

Seismic reconstruction using FWI with reciprocity misfit functional and dual-sensors data

Florian Faucher, Giovanni Alessandrini, Hélène Barucq, Maarten V. de Hoop,

Romina Gaburro, Eva Sincich

► To cite this version:

Florian Faucher, Giovanni Alessandrini, Hélène Barucq, Maarten V. de Hoop, Romina Gaburro, et al.. Seismic reconstruction using FWI with reciprocity misfit functional and dual-sensors data. Applied Inverse Problems Conference, Jul 2019, Grenoble, France. hal-02184215

HAL Id: hal-02184215 https://hal.science/hal-02184215v1

Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Seismic reconstruction using FWI with reciprocity misfit functional and dual-sensors data

Florian Faucher¹,

Giovanni Alessandrini², Hélène Barucq¹, Maarten V. de Hoop³, Romina Gaburro⁴ and Eva Sincich².

AIP 2019, Grenoble, France

July 11th, 2019

¹Project-Team Magique-3D, Inria Bordeaux Sud-Ouest, France.

²Dipartimento di Matematica e Geoscienze, Università di Trieste, Italy.

³Department of Computational and Applied Mathematics and Earth Science, Rice University, Houston, USA

⁴Department of Mathematics and Statistics, Health Research Institute (HRI), University of Limerick, Ireland.

Overvie	W			Ínria-
Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
0	00000	0000	00000000	O

- Time-Harmonic Inverse Problem, FWI
 - Dual-sensors data
 - Iterative reconstruction algorithm
- 3 Reconstruction procedure using dual-sensors data

4 Numerical experiments

- Experiments for acoustic media
- Comparison of misfit functions
- Changing the numerical acquisition with $\mathcal{J}_{\mathcal{G}}$
- Extension toward elasticity

5 Conclusion

Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
O	00000	0000	00000000	O
Plan				Ín ria

Reconstruction of subsurface Earth properties from seismic campaign: collection of **wave** propagation data at the surface.

- Reflection (back-scattered) partial data,
- nonlinear, ill-posed inverse problem.

Reconstruction of subsurface Earth properties from seismic campaign: collection of **wave** propagation data at the surface.

- Reflection (back-scattered) partial data,
- nonlinear, ill-posed inverse problem.

Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
O		0000	000000000	O
Plan				(nria-

2 Time-Harmonic Inverse Problem, FWI

- Dual-sensors data
- Iterative reconstruction algorithm

We consider propagation in acoustic media, given by the Euler's equations, heterogeneous medium parameters κ and ρ :

$$\begin{cases} -\mathrm{i}\omega\rho(\boldsymbol{x})\boldsymbol{v}(\boldsymbol{x}) = -\nabla\rho(\boldsymbol{x}), \\ -\mathrm{i}\omega\rho(\boldsymbol{x}) = -\kappa(\boldsymbol{x})\nabla\cdot\boldsymbol{v}(\boldsymbol{x}) + f(\boldsymbol{x}). \end{cases}$$

- *p*: scalar pressure field,
- **v**: vectorial velocity field,
- f: source term,

- κ : bulk modulus,
- $\rho :$ density,
- ω : angular frequency.

We consider propagation in acoustic media, given by the Euler's equations, heterogeneous medium parameters κ and ρ :

$$\begin{cases} -\mathrm{i}\omega\rho(\boldsymbol{x})\boldsymbol{v}(\boldsymbol{x}) = -\nabla p(\boldsymbol{x}), \\ -\mathrm{i}\omega p(\boldsymbol{x}) = -\kappa(\boldsymbol{x})\nabla\cdot\boldsymbol{v}(\boldsymbol{x}) + f(\boldsymbol{x}). \end{cases}$$

p: scalar pressure field, κ : bulk modulus,v: vectorial velocity field, ρ : density,f: source term, ω : angular frequency.

The system reduces to the Helmholtz equation when ρ is constant,

$$(-\omega^2 c(\boldsymbol{x})^{-2} - \Delta) p(\boldsymbol{x}) = 0,$$

with
$$c(\mathbf{x}) = \sqrt{\kappa(\mathbf{x})\rho(\mathbf{x})^{-1}}$$

Florian Faucher

The quantitative inverse problem aims the recovery of the physical parameters from surface field measurements.

