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Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM
crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash
is commonly observed. In this article, we present a mathematical model that reproduces the
rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash.
Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM
precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an
explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the
pedestal, grow and rotate in the electron diamagnetic direction in the laboratory reference frame.
Approaching the ELM crash, this rotation decreases corresponding to the moment when the
magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut
from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the
Maxwell stress tensor. [http://dx.doi.org/10.1063/1.4947201]
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Edge localized mode rotation and the nonlinear dynamics of filaments

I. INTRODUCTION

Edge Localized Modes (ELMs) are magnetohydrody-
namic (MHD) instabilities that appear at the edge of the toka-
mak plasma in high confinement mode (H-mode). They are
characterized by periodic bursts of matter and energy. The
crash of this instability leads to the relaxation of the edge
pressure pedestal, then the edge pedestal rebuilds and another
ELM cycle occurs. The quantity of energy that is expelled
periodically can cause partial erosion or melting of plasma-
facing components. This could limit the operational capabil-
ities of future larger tokamak devices like ITER and DEMO.
For recent review articles on ELMs, we refer to Refs. 1 and 2.

In recent years, measurements performed with electron
cyclotron emission imaging (ECEI) have provided insights
on the dynamics of this instability prior to and during an
ELM crash. ECEI measurements in the KSTAR tokamak®
show that the ELM evolution can be separated in three differ-
ent phases. The first is a linear phase where the localized
mode grows, the second is a quasi-quiescent state where the
mode growth decreases, and the third is when the ELM crash
occurs. In the majority of cases, during the linear phase, the
rotation of the precursors (structures preceding an ELM
crash) is observed in the electron diamagnetic direction. Near
the crash, the rotation speed of the precursors decreases and
the precursor structure seems to extend radially towards the
last closed flux surface where the ELM crash occurs. These
measurements are in agreement with AUG ECEI measure-
ments.*” In AUQG, the rotation of the ELM precursors is also
found in the electron diamagnetic direction but the first-
expelled ELM filament is observed to reverse rotation and to
propagate in the ion diamagnetic direction. Gas puffing imag-
ing data in NSTX® also showed precursors rotating in the
electron diamagnetic direction and at the crash, the filament
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reversing rotation direction (propagating in the ion diamag-
netic direction). Recently in JET, fast infra-red thermography
measurements at the divertor’ show ELM precursors stripes
moving radially outward. This also suggests ELM precursors
structures rotating in the electron diamagnetic direction. In
tokamak a configuration variable with magnetic measure-
ments® and in MAST using beam emission spectroscopy,’
similar results were obtained.

Several instabilities can be candidate to explain the ELM
precursors. The microtearing mode instability has been pro-
posed as one of the possible candidates.”'® This instability
shares several characteristics with the experimental measure-
ments, but its radial extend is short (of the order of the ion
Larmor radius). This last feature is incompatible with some of
the observations. Also, peeling modes and drift waves can be
considered, but the firsts are characterized by low toroidal
mode numbers that are inconsistent with the observations and
the seconds are electrostatic in nature, a characteristic not com-
patible with the electromagnetic properties of ELM precursors.

Ballooning modes are strong candidates to explain the
observations.' 2 In this manuscript, we will focus on this last
instability. Analytically in the linear phase we consider ideal
and resistive ballooning modes taking into account bi-fluid
diamagnetic effects. Numerical calculations using the non-
linear code JOREK'*'* are performed. A comparison with the
analytical results in the linear stage is carried out. This numeri-
cal code is also used to analyze the nonlinear saturation of the
instability and to characterize the mechanism that allows to
explain the reversal of the filaments rotation at the ELM crash.

Il. THE LINEAR BALLOONING MODE ROTATION

The reduced MHD equations over the magnetic flux P,
the electric potential @, and the pressure P are used to
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calculate the dispersion relation associated with the balloon-
ing instability. We use the gyro-viscous cancellation to sim-
plify the equation over @ (see, e.g., Ref. 15).

