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EXPONENTIAL CONVERGENCE TO EQUILIBRIUM IN SUPERCRITICAL
KINETICALLY CONSTRAINED MODELS AT HIGH TEMPERATURE

LAURE MARÊCHÉ

Abstract: Kinetically constrained models (KCMs) were introduced by physicists to
model the liquid-glass transition. They are interacting particle systems on Zd in which
each element of Zd can be in state 0 or 1 and tries to update its state to 0 at rate q and
to 1 at rate 1− q, provided that a constraint is satisfied. In this article, we prove the first
non-perturbative result of convergence to equilibrium for KCMs with general constraints:
for any KCM in the class termed “supercritical” in dimension 1 and 2, when the initial
configuration has product Bernoulli(1 − q′) law with q′ 6= q, the dynamics converges to
equilibrium with exponential speed when q is close enough to 1, which corresponds to the
high temperature regime.

2010 Mathematics Subject Classification: 60K35.
Key words: Interacting particle systems; Glauber dynamics; kinetically constrained
models; bootstrap percolation; convergence to equilibrium.

1. Introduction

Kinetically constrained models (KCMs) are interacting particle systems on Zd, in which each element
(or site) of Zd can be in state 0 or 1. Each site tries to update its state to 0 at rate q and to 1 at
rate 1− q, with q ∈ [0, 1] fixed, but an update is accepted if and only if a constraint is satisfied. This
constraint is defined via an update family U = {X1, . . . , Xm}, where m ∈ N∗ and the Xi, called update
rules, are finite nonempty subsets of Zd \ {0}: the constraint is satisfied at a site x if and only if there
exists X ∈ U such that all the sites in x + X have state zero. Since the constraint at a site does not
depend on the state of the site, it can be easily checked that the product Bernoulli(1− q) measure, νq,
satisfies the detailed balance with respect to the dynamics, hence is reversible and invariant. νq is the
equilibrium measure of the dynamics.

KCMs were introduced in the physics literature by Fredrickson and Andersen [11] to model the
liquid-glass transition, an important open problem in condensed matter physics (see [22, 13]). In
addition to this physical interest, KCMs are also mathematically challenging, because the presence of
the constraints make them very different from classical Glauber dynamics and prevents the use of most
of the usual tools.

One of the most important features of KCMs is the existence of blocked configurations. These
blocked configurations imply that the equilibrium measure νq is not the only invariant measure, which
complicate a lot the study of the out-of equilibrium behavior of KCMs; even the basic question of their
convergence to νq remains open in most cases.

Because of the blocked configurations, one cannot expect such a convergence to equilibrium for all
initial laws. Initial measures particularly relevant for physicists are the νq′ with q′ 6= q (see [17]).
Indeed, q is a measure of the temperature of the system: the closer q is to 0, the lower the temperature
is. Therefore, starting the dynamics with a configuration of law νq′ means starting with a temperature
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different from the equilibrium temperature. In this case, KCMs are expected to converge to equilibrium
with exponential speed as soon as no site is blocked for the dynamics in a configuration of law νq or
νq′ . However, there have been few results in this direction so far (see [7, 3, 8, 21, 18]), and they have
been restricted to particular update families or initial laws.

Furthermore, general update families have attracted a lot of attention in recent years. Indeed, there
recently was a breakthrough in the study of a monotone deterministic counterpart of KCMs called
bootstrap percolation. Bootstrap percolation is a discrete-time dynamics in which each site of Zd can
be infected or not; infected sites are the bootstrap percolation equivalent of sites at zero. To define it,
we fix an update family U and choose a set A0 of initially infected sites; then for any t ∈ N∗, the set
of sites that are infected at time t is

At = At−1 ∪ {x ∈ Zd | ∃X ∈ U , x+X ⊂ At−1},

which means that the sites that were infected at time t− 1 remain infected at time t and a site x that
was not infected at time t− 1 becomes infected at time t if and only if there exists X ∈ U such that all
sites of x+X are infected at time t−1. Until recently, bootstrap percolation had only been considered
with particular update families, but the study of general update families was opened by Bollobás, Smith
and Uzzell in [6]. Along with Balister, Bollobás, Przykucki and Smith [1], they proved that general
update families satisfy the following universality result: in dimension 2, they can be sorted into three
classes, supercritical, critical and subcritical (see definition 2), which display different behaviors (their
result for the critical class was later refined by Bollobás, Duminil-Copin, Morris and Smith in [5]).

