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Table 1 Threats defined by the ETSI for M2M communication [5].

ETSI Threat Number (ET#) Likelihood Impact Risk Security rules
(ET8) Discover Keys by Eavesdropping on Communications Between Entities. Substantial High Critical SR1, SR2
(ET15) General Eavesdropping on M2M Service-Layer Messaging Between Entities. Severe High Major SR3, SR4
(ET16) Alteration of M2M Service-Layer Messaging Between Entities. Substantial High Major SR3, SR4

detect. However, by modifying protocol rules and packet
information, an attacker can deliver attacks such as: data
integrity, energy exhaustion and spoofing. Detecting
frame changes requires high knowledge of protocol
frame syntax and protocol state rules. Therefore, it is
important to develop monitoring techniques and tools to
detect if security rules are not respected when the frame
data is modified or protocol rules are changed.

MMTa is a monitoring tool that verifies if the frame
syntax under a specific protocol scenario is correct. MMT
sends a message to the user if it detects that a security
rule cannot be verified. At present, MMT has mechanism
to detect rule violations for IPv4, IPv6, TCP and UDP,
but does not have support for WSNs.

In this paper, we increase the capability of MMT to
include WSN. Since nodes in WSN are limited by low
energy, low computational power and low storage space,
we have modified MMT for IEEE 802.15.4/6LowPAN
and tinyDTLS [7, 8, 14]. IEEE 802.15.4 is used for
sensing communication capabilities and 6LowPAN for
IPv6 addressing capabilities, which are features needed
for IoT.

Moreover, IEEE 802.15.4-2006 has a very good packet
transmission control in unreliable environments, as well
as a native support for the 6LoWPAN. This standard
has also the advantage to be supported by the ZigBee
products and open source operating systems such as
Contiki, RIOT and TinyOS.

MMT verifies if security rules are not respected under
a specific context, which is protocol dependent. In our
MMT extension, we work with IEEE 802.15.4/6LowPAN
using tinyDTLS as the security mechanism. We check
also the security rules proposed by ETSI in [8](Table 1).
Indeed, we deal with the challenge of secure IoT
environments, including the secure communication
between sensors (i.e, Machine to Machine (M2M)
communication) with very constrained resources.

This paper addresses crucial challenges regarding
security for WSN using IEEE-802.15.4/6LowPAN and
DTLS communication. Only very few teams worldwide
are investigating and developing techniques to guarantee
security for these protocols. In addition, another
contribution of this paper is that security rules have been
tested in real environments and providing an automatic
checking of the protocols security requirements. These
rules have been integrated as extensions of an industrial
tool called MMT.

The organization of this paper is as follows: In
Section 2 we discuss relevant related work. In Section 3,
the tool MMT is presented together with its main
functions. In Section 4, we present the extensions
we developed to enable MMT for WSN monitoring.

Section 5 illustrates a concrete monitoring scenario with
its experimental results. Finally, in Section 6 we present
some conclusions and our vision for future work.

2 Related Works

In [25], the authors presented the results of an analysis
of TinyDTLS, only for PSK, over beacon-enabled
802.15.4/6LowPAN networks. Each node of the sensor
network is implemented using WisMote sensor kit. The
nodes are configured to run on Contiki as Operating
System. The problem with this configuration is that
enabling the beacon makes the DTLS handshake very
slow, and they found that DTLS over radio duty-cycled
networks, required up to 50 seconds to complete DTLS
handshake process, which can make the system useless
for real-purpose applications.

Meanwhile, in [9] the authors evaluated IPsec and
DTLS in terms of power and memory consumption.
Their main contribution was the proposition of an
implementation and evaluation of a custom 6LoWPAN
dispatch for integrating IPSec to 6LoWPAN, with
support for the Authentication Header (AH) and
Encapsulating Security Payload (ESP). Their testbed is
composed of two TelosB sensors running TinyOS and
a Linux host. The TelosB were assisted with the use
of TPM chips. The final conclusion is that the use of
IPsec or CoAP with DTLS are viable according to the
“most appropriate security mode”. Still, the approach
with DTLS is better suited for scenarios where foreigner
clients request information from the sensors.

The work in [11] is another evaluation of DTLS
regarding WSN. This work was one of the first
adapting DTLS to 802.15.4/6LoWPAN, using public
cryptography keys such as RSA. As a testbed it uses
TinyOS 2.x, with an integrated TPM chip and the
OpenSSL 1.0.0d for the DTLS stack. The hardware used
for the sensor is an Opal Sensor. Power was measured
with an oscilloscope using a 10 Ohm resistor. The result
reported seems to be in accordance with the work of
[9]. As the di↵erences between cipher suites are huge,
the CoAP specifications avoids the use of RSA with the
sensors. In general, this work validates the use of only the
cipher suites already supported by tinyDTLs for WSN.

