 0 < λR < 1.

In the closed ball B(x,R), the continuous function u does not vanish. Up to changing u

into −u, let us assume without loss of generality that u > 0 in B(x,R). There exists

then ε0 such that εϕR(· − x) < u in B(x,R), for all ε ∈ [0, ε0]. Furthermore, for every
ε ∈ [0,

√
1− λR], the function εϕR(· − x) satisfies

∆(εϕR(· − x)) + εϕR(· − x)− (εϕR(· − x))3 = εϕR(· − x)× (1− λR − (εϕR(· − x))2) ≥ 0

in B(x,R), since 0 ≤ ϕR ≤ 1 in BR. As a consequence, for any such ε, the function

εϕR(· − x) is a subsolution of (1) in the closed ball B(x,R) and it vanishes on ∂B(x,R),

while u > 0 in B(x,R). It follows from the strong maximum principle that εϕR(· −x) < u

in B(x,R) for every ε ∈ [0,
√

1− λR]. In particular, u(x) >
√

1− λR since ϕR(0) = 1.
Since λR = λ1/R

2 → 0 as R→ +∞ and −1 < u < 1 in Rn, the conclusion follows. �

Remark 9. Proposition 8 implies that supRn |u| = 1 if supx∈Rn dist(x, {u = 0}) = +∞.
However, remember that the property supx∈Rn dist(x, {u = 0}) = +∞ is not always sat-
isfied, since the Allen-Cahn equation admits non-trivial periodic solutions u oscillating
around the value 0, and for which supRn |u| < 1.

We are now in position to prove our Theorem 3.

Proof of Theorem 3. Throughout the proof, u is a bounded non-constant solution of (1)
such that

u < 0 in Rn
− = {xn < 0}.

As recalled in the introduction, we know that −1 < u < 1 in Rn.
By Proposition 8, we have that

(2) u(x1, · · · , xn)→ −1 as xn → −∞ uniformly in (x1, · · · , xn−1) ∈ Rn−1.

since the function u is negative in Rn
−.

Denote U(x) = H(xn) = tanh(xn/
√

2) and

Uω(x) = U(x1, · · · , xn−1, xn + ω) = H(xn + ω) = tanh

(
xn + ω√

2

)
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for x ∈ Rn and ω ∈ R. We shall now show that u ≤ Uω in Rn for all ω large enough. To
do so, let A > 0 be such that

(3) u ≤ − 1√
3

in Rn−1×(−∞,−A] and U ≥ 1√
3

in Rn−1×[A,+∞).

We claim that

u ≤ Uω in Rn for all ω ≥ 2A.

To do so, pick any ω ∈ [2A,+∞). We shall prove that u ≤ Uω in Rn−1 × (−∞,−A].
Assume by way of contradiction that M := supRn−1×(−∞,−A](u− Uω) > 0. Then there is a

sequence (zk)k∈N = (z′k, zk,n)k∈N in Rn−1 × (−∞,−A] such that

u(zk)− Uω(zk)→M > 0 as k → +∞.

By (2), the sequence (zk,n)k∈N is then bounded. Furthermore, by uniform continuity of U
(or of u), property (3) and the assumption ω ≥ 2A imply that

lim sup
k→+∞

zk,n < −A.

Therefore, there is ζ ∈ (−∞,−A) such that, up to extraction of a subsequence, zk,n → ζ
as k → +∞. Up to extraction of another subsequence, the functions x 7→ u(x′ + z′k, xn)
converge in C2

loc(Rn) as k → +∞ to a solution w∞ of (1) such that w∞ ≤ −1/
√

3 and
w∞ − Uω ≤ M in Rn−1 × (−∞,−A], while w∞(0, ζ) − Uω(0, ζ) = M . At the (interior)
point (0, ζ) ∈ Rn−1 × (−∞,−A), there holds

(4) 0 ≥ ∆(w∞ − Uω)(0, ζ) = −w∞(0, ζ) + w∞(0, ζ)3 + Uω(0, ζ)− (Uω(0, ζ))3.

But −1 < Uω(0, ζ) < Uω(0, ζ) + M = w∞(0, ζ) ≤ −1/
√

3 and the function s 7→ s − s3 is
decreasing in [−1,−1/

√
3]. Hence the right-hand side of (4) is positive, a contradiction.

Therefore,

sup
Rn−1×(−∞,−A]

(u− Uω) ≤ 0,

that is, u ≤ Uω in Rn−1 × (−∞,−A]. Similarly, since Uω ≥ 1/
√

3 in Rn−1 × [−A,+∞)
and Uω ≥ u on Rn−1×{−A}, while the function s 7→ s− s3 is decreasing in [1/

√
3, 1], one

can show that u ≤ Uω in Rn−1 × [−A,+∞). Finally,

u ≤ Uω in Rn for all ω ≥ 2A.

Define now

a = inf
{
ω ∈ R : u ≤ Uω in Rn

}
.

The previous paragraph yields a ≤ 2A. On the other hand, since Uω → −1 as ω → −∞
(at least) pointwise in Rn, while u > −1 in Rn, one infers that a ∈ R. By continuity, there
holds u ≤ Ua in Rn, that is,

(5) u(x) ≤ H(xn + a) for all x ∈ Rn.