Dual-sensors record the pressure and vertical velocity:

$$\mathcal{F}(m = (\kappa, \rho)) = \{ p(\mathbf{x}_1), p(\mathbf{x}_2), \dots, p(\mathbf{x}_{n_{rev}}) \}; \\ \{ v_n(\mathbf{x}_1), v_n(\mathbf{x}_2), \dots, v_n(\mathbf{x}_{n_{rev}}) \}.$$

D. Carlson, N. D. Whitmore et al.

Increased resolution of seismic data from a dual-sensor streamer cable – Imaging of primaries and multiples using a dual-sensor towed streamer

SEG, 2007 - 2010

CGG & Lundun Norway (2017 - 2018)

TopSeis acquisition (www.cgg.com/en/What-We-Do/Offshore/Products-and-Solutions/TopSeis)

Florian Faucher	_	Reciprocity Waveform Inversion	-	July 11 th , 2019	7/2
-----------------	---	--------------------------------	---	------------------------------	-----

FWI provides a **quantitative reconstruction** of the subsurface parameters by solving a minimization problem,

$$\min_{m\in\mathcal{M}} \quad \mathcal{J}(m) = \frac{1}{2} \|\mathcal{F}(m) - d\|^2.$$

d are the observed data,

• $\mathcal{F}(m)$ represents the simulation using an initial model m:

Florian Faucher

Reciprocity Waveform Inversion

July 11th, 2019

M M M

Misfit functional ${\cal J}$

Numerical methods

- Adjoint-method for the gradient computation, L-BFGS method,
- Hybridizable Discontinuous Galerkin discretization method,
- elasticity, anisotropy, viscosity.

Hybridizable Discontinuous Galerkin (HDG) discretization:

- global matrix with the faces d.o.f. only,
- **local problem** to have the volume solution on DG d.o.f.

- Global matrix needs less memory than FE and DG (order),
- the local problems are small and embarrassingly parallel,
- ▶ 1st order: same accuracy for *p* and *v*,
- topography, sub-surface shapes.

Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
0	00000		00000000	O
Plan				Ín ria

3 Reconstruction procedure using dual-sensors data

• Compare the pressure and velocity fields separately (L2):

$$\mathcal{J}_{L2} = \sum_{source} \frac{1}{2} \|\mathcal{F}_{p}^{(s)} - d_{p}^{(s)}\|^{2} + \frac{1}{2} \|\mathcal{F}_{v}^{(s)} - d_{v}^{(s)}\|^{2}$$

• Compare the pressure and velocity fields separately (L2):

$$\mathcal{J}_{L2} = \sum_{source} \frac{1}{2} \|\mathcal{F}_{p}^{(s)} - d_{p}^{(s)}\|^{2} + \frac{1}{2} \|\mathcal{F}_{v}^{(s)} - d_{v}^{(s)}\|^{2}$$

Compare the reciprocity-gap:

$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2$$

G. Alessandrini, M.V. de Hoop, F. F., R. Gaburro and E. Sincich Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization ESAIM: M2AN, 2019.

$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2.$$

Motivated by Green's identity (using variational formulation).

$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2.$$

- Motivated by Green's identity (using variational formulation).
- Reciprocity-gap functional from inverse scattering with Cauchy data.

July 11th, 2019

Florian Faucher

Reciprocity Waveform Inversion

Stability	results			Ínva
Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
O	00000	00●0	000000000	O

Lipschitz-type stability for the Helmholtz equation with partial data,

 $\|m_1-m_2\| \leq \mathcal{C}\big(\mathcal{J}_{\mathcal{G}}(m_1,m_2)\big)^{1/2},$

Lipschitz-type stability for the Helmholtz equation with partial data, $\|m_1 - m_2\| \leq \mathcal{C} \big(\mathcal{J}_{\mathcal{G}}(m_1, m_2) \big)^{1/2},$

- for piecewise linear parameters.
- Using back-scattered data from one side in a domain with free surface and absorbing conditions,

- 1		-	
- 1			
- 1			
- 1			
- 1			

G. Alessandrini, M.V. de Hoop, R. Gaburro and E. Sincich

Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data arXiv:1702.04222, 2017.

G. Alessandrini, M.V. de Hoop, F. F., R. Gaburro and E. Sincich

Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization $% \label{eq:construction}$

ESAIM: M2AN, 2019.

It allows the separation of numerical and observational sources:

$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2.$$

It allows the separation of numerical and observational sources:

$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2.$$

- ▶ *s*₁ is fixed by the observational setup,
- ► *s*₂ is chosen for the numerical comparisons,
- arbitrary positions of computational source,
- no need for a priori information on the observational source: position and wavelet are not required,
- not possible with the traditional misfit.

Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
O	00000	0000		O
Plan				(nain -

- Experiments for acoustic media
- Comparison of misfit functions
- Changing the numerical acquisition with $\mathcal{J}_{\mathcal{G}}$
- Extension toward elasticity

3D velocity model $2.5 \times 1.5 \times 1.2$ km using dual-sensors data.

We work with time-domain data acquisition.

We work with time-domain data (pressure and velocity).

For the reconstruction, we apply a Fourier transform of the time data.

$$\mathcal{J}_{L2} = \sum_{source} \frac{1}{2} \|\mathcal{F}_{\rho}^{(s)} - d_{\rho}^{(s)}\|^2 + \frac{1}{2} \|\mathcal{F}_{v}^{(s)} - d_{v}^{(s)}\|^2.$$

$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{\text{source source}} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2.$$

But the major advantage of $\mathcal{J}_{\mathcal{G}}$ is the possibility to consider alternative acquisition setup.

Experiment with different obs. and sim. acquisition Unita-

$$\min \mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2$$

Acquisition for the measures s_1

- 160 sources,
- 100 m depth,
- point source,

$$\min \mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| d_v^{(s_1)T} \mathcal{F}_p^{(s_2)} - d_p^{(s_1)T} \mathcal{F}_v^{(s_2)} \|^2.$$

Acquisition for the measures s_1

- 160 sources,
- 100 m depth,
- point source,

Arbitrary numerical acquisition s_2

- ► 5 sources,
- ▶ 80m depth,
- multi-point sources,

No need to known observational source wavelet.

Differentiation impossible with least squares types misfit.

July 11th, 2019

Data from frequency between 3 to 15 Hz, domain size $2.5\times1.5\times1.2$ km, Simulation using 5 sources only.

Frequency from 3 to 15 Hz, $2.5 \times 1.5 \times 1.2$ km, Simulation using 5 sources only. -33% computational time.

Wave propagation in elastic media

$$-\nabla \cdot \underline{\sigma}(\mathbf{x}) - \omega^2 \rho(\mathbf{x}) \mathbf{u}(\mathbf{x}) = \mathbf{g}(\mathbf{x}),$$

 σ is the stress tensor; elastic isotropy, Lamé parameters λ and μ :

 $\underline{\sigma} = \frac{\lambda}{\mathrm{Tr}(\underline{\epsilon})}I_d + 2\underline{\mu}\underline{\epsilon}.$

Wave propagation in elastic media

$$-\nabla \cdot \underline{\sigma}(\mathbf{x}) - \omega^2 \rho(\mathbf{x}) \mathbf{u}(\mathbf{x}) = \mathbf{g}(\mathbf{x}),$$

 σ is the stress tensor; elastic isotropy, Lamé parameters λ and $\mu:$

 $\underline{\sigma} = \frac{\lambda}{\mathrm{Tr}(\underline{\epsilon})}I_d + 2\underline{\mu}\underline{\epsilon}.$

Three (heterogeneous) parameters to characterize the medium:

▶
$$\lambda$$
 and μ , or $c_{\rho} = \sqrt{(\lambda + 2\mu)/\rho}$, $c_{s} = \sqrt{\mu/\rho}$

• Density ρ .

Increased computational requirement and the ill-posedness of the inverse problem.

In elasticity, reciprocity needs measurements of σ and \boldsymbol{u}

$$\mathcal{F}(\boldsymbol{m} := (\lambda, \mu, \rho)) = \{ \boldsymbol{u}(\boldsymbol{x}) \mid_{\Sigma}, (\underline{\sigma}(\boldsymbol{x}) \cdot \boldsymbol{n}) \mid_{\Sigma} \}.$$

In elasticity, reciprocity needs measurements of σ and \boldsymbol{u}

$$\mathcal{F}(\boldsymbol{m} := (\lambda, \mu, \rho)) = \left\{ \boldsymbol{u}(\boldsymbol{x}) \mid_{\Sigma}, (\underline{\sigma}(\boldsymbol{x}) \cdot \boldsymbol{n}) \mid_{\Sigma} \right\}.$$
$$\mathcal{J}_{\mathcal{G}} = \frac{1}{2} \sum_{s_1} \sum_{s_2} \| \boldsymbol{d}_{\boldsymbol{u}}^{(s_1)T} \mathcal{F}_{\sigma \cdot \boldsymbol{n}}^{(s_2)} - \boldsymbol{d}_{\sigma \cdot \boldsymbol{n}}^{(s_1)T} \mathcal{F}_{\boldsymbol{u}}^{(s_2)} \|^2.$$

Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
0	00000	0000	○○○○○○●○○	O
Pluto mo	del			Ínria

2D elastic models of size 31 \times 7km.