These works opened the study of KCMs with general update families. In [20, 19, 14, 15], Hartarsky,
Martinelli, Morris, Toninelli and the author showed that the grouping of two-dimensional update
families into supercritical, critical and subcritical is still relevant for KCMs, and established an even
more precise classification. However, these results deal only with equilibrium dynamics. Until now,
nothing had been shown on out-of-equilibrium KCMs with general update families, apart from a
perturbative result in dimension 1 [7].

In this article, we prove that for all supercritical update families, for any initial law νq′ , q′ ∈]0, 1],
when q is close enough to 1, the dynamics of the KCM converges to equilibrium with exponential speed.
This result holds in dimension 2 and also in dimension 1 for a good definition of one-dimensional
supercritical update families. It is the first non-perturbative result of convergence to equilibrium
holding for a whole class of update families.

This result may help to gain a better understanding of the out-of-equilibrium behavior of supercritical
KCMs. In particular, such results of convergence to equilibrium were key in proving “shape theorems”
for specific one-dimensional constraints in [2, 12, 4].

2. Notations and result

Let d ∈ N∗. We denote by ‖.‖∞ the `∞-norm on Zd. For any set S, |S| will denote the cardinal
of S.

For any configuration η ∈ {0, 1}Zd , for any x ∈ Zd, we denote η(x) the value of η at x. Moreover,
for any S ⊂ Zd, we denote ηS the restriction of η to S, and 0S (or just 0 when S is clear from the
context) the configuration on {0, 1}S that contains only zeroes.

We set an update family U = {X1, . . . , Xm} with m ∈ N∗ and the Xi finite nonempty subsets of
Zd \ {0}. To describe the classification of update families, we need the concept of stable directions.
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Definition 1. For u ∈ Sd−1, we denote Hu = {x ∈ Rd | 〈x, u〉 < 0} the half-space with boundary
orthogonal to u. We say that u is a stable direction for the update family U if there does not exist
X ∈ U such that X ⊂ Hu; otherwise u is unstable. We denote by S the set of stable directions.

[6] gave a classification of two-dimensional update families into supercritical, critical or subcritical
depending on their stable directions. Here is the generalization proposed for d-dimensional update
families by [5] (definition 9.1 therein), where for any E ⊂ Sd−1, int(E) is the interior of E in the usual
topology on Sd−1.

Definition 2. A d-dimensional update family U is
• supercritical if there exists an open hemisphere C ⊂ Sd−1 that contains no stable direction;
• critical if every open hemisphere C ⊂ Sd−1 contains a stable direction, but there exists a
hemisphere C ⊂ Sd−1 such that int(C ∩ S) = ∅;
• subcritical if int(C ∩ S) 6= ∅ for every hemisphere C ⊂ Sd−1.

Our result will be valid for supercritical update families.
The KCM process with update family U can be constructed as follows. We set q ∈ [0, 1]. Inde-

pendently for all x ∈ Zd, we define two independent Poisson point processes P0
x and P1

x on [0,+∞[,
with respective rates q and 1 − q. We call the elements of P0

x ∪ P1
x clock rings and denote them by

t1,x < t2,x < · · · . The elements of P0
x will be 0-clock rings and the elements of P1

x will be 1-clock
rings. For any intial configuration η ∈ {0, 1}Zd , we construct the KCM as the continuous-time process
(ηt)t∈[0,+∞[ on {0, 1}Z

d defined thus: for any x ∈ Zd, ηt(x) = η0(x) for t ∈ [0, t1,x[, and for any k ∈ N∗,
• if there exists X ∈ U such that (ηt−k,x

)x+X = 0x+X , then ηt(x) = ε for t ∈ [tk,x, tk+1,x[, where
tx,k is a ε-clock ring, ε ∈ {0, 1};
• if such an X does not exist, ηt(x) = ηtk−1,x

(x) for t ∈ [tk,x, tk+1,x[.
In other words, sites try to update themselves to 0 when there is a 0-clock ring, which happens at rate
q, and to 1 when there is a 1-clock ring, which happens at rate 1− q, but an update at x is successful
if and only if there exists an update rule X such that all sites of x+X are at zero. This construction
is known as Harris graphical construction. One can use the arguments in part 4.3 of [24] to see that it
is well-defined. We denote by Pν the law of (ηt)t∈[0,+∞[ when the initial configuration has law ν.