This statement corresponds to the first part of the conclusion of Theorem 3.
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Let us now show the second part of the conclusion. First of all, if there is a point x∗ ∈ Rn

such that u(x∗) = Ua(x∗) = H(x∗n + a), then the strong maximum principle implies that
u ≡ Ua in Rn, that is,

u(x) = H(xn + a) for all x ∈ Rn.

Let us then assume in the sequel that u < Ua in Rn, that is,

(6) u(x) < Ua(x) = H(xn + a) for all x ∈ Rn.

Let B > 0 be such that Ua ≥ 2/3 (> 1/
√

3) in Rn−1 × [B,+∞). We claim that

(7) sup
Rn−1×[−A,B]

(
u− Ua) = 0.

Indeed, otherwise, one would have supRn−1×[−A,B](u− Ua) < 0 and, by uniform continuity

of U , there would exist ω ∈ (−∞, a) such that u ≤ Uω in Rn−1 × [−A,B] and Uω ≥ 1/
√

3
in Rn−1× [B,+∞). With the same arguments as in the previous paragraph, one gets that
u ≤ Uω in Rn−1 × (−∞,−A] and u ≤ Uω in Rn−1 × [B,+∞). As a consequence, u ≤ Uω

in Rn, contradicting the minimality of a. Therefore, (7) holds.
From (7), one infers the existence of a sequence (ξk)k∈N = (ξ′k, ξk,n)k∈N in Rn−1× [−A,B]

such that

(8) u(ξk)− Ua(ξk)→ 0 as k → +∞.
Up to extraction of a subsequence, one can assume that ξk,n → ξ∞,n as k → +∞, for
some ξ∞,n ∈ [−A,B]. Notice that |ξ′k| → +∞ as k → +∞, since otherwise there would
exist a point ξ ∈ Rn−1 × [−A,B] such that u(ξ) = Ua(ξ), contradicting (6). Denote

yk = (ξ′k, 0) ∈ Rn−1 × {0} and uk(x) = u(x+ yk) for k ∈ N and x ∈ Rn.

To complete the proof of Theorem 3, we just need to show that

uk(x)→ H(xn + a)

in C2
loc(Rn) as k → +∞. Up to extraction of a subsequence, the functions uk converge

in C2
loc(Rn) to a solution u∞ : Rn → [−1, 1] of (1) such that u∞(x) ≤ H(xn + a) in Rn

from (5) and the definition of yk. Furthermore, u∞(0, ξ∞,n) = Ua(0, ξ∞,n) = H(ξ∞,n + a)
by (8). It then follows from the strong maximum principle that u∞(x) = H(xn + a)
for all x ∈ Rn. Furthermore, the limit of the functions uk being independent of the
subsequence, one concludes that the whole sequence (uk)k∈N converges to the function
x 7→ H(xn + a) in C2

loc(Rn) as k → +∞. The proof of Theorem 3 is thereby complete. �

Remark 10. In Theorem 3, one has −1 < u(x) < H(xn + a) = tanh((xn + a)/
√

2) for
all x ∈ Rn. Modica’s inequality |∇u|2 ≤ (1− u2)2/2 (see [25]) then yields

(9) |∇u(x)| ≤ 2
√

2 e
√

2 (xn+a) for all x ∈ Rn.

By changing u into −u in Theorem 3, the following result immediately follows.

Theorem 11. Let n ≥ 1 and u be a bounded non-constant solution of the Allen-Cahn
equation (1) in Rn. If u > 0 in the half-space {xn < 0}, then there exists a ∈ R such that

u(x) ≥ H(−xn + a)
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for all x ∈ Rn, and either u(x) = H(−xn + a) for all x ∈ Rn, or u(x) > H(−xn + a) for
all x ∈ Rn and there exists a sequence (yk)k∈N in Rn−1×{0} such that |yk| → +∞ as k →
+∞, and the functions u(· + yk) converge in C2

loc(Rn) to the function x 7→ H(−xn + a)
as k → +∞.

Let us now turn to the proof of Corollaries 4, 5 and 6, which follow from Theorems 3
and 11.

Proof of Corollary 4. Assume by way of contradiction that u is a bounded non-constant
solution of (1) with {u = 0} contained in a non-degenerate cone. Then, up to changing u
into −u, and up to translation and rotation of the variables, it follows that

(10) u < 0 in
{

(x′, xn) ∈ Rn−1 × R : xn < β |x′|
}
,

for some β > 0. Theorem 3, together with (10), then yields the existence of a real number a
such that u(x) = H(xn + a) for all x ∈ Rn, which leads to a contradiction. �

Proof of Corollary 5. Up to changing u into −u and up to translation and rotation of the
variables, one can also assume without loss of generality that e = (0, · · · , 0, 1), that u < 0
in {xn ≤ 0} and that