The work in [19] is the adaptation of DTLS as another
type of dispatch for 6LoWPAN called Lithe. Wismote
sensors running Contiki OS 2.7 and TinyDTLS 0.3.2
were emulated with Cooja for testing Lithe. The main
advantage is the reduction of the overhead on the DTLS
packets and consequently in the energy consumption of
the nodes that can be of at least 12 bytes. Lithe is
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a very interesting work as it o↵ers an alternative to
the use of DTLS and CoAP. However, their work is
di�cult to upgrade to the last version of Contiki or even
tinyDTLS. Given that only nodes supporting the custom
6LoWPAN dispatches can communicate inside of the
WSN Lithe, this implementation is more restrictive than
the proposed in this paper.

In [4], an analysis of the use of an Intrusion
Detection System (IDS) in WSN is provided. The
authors propose that each node has a public and
private key pair for signing the messages. They perform
home network simulations by means of Castalia WSN
simulator together with OMNET simulation package.
The objective is to evaluate the life time of the system
once some intrusions are introduced. Measurements are
performed when no IDS is running, when an IDS is
eavesdropping constantly and when a Byzantine solution
is being used to detect the intrusion. In this work,
one obvious conclusion is that prohibiting the nodes
to switch into the sleep mode will exhaust the power
supply quickly. The di↵erence between the other two
scenarios is that it can reach almost to 55% of energy
consumption with the maximum number of nodes in the
WSN. However, the energy consumption with the IDS
based on the Byzantine solution is still very far from
life-time requirements.

The work presented in [1] is based on an European
project. It presents a denial of service (DoS) detection
architecture for 6LoWPAN based on the IDS Suricata.
They focused especially on DoS attacks detection by
real-time monitoring of various physical parameters.
They integrated to the 6LoWPAN some distributed
IDS probes acting as sni↵ers. These IDS probes
have the mission to send relevant information to the
IDS (e.g., Suricata) through wired connections. Wired
connectivity, which is certainly more reliable, allows the
framework to be resistant to attacks. However, WSNs
are frequently deployed in inaccessible terrains or even
hostile environments. A wired connection in that case is
seemingly unrealistic. Our MMT is able to play the same
role of Suricata in DEMO framework, without the need
of decoders (Suricata does not o�cially support IEEE
802.15.4 and 6LoWPAN yet and not all the rules defined
on Section 4.2 are possible to replicate with Suricata)

Regarding intrusion detection systems for IoT in
general and for 6LoWPAN-based WSNs in particular,
SVELTE [20] has been presented as the most well-
known among very few intrusion detection tools working
over such small devices. SVELTE consists of three main
centralized modules including lightweight modules and
mini-firewalls deployed in SNs and central modules called
6Mapper located in BRs. 6Mapper collects the routing
information thanks to their “little” collaborators located
in SNs. In comparison with our approach, SVELTE is
more active and creates additional tra�c to achieve the
goal. Whilst, our solution attempts to passively monitor
the network based on the network’s tra�c to avoid
additional costs which might hamper 6LoWPAN.

Our approach goes beyond the limitations of the
related works mentioned in the previous analysis.
Moreover, it must be noted that we propose an approach
that has been experimented on real environments and
that this approach has been integrated as an extension to
an industrial monitoring tool, MMT. The results of the
experimentations have shown that our MMT’s extension
for WSN using IEEE-802.15.4/6LowPAN and DTLS
communication is feasible and succesful. Our approach
also contributes to reduce the costs of evaluation of
security issues.

3 Montimage Monitoring Tool

3.1 Overview

MMT facilitates network performance monitoring and
operation troubleshooting. MMT captures online, and
o✏ine, network tra�c to verify if the tra�c activates a
security or attack rule. With its advanced rules engine,
MMT can correlate network and application events
in order to detect performance and operational and
security incidents. If MMT detects that a security rule
is not respected, then it sends a message to the IoT
administrator.

MMT uses Deep Packet/Flow Inspection (DPI/DFI)
technique for inspecting the packets. MMT detects an
attack incident when an attack rule is validated, and
detects a secure state when a security rule is validated
[27, 16, 13]. MMT consists of three principal modules, as
shown in the Figure 1:

• MMT-Extract module allows to monitor
di↵erent observable application, system, or
network protocols. This module extracts
information from protocols frame for o✏ine and
online tra�c (e.g., PCAP files) in the node.

Figure 1: MMT global architecture [27]



4

• MMT-Security contains security rules that refer
to both expected and unexpected behaviors.
MMT-Security model is inspired from Linear
Temporal Logic (LTL). Rules are written in
XML, which provides the advantage of simple and
straight forward structure verification. A property
is an IF- THEN relation, IF < context > THEN
IF < trigger > then property is satisfied. The
trigger is checked if and only if the context is valid.
If the trigger is found valid, then the property
is satisfied. Otherwise, the property is violated.
Embedded functions can be also added to pre-
process the data input before passing to MMT-
Security rules.

• MMT-Operator collects and aggregates
extracted data, generates network and application
statistics, and presents them using a graphical
user interface.

At present, MMT has mechanisms for IPv4, IPv6,
TCP and UDP, but does not have support for WSN.
Adding WSN capabilities to MMT is simple because it
was designed in such a way that we can add new plugins
and modules specifying the structure of the new data
input (e.g., the fields of one or more new protocols).