The ballooning representation is used to reduce the two-
dimensional problem to one dimension (see, e.g., Ref. 16).
The following ansatz is applied: ®(0,¢,1) =3 >
O (6 + 2nl)e"P=a0+2mD]=0)  for a ballooning mode /=0,
with ¢ being the safety factor, and 6 and ¢ are, respectively,
the poloidal and toroidal angles. Also, for simplification, we
consider the reference frame rotating with the E x B veloc-
ity, hence in this reference frame the equilibrium velocity
vg =0 (®,_¢ = 0, with n being the toroidal mode number).
We will add the E x B velocity contribution at the end of the
linear calculation.

Using these hypotheses, the following dispersion rela-
tion, in dimensionless form, is found (the details of the deri-
vation are given in the Appendix):

.2
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with the diamagnetic frequencies a);‘/e (ion/electron, non-
dimensionalized by the Alfvén time 7,)

wf = —w, =v! -egky =~ d;V,(Po)ky, )

the dimensionless diamagnetic velocity v; = d;(b x VP),
the unit magnetic vector b (this vector is approximated by
the toroidal unit vector eg), the diamagnetic parameter (or
ion inertial length normalized by the major radius) d;
= (wcita) ™ = m;/(eRo\/Polty), and the ideal interchange
growth rate y; = \/—4V,.(Py)/(BoRy). Also we consider, kg
is the poloidal wavenumber, Py is the axisymmetric pressure,
q is the safety factor, s is the magnetic shear, and 7 is the
dimensionless inverse Lundquist number. Finally, By, po, Ro,
Lo, and e are, respectively, a reference magnetic field, den-
sity, length, the magnetic permeability, and electric charge.
At high resistivity (1 — oo) and strong magnetic shear
(s > 1), Eq. (1) simplifies to o(w — w})(w — o)) = (iyn)3
with y, = (k2q2s2R2nyH)'/. Considering the diamagnetic
frequencies: ®; = —w} = w,, the roots of the polynomial
can be found using Cardan’s method. Taking into account
the change of variable: w = iy, this dispersion relation can
be simplified to (> + w?) = ;. Two limits can be identi-

fied in this equation, for y, > , the solution y =~ y, and if
7y K @« we have y ~ VZ /w?. In the general case, three roots
exist, one real and two complex conjugates.'” The most
unstable root is always the real, and the value of  is pure
imaginary because o = iy, hence at this limit the unstable
mode does not rotate in the considered reference frame.
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Also at the ideal limit, # — 0, and magnetic shear,
s = 1, the dispersion relation Eq. (1) simplifies to the second
order polynomial'®'? «? — wfw + 77 =0. Two distinct

roots exist
w+ =0.5 (w;‘i\/w,’fz - 4))12). 3)

The system is unstable if |@F/2| < |y;|. And the ideal rota-
tion frequency of the mode is w! /2.20‘21 In this case, the
unstable mode rotates at half of the diamagnetic frequency in
the ion diamagnetic direction in the considered reference
frame.

Moreover, the roots of the general dispersion relation,
Eq. (1), can be computed numerically. We find that in realis-
tic cases, i.e., at low resistivity (1 < 1077), the most unstable
root is close to the ideal case Eq. (3). In Fig. 1, three com-
puted cases are compared with the analytical solution
Eq. (3). One can observe that the imaginary part of the root
is close to the ideal theory if the magnetic shear is close to
one. With increasing magnetic shear, the calculated mode is
more unstable. On the other hand, the real part of the root
matches very well the analytical solution. The rotation of the
mode, in the reference frame, is almost exactly w? /2.