{u = 0} ⊂ {0 < xn < 2A}.
It then follows from Theorem 3 that there exists b ∈ R such that

u(x) ≤ H(xn + b)

for all x ∈ Rn and either u(x) = H(xn + b) for all x ∈ Rn, or u(· + yk) → H(xn + b)
in C2

loc(Rn) as k → +∞, for some sequence (yk)k∈N in Rn−1 × {0}. In both cases, one
has supRn−1×(−∞,2A] u ≤ H(2A + b) < 1 and supRn u = supRH = 1. By continuity, one
infers that u > 0 in {xn ≥ 2A}. From Theorem 3 applied to the solution

x = (x′, xn) 7→ −u(x′,−xn + 2A),

there exists then c ∈ R such that −u(x′,−xn + 2A) ≤ H(xn + c) for all x ∈ Rn, hence

u(x) ≥ H(xn − 2A− c)
for all x ∈ Rn. Finally H(xn − 2A − c) ≤ u(x) ≤ H(xn + b) for all x ∈ Rn and one
concludes from [6, Theorem 3.1] or [14, Theorem 2.1] that u(x) ≡ H(xn + a) in Rn, for
some a ∈ R. �

Proof of Corollary 6. Up to changing u into −u and up to translation and rotation of the
variables, one can also assume without loss of generality that e = (0, · · · , 0, 1), that u < 0
in {xn < 0} and that u(x′, 0) = 0 for some x′ ∈ Rn−1. Theorem 3 then implies that
u(x) ≤ H(xn+a) in Rn, for some a ∈ R, and the other parts of the conclusion hold for that
real number a. We claim that u(x′, 0) = H(a). Indeed, if not, then 0 = u(x′, 0) < H(a),
hence a > 0, while Theorem 3 also yields the existence of a sequence (yk)k∈N = (y′k, 0)k∈N
in Rn−1 × {0} such that u(· + yk) → H(xn + a) in C2

loc(Rn) as k → +∞. In particular,
u(y′k,−a/2) → H(a/2) > 0 as k → +∞, hence u(y′k,−a/2) > 0 for all k large enough,
which is impossible since u < 0 in {xn < 0}. Therefore, u(x′, 0) = H(a) (hence, a = 0)
and u(x) ≡ H(xn) in Rn from Theorem 3. �
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3. Proof of the half-space theorem in dimensions n = 2, 3

As we mentioned in Section 1, the proof of the half-space theorem for minimal surfaces
uses the family of catenoids and the sweeping principle. In the Allen-Cahn case, the
solutions are defined in the whole space, and it is not easy to apply this idea.

We remark that the n = 2 case of Theorem 1 can also be proven by applying the
method in De Silva and Savin [11]. Our proof uses Pohozaev identity (also called balancing
condition, see [12]) and is very different from theirs.

We shall prove Theorem 1 for n = 1, 2, 3. Notice that if n = 1, then the solution u
is trivially one-dimensional and since it is not constant, it is then equal to H(x1) up to
shifts, as follows directly from ODE analysis. The cases of n = 2, 3 are more complicated.
Although we can deal with these two cases in a unified way, we choose to first give a simple
proof when n = 2, because this gives us a clear geometric intuition behind the whole proof.

3.1. The case n = 2. Let u be a solution whose zero level set {u = 0} is contained in the
half-space {x2 > 0}. Up to changing u into −u and/or x1 into −x1, and shifting in the
direction x2, we may assume without loss of generality that u < 0 in {x2 < 0} and, from
Theorem 3, that

(11) u(x1, x2) ≤ H(x2) for all (x1, x2) ∈ R2

and that there exists a sequence (t+k )k∈N such that t+k → +∞ and u(x1 + t+k , x2)→ H(x2)
in C2

loc(R2) as k → +∞.
For each x1 ∈ R, we define

g(x1) = inf {x2 ∈ R : u(x1, x2) = 0} ∈ [0,+∞].

Note that the infimum is a minimum if g(x1) is a real number. Note also that g(x1) might
a priori be +∞ for some values x1, in which case u(x1, x2) < 0 for all x2 ∈ R (nevertheless,
the conclusion u(x1, x2) ≡ H(x2) in R2 will show that this case is impossible). We know
at this point that g cannot be equal to +∞ on (−∞, ξ) for some ξ ∈ R since otherwise
the zero level set of u would be included in the quarter-plane {x1 ≥ ξ, x2 ≥ 0}, which is
ruled out by Corollary 4. Let us set

α = lim inf
x1→−∞

g(x1) ∈ [0,+∞].

Let us first consider the case 0 ≤ α < +∞. There exists then a sequence (t−k , s
−
k )k∈N

such that u(t−k , s
−
k ) = 0, and t−k → −∞ and s−k → α as k → +∞. Up to extraction of a

subsequence, the functions (x1, x2) 7→ u(x1 + t−k , x2 +α) converge in C2
loc(R2) to a bounded

solution u∞ of (1) such that u∞(0, 0) = 0 and u∞ ≤ 0 in {x2 ≤ 0}, owing to the definition
of α. Furthermore, u∞(x1, x2) ≤ H(x2 + α) in R2 from (11), hence u∞(x1,−∞) = −1 for
each x1 ∈ R, and u∞ < 0 in {x2 < 0} from the strong maximum principle. Corollary 6
then implies that u∞(x1, x2) ≡ H(x2 +b) in R2 for some real number b. Since u∞(0, 0) = 0,
one finally infers that b = 0 and u∞(x1, x2) ≡ H(x2) in R2.