For any q′ ∈ [0, 1], we denote νq′ the product Bernoulli(1−q′) measure. Since the constraint at a site
does not depend on the state of the site, it can be easily checked that νq satisfies the detailed balance
with respect to the dynamics, hence is reversible and invariant. νq is called equilibrium measure of the
dynamics.

We will say that a function f : {0, 1}Zd 7→ R is local if its output depends only on the states of a
finite set of sites, and we then denote ‖f‖∞ = sup

η∈{0,1}Zd |f(η)| its norm.

Theorem 3. If d = 1 or 2, for any supercritical update family U , for any q′ ∈]0, 1], there exists
q0 = q0(U , q′) ∈ [0, 1[ such that for any q ∈ [q0, 1], for any local function f : {0, 1}Zd 7→ R, there exist
two constants c = c(U , q′) > 0 and C = C(U , q′, f) > 0 such that for any t ∈ [0,+∞[,∣∣∣Eνq′ (f(ηt))− νq(f)

∣∣∣ ≤ Ce−ct.
Remark 4. We expect theorem 3 to hold also for d ≥ 3. However, our proof relies on proposition 13,
which is easy for d = 1 and was proven in [6] for d = 2, but for which there is no equivalent for d ≥ 3.
Such an equivalent would extend our result to d ≥ 3.
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The remainder of this article is devoted to the proof of theorem 3. The argument is based on the
proof given in [21] for the particular case of the Fredrickson-Andersen one-spin facilitated model, but
brings in novel ideas in order to accommodate the much greater complexity of general supercritical
models. From now on, we fix d = 1 or 2 and U a supercritical update family in dimension d. We begin
in section 3 by using the notion of dual paths to reduce the proof of theorem 3 to the simpler proof
of proposition 7. Then in section 4 we use the concept of codings to simplify it further, reducing it to
the proof of proposition 11. In section 5 we introduce an auxiliary oriented percolation process, that
we use in section 6 to prove proposition 11 hence theorem 3.

3. Dual paths

In this section, we use the concept of dual paths to reduce the proof of theorem 3 to the easier proof
of proposition 7. Let q, q′ ∈ [0, 1]. We notice that the Harris graphical construction allows us to couple
a process (ηt)t∈[0,+∞[ with initial law νq′ and a process (η̃t)t∈[0,+∞[ with initial law νq by using the
same clock rings but different initial configurations (independent of the clock rings). We denote the
joint law by Pq′,q. We notice that since νq is an invariant measure for the dynamics, η̃t has law νq for
all t ∈ [0,+∞[. To prove theorem 3, it is actually enough to show

Proposition 5. For any q′ ∈]0, 1], there exists q0 = q0(U , q′) ∈ [0, 1[ such that for any q ∈ [q0, 1],
there exist two constants c1 = c1(U , q′) > 0 and C1 = C1(U , q′) > 0 such that for any x ∈ Zd and
t ∈ [0,+∞[, Pq′,q(ηt(x) 6= η̃t(x)) ≤ C1e

−c1t.

Indeed, if f : {0, 1}Zd 7→ R is a local function depending of a finite set of sites S,∣∣∣Eνq′ (f(ηt))− νq(f)
∣∣∣ =

∣∣Eq′,q(f(ηt))− Eq′,q(f(η̃t))
∣∣ ≤ Eq′,q(|f(ηt)− f(η̃t)|)

≤ 2‖f‖∞Pq′,q((ηt)S 6= (η̃t)S) ≤ 2‖f‖∞
∑
x∈S

Pq′,q(ηt(x) 6= η̃t(x)).