To calculate the mode poloidal rotation, in the labora-
tory reference frame, we add to the intrinsic ballooning
mode rotation the equilibrium poloidal E x B velocity and
the equilibrium parallel velocity V- by (both velocities
projected in the poloidal plane). Hence, the poloidal rotation
velocity of the ballooning mode in the laboratory reference
frame, in the resistive and ideal limits writes

Resistive:  Vinode= VExa+V/)/ - by, 4

Ideal:  Vinode = Vixg + V) - by + Vi /2. 5)

The radial electric field in H-mode is observed to be domi-
nated at the pedestal by the radial pressure gradient of the
main ions.?? Also, the pitch angle is considered to be small
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FIG. 1. Evolution of the roots with the diamagnetic frequency ; (top)
imaginary part and (bottom) real part.
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(B is mainly in the toroidal direction ¢). For these two rea-
sons, in the pedestal region, the poloidal E x B velocity
VExp can be approximated by

_wP
enB’

E xB
B2

e erP,'XB
0 B2

(6)

Vexp =

here we use the right handed toroidal coordinate system
(r,0,¢). Also, the poloidal ion diamagnetic velocity is
approximated by

yr B VP

V,P;
L7 enB? '

ey~ +
enB

@)
In dimensionless units (non-dimensionalized by the Alfvén
speed), this velocity becomes

Also, the poloidal dimensionless E x B velocity at the ped-
estal, where the radial electric field is mostly induced by the
radial pressure gradient, writes

Vexp = —d;V,P;. 9

The radial gradient of the pressure is negative. Therefore, by
convention, we have chosen the E X B and electron diamag-
netic velocities in the positive direction and the ion diamag-
netic velocity in the negative direction.

Using the JOREK code,'>**2* the linear growth of the
ballooning instability with and without diamagnetic effects
is analyzed. ELM precursors were previously observed with
the JOREK code without diamagnetic effects.” Here, we
include diamagnetic effects to analyze their effect on the pre-
cursors dynamics. The parameters used for the simulations
are close to a JET tokamak plasma, as in Ref. 25. Realistic
values of the inverse Lundquist number, d; parameter, and
normalized parallel heat conductivity are typically:
n= 10_8, d;=10"2, and Ky = 10*.2°  These values
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Magnetic Flux

FIG. 2. Magnetic flux perturbation
n=~6, same parameters as in Ref. 25
(10 us between images) (top) without
diamagnetic effects, d;=0 and (bot-
tom) with diamagnetic effects, d;
=1.7%x 1072 In the bottom, the rota-
tion is anticlockwise, i.e., in the elec-
tron diamagnetic or E x B direction.

correspond to the following tokamak parameters in JET:
Ry=29m, By = 18T, npeg =33 x10”m 3, and T,,, =
T;,, = 1.8keV.

The magnetic flux perturbation is shown in Fig. 2.
Without diamagnetic effects, d;=0, the mode grows and
rotates at low speed, as was found in Ref. 13. On the other
hand, if diamagnetic effects are taken into account, the mode
rotates in the electron diamagnetic direction with a velocity
of several km/s. The E x B velocity is strongly reduced if
diamagnetic effects are not taken into account since this ve-
locity is proportional to d; at the pedestal (see Eq. (9)).

The ballooning mode velocity rotation is plotted against
the diamagnetic parameter in Fig. 3. In this figure, we
observe a linear scaling with the diamagnetic parameter d;,
in agreement with Eqgs. (4)—(9).

In our simulations, the E x B and the diamagnetic
velocities dominate over the poloidally projected parallel
velocity (V- bp). Also, we remark that if a field aligned

70 . .
n=10""k; =700 —O—
| N =10" 1) =300
n=10"3 1, =700 -----
N =10"K) =700 -0
30 tdeal yoo n = 107 K/ =700
Res. Yoo 1 = 1077 Ky =700 =immm "‘\,«“' N
=40 & :
~
3
£
=~ 30
20
10

1.5-102

1.0-1072
d;

0 5.0-1073

FIG. 3. Poloidal rotation velocity of the modes as a function of d; and com-
parison with the expressions Eqgs. (4) and (5) taken at Wy (i.e., at the flux
surface with |VP|,,,.), k is the normalized parallel heat conductivity.
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FIG. 4. Poloidal velocity profile of the unstable mode as a function of the
normalized magnetic flux (the profiles are averaged at the low field side,
0 € [-n/2,7/2]).

structure is considered (k, = 0), the parallel velocity will
not contribute to the apparent poloidal velocity of this
structure.