Consider now the semi-infinite vertical strip

Ωk :=
{

(x1, x2) ∈ R2 : t−k < x1 < t+k ,−∞ < x2 < α
}
.
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Let X = (0, 1). The balancing condition (see [12, Appendix]) tells us that

(12)

∫
∂Ωk

[(
1

2
|∇u|2 + F (u)

)
X · ν − (∇u ·X) (∇u · ν)

]
dσ = 0,

where

F (s) =
(1− s2)2

4
and ν is the outward unit normal of the domain Ωk (which is defined everywhere except
at the corners (t±k , α). The previous formula means that∫ t+k

t−k

(
|∇u(x1, α)|2

2
+ F (u(x1, α))− u2

x2
(x1, α)

)
dx1

+

∫ α

−∞

(
ux1(t

−
k , x2)ux2(t

−
k , x2)− ux1(t+k , x2)ux2(t

+
k , x2)

)
dx2︸ ︷︷ ︸

=:Ik

= 0,

where the second integral Ik converges absolutely from Remark 10. Since u(x1 + t−k , x2)→
H(x2) and u(x1 + t−k , x2 + α)→ H(x2) as k → +∞ in C2

loc(R2), together with Remark 10,
it follows that Ik → 0 as k → +∞. Therefore,∫ t+k

t−k

(
|∇u(x1, α)|2

2
+ F (u(x1, α))− u2

x2
(x1, α)

)
dx1 → 0 as k → +∞.

On the other hand, Modica’s inequality

F (u) ≥ |∇u|
2

2

(
≥
u2
x2

2

)
(see [25]) implies that

|∇u|2

2
+ F (u)− u2

x2
=
u2
x1

2
+ F (u)−

u2
x2

2
≥
u2
x1

2
≥ 0

in R2. Since t±k → ±∞ as k → +∞, we finally get that

|∇u(x1, α)|2

2
+ F (u(x1, α))− u2

x2
(x1, α) =

u2
x1

(x1, α)

2
= 0

for all x1 ∈ R, hence

F (u(x1, α)) =
u2
x2

(x1, α)

2
=
|∇u(x1, α)|2

2

for all x1 ∈ R. One concludes from [8, 25] that u is one-dimensional, namely u(x1, x2) ≡
H(x2) in R2 from the first paragraph of the proof.

Let us finally consider the case α = +∞. Here, remembering also that u < 0 in {x2 < 0},
it follows from Proposition 8 that

sup
x1≤−R, x2≤0

u(x1, x2)→ −1
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as R→ +∞, hence |∇u(x1, x2)| → 0 as x1 → −∞ uniformly with respect to x2 ≤ 0, from
standard elliptic estimates. Together with Remark 10, this implies that∫ 0

−∞
ux1(x1, x2)ux2(x1, x2) dx2 → 0 as x1 → −∞.

Therefore, by applying (12) in the region{
(x1, x2) ∈ R2 : −k < x1 < t+k ,−∞ < x2 < 0

}
,

one gets with the same arguments as before that∫ t+k

−k

(
|∇u(x1, 0)|2

2
+ F (u(x1, 0))− u2

x2
(x1, 0)

)
dx1 → 0 as k → +∞.

This leads to the same conclusion as in the previous paragraph and the proof of Theorem 1
in the case n = 2 is thereby complete.

Proof of Corollary 2. Let u1 < u2 be two bounded non-constant solutions of (1) in R2.
Remember that −1 < u1 < u2 < 1 in R2. Using u1 and u2 as barriers and applying
minimizing arguments, we can construct a stable solution u3 of (1) with

−1 < u1 ≤ u3 ≤ u2 < 1 in R2.

In dimension two, stable solutions are one-dimensional, as follows from [4, Theorem 1.8].
The function u3 is then one-dimensional stable and it takes values in (−1, 1), hence there
exist then a unit vector e and a real number c such that u3(x) ≡ H(x · e + c) in R2.
Therefore, the nodal set of u1 is contained in the half-space {x · e + c ≥ 0} and u1 < 0 in
{x ·e+c < 0}. By the weak half-space Theorem 1, u1 has to be one-dimensional, and more
precisely there is a ∈ R such that u1(x) ≡ H(x · e+ a) in R2. The same is true for u2, with
u2(x) ≡ H(x · e+ b) in R2, for some real number b such that b > a (since u2 > u1). �

3.2. The case n = 3. Next, we shall consider the case of dimension 3. The arguments in
this section can also be applied in the two dimensional case, but we preferred to use the
more direct proof of the previous section in the case n = 2.