The rest of this section is structured as follow:
In Section 3.2 we discuss the main characteristic of
all the protocols involved in the infrastructure of the
WSN: IEEE 802.15.4, 6LoWPAN, compressed UDP.
In Section 3.3 a more detailed discussion is made in
relation to the protocols involved in the upper layer as
they are the base for the security analysis of the M2M
communication. Finally, in Section 3.4 the description of
MMT-Security is done.

3.2 MMT-Extract: Extension for
802.15.4/6LoWPAN

In this section, we identify and discuss all the
components involved in the design of the proposed
infrastructure for a IoT environment and determine
which are the key elements to be monitored.

IEEE 802.15.4 is composed of simple unicast and
multicast packets. 6LoWPAN can use its source and
destiny addresses fields to infer the IPv6 addresses. The
field Field Check Sum (FCS) is used as the only field to
verify the integrity of a packet. These features permit to
save resources in the upper protocols.

In its most basic concept, 6LoWPAN aims to
compress the IPv6 headers (Figure 2) from their original
40 bytes to a significantly lesser dynamic value. In some
cases, the header is compressed to lengths of 3 or 6 bytes
[17, 22].

6LoWPAN uses dispatches to achieve compression,
which consist of special frames, that precede the IPv6
header and deliver information about the fields of the
IPv6 header. Figure 4 shows the standard representation
of a dispatch preceding an IPv6 header and its payload.

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2: Standard IPv6 header.

Table 2 shows the most common dispatches and for this
work the emphasis will be on FRAG1, FRAGN and
IPHC (IP Header Compression). These dispatches do
not replace IPv6, and the nodes still need to be able to
configure their own IPv6 addresses and to know their
own scopes.

For some configurations, usually the faulty ones, the
dispatch may not be present so the IPv6 header is
uncompressed. This will be referred as “raw IPv6” to
distinguishing it from the dispatch for uncompressed
IPv6. The raw IPv6 packets not only wastes bandwidth,
but also the monitoring tools can be misled.

Section 3.2.1 reviews IPHC. Section 3.2.2 reviews the
dispatches related to the fragmentation over 6LoWPAN.
Finally, Section 3.2.3 reviews NHC (Next Header
Compression) for UDP .

3.2.1 6LoWPAN compression

IPHC is a dispatch which consists of seven fields shown
in Figure 3 [10]. IPHC can elide or suppress IPv6 address
fields from the IPv6 header, saving up to 32 bytes. For

Table 2 List of dispatches headers available for 6LoWPAN
[17, p. 8].

Pattern (bits) Header Type
00 XXXXXX NALP

Not a LoWPAN frame
01 000001 IPv6

Uncompressed IPv6 Addresses
01 000010 LOWPAN HC1

LOWPAN HC1 compressed IPv6
011X XXXX LOWPAN IPHC

LOWPAN IPHC compressed IPv6
11 000XXX FRAG1

Fragmentation Header (first)
11 100XXX FRAGN

Fragmentation Header (subsequent)

0 
0 

1 
0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 

0 1 1 TF NH HLIM CID   SAC SAM M DAC DAM

Figure 3: The LoWPAN IPHC Dispatch [10].
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IPv6 Dispatch IPv6 Header Payload

Figure 4: Generic 6LoWPAN Dispatch structure.

multi-cast transmission, IPHC omits transmitting the
source address and it can reduce it to either 16, 32 or 48
bits.

For Tra�c-class frames, IPHC can infer flow label and
Hop-Limit fields based on the values of the fields TF and
HLIM. NH (Next header) field will control if a standard
or compressed header is following the IPv6 header, such
as the compression for UDP.

IPHC always omits Version and Payload Length
IPv6 fields. Payload Length is inferred based on the
FCS field of the IEEE 802.15.4 frame. With a proper
configuration, it is possible to compress an IPv6 header
from 40 to 3 bytes (2 for IPCH and 1 for NHC).

3.2.2 6LoWPAN fragmentation

MTU (Maximum Transmission Unit) for IEEE 802.15.4
is 127 bytes. Therefore, messages exceeding this value
are fragmented, using dispatches FRAG1 and FRAGN.
Fragmentation works for compressed and uncompress
IPv6 packets. The dispatches are shown at Figure 5 and
Figure 6.

FRAG1 dispatch is for the beginning of a new
fragmented message, and it uses the ID defined in
the field Datagram Tag. It is mandatory for this first
message to include all the information concerning the
dispatch used in the original message, including the
header for the transport layer protocol. If the size of all
headers combined exceeds the MTU, then the message
to transmit will be the raw IPv6 packet without any type
of dispatch preceding it [10].

FRAGN uses the field Datagram Offset to re-
assemble the fragments of a single message. The field
Datagram Size is used in both dispatches to help
identify each message and, most importantly, assembling
the fragments correctly. The nodes must handle the

4 bits 11 bits 16 bits

1 1 0 0 0 datagram_size datagram_tag

Figure 5: First Fragment (FRAG1).

4 bits 11 bits 16 bits

1 1 1 0 0 datagram_size datagram_tag

datagram_offset

8 bits

Figure 6: Subsequent Fragments (FRAGN).

reception of each FRAGN and calculate if the current
amount of frames received fits the datagram size.