Therefore we will work on proving proposition 5.
In order to do that, we need to introduce dual paths. We define the range ρ of U by

ρ = max{‖x‖∞ |x ∈ X,X ∈ U}.
For any x ∈ Zd, t > 0 and 0 ≤ t′ ≤ t, a dual path of length t′ starting at (x, t) (see figure 1) is a
right-continuous path (Γ(s))0≤s≤t′ that starts at site x at time t, goes backwards, is allowed to jump
only when there is a clock ring, and only to a site within `∞-distance ρ. To write it rigorously, the
path satisfies Γ(0) = x and there exists a sequence of times 0 = s0 < s1 < · · · < sn = t′ satisfying the
following properties: for all 0 ≤ k ≤ n − 1 and all s ∈ [sk, sk+1[, Γ(s) = Γ(sk), Γ(sn) = Γ(sn−1) and
for all 0 ≤ k < n− 1, t− sk+1 ∈ P0

Γ(sk) ∪ P
1
Γ(sk) and ‖Γ(sk+1)− Γ(sk)‖∞ ≤ ρ.

We denote D(x, t, t′) the (random) set of all dual paths of length t′ starting from (x, t). A dual path
Γ ∈ D(x, t, t′) is called an activated path if it “encounters a point at which both processes are at 0”,
i.e. if there exists s ∈ [0, t′] such that ηt−s(Γ(s)) = η̃t−s(Γ(s)) = 0. The set of all activated paths in
D(x, t, t′) is called A(x, t, t′). We have the

Lemma 6. For any x ∈ Zd and t > 0, if ηt(x) 6= η̃t(x), then for all 0 ≤ t′ ≤ t, A(x, t, t′) 6= D(x, t, t′).

Sketch of proof. The proof is the same as for lemma 1 of [21], apart from the fact that if the path is
at y, it does not necessarily jump to a neighbor of y, but to an element of y + X, X ∈ U . The idea
of the proof is to start a dual path at (x, t), where the two processes disagree, and, staying at x, to
go backwards in time until the processes agree at x. At this time, there was an update at x in one
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Figure 1. Illustration of a dual path Γ of length t′ starting at (x, t) for d = 1 and
ρ = 2. Each horizontal line represents the timeline of a site of Z, the × representing
the clock rings. Γ is the thick polygonal line; it starts at t and ends at t − t′. It can
jump only when there is a clock ring, and never at a distance greater than ρ = 2.

process but not in the other, hence an update rule x + X that was full of zeroes in one process but
not in the other, thus a site at distance at most ρ of x at which the two processes disagree. We jump
to this site and continue to go backwards. This construction yields a dual path along which the two
processes disagree, hence they can not be both at zero, so the path is not activated. �

Lemma 6 implies that to prove proposition 5 hence theorem 3, it is enough to prove

Proposition 7. For any q′ ∈]0, 1], there exists q0 = q0(U , q′) ∈ [0, 1[ such that for any q ∈ [q0, 1], there
exist two constants c2 = c2(U , q′) > 0 and C2 = C2(U , q′) > 0 such that for any x ∈ Zd, t ∈ [0,+∞[,
there exists 0 ≤ t′ ≤ t such that Pq′,q(A(x, t, t′) 6= D(x, t, t′)) ≤ C2e

−c2t.

The remainder of the article will be devoted to the proof of proposition 7.

4. Codings

This section is devoted to the reduction of the proof of proposition 7 (hence of theorem 3) to
the simpler proof of proposition 11, via the use of codings. The idea is the following: in order to
prove proposition 7, it is enough to show that along each dual path, the two processes are at zero at
one of the discrete times 0, K, 2K, etc. hence we only need to consider the positions of the path
at these times, which will make up the coding of the path. Let K ≥ 2 and t ≥ K. A coding is
a sequence (yk)k∈{0,...,b t

K2 c}
of sites in Zd. Moreover, for x ∈ Zd and Γ ∈ D(x, t, tK ), the coding

Γ̄ of Γ is the sequence {Γ(kK)}k∈{0,...,b t
K2 c}

. If γ = (yk)k∈{0,...,b t
K2 c}

is a coding, we define the event

G(γ) =
{
∃k ∈

{
0, . . . ,

⌊
t
K2

⌋}
, ηt−kK(yk) = η̃t−kK(yk) = 0

}
. If G(Γ̄) is satisfied, Γ is an activated path.

Therefore, to prove proposition 7 hence theorem 3, it is enough to prove

Proposition 8. For any q′ ∈]0, 1], there exists q0 = q0(U , q′) ∈ [0, 1[ such that for any q ∈ [q0, 1], there
exist two constants c3 = c3(U , q′) > 0 and C3 = C3(U , q′) > 0 and a constant K = K(U , q′) ≥ 2 such
that for any x ∈ Zd and t ≥ 2K2, Pq′,q(∃Γ ∈ D(x, t, tK ), G(Γ̄)c) ≤ C3e

−c3t.