For a small resistivity, the numerical computations are
close to the ideal formula Eq. (5) (thick black curve in Fig.
3). We observe that the ballooning mode velocity is always
dominated by the E x B velocity, this mode always rotates
in the electron diamagnetic direction. This can be explained
as follows: at the pedestal, the ion diamagnetic and E x B
velocities have approximatively the same amplitude but op-
posite direction (see Eqgs. (8) and (9)). For realistic cases
(low resistivity), the system behaves close to the ideal limit.
At this limit, the ballooning mode rotates with half of the ion
diamagnetic velocity (see Eq. (5)). As a consequence, the
E x B velocity is always larger and the ballooning mode
rotates in the electron diamagnetic direction in the laboratory
reference frame. Therefore, replacing in Eq. (5) the veloc-
ities by the expressions given in Egs. (8) and (9) and neglect-
ing V- by, the formula estimating the rotation velocity of
ELM precursors can be written (in normalized units)

d,
Vmade ~ _jvrpiv (10)

in the electron diamagnetic direction.

During the linear phase, the effect of the E x B shear on
the perturbation is small. We do not observe any deformation
of the perturbation in the radial direction (see Fig. 2). The
poloidal rotation velocity of the perturbation is almost uni-
form (see the poloidal velocity profile in Fig. 4). The E x B
shear does not act on the perturbation because the growth
rate of the unstable mode is larger that the local E x B shear

Z(m)

1

2
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rate. In the linear phase, for all the calculations considered:
wpxp < 7. The effect of the E x B shear becomes important
in the nonlinear phase of the instability. In Section III, we
will address this nonlinear phase.

lll. NONLINEAR DYNAMICS OF ELM FILAMENTS

Experimentally, the rotation of the modes is observed to
decrease just before the ELM crash.>° Also, the observations
show the rotation of the ELM filaments in the ion diamag-
netic direction.*®° This rotation is opposite to the one
observed for the ELM precursors.

With the JOREK code, the nonlinear evolution of the
ballooning modes is studied for a case with d; = 7.6 x 1072,
Near the ELM crash, the density field can be observed in
Fig. 5. In this image, filaments of high density are expelled
in the ion diamagnetic direction as observed in the
experiments.

The inversion of the rotation occurs at the nonlinear
saturation of the instability. The perturbed electric potential
grows exponentially in the linear phase. It creates periodic
vortices with alternating positive and negative rotations.
This exponentially growing electric potential saturates when
its magnitude is of the same order as the equilibrium electric
potential. At this level, the generated E x B vortices start to
interact with the equilibrium density field. The strong corre-
lation between the density and the electric potential can be
observed in Fig. 6(a). The Vg, p vortices are deformed, they
are thinner in the radial direction and elongated in the poloi-
dal direction, following the magnetic field lines.”’ As
observed in Fig. 6(a), the density filament is created and con-
vected by the E x B velocity vortex. Also, from the density
p equation, we can show that the density motion is governed
by the E x B velocity term, this equation writes

d,p = 1/R[pR?, ®] + d; 9,P + Diff. + Source,  (11)

with the Poisson bracket defined as: [f, g] = eg4 - (Vf x Vg)
—in cylindrical coordinates, (R, Z, ¢»)— (the Poisson bracket
term corresponds to the E x B convection term: —vg - Vp).
In this equation, the diamagnetic velocity (second term on
the right hand side) does not act as an advection term but
only as a compression term. Therefore, only the E X B ve-
locity convects the density filament (first term on the right
hand side).