First of all, as in the case n = 2, up to changing u into −u and/or shifting in the
direction x3, we may assume without loss of generality that u < 0 in {x3 < 0} and, from
Theorem 3, that

(13) − 1 < u(x1, x2, x3) ≤ H(x3) for all (x1, x2, x3) ∈ R3

and there is a sequence (yk)k∈N in R2 × {0} such that u(· + yk) → H(x3) in C2
loc(R3)

as k → +∞.
Now, let A > 0 be such that

tanh

(
− A√

2

)
≤ −

√
2

3
.

For s > 0, let Ωs be the half-cylinder

Ωs =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 < s2, x3 < −A
}
.
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Let X = (0, 0, 1). Then, for every s > 0, the following balancing formula (see [12]) holds
in Ωs:

(14)

∫
∂Ωs

[(
1

2
|∇u|2 + F (u)

)
X · ν − (∇u ·X) (∇u · ν)

]
dσ = 0,

meaning that

(15)

g(s) :=

∫
{x21+x22<s

2}

(
|∇u(x1, x2,−A)|2

2
+F (u(x1, x2,−A))−u2

x3
(x1, x2,−A)

)
dx1dx2

= s

∫ −A
−∞

∫ 2π

0

(
ux1(s cos θ, s sin θ, x3) cos θ + ux2(s cos θ, s sin θ, x3) sin θ

)
× ux3(s cos θ, s sin θ, x3) dθ dx3.

Notice that the integrals converge absolutely from Remark 10. As in the previous section,
we infer from Modica’s inequality

F (u) ≥ |∇u|
2

2
that

(16)
|∇u|2

2
+ F (u)− u2

x3
=
u2
x1

+ u2
x2

2
+ F (u)−

u2
x3

2
≥
u2
x1

+ u2
x2

2
≥ 0

in R3. From this, we know that the function g is nonnegative and nondecreasing in (0,+∞).
Hence we can define

(17) α = lim
s→+∞

g(s) ∈ [0,+∞].

Let us also define a function K : (0,+∞)× R→ R by

(18) K(s, x3) =

∫
{x21+x22<s

2}

(
u2
x1

(x1, x2, x3) + u2
x2

(x1, x2, x3)
)
dx1 dx2

and notice from the definition of g in (15) and from (16) that

(19) K(s,−A) ≤ 2 g(s) for all s > 0.

Remark 10 yields suitable exponential decay of u2
x1

+ u2
x2

as x3 → −∞, from which we
get the following key-property of K.

Lemma 12. There exist some constants C > 0 and β > 0, such that

K(s, x3) ≤ C
(
1 +K(s+ β ln s,−A)

)
, for all s ≥ 1 and x3 ≤ −A.

Proof. The functions ux1 and ux2 satisfy

−∆uxi + (3u2 − 1)uxi = 0

in R3. Thanks to (13), the function u2 converges to 1 as x3 → −∞, hence the operator
−∆ + (3u2 − 1) tends to −∆ + 2. As a matter of fact, in R2 × (−∞,−A], one has

−1 < u ≤ H(−A) = tanh

(
− A√

2

)
≤ −

√
2

3
,



HALF-SPACE THEOREMS 13

thus 3u2 − 1 ≥ 1 in R2 × (−∞,−A].
We are then going to compare ux1 (and later ux2) in R2 × (−∞,−A] to the bounded

solution φ of the model problem{
−∆φ+ φ = 0, (x1, x2, x3) ∈ R2 × (−∞,−A),

φ(x1, x2,−A) = |ux1(x1, x2,−A)| , (x1, x2) ∈ R2.

By using the Fourier transform in the (x1, x2) variables, the bounded solution φ of the
above problem is given in R2 × (−∞,−A) by

φ(x1, x2, x3) =

∫
R2

φ(x′1, x
′
2,−A)G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx

′
2,

where, for X3 < 0, G(·, ·, X3) is the inverse Fourier transform of the function

(ξ1, ξ2) 7→ e
√
ξ21+ξ22+1X3 ,

that is,

G(X1, X2, X3) =
1

4π2

∫
R2

ei(X1ξ1+X2ξ2)+
√
ξ21+ξ22+1X3dξ1 dξ2

for (X1, X2, X3) ∈ R2 × (−∞, 0). Note that we are interested in estimating φ(·, ·, x3) in
the disks

Ds :=
{

(x1, x2) ∈ R2 : x2
1 + x2

2 < s2
}
,

with s ≥ 1 and x3 < −A. To do so, for s ≥ 1 and (x1, x2, x3) ∈ R2 × (−∞,−A), we
divide φ into two parts:

φ(x1, x2, x3) =

∫
{|(x′1,x′2)|≥s+β ln s}

φ(x′1, x
′
2,−A)G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx

′
2︸ ︷︷ ︸

=:φ1,s(x1,x2,x3)

+

∫
{|(x′1,x′2)|<s+β ln s}

φ(x′1, x
′
2,−A)G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx

′
2︸ ︷︷ ︸

=:φ2,s(x1,x2,x3)