Proposition 8 holds only for t greater than a constant, but this is enough, since we only have to
enlarge C3 to obtain a bound valid for all t.
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In order to prove proposition 8, we will define a set CNK (x, t) of “reasonable codings” and prove that
the probability that there exists a dual path whose coding is not in CNK (x, t) decays exponentially in
t (lemma 9). Then we will count the number of codings in CNK (x, t) (lemma 10). Therefore it will be
enough to give a bound on Pq′,q(G(γ)c) for any γ ∈ CNK (x, t) to prove proposition 8 hence theorem 3.
Such a bound is stated in proposition 11 and will be proven in section 6.

For any constant N > 0, for any K ≥ 2, x ∈ Zd and t ≥ K, the set CNK (x, t) of “reasonable codings”
is defined as the set of (yj1+···+jk)k∈{0,...,b t

K2 c}
where (yi)i∈{0,...,I} is a sequence of sites satisfiying

y0 = x, I ≤ Nt
K and ‖yi+1 − yi‖∞ ≤ ρ for all i ∈ {0, . . . , I − 1} and where j1, . . . , jb t

K2 c
∈ N satisfy

j1 + · · ·+ jb t
K2 c
≤ I. We can now state lemmas 9 and 10, as well as proposition 11. These statements

together prove proposition 8.

Lemma 9. For any q′ ∈ [0, 1], there exists N = N(U) > 0 such that for any K ≥ 2, q ∈ [0, 1], there
exists a constant č = č(U ,K) > 0 such that for all x ∈ Zd and t ≥ K, Pq′,q(∃Γ ∈ D(x, t, tK ), Γ̄ 6∈
CNK (x, t)) ≤ e−čt.

In the following, N will always be the N given by lemma 9.

Lemma 10. There exist constants λ > 0 and β = β(U) > 0 such that for any K ≥ 2, x ∈ Zd and
t ≥ 2K2, |CNK (x, t)| ≤ λ(βK)(d+1) t

K2 .

Proposition 11. For any q′ ∈ [0, 1], there exists a constant K0 = K0(U) ≥ 2 such that for any K ≥
K0, there exists qK ∈ [0, 1[ such that for any q ∈ [qK , 1], there exist two constants c4 = c4(U , q′) > 0

and C4 = C4(U ,K) > 0 such that for any x ∈ Zd, t ≥ K and γ ∈ CNK (x, t), Pq′,q(G(γ)c) ≤ C4e
−c4 t

K .

We are now going to prove lemmas 9 and 10. After that, it will suffice to prove proposition 11 to
prove theorem 3.

Sketch of proof of lemma 9. This can be proven with the argument of the lemma 5 of [21]; the idea
is that if there exists Γ ∈ D(x, t, tK ) with Γ̄ 6∈ CNK (x, t), there are so many clock rings that the
probability becomes very small. Indeed, let us say Γ visits the sites y0 = x, y1, . . . , yj1 in the
time interval [0,K], then the sites yj1 , . . . , yj1+j2 in the time interval [K, 2K], etc. until the sites
yj1+···+jb t

K2 c
, . . . , yj1+···+jb t

K2 c+1
in the time interval [b t

K2 cK, (b t
K2 c + 1)K]. Then the coding of Γ is

Γ̄ = (yj1+···+jk)k∈{0,...,b t
K2 c}

, hence Γ̄ 6∈ CNK (x, t) implies j1 + · · ·+ jb t
K2 c+1 >

Nt
K . It yields that Γ visits

more than Nt
K sites in a time t

K , and there must be successive clock rings at these sites. The proof of
lemma 5 of [21] yields that we can choose N large enough depending on ρ, hence on U , such that the
probability of this event is at most e−čt with č = č(U , N,K) = č(U ,K) > 0. �

To prove lemma 10, we need the following classical combinatorial result, which will also be used in
the proof of lemma 19.

Lemma 12. For any I, J ∈ N,
(
I
I

)
+
(
I+1
I

)
+ · · · +

(
I+J
I

)
=
(
I+J+1
I+1

)
. Moreover, for any I, J ∈ N,

|{(j1, . . . , jI) ∈ NI | j1 + · · ·+ jI = J}| =
(
I+J−1
I−1

)
.