It is important to notice that the size that will
be in the field Datagram Size will always be the sum
of the raw IPv6 header and its payload, even in the
case of a packet already compressed. The values in the
Datagram Offset field are according to the raw size.
This is why the FRAG1 must contain all the possible
headers or else a uncompressed IPv6 packet. Otherwise,
the nodes are unable to reassemble the rest of the
fragments correctly due to the inconsistency with the
o↵set.

3.2.3 Compression mechanism for UDP

The standard UDP header is shown in Figure 8 and the
header for NHC in Figure 7. The NHC header is basically
made of two variable-length fields, the checksum field
and the amount of bits available for port addresses (4, 8
or 16 bits).

Frame compression is achieved when compressing
port addresses. By default, the ranges of 0xF0XX and
0xF0BX are used for 8 bits and 4 bits configuration. The
sensors must be able to operate accordingly, otherwise,
unexpected sensor-error communications may occur.

3.3 MMT-Extract: Extension for DTLS

HTTPS (Hypertext Transfer Protocol Secure) is used for
secure M2M communication by using TLS (Transport
Layer Secure). For low resources devices, the equivalent
of theses protocols are CoAPS (Constrained Application
Protocol Secure) and DTLS (Datagram TLS) [23]. Since
CoAPS messages are encripted, thus invisible to our
monitoring tool, we will monitor DTLS messages.

A DTLS protocol uses connection-oriented services
with confirmation, which means that before sending a
message a connection must be established. Once the
connection is established, the application can configure

0 1 2 3 4 5 6 7 

1 1 1 1 0 C P 

Figure 7: UDP Header Encoding with LoWPAN
NHC[10].

16 bits 16 bits

Source
Port

Destination
Port

Length Checksum

Figure 8: UDP Header.
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the time it requires the connection to stay open to send
an upper layer message.

The time the connection is open is called DTLS
session, which can be configured in one of the following
modes [7]:

• Nosec. The application messages (CoAP messages)
remain in plain text.

• PreSharedKey (PSK). All the devices have pre-
loaded symmetric cryptographic keys for all the
DTLS sessions. Renewing those keys is outside of
DTLS functionality.

• RawPublicKey (RPK). This mode allows the use
of a pair of asymmetric keys for authentication.
However, a third entity is not necessary.

• Certificate. This is the equivalent of the
infrastructure for HTTPS where the X.509
certificated mode is used. It supports digital
certificates and public key encryption.

The four previously mentioned modes can be reached
by means of a handshake process in which one or
more cipher suites will be enumerated according to the
modes that are available to the devices. The handshake
is started by the client, with a list of the available
cipher suites. The server then will have the final choice,
including the possibility to reject the communication.

The full handshake process is challenging for a
constrained devices and it will be discussed in two parts:
the selection of the cipher suite and the handshake itself.

3.3.1 Identification of the mode by means of cipher
suites

Basically, in DTLS what defines each one of the four
modes are the cipher suites. Those suites are the stack of
four di↵erent protocols for establishing a session, sharing
secrets and authentication. In DTLS, as in TLS, the
client can o↵er a set of cipher suites list, each one of the
ciphers identified with an unique 16-bit ID.

Each cipher suite requires special fields, called
“extension”, to comply with specific requirement of
the each of the ciphers suites. These fields are highly
dynamic in content and size.

3.3.2 Structure of DTLS messages

All the messages related to DTLS are referred as DTLS
records and they are classified as handshake, data or
alert records. If the MTU has enough space, more than
one single DTLS record can be combined inside of a
single datagram. In this work, the term jumbo datagram
is used for this type of datagrams.

An general architecture of a DTLS record is shown
in Figure 9 and is composed by the following fields:

• Type - Identify the type of DTLS record
received: ChangeCipherSpec (0x14), alert (0x15),
handshake (0x16) or data app (0x17).

struct {
ContentType type;
ProtocolVersion version;
uint16 epoch;
uint48 sequence_number;
uint16 length;
opaque fragment[DTLSPlaintext.length];

} DTLSPlaintext;

Figure 9: DTLS record format [21]

• Version - Identifies the current version of DTLS
or TLS. The value for DTLS 1.2 is 0xFEFD.

• Epoch - New field for DTLS. Helps to identify
a DTLS session between the same pair of
nodes. Starts at zero and only increases after an
ChangeCipherSpec record is sent.

• Sequence Number - New field for DTLS. Together
with Epoch helps to guarantee the correct sequence
of the record received, mitigating the unreliable
nature of UDP.

• Length - The length of this DTLS record, including
the previous fields. This is used to infer the
presence of jumbo datagrams.

• Fragment - The body of this record. By example,
all the di↵erent types of records used in the
handshake process.

When two or more records are received with the
same Epoch and Sequence Number, they are duplicated
records. If multiples records of consecutive numbers in
the Sequence Number and same Type appears, they are
fragmented DTLS records of the same type. Finally, if
after processing a specific DTLS record, the size of the
UDP datagram does not fit with the length field means
this is a jumbo datagram, and there is at least another
DTLS record available.