,

where β > 0 will be chosen later.
On the one hand, since

|∇u| ≤
√

2F (u) ≤ 1√
2

in R3 from Modica’s inequality [25], and since G ≥ 0 in R2 × (−∞, 0) and φ ≥ 0 in
R2 × (−∞,−A) from the maximum principle, it follows that, for all s ≥ 1, (x1, x2) ∈ Ds

and x3 < −A,

0 ≤ φ1,s(x1, x2, x3) ≤ 1√
2

∫
{|(x′1,x′2)|≥s+β ln s}

G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx
′
2

≤ 1√
2

∫
{|(x′1,x′2)|≥β ln s}

G(−x′1,−x′2, x3 + A) dx′1 dx
′
2︸ ︷︷ ︸

=:φs(0,0,x3)

,
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where φs denotes the bounded solution of

(20)


−∆φs + φs = 0, (x1, x2, x3) ∈ R2 × (−∞,−A),

φs(x1, x2,−A) =


1√
2

if |(x1, x2)| ≥ β ln s,

0 otherwise.

It is immediate to check that there is a real number γ > 0 small enough so that the function

(x1, x2, x3) 7→ eγ
√
x21+x22+1

satisfies

−∆φ+ φ ≥ 0

in R3. Hence, the function

(x1, x2, x3) 7→ 1√
2
eγ
√
x21+x22+1−γ

√
(β ln s)2+1

is a supersolution of (20), and

0 ≤ φs(x1, x2, x3) ≤ eγ
√
x21+x22+1−γ

√
(β ln s)2+1

√
2

for all (x1, x2, x3) ∈ R2 × (−∞,−A)

from the maximum principle. As a consequence,

0 ≤ φ1,s(x1, x2, x3) ≤ φs(0, 0, x3) ≤ eγ−γβ ln s

√
2

for all s ≥ 1, (x1, x2) ∈ Ds and x3 < −A. Therefore, by choosing

β =
2

γ
> 0,

one gets that

(21)

∫
Ds

φ2
1,s(x1, x2, x3) dx1 dx2 ≤

π e2γ

2 s2
≤ π e2γ

2
for all s ≥ 1 and x3 < −A.

On the other hand, remember that G ≥ 0 in R2 × (−∞, 0), and notice that
‖G(·, ·, X3)‖L1(R2) = eX3 ≤ 1 for all X3 < 0. Hence, using the Cauchy-Schwarz inequality
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and Fubini’s theorem, we have, for all s ≥ 1 and x3 < −A,∫
Ds

φ2
2,s(x1, x2, x3) dx1 dx2

=

∫
Ds

(∫
{|(x′1,x′2)|<s+β ln s}

φ(x′1, x
′
2,−A)G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx

′
2

)2

dx1 dx2

≤
∫
Ds

{∫
{|(x′1,x′2)|<s+β ln s}

φ2(x′1, x
′
2,−A)G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx

′
2

×
∫
{|(x′1,x′2)|<s+β ln s}

G(x1 − x′1, x2 − x′2, x3 + A) dx′1 dx
′
2

}
dx1 dx2

≤
∫
{|(x′1,x′2)|<s+β ln s}

φ2(x′1, x
′
2,−A) dx′1 dx

′
2 =

∫
Ds+β ln s

φ2(x1, x2,−A) dx1 dx2.

Therefore, together with (21), it follows that, for all s ≥ 1 and x3 < −A,∫
Ds

φ2(x1, x2, x3) dx1 dx2 ≤ π e2γ + 2

∫
Ds+β ln s

φ2(x1, x2,−A) dx1 dx2.

Lastly, since 3u2− 1 ≥ 1 in R2× (−∞,−A], the maximum principle implies that |ux1| ≤ φ
in R2 × (−∞,−A], hence∫

Ds

u2
x1

(x1, x2, x3) dx1 dx2 ≤ π e2γ + 2

∫
Ds+β ln s

φ2(x1, x2,−A) dx1 dx2

= π e2γ + 2

∫
Ds+β ln s

u2
x1

(x1, x2,−A) dx1 dx2

for all s ≥ 1 and x3 < −A. The same property holds similarly for the function ux2 . Thus,∫
Ds

(
u2
x1

(x1, x2, x3) + u2
x2

(x1, x2, x3)
)
dx1 dx2

≤ 2 π e2γ + 2

∫
Ds+β ln s

(
u2
x1

(x1, x2,−A) + u2
x2

(x1, x2,−A)
)
dx1 dx2

for all s ≥ 1 and x3 < −A, that is,

K(s, x3) ≤ 2πe2γ + 2K(s+ β ln s,−A) ,

with K defined in (18). Notice that this last inequality also holds trivially with x3 = −A
since s+ β ln s ≥ s. The proof of Lemma 12 is thereby complete with C = 2πe2γ > 0. �

With a slight abuse of notation, we also write u in the polar coordinates (in the (x1, x2)-
plane) as u(r, θ, x3). Let us now define, for s > 0,

(22) f (s) :=

∫ s

0

∫ −A
−∞

∫ 2π

0

ur(r, θ, x3)ux3(r, θ, x3) dθ dx3 dr.

Note that the above integral converges absolutely for each s > 0, from Remark 10, and
that f(s)→ 0 as s→ 0.



16 F. HAMEL, Y. LIU, P. SICBALDI, K. WANG, AND J. WEI

Lemma 13. The quantity α defined in (17) is such that α = 0.