The proof of the first part of lemma 12 can be found just before the section 2 of [16] and the proof
of the second part in section 1.2 of [23] (weak compositions).

Proof of lemma 10. Let K ≥ 2, x ∈ Zd and t ≥ 2K2. By definition, elements of CNK (x, t) have the
form (yj1+···+jk)k∈{0,...,b t

K2 c}
with (yi)i∈{0,...,I} satisfiying y0 = x, I ≤ Nt

K and ‖yi+1 − yi‖∞ ≤ ρ for all
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i ∈ {0, . . . , I − 1}, and with j1, . . . , jb t
K2 c
∈ N satisfying j1 + · · ·+ jb t

K2 c
≤ I. Therefore, to count the

number of elements of CNK (x, t), it is enough to count the number of possible (jk)k∈{1,...,b t
K2 c}

and the
number of possible (yj1+···+jk)k∈{0,...,b t

K2 c}
given (jk)k∈{1,...,b t

K2 c}
.

We begin by counting the number of possible (jk)k∈{1,...,b t
K2 c}

. We have j1 + · · · + jb t
K2 c
≤ Nt

K .

Moreover, by the second part of lemma 12, for any integer 0 ≤ J ≤ Nt
K , the number of possible

sequences of integers (jk)k∈{1,...,b t
K2 c}

such that j1 + · · ·+ jb t
K2 c

= J is at most
(b t

K2 c+J−1

b t
K2 c−1

)
, hence the

number of possible (jk)k∈{1,...,b t
K2 c}

is at most
∑bNt

K
c

J=0

(b t
K2 c+J−1

b t
K2 c−1

)
=
(b t

K2 c+b
Nt
K
c

b t
K2 c

)
by the first part of

lemma 12. Furthermore
(b t

K2 c+b
Nt
K
c

b t
K2 c

)
≤

(b t
K2 c+b

Nt
K
c)b

t
K2 c

(b t
K2 c)!

≤ λ
(
e(b t

K2 c+b
Nt
K
c)

b t
K2 c

)b t
K2 c
≤ λ

(
e+ e

bNt
K
c

b t
K2 c

) t
K2

by the Stirling formula, where λ > 0 is a constant. In addition, since t ≥ 2K2, b t
K2 c ≥ t

2K2 , hence the

number of possible (jk)k∈{1,...,b t
K2 c}

is at most λ
(
e+ eNtK

2K2

t

) t
K2

= λ (e+ 2eKN)
t
K2 ≤ λ(3eKN)

t
K2

as K ≥ 2 and N is large.
We now fix a sequence (jk)k∈{1,...,b t

K2 c}
and count the possible (yj1+···+jk)k∈{0,...,b t

K2 c}
. We know

that y0 = x. Moreover, for all i ∈ {0, . . . , j1 + · · · + jb t
K2 c
− 1}, ‖yi+1 − yi‖∞ ≤ ρ, hence for each

k ∈ {0, . . . , b t
K2 c − 1}, we have ‖yj1+···+jk+1

− yj1+···+jk‖∞ ≤ ρjk+1, so there are at most (2ρjk+1 + 1)d

choices for yj1+···+jk+1
given yj1+···+jk . Therefore the number of choices for (yj1+···+jk)k∈{0,...,b t

K2 c}
is

at most
∏b t

K2 c
k=1 (2ρjk + 1)d. Moreover, for any n ∈ N∗ and any positive x1, . . . , xn, we have x1 . . . xn ≤

(x1+···+xn
n )n, therefore the number of choices is bounded by∑b t

K2 c
k=1 (2ρjk + 1)