Density (mA-3)
0.5e20

- 0.4e20

| FIG. 5. Density filaments are expelled
I in ion diamagnetic direction, d;
| =7.6 x 1073 (5 us between images).
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The profiles of the axisymmetric component of the
E x B velocity are plotted in Fig. 7 as a function of the
normalized magnetic flux. In this figure, we observe a strong
velocity shear created during the ELM crash (see also Fig.
6(b)). At the same time as the filament is convected, a strong
E x B shear appears. In the region where the mode perturba-
tion is larger (‘Wy =~ 0.96), the velocity profile decreases and
crosses the zero abscissa axis. This can explain why experi-
mentally the ELM precursors decelerate approaching the
crash. The shear increases further and the E x B velocity
becomes negative. This effect makes the high density fila-
ment to cut from the main plasma, and the filament is
expelled.

The different terms of the E x B vorticity wg equation,
implemented in the JOREK code, are plotted as a function of
time in Fig. 8 (averaged on the closed flux surface region for
n=20). The vorticity equation is the projection, in the toroi-
dal direction, of the curl of the momentum equation. This
equation writes

25 : :
t= 856 pus
20 b t=1263 us
15 [ Crashz=1273 us
= 1282 pus =mim
= 10
g
= 5
2
=0
-5
10 v
-15
0.8 0.85 0.9 0.95 1 1.05

2%

FIG. 7. Axisymmetric (n=0) E x B velocity profiles during an ELM crash
(averaged in the region between the low field side and the vertical direction
0 € [0,7/2]).
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Norm. Maxwell stress ferm
-le-10 0
[

le-10

FIG. 6. (a) Density filament (color-
map) and electric potential isocontours
(white lines), (b) axisymmetric E x B
velocity, and (c) normalized Maxwell
stress term R~'[W, j]. All these quanti-
ties are taken at the same instant, dur-
ing the ELM crash (r= 1273 us in
Figs. 7 and 8).

(©)

Vo -V x {R*[pdve = —p(ve - V)vg — p(v] - V)ve
— VP +j x B + uV>vg]}, (12)

with V¢ =1/Reg, ¢ being the toroidal direction, and u
being the dynamic viscosity. The weak form of this equation
allows to integrate the different terms in a volume. In weak
form, the expression of the vorticity equation is

5;WE = - [ﬁvu* . VJ_(éfq))dV

- (‘%[uﬂm — Rpwelu®, @] + Rlu, P

1
WV -V x (R2p(v;‘ : V)vE) 9]

F
—u' 3 Og + 'V x (RZMVZUE)>dV7 (13)

with u* being a test function and p = R?p. The first two terms
on the right hand side correspond to the term —p(vg - V)vg
in the momentum equation. The third term on the right hand
side is the pressure term, and the fourth corresponds to the dia-
magnetic velocity term Dia. The fifth and sixth terms corre-
spond to the j x B term in the momentum equation, and the
last term is the viscosity term Visco. For more details, we refer
to Refs. 13, 23, 24, and 26.

In Fig. 8, the equilibrium noted Egq is the static equilib-
rium: pressure R[u*, P] plus Maxwell stress tensor R~![\W, ]
(in strong form: Eg = V¢ - V x {R*[j x B — VP]}). In the
linear phase 7 < 1.23ms, we find Eq+ Visco~0, and
the Maxwell stress term is balanced by the pressure and by
the viscous dissipation of the equilibrium flows. A descrip-
tion of these flows can be found in Ref. 28. At t ~ 1.24 ms,
in Fig. 8, the diamagnetic term —V¢ - V x (R*p(v} - V)vg)
(Dia) grows but is still balanced by the equilibrium Eg and
the viscosity term. Then, at r = 1.273 ms (same time as in
Fig. 6), the ELM crash occurs. The term d,wg becomes large,
and strong axisymmetric (n=0) vorticity is created. This
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vorticity is generated nonlinearly by the unbalance between
the terms in the vorticity equation. The terms dominating the
wg dynamics are the Maxwell stress tensor R’l[‘I’, j]13 (see
also Fig. 6(c)) and the Dia term.