The di↵erent types of records that compose the
handshake are explained in Section 3.3.3 together with
the ChangeCipherSpec records. The other two types
of records are simpler and are already protected by
the DTLS session. Alerts are sent when a bad record
is received or when the session must be terminated
or renegotiated. The data application record has the
payload of the upper layer, such as the CoAP messages
or the request for renegotiating the DTLS session.

3.3.3 DTLS Handshake process

The handshake is divided into six steps which are
referred as flights. Flights can be composed of multiple
DTLS records. The full process of this handshake is
shown in Figure 10 and is described briefly here:

1. The DTLS session is always requested by the client,
a ClientHello record is used for this flight.
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2. The server responds to the client with the
HelloVerifyRequest record. This record includes
a cookie to mitigate attacks.

3. The client confirms the process with a new
ClientHello, this too confirms which version of
DTLS is to be used. Also, the client begins to
include the cookie.

4. The server answers the client request, selecting
one of the cipher suites o↵ered by the client and
preparing the exchange of keys. This flight can be
composed of multiples DTLS records, but it will
always begin with the ServerHello record that
carries the cipher suite selected and ends with the
ServerHelloDone record.

5. The client will process the selected cipher suite and
continue with the process of the exchange of keys
with the ClientKeyExchange record. Once the
client has processed all its part of this handshake, it
will notify the server with the ChangeCipherSpec
and the Finished records.

6. The server will use the previous
ChangeCipherSpec to finish its part and will
notify the client with its owns ChangeCipherSpec
and Finished records.

Flights 4 and 5 are dynamic in size due to the
extensions that bring the special requirements for the
preferred cipher suite of the client and the one selected
by the server. Also, cookies are a factor on the dynamic
size as their size varies from 0 to 255 bytes.

The Certificate, ServerKeyExchange,
CertificateRequest and CertificateVerify records
are used in the flights if the cipher suites are using the
modes RPK or certificate. In scenarios where the client
and server are using di↵erent cipher suites the DTLS
session cannot be established.

ChangeCipherSpec is not strictly speaking a
handshake record. Its function is to indicate that
subsequent DTLS records will be protected with a new
couple of symmetric keys. Therefore, communications
cannot continue until the other part finishes the
preparation of the new set of keys. This is indicated
by the second ChangeCipherSpec record. The Finished
records indicate that the handshake is finished and are
already protected by the DTLS session.

3.3.4 TinyDTLS

DTLS is a suitable candidate for securing the M2M
communication between the sensors. However, the
resources required for establishing a standard DTLS
session can be too much for the sensors. A certificate
could be more than a single megabyte to transmit
and to be processed by the sensors. Even if the PSK
mode is used, the size of the keys for the symmetric
encryption can drain the power supply of the nodes

Figure 10: Standard 6 Flights messages for DTLS
defined in [21].

rather quickly. This is why the specifications of CoAP
take in consideration friendlier cipher suites.

A popular DTLS implementation for WSN is
TinyDTLS. The main characteristics of TinyDTLS are:

• The use of the cipher suite
TLS PSK WITH AES 128 CCM 8 for the
PSK mode. And the cipher suite
TLS ECDHE ECDSA WITH AES 128 CCM 8 for the
RPK mode.

• Jumbo datagrams and fragmentation are disabled.

• Cookies are configured to have a size of 16 bytes
by default.

At the moment of this work, TinyDTLs is still marked
as under development (available version is the 0.8.2).
Therefore, changes from a version to another can lead to
a low backward compatibility.

It is important to make the observation that for the
next release of TinyDTLS (V. 0.9.0) the ad-hoc ECC
library will be changed by the micro-ECC library. Also, it
is important to say that the generation of random values
used by TinyDTLs is too weak. In addition, the EPOCH
value transmitted in the DTLS records related to the
handshake process starts at zero (the first of January of
1970). This EPOCH time is used in combination with
other 24 random bytes to generate a portion of the
master key for the symmetric encryption. Although there
is no requirement to use the correct date, it could reduce
the resistance of the temporary keys against attacks.

In the example of the fourth flight of Figure 11a,
the size of the DTLS header and its payload is
near to 886 bytes, once the lower layer protocols
are discarded. In comparison, TinyDTLS using
TLS ECDHE ECDSA WITH AES 128 CCM 8 requires only 362
bytes for the same flight as showed in Figure 11b. If the
PSK cipher suite is used, the size decreases to 172 bytes.
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(a) DTLS flight 4 with jumbo datagrams and fragmentation (Over ethernet and IPv4).

(b) TinyDTLS flight 4 without jumbo datagram or fragmentation (Over ethernet and IPv4).

Figure 11: DTLS Tra�c

3.4 MMT-Security: Security and Attacks rules

There are two types of rules including security rules
(SRs) describing expected behaviors and attack rules
(ARs) specifying potential attacks, security violations or
evasions. Both of them are defined by two set of events:
context and trigger. Interestingly, the trigger can be an
event or a set of events that occur before, after or at the
same time to the context. The trigger is checked only if
the context is validated:

• If the trigger is found invalid, a non-respect
instance is detected.

– In the case of SRs, the expected behavior is
not respected.

– In the case of ARs, the trace is attack free.