b t
K2 c

db t
K2 c

=

2ρ
∑b t

K2 c
k=1 jk + b t

K2 c
b t
K2 c

db t
K2 c

≤

(
2ρNtK + b t

K2 c
b t
K2 c

)d t
K2

since
∑b t

K2 c
k=1 jk ≤ Nt

K . As t ≥ 2K2, b t
K2 c ≥ t

2K2 , thus the number of choices for (yj1+···+jk)k∈{0,...,b t
K2 c}

given (jk)k∈{1,...,b t
K2 c}

is bounded by
(

2ρNtK
2K2

t + 1
)d t

K2
= (4ρNK + 1)d

t
K2 ≤ (5ρNK)d

t
K2 . �

5. An auxiliary process

In order to prove proposition 11, we need to find a mechanism for the zeroes to spread in the KCM
process; this mechanism uses novel ideas to deal with the complexity of general supercritical models.
We begin in section 5.1 by using the bootstrap percolation results of [6] to find a mechanism allowing
the zeroes to spread locally (proposition 13). Then we use it in section 5.2 to define an auxiliary
oriented percolation process which guarantees that if certain conditions are met, the KCM process
is at zero at a given time (proposition 15). Finally, in section 5.3 we prove some properties of this
auxiliary process that we will use in section 6.

5.1. Local spread of zeroes. This is the place where we need the supercriticality of U . Indeed, since
U is supercritical, the results of [6] yield the following proposition (see figure 2):

Proposition 13 ([6]). For d = 1 or 2, there exists u ∈ Sd−1, a rectangle R of the following form:
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Z
0 a1u 2a1u 3a1u

R a1u+R 2a1u+R
∗ ∗ ∗ ∗ ∗ ∗

d = 1

×
0

Z2

R

a1u+R

2a1u+R

a2
a1

uu⊥

∗
∗
∗

∗
∗

∗
∗
∗

∗
∗

∗
∗
∗

∗
∗

∗
∗
∗
∗
∗

d = 2

Figure 2. Illustration of proposition 13. The ∗ represent the sites x1, . . . , xm. If we
start with the sites of R at zero and there are successive 0-clock rings at x1, . . . , xm
while there is no 1-clock ring in R ∪ {x1, . . . , xm}, these clock rings will put x1, . . . , xm
at zero, hence the sites of a1u+R will be put at zero.

• if d = 1, R = [0, a1u[∩Z with a1u ∈ Z;
• if d = 2, R = ([0, a1[u+ [0, a2]u⊥) ∩Z2 with a1u ∈ Z2, where u⊥ is a vector orthogonal to u,

and a sequence of sites (xi)1≤i≤m in (a1u+R)∪ (2a1u+R) such that if the sites of R are at zero and
there are successive 0-clock rings at x1, x2, . . . , xm while there is no 1-clock ring in R ∪ {x1, . . . , xm},
the sites of a1u+R are at zero afterwards.

Remark 14. For d ≥ 3, we expect a similar proposition to hold, maybe with R = [0, a1[u + R̄, R̄
contained in the hyperplane orthogonal to u, but we can not prove it because an equivalent of the
construction of [6] is not available yet. Proving such a construction would be enough to extend our
result to any dimension.

Proof of proposition 13. We begin with the case d = 1. Since U is supercritical there exists u an
unstable direction. Without loss of generality we can say that u = 1, therefore there exists an update
rule X contained in −N∗. This yields the mechanism illustrated by figure 3(a): if R = {0, . . . , `} is
sufficiently large and full of zeroes, (`+ 1) +X is full of zeroes, hence if the site `+ 1 receives a 0-clock
ring, this clock ring puts it at zero. Then (`+2)+X is full of zeroes, thus if `+2 receives a 0-clock ring,
this clock ring puts it at zero. In the same way, if the sites `+ 3, . . . , 2`+ 1 receive successive 0-clock
rings, these clock rings will put them successively at zero, therefore {` + 1, . . . , 2` + 1} = (` + 1) + R
will be at zero. This yields the result with a1 = `+ 1 and (xi)1≤i≤m = `+ 1, `+ 2, . . . , 2`+ 1.

We now consider the case d = 2. Since U is supercritical, there exists a semicircle in S1 that contains
no stable direction; we call u its middle. The results of section 5 of [6] (see in particular figure 5 and
lemma 5.5 therein) prove that there exists a set of sites, called a droplet, such that in the bootstrap
percolation dynamics, if we start with all the sites of the droplet infected, other sites in the direction
u can be infected, creating a bigger infected droplet with the same shape (see figure 3(b)). We can
enlarge this droplet into a rectangle R = [0, a1[u + [0, a2]u⊥ as in figure 3(c); furthermore u can be
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • • •
0 `