The two larger terms in the vorticity equation are the
Maxwell stress tensor and the pressure terms (see Fig. 8, cen-
ter and bottom). At the nonlinear crash, the larger term gov-
erning the vorticity evolution is R~!'[W, j|. The pressure term
R[u*,P] is of the same order of magnitude (with opposite
sign), but it does not behave with the same dynamic as the
time derivative of the vorticity d,wg. This behavior suggests
that magnetic activity is enhanced at the nonlinear phase.
Magnetic reconnection seems to play an important role at the
ELM crash; this phenomenon was suggested in Ref. 29 and
recently in Ref. 30. The detailed study of the magnetic
reconnection at the ELM crash will be left for a future work.

IV. CONCLUSION

The behavior of the linear ballooning instability is close
to the ideal limit if realistic values of the tokamak plasma
resistivity are considered. The ideal ballooning calculation
yields a formula, Eq. (10), that estimates the rotation velocity
of ELM precursors. This linear analysis is confirmed by
JOREK simulations and explains the ELM precursors rota-
tion observed experimentally. This rotation is in the electron
diamagnetic direction and is found to increase linearly with
d; (the ion inertial length normalized by the major radius of
the tokamak). In the linear phase, the E x B shear rate is
smaller than the growth rate of the ballooning instability.
Therefore, the E x B shear does not interact with the pertur-
bation and the unstable mode is observed to rotate with a
uniform velocity in the poloidal direction.

The electric potential perturbation grows exponentially
in the linear phase. At the nonlinear saturation, its amplitude
is of the same order as the electric potential equilibrium field.
Consequently, it convects the density field and forms fila-
ments of density. At the same time, the perturbation interacts
nonlinearly and creates an axisymmetric E X B velocity
shear. This strong shear leads to the expulsion of the density
filaments outside the main plasma. This moment corresponds
to the ELM crash. The generated axisymmetric flow leads to
the reversal of the filaments rotation. The rotation is in the
ion diamagnetic direction, as observed experimentally.
Looking at the terms in the vorticity equation, we observe
that the one dominating the nonlinear generation of flows is
the Maxwell stress tensor. This behavior indicates that mag-
netic reconnection occurs inside the plasma, leading to a
more complex dynamical picture.

An interesting perspective for the present work is the
study of the magnetic reconnection at the ELM crash. The
transport, parallel to the magnetic field lines, is very fast (of
the order of the ion sound speed in the scrape-off layer).
Therefore, the changes in the magnetic topology at the
plasma edge can connect a core region, with high density
and temperature, with the scrape-off layer region. This could
considerably modify the power deposition on the plasma-
facing components of a tokamak.
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APPENDIX: DERIVATION OF THE BALLOONING
DISPERSION RELATION

The ballooning dispersion relation is derived from: the
induction, the vorticity, and the pressure equations. In
dimensionless form, the induction equation writes

oV + diV//P — V//(D =AY, (A1)

with P = P; = P, being the pressure, ¥ being the magnetic
flux function, and @ being the electric potential. The dimen-
sionless vorticity equation (with the gyro-viscous cancella-
tion'®) yields

—[0,+ (ve+v}) - V]VI®—2g-VP+V, (A¥) =0, (A2)

with the vector
2 (B B
g:——(—xv—>. (A3)

The dimensionless pressure equation, considering the media
incompressible, is

0P +vp- VP =0. (A4)

In these equations, we have taken into account Ampere’s Law
(we consider the current density in the toroidal direction)