2D elastic models of size 31 \times 7km.

- ► The density remains fixed; frequency from 0.50 to 7 Hz,
- Low frequency could be replaced by complex frequency (Laplace domain) or a priori information.

Observational acquisition:

- 150 sources,
- 20 m depth.

Florian Faucher

Computational acquisition:

- 30 sources,
- ▶ 10 m depth.

July 11th, 2019

- ► The density remains fixed; frequency from 0.50 to 7 Hz,
- Low frequency could be replaced by complex frequency (Laplace domain) or a priori information.

- The density remains fixed; frequency from 0.50 to 7 Hz,
- Low frequency could be replaced by complex frequency (Laplace domain) or a priori information.

Intro	Inverse Problem	Reciprocity WI	Experiments	Conclusion
O	00000	0000	00000000	O
Plan				Ínria

Quantitative time-harmonic inverse wave problem:

- Hybridizable Discontinuous Galerkin discretization, HPC,
- large scale optimization scheme using back-scattered data,
- acoustic, elastic, anisotropy, 2D, 3D, attenuation,
- stability and convergence analysis.

Reciprocity-gap waveform inversion:

- minimal information on the acquisition setup,
- reduced computational cost,
- other applications (elasticity, seismology, helioseismology),
- perspective: design efficient setup; data (rotational seismology).

Quantitative time-harmonic inverse wave problem:

- Hybridizable Discontinuous Galerkin discretization, HPC,
- large scale optimization scheme using back-scattered data,
- acoustic, elastic, anisotropy, 2D, 3D, attenuation,
- stability and convergence analysis.

Reciprocity-gap waveform inversion:

- minimal information on the acquisition setup,
- reduced computational cost,
- other applications (elasticity, seismology, helioseismology),
- perspective: design efficient setup; data (rotational seismology).

THANK YOU

Bibliography 1/2

D. Carlson, N. D. Whitmore et al.

Increased resolution of seismic data from a dual-sensor streamer cable – Imaging of primaries and multiples using a dual-sensor towed streamer

SEG, 2007 – 2010

CGG & Lundun Norway (2017 - 2018)

TopSeis acquisition (www.cgg.com/en/What-We-Do/Offshore/Products-and-Solutions/TopSeis)

P. Lailly

The seismic inverse problem as a sequence of before stack migrations

Conference on Inverse Scattering: Theory and Application, SIAM, 1983

-	

A. Tarantola

Inversion of seismic reflection data in the acoustic approximation Geophysics, 1984

A. Tarantola

Inversion of travel times and seismic waveforms Seismic tomography, 1987

H. Barucq, H. Calandra, G. Chavent, F. Faucher

A priori estimates of attraction basins for velocity model reconstruction by time-harmonic Full Waveform Inversion and Data Space Reflectivity formulation

Research Report, 2019, https://hal.archives-ouvertes.fr/hal-02016373/file/RR-9253.pdf .

G. Alessandrini, S. Vessella

Lipschitz stability for the inverse conductivity problem Adv. in Appl. Math., 2005

E. Beretta, M. V. de Hoop, F. Faucher, O. Scherzer

Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates

SIAM Journal on Mathematical Analysis, 2016

Bibliography 2/2

Inala-

G. Alessandrini, M.V. de Hoop, F. F., R. Gaburro and E. Sincich Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional well-posedness driven iterative regularization ESAIM: M2AN, 2019.
R. Kohn and M. Vogelius Determining conductivity by boundary measurements II. Interior results Communications on Pure and Applied Mathematics, 1985.
D. Colton and H. Haddar An application of the reciprocity gap functional to inverse scattering theory Inverse Problems 21 (1), 2005, 383398.
G. Alessandrini, M.V. de Hoop, R. Gaburro and E. Sincich Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data arXiv:1702.04222, 2017.
M. Grote, M. Kray, U. Nahum Adaptive eigenspace method for inverse scattering problems in the frequency domain Inverse Problems, 2017.
M. Grote, U. Nahum Adaptive eigenspace for multi-parameter inverse scattering problems Computers & Mathematics with Applications, 2019.
H. Barucq, F. Faucher, O. Scherzer Eigenvector Model Descriptors for Solving an Inverse Problem of Helmholtz Equation arXiv preprint arXiv:1903.08991 (2019).