Proof. Let us assume by way of contradiction that α > 0. Observe first that the function f
is of class C1 in (0,+∞) and that, thanks to (15),

f ′(s) =
g(s)

s
for all s > 0.

Using the fact that g is nonnegative and g(τ)→ α ∈ (0,+∞] as τ → +∞, we deduce that

(23) f(s) =

∫ s

0

f ′(τ) dτ =

∫ s

0

g(τ)

τ
dτ ≥ α′ ln s for all s large enough,

with, say, α′ = α/2 > 0 if 0 < α < +∞ and α′ = 1 if α = +∞. On the other hand, one
infers Remark 10, with here a = 0 thanks to (13), that

(24) |∇u| ≤ 2
√

2 e
√

2x3 in R3

and from (15) that

(25)
g(τ)

τ
=

∫ −A
−∞

∫ 2π

0

ur(τ, θ, x3)ux3(τ, θ, x3) dθ dx3 ≤ 4
√

2 π ≤ 6 π

for all τ > 0, hence

(26) f(s+ β ln s)− f(s) =

∫ s+β ln s

s

g(τ)

τ
dτ ≤ 6 π β ln s for all s ≥ 1.

Using again (24) and (25), together with the definition (18) of K and the decomposition
of the integral (22) with respect to r ∈ [0, s] into two integrals over [1, s] and [0, 1], we get
that, for all s ≥ 1,

f(s) ≤
∫ −A
−∞

[∫ s

1

∫ 2π

0

r u2
r dθ dr

]1/2 [∫ s

1

∫ 2π

0

u2
x3

r
dθ dr

]1/2

dx3 + 6 π

≤
√

16 π ln s

∫ −A
−∞

√
K(s, x3) e

√
2x3 dx3 + 6 π.

Applying inequality (19) and Lemma 12, we deduce that, for all s ≥ 1,

f(s) ≤
√

16π ln s

∫ −A
−∞

√
C(1 +K(s+ β ln s,−A)) e

√
2x3 dx3 + 6 π

≤
√

8 π C (ln s)
(
1 + 2g(s+ β ln s)

)
+ 6 π

=
√

8 π C (ln s)
(
1 + 2f ′(s+ β ln s) (s+ β ln s)

)
+ 6 π.

Together with (23), it follows that f ′(t) t→ +∞ as t→ +∞, and that

0 < f(s) ≤
√

17π C (s+ β ln s) ln(s+ β ln s) f ′(s+ β ln s) for all s large enough.
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Thanks to (23) and (26), we then infer that, for all s large enough,

0 < f(s+ β ln s) ≤ f(s) + 6 π β ln s ≤
(

1 +
6 π β

α′

)
f(s)

≤ C1

√
(s+ β ln s) ln(s+ β ln s) f ′(s+ β ln s)

with

C1 =
√

17π C

(
1 +

6 π β

α′

)
> 0 .

In other words, there is t0 > 0 such that f > 0 on [t0,+∞) and

f ′(t)

f(t)2
≥ 1

C2
1 t ln t

for all t ≥ t0.

It follows that the function

t 7→ 1

f(t)
+

ln(ln t)

C2
1

is nonincreasing on [t0,+∞). But since f > 0 on [t0,+∞), one has

1

f(t)
+

ln(ln t)

C2
1

→ +∞

as t → +∞. This is a contradiction. Therefore, α = 0 and the proof of Lemma 13 is
thereby complete. �

End of the proof of Theorem 1 for n = 3. As in the case n = 2, the fact that α = 0 in (15)
and (17), together with (16), implies that

|∇u(x1, x2,−A)|2

2
+ F (u(x1, x2,−A))− u2

x3
(x1, x2,−A)

=
u2
x1

(x1, x2,−A) + u2
x2

(x1, x2,−A)

2
= 0

for all (x1, x2) ∈ R2. Hence

F (u(x1, x2,−A)) =
u2
x3

(x1, x2,−A)

2
=
|∇u(x1, x2,−A)|2

2

for all (x1, x2) ∈ R2 and one concludes from [8, 25] that u is one-dimensional, namely
u(x1, x2, x3) ≡ H(x3) in R3 from the second paragraph of this subsection. �

Remark 14. In higher dimensions n ≥ 4, one could still apply the balancing condition
and define some functions g and f with formulas similar to (15) and (22) above. However,
in (15), there would be a factor sn−2 instead of s in the right-hand side. Even if Lemma 12
still extends to that case (with a different value for the constant β), Lemma 13 does not
extend as such. In particular, one would have f ′(s) = g(s)/sn−2, and the integrability of
the function 1/sn−2 at infinity does not imply that f(+∞) = +∞ if α := g(+∞) > 0, and
then the end of the proof does not work.
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4. Half-space theorems for free boundary problems

In this section, we are interested in half-space properties for free boundary problems.
First of all, we consider the following classical one phase free boundary problem:

(27)

{
∆u = 0 in Ξ := {u > 0} ⊂ Rn,

|∇u| = 1 on ∂Ξ,

where u is understood in the classical sense in Ξ and ∂Ξ is globally smooth.
The existence of catenoid type solutions of this problem has been proved using an Allen-

Cahn approximation. We refer to [22] and the references therein for more discussion on
this problem.