1
Jjo = —AY. (AS)
Ho

To simplify these equations, we take into account the
reference frame rotating with the E x B velocity, hence in
this reference frame the equilibrium speed vg|,_, = 0. For
simplicity, we set the equilibrium electric potential to zero
(@|,_o = 0). In the vorticity equation, we also neglect the

advection by the perturbation (this is a second order term)
and Eq. (A2) becomes

—[0+v] - VIVI® —2g - VP+V,(A¥) =0, (A6)

with @ being the electric potential perturbation. The dimen-
sionless diamagnetic velocity is expressed as
v] =d;j(b x VP). (A7)

Using the ballooning representation, an eikonal form is
retained for the perturbation of the three scalar fields (¥, ©,
and P). Explicitly, for the electric potential, we have

(I”)(r’ 07 ?, [) _ (i)(H)ei[n(q)fq(r)ﬁ)fo)r]. (A8)

In Fourier space, the k - g term appearing in Eq. (A6) can be
written as

[ko cos(0) + k, sin(0)]. (A9)

k-g—
£~ BoRo
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From Eq. (A8), we can derive the following relations:

ky
k(ﬁ:_ﬂv kl'=_@7 _=S63
r r ko
2 =i+ 5207,
i
ky=——20 A10
// qRO 0> ( )
with
s="da. (A11)
qdr

Using Egs. (A8)—-(A10), we linearize and combine Egs.
(A1), (A4), and (A6). The following equation is derived:

(0 -0k

o — 02D
(w—wZJriﬂki)qu%aeg Folw—opk

+ 97 k3[cos(0) + s0sin(0)]® = 0. (A12)
This last equation can be expressed in the form
—3p® + G(0)D = 0. (A13)

Performing a Taylor expansion of the G function around
0 =0 (where the amplitude of the ballooning mode is maxi-
mum). We can use a second order polynomial that approxi-
mates the function G(0)|,_,. This approximation writes

—Ape® + (a(®)0* + b(w))D = 0. (A14)
In this form, the equation has the following particular solu-
tion (see, e.g., the harmonic oscillator in quantum mechan-
ics, page 124 in Ref. 31):

~ 2

D() = Dye %, (A15)

The polynomial coefficients a(w) and b(w) can be expressed
as

a(w) =o* and b(w)= —a (A16)

From these relations, the dispersion relation can be obtained
using the following equality:

a(m) = (o). (A17)
The one dimensional dispersion relation yields
(0 — o)) (inkgsz[w(w —o}) +77]
+§(a) — ! +inkd)(2s(1 — 5) — 1))
= PR (0 — o + ink2) [(w — ) + 727, (A18)

This relation can be written as Eq. (1).

'A. Leonard, Phys. Plasmas 21, 090501 (2014).

%G. Huijsmans, C. Chang, N. Ferraro, L. Sugiyama, F. Waelbroeck, X. Xu,
A. Loarte, and S. Futatani, Phys. Plasmas 22, 021805 (2015).

3G. Yun, W. Lee, M. Choi, J. Lee, H. Park, B. Tobias, C. Domier, N.
Luhmann, Jr., A. Donné, J. Lee et al., Phys. Rev. Lett. 107, 045004
(2011).



042513-8 Morales et al.

4. Boom, I. Classen, P. De Vries, T. Eich, E. Wolfrum, W. Suttrop, R.
Wenninger, A. Donné, B. Tobias, C. Domier er al., Nucl. Fusion 51,
103039 (2011).

L Classen, J. Boom, A. Bogomolov, E. Wolfrum, M. Maraschek, W.
Suttrop, P. de Vries, A. Donné, B. Tobias, C. Domier et al., Nucl. Fusion
53, 073005 (2013).

°y. Sechrest, T. Munsat, D. Battaglia, and S. Zweben, Nucl. Fusion 52,
123009 (2012).

M. Rack, B. Sieglin, J. Pearson, T. Eich, Y. Liang, P. Denner, A. Wingen,
L. Zeng, 1. Balboa, S. Jachmich et al., Nucl. Fusion 54, 064012 (2014).