• If the trigger is found valid, a respect instance is
detected.

– In the case of SRs, the expected behavior is
respected.

– In the case of ARs, an attack has been
detected.

An example for detecting ARP poisoning attacks
can be found in [18]. The context is any ARP request
captured from the medium, and the trigger is the event
where two or more ARP replies appear with di↵erent
MAC addresses in a specific range of time.

The rules are written in Boolean logic and rely on
LTL. For complex analysis, it is possible to use embedded
functions. The work in [15] presents the utilization
of embedded functions to compare HTTP User-Agent
strings to signatures coming from prepared databases, as
well as to detect specific string patterns in certain fields
of the header. Embedded functions play the role as the
connector between MMT-Extract and MMT-Security
which fulfills the missing in MMT-Extract and helps the
MMT-Security works e�ciently and conveniently.

4 MMT adaptation for 802.15.4/6LoWPAN

and tinyDTLS

In this section, we explain the adaption of MMT-
extract and MMT-Security to 802.15.4/6LoWPAN and
tinyDTLS.

4.1 MMT-Extract

First, we extended the functionality of MMT-
extract to support unicast, broadcast and 802.15.4
acknowledgment messages. Beacon messages will be
ignored.

Second, we also extended to support IPHC, FRAG1
and FRAGN for 6LoWPAN messages. For FRAG1
and FRAGN, MMT-extract is able to reassemble the
fragmented packets to get the original packet, then
extract information required for the Security Rules.
IPHC dispatch verifies if the received header of the
received frame is ICMPv6, UDP or the compression of
UDP using NHC. It also verifies that IPv6 addresses are
not in the IPv6 message’s fields.

Finally, we adapt MMT-extract to identify all
di↵erent types of DTLS records, including the ones with
dynamic sizes records.

Figure 12 shows the adapted plugins for MMT-
extract. In a parallel work, Hoa [12] published some of
these plugins.

4.2 MMT-Security

Just as briefly discussed in Section I, in [8] we identified
threats that could have an impact on communications
between sensors. In particular, in the upper layer,
where the commands for sensors and the data measured
by them are expected to be passed. Also, a list of
countermeasures was enumerated with the assumption
that a proper configuration with DTLS provides enough
mitigation. Said threats are summarized in Table 1 which
is composed of the following elements:
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Figure 12: MMT-Extract: Extensions for 802.15.4/6LoWPAN and DTLS

• The likelihood of the threat, measured as low,
moderate, substantial or severe.

• The impact over the WSN and the reputation of
its provider is measure as low, medium and high.

• The risk is measured as minor, major and critical.

• Security Rules for MMT, which monitors a proper
configuration of DTLS able to mitigate the threat.

In this work, we implement Security Rules 1 to 4
using knowledge of the involved protocols, as shown in
the next subsections.

4.2.1 SR1 (Security Rule 1)

Since tinyDTLS mitigates ET8 using the
cipher TLS PSK WITH AES 128 CCM 8 and
TLS ECDHE ECDSA WITH AES 128 CCM 8, then an alert
would be emitted when a node attempts to establish a
session using di↵erent cipher suites.

The context is defined by the next two events: I)
detection of a ClientHello record in a DTLS session.
And II) detection of a ServerHello record for the same
DTLS session. Since both events must occur inside of the
range of lifetime of the DTLS session, then the context
is confirmed if the time is lesser than this time.

The trigger is confirmed if the Ciphersuites in
ClientHello and ServerHello are one of the two
allowed ciphers.

4.2.2 SR2 (Security Rule 2)

Since tinyDTLS also mitigates ET8 using the size of the
cookies, then an alert would be emitted when a a cookie

is di↵erent than a defined size. For this work, the default
size is 16 bytes.

The context is detected by the next two events: the
detection of HelloVerifyRequest record and the detection
of ClientHello record. This is because the cookies are
used for the first time in the HelloVerifyRequest record
and for the second time in the ClientHello record.

The trigger is confirmed if the size of the cookie inside
of the HelloVerifyRequest and ClientHello records is 16
bytes.

4.2.3 SR3 (Security Rule 3)

The mechanism to mitigate ET15 and ET16 is to use
DTLS protocol. Since DTLS is inside the UDP packet,
then we first have to verify that a UDP packet has been
received.

The context is confirmed if the packet carries a UDP
header.

The trigger is confirmed if: I) the port-address is
correct for the field destiny or source. And, II) the UDP
payload is identified as a DTLS record.

4.2.4 SR4 (Security Rule 4)

Other mitigation mechanism for ET15 and ET16 is by
verifying that a client-server DTLS handshake process
has been succesfully made before the transmission of
data. For TinyDTLS, we can verify this condition by
verifying the ChangeCipherSpec record, which forces the
nodes to renew the DTLS session or to create the first
one.

The context is confirmed when ChangeCipherSpec
record is detected.
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The trigger is confirmed if the ChangeCipherSpec
record is received ten seconds, or less, before
HelloClient record .