We have the following half-space property:

Theorem 15. Let n ≤ 3 and u be a solution of (27) with |∇u| ≤ 1. Suppose that the
positive phase Ξ is contained in the half-space {xn > 0}. Then u is one-dimensional,
namely there is h ≥ 0 such that Ξ = {xn > h} and u is the one-dimensional function
u(x) ≡ xn − h in Ξ.

Proof. The idea of proof is same as that of Section 3.2. We sketch the proof and list the
necessary modifications. Let us only consider the case n = 3.

Up to shift in the x3-direction, one can assume without loss of generality that Ξ is not
contained in {x3 > a} for any a > 0. From standard elliptic estimates up to the boundary,
one can fix a > 0 small enough such that ux3 > 0 in Ξ ∩ {x3 ≤ a}.

We still adopt the notation of Section 3.2 and, for s > 0, let Ωs be the half-cylinder

Ωs :=
{

(x1, x2, x3) ∈ R3 : r2 = x2
1 + x2

2 < s2, x3 < a
}
.

For ε > 0, let us define
Ξε := {Z ∈ Ξ : dist (Z, ∂Ξ) > ε} .

Let F be half the characteristic function of the interval (0,+∞), that is, F (τ) = 1/2
if τ > 0 and F (τ) = 0 if τ ≤ 0. Then we have the following balancing formula, with
X = (0, 0, 1) and ε ∈ (0, a):∫

∂(Ωs∩Ξε)

[(
1

2
|∇u|2 + F (u)

)
X · ν − (∇u ·X) (∇u · ν)

]
dσ = 0.

Sending ε to 0 in this identity and using the free boundary condition, we get∫
∂Ωs∩Ξ

[(
1

2
|∇u|2 + F (u)

)
X · ν − (∇u ·X) (∇u · ν)

]
dσ = 0.

Now we extend the solution u to R3 such that u = 0 in R3\Ξ. Still denote it as u. Then
we get ∫

∂Ωs

[(
1

2
|∇u|2 + F (u)

)
X · ν − (∇u ·X) (∇u · ν)

]
dσ = 0.

Note that u is not smooth across the free boundary, but, for any Y ∈ ∂Ξ, the quantity
(|∇u(Z)|2/2 + F (u(Z)))X · ν(Y )− (∇u(Z) ·X) (∇u(Z) · ν(Y )) converges to 0 as Z → Y
with Z ∈ Ξ and it vanishes for all Z ∈ R3 \ Ξ.
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With the same slight abuse of notation as in Section 3.2, we define, for s > 0,

f (s) =

∫ s

0

∫ a

−∞

∫ 2π

0

ur(r, θ, x3)ux3(r, θ, x3) dθ dx3 dr.

Since |∇u| ≤ 1 in Ξ, one has |∇u|2/2+1/2 ≥ u2
x3

in Ξ, hence the function f is nonnegative,
non-decreasing and differentiable with respect to s. Similarly to the proof of Section 3.2,
we can show that, if

lim
s→+∞

∫
{x21+x22<s

2}

(
1

2
|∇u|2 + F (u)− u2

x3

)
dx1 dx2 > 0,

then there is a positive constant C > 0 such that

f ′ (s) ≥ Cf 2 (s)

s ln s
, for s large.

The previous inequality yields a contradiction as in Section 3.2. This then implies that
|∇u(x1, x2, a)| = 1 and ux1(x1, x2, a) = ux2(x1, x2, a) = 0 for all (x1, x2) ∈ R2 such that
(x1, x2, a) ∈ Ξ. Since ∆

(
|∇u|2

)
= 2

∑
1≤i,j≤3 u

2
xixj
≥ 0 in Ξ, we conclude that |∇u| = 1 and

ux1 = ux2 = 0 in each connected component of Ξ meeting {x3 = a}. It finally follows that
Ξ ⊃ {x3 = ak}, for a sequence (ak)k∈N with ak → 0+ (from the normalization made in the
second paragraph of the proof) and, remembering that ux3 > 0 in Ξ ∩ {x3 ≤ a}, we easily
conclude that Ξ = {x3 > 0} and u is the one-dimensional function u(x1, x2, x3) ≡ x3. �

Similarly, we can consider the following double-well type free boundary problem:

(28)

{
∆u = 0 in Ξ := {|u| < 1} ⊂ Rn,

|∇u| = 1 on ∂Ξ.

The proof of the following result is essentially same as that of Theorem 15, and we omit
the details.

Theorem 16. Let n ≤ 3 and u be a solution of (28) with |∇u| ≤ 1. Suppose that {|u| < 1}
is contained in the half-space {xn > 0}. Then u is one-dimensional, namely there is h ≥ 1
such that Ξ = {h− 1 < xn < h+ 1}, and either u(x) ≡ xn − h in Ξ or u(x) ≡ −(xn − h)
in Ξ.
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