8R. Wenninger, H. Reimerdes, O. Sauter, and H. Zohm, Nucl. Fusion 53,
113004 (2013).

A. Kirk, D. Dunai, M. Dunne, G. Huijsmans, S. Pamela, M. Bécoulet, J.
Harrison, J. Hillesheim, C. Roach, and S. Saarelma, Nucl. Fusion 54,
114012 (2014).

19p. Manz, J. Boom, E. Wolfrum, G. Birkenmeier, I. Classen, N. Luhmann,
Jr., U. Stroth et al., Plasma Phys. Controlled Fusion 56, 035010 (2014).

p, Snyder, H. Wilson, J. Ferron, L. Lao, A. Leonard, T. Osborne, A.
Turnbull, D. Mossessian, M. Murakami, and X. Xu, Phys. Plasmas 9, 2037
(2002).

'2A. J. Webster, Nucl. Fusion 52, 114023 (2012).

Ba. Huysmans and O. Czarny, Nucl. Fusion 47, 659 (2007).

1%0. Czarny and G. Huysmans, J. Comput. Phys. 227, 7423 (2008).

15p, Schnack, D. Barnes, D. Brennan, C. Hegna, E. Held, C. Kim, S.
Kruger, A. Pankin, and C. Sovinec, Phys. Plasmas 13, 058103 (2006).

16J, Connor, R. Hastie, and J. Taylor, in Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences (The Royal
Society, 1979), Vol. 365, pp. 1-17.

Phys. Plasmas 23, 042513 (2016)

7p, Diamond, P. Similon, T. Hender, and B. Carreras, Phys. Fluids 28, 1116
(1985).

18K Roberts and J. Taylor, Phys. Rev. Lett. 8, 197 (1962).

"“W. Tang, R. L. Dewar, and J. Manickam, Nucl. Fusion 22, 1079 (1982).

20G, Huysmans, S. Sharapov, A. Mikhailovskii, and W. Kerner, Phys.
Plasmas 8, 4292 (2001).

21G. Huysmans, Plasma Phys. Controlled Fusion 47, B165 (2005).

22, Viezzer, T. Piitterich, G. Conway, R. Dux, T. Happel, J. Fuchs, R.
McDermott, F. Ryter, B. Sieglin, W. Suttrop er al., Nucl. Fusion 53,
053005 (2013).

233, Pamela, G. Huysmans, M. Beurskens, S. Devaux, T. Eich, S. Benkadda
et al., Plasma Phys. Controlled Fusion 53, 054014 (2011).

24F. Orain, M. Bécoulet, G. Dif-Pradalier, G. Huijsmans, S. Pamela, E.
Nardon, C. Passeron, G. Latu, V. Grandgirard, A. Fil et al., Phys. Plasmas
20, 102510 (2013).

M. Bécoulet, F. Orain, G. Huijsmans, S. Pamela, P. Cahyna, M. Hoelzl, X.
Garbet, E. Franck et al., Phys. Rev. Lett. 113, 115001 (2014).

2A. Fil, E. Nardon, M. Hoelzl, G. T. A. Huijsmans, F. Orain, M.
Becoulet, P. Beyer, G. Dif-Pradalier, R. Guirlet e7 al., Phys. Plasmas 22,
062509 (2015).

2N, Fedorczak, P. Diamond, G. Tynan, and P. Manz, Nucl. Fusion 52,
103013 (2012).

283, Pamela, G. Huysmans, and S. Benkadda, Plasma Phys. Controlled
Fusion 52, 075006 (2010).

2°R. Fitzpatrick, Phys. Plasmas 1, 3308 (1994).

3T, Rhee, S. S. Kim, H. Jhang, G. Y. Park, and R. Singh, Nucl. Fusion 55,
032004 (2015).

AL Phillips, Introduction to Quantum Mechanics (John Wiley & Sons, 2003).