5 Validation of the implementation

5.1 Testbed definition

The physical scenario was implemented using FIT IoT-
Labb, which is a large-scale open testing infrastructure
for systems and applications on wireless and sensor
communication networks [6]. Each node is an M3c with
tinyDTLS adapted to RIOT operating systemd. MMT
has the capacity to work in real time, but to test the
adaptation, forty five minutes of tra�c were recorded
with sniffer aggregator -r for four scenarios. This
data was analyzed o↵-line by MMT.

Nodes are configured to transmit generic data, which
is echoed by the receptor. After that, the DTLS session
is terminated. The transmitted data is a set of simple
chains of text of small size, no longer than fifteen
bytes, which most of them are ICMPv6 packages,
routing protocol packages and manually triggered DTLS
communication events between nodes.

We tested scenario networks consisting of two,
five, ten and twenty nodese. The scenario with
two nodes is used to simulate a complete secure
environment, in which nodes only support PSK mode
and TLS PSK WITH AES 128 CCM 8 cipher suite. In the
scenarios with five, ten and twenty nodes, we configured
some nodes with RPK. However, RPK’s cipher suite will
be used for simulating a unsecured environment, as these
scenarios will be used to test if security rules are correctly
implemented.

Additionally, sensors are not always able to finish
their sessions. There are two identified reasons of this
failure: I) sensors are having issues processing the
certificates, or II) because a DTLS session can be re-
established after a certain time, the registries related
to them are not erased fast enough for servicing new
requests.

As already discussed in Section 3.3.3, flights 4
and 5 are composed of five DTLS records when
TLS ECDHE ECDSA WITH AES 128 CCM 8 cipher suite is
used in the mode RPK, otherwise, there are only
two DTLS records. Fragmentation over 6LoWPAN
only happens when the previous cipher suite is
used and only in the following DTLS records:
ClientHello, Certificate, ClientKeyExchange and
ServerKeyExchange.

In this work, we do have not implemented node key
storage and neither those related to EPOCH starting
time value configuration.

Table 3 shows the total number of DTLS sessions
triggered manually together with the number of
successful connections, whereas Table 4 shows the
security rules analyzed by MMT (Section 4.2).

5.2 Experiment Results

Table 3 Number of DTLS session started, Number of DTLS
completed.

Number of nodes Started Sessions Messages
2 1 14
5 7 98
10 16 224
20 52 728

In order to verify the testbed we recorded 45 minutes of
tra�c under di↵erent scenarios with a variable number of
nodes. This with the objective of evaluating the number
of violated and respected instances detected for the
security rules proposed in Section 4.2.

Table 3 shows the number of sessions and the
number of messages transmitted for two, five, ten and
twenty nodes scenarios. However, not all of them were
successful. Table 4 shows the number of successful
sessions. We can observe that for the two nodes
configuration one session was started and one session
was finished. For the five node configuration, we can
observe that seven sessions were started, but only four
of them were successful. This means that only 57.14% of
the session were successful.

One session is not successful for many reasons, some
of them are explained below:

• Because some nodes are using the RPK mode, and
the RPK mode is not recognized as valid for this
testbed.

• Because the sensors are already at their limits
for handling DTLS sessions (two sessions for this
testbed) and are forced to reject a third one.

• Because the internal timer for the DTLS sessions
are not yet expired and still counts against
the maximum number. This happens because
tinyDTLS is able to recover a DTLS session.

• The current limitation in the resources which is
more evident in the RPK mode. This is expected to
be a temporary problem as the processing power of
the sensors nodes will be increased in future years.

For the ten nodes configuration, we can observe that
sixteen sessions were started, but only six of them were
successful. This means that only 37.5% of the session
were successful. And, for the twenty nodes configuration
we can observe that fifty two sessions were started, but
only twenty eight of them were successful. This means
that only 53.58% of the session were successful.

Although not all sessions were completed we can still
use the transmitted messages to test our Security Rules.
Table 5 shows the transmitted messages coming from the
completed sessions, from the uncompleted sessions and
from retransmitted messages. Moreover, it also shows
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Table 4 Effectiveness of the sensor network to deal with the DTLS load.

Number of nodes Started Sessions Successful Sessions Effectiveness
5 1 1 100%
5 7 4 57.14%

10 16 6 37.50%
20 52 28 53.85%

Table 5 Relation between number of sessions and number of transmitted messages.

Number of nodes # Messages Transmitted Total Transmitted Msg From Intruders Total of transmitted msgs.Completed Not-Completed / Retransmitted
2 14 0 14 0 14
5 56 29 85 27 112
10 84 50 134 0 134
20 392 142 534 0 534

Table 6 Content of the DTLS Database to be tested.

Number of nodes Messages Messages from intruders SR1 SR2 SR3 SR4
R. V. R. V. R. V. R. V.

2 14 0 1 0 1 0 14 0 2 0
5 112 27 4 4 8 0 85 27 8 4
10 134 0 7 3 15 0 134 0 11 3
20 534 0 36 6 47 0 534 0 50 18

messages coming from unregistered nodes, we label them
as “intruders”.

Note that for each completed session the protocol
sends fourteen messages and the number of messages
of uncompleted session is uncertain because we do not
know what exactly failed. Fourteen messages are for a
DTLS session working on PSK mode: ten messages of
handshake to start the session, two messages for data
transmission and two more to finish the session.

Hence, using this information, Table 5 shows that
for the two node configuration, the total number of
transmitted messages are fourteen, and all of them are
from completed session.

For the five node configuration, the total number
of transmitted messages were one hundred and twelve.
From these, the number of transmitted messages
from completed sessions are fifty two; the number
of transmitted messages from intruders are twenty
seven; the rest, twenty nine, are from uncompleted or
retransmitted sessions.

For the ten node configuration, the total number
of transmitted messages were one hundred and thirty
four. From these, transmitted messages from completed
sessions are eighty four and the rest, fifty, are from

the uncompleted or retransmitted sessions. Finally, for
the twenty node configuration, the total number of
transmitted messages were five hundred and thirty four.
From these, the number of transmitted messages from
the completed session were three hundred and ninety
two; the rest, one hundred and forty two, are from the
uncompleted or retransmitted sessions.

Table 6 shows the Security Rules in the Database that
have to be verified as Recognized and the ones that have
to be verified as violated. For example, for the two nodes
configuration, all Security Rules SR1, SR2, SR3 and SR4
in the Database have to be verified has Recognized. For
the five nodes configuration, SR1, the Database contains
four security Rules that have to be verified as Recognized
and four that have to be verified as violated.

The results shown in the Table 6 are also a↵ected
by the overhead in the sensors. SR1 for the 5 sensors
scenario detects properly the ClientHello and the
ServerHello records. However, for the other scenarios
not all of those records end with a fully established DTLS
session.

SR2 has as a strong link to SR1 because both of them
monitor the same records, although they watch di↵erent
fields. Their results di↵er only when the DTLS session

Table 7 Detection percentage of success of the Security Rules.

Number of nodes Messages Messages from intruders SR1 SR2 SR3 SR4
2 14 0 100% 100% 100% 100% 100% 100% 100% 100%
5 112 27 100% 100% 100% 100% 100% 100% 100% 100%
10 134 0 100% 100% 100% 100% 100% 100% 100% 100%
10 134 0 100% 100% 100% 100% 100% 100% 100% 100%
20 534 0 100% 100% 100% 100% 100% 100% 100% 100%
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negotiation is stopped before the ServerHello record is
sent.

The final purpose of SR3 is to validate that the tra�c
at the upper layer is composed only of DTLS records. In
the case of the scenario with five sensors, there were two
rogue sensors transmitting non-compressed UDP tra�c.
The presence of rogue nodes is due to the open nature of
the wireless channel. This occurrence is not unexpected
on real implementations, particularly on environments
with a high density of nodes. Therefore, detecting the
presence of those nodes is significant and positive.

The results thrown by SR4 can identify the moment
when the sensors update their symmetric keys, by
sending the ChangeCipherSpec record. The numbers
in the first three scenarios double the number of
successful connections because the rule takes separately
the discovery of each couple of DTLS ChangeCipherSpec
records. This in turn is echoed by the servers to the
clients. This rule is impacted when sensors are forced
to resend packets due to the congestion in the network,
which is the case of the scenario with 20 sensors. The
cases where the rule was violated was because the
lifetime expected was inferior to the real time. Therefore,
there are two important conclusions: 1) The rule requires
to follow the stream to try to identify the beginning
and the end of a data transmission. And 2) With the
current configuration for the rules, it is not possible to
guarantee the standard lifetime expected by DTLS in
bigger scenarios, maybe because of the congestion in the
network or maybe because the resources of the sensors.

Finally, Table 7 shows that all the rules were correctly
verified as Recognized and Violated.

6 Conclusions and future work

In this paper, advanced monitoring techniques are
presented to check secure M2M communications
over 802.15.4/6LoWPAN and using TinyDTLS. These
techniques have been integrated to the monitoring
MMT tool. This implementation has been validated by
experiments on real testbeds combining up to 20 sensors.
Tra�c data for testing were recorded and used as a trace.

Although the use of TinyDTLS on WSN has been
validated in other works, especially in terms of energy
consumption, more testing on real implementations
under real-time conditions are required. Because of
parameters such as the number of simultaneous DTLS
sessions, the lifetime and the negotiation for resuming
previous DTLS sessions have a high impact on the
performance of the sensors andWSN bandwidth as noted
in our tests.

Also, it is worth emphasizing the di�culties of
monitoring native tra�c over 6LoWPAN networks,
when DPI is preferred. This is because of the high
modularity of 6LoWPAN with its dispatches. For this
work, the focus was on tra�c over UDP using only
the IPHC dispatch. This generates five possible ways to

transmit messages: Non-compressed UDP and the four
compression variants with NHC.

It is challenging because sensors can interchange
modes at each point of the transmission. And, if the
messages requires to be fragmented, the complexity for
preserving the DPI becomes higher. Nevertheless, one
advantage of our design is that in normal model DTLS
handshake can be completed in very short periods of
time.

Although the plugins were developed for a generic
DTLS communication, they were tested for TinyDTLS
0.8.2. As a consequence, any support for other stacks
that make use of jumbo datagrams and fragmentation
over this layer requires further work.
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