R
(`+ 1) +X `+ 1

↓

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • • • •
0 `

(`+ 2) +X `+ 2

↓
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • • • • •

0 `
↓
. . .
↓

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦• • • • • • • • • • • •
0 ` 2`+ 1

R (`+ 1) +R

(a)

u

(b)

R

a1u+R

2a1u+R

uu⊥

(c)

Figure 3. The proof of proposition 13. (a) The mechanism for d = 1; the • represent
zeroes and the ◦ represent ones. (b) The shape delimited by the solid line is the droplet
of [6]; if it is infected in the bootstrap percolation dynamics, the infection can grow
to the shape delimited by the dashed line. (c) R contains the original droplet (dashed
line), hence if R is infected, the infection can propagate to a bigger droplet (in gray)
that contains a1u+R and is contained in R ∪ (a1u+R) ∪ (2a1u+R).

chosen rational1, hence we may enlarge R enough so that a1u ∈ Z2. Now, since R contains the original
droplet, if R is infected the infection can grow from the droplet into a droplet big enough to contain
a1u+R while staying in R∪ (a1u+R)∪ (2a1u+R) (see figure 3(c)). We call x1, . . . , xm the sites that
are successively infected during this growth (sites infected at the same time are ordered arbitrarily).
Since x1 is the first site infected by the bootstrap percolation dynamics starting with the sites of R
infected, there exists an update rule X such that x1 + X ⊂ R, therefore if the KCM dynamics starts
with all the sites of R at zero and there is a 0-clock ring at x1, this clock ring sets x1 to zero. Then, if
there is a 0-clock ring at x2, it will set x2 to zero for the same reason, and successive 0-clock rings at
x3, . . . , xm will set them successively to 0, which puts a1u+R at zero. �

5.2. Definition of the auxiliary process. Let K > 0, q ∈ [0, 1] and t ≥ K. For any y ∈ Zd and
k ∈ {0, . . . , b tK c}, we will define an oriented percolation process ζy,k on Z, from time zero to time
ny,k = b tK c − k (see [9] for an introduction to oriented percolation). For n ∈ {1, . . . , ny,k} and r ∈ Z
with r + n even, the bonds (r − 1, n − 1) → (r, n) and (r + 1, n − 1) → (r, n) can be open or closed ;
we set ζy,k0 (r) = 1{r=0}, and for any n ∈ {1, . . . , ny,k}, r ∈ Z with r + n even, ζy,kn (r) = 1 if and
only if ζy,kn−1(r − 1) = 1 and the bond (r − 1, n− 1) → (r, n) is open or ζy,kn−1(r + 1) = 1 and the bond
(r + 1, n− 1)→ (r, n) is open.

The state of the bonds is defined as follows. For any n ∈ {1, . . . , ny,k}, r ∈ Z with r + n even:

1Indeed, theorem 1.10 of [6] states that the set of stable directions is a finite union of closed intervals with rational
endpoints, hence the semicircle containing no stable direction can be chosen with rational endpoints.
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• (r − 1, n− 1)→ (r, n) is open if and only if{
∀x ∈ y +

r − n
2

a1u+R, ]t− (k + n)K, t− (k + n− 1)K] ∩ P1
x = ∅

}
,

i.e. there is no 1-clock ring in y + r−n
2 a1u+R during the time interval ]t− (k + n)K, t− (k +

n− 1)K];
• (r + 1, n− 1)→ (r, n) is open if and only if{
∃t− (k + n)K < t1 < · · · < tm ≤ t− (k + n− 1)K,∀i ∈ {1, . . . ,m}, ti ∈ P0

y+ r−n
2
a1u+xi

}
∩
{
∀x ∈ y +

r − n
2

a1u+R ∪ {x1, . . . , xm}, ]t− (k + n)K, t− (k + n− 1)K] ∩ P1
x = ∅

}
,

i.e. there are successive 0-clock rings in the equivalent of x1, . . . , xm for y+ r−n
2 a1u+R during

the time interval ]t − (k + n)K, t − (k + n − 1)K], and no 1-clock ring at these sites or in
y + r−n

2 a1u+R in this time interval.
We notice that if all the sites of y+ r−n

2 a1u+R are at zero at time t−(k+n)K and (r−1, n−1)→ (r, n)

is open, the sites of y+ r−n
2 a1u+R are still at zero at time t− (k+n−1)K. Moreover, by proposition

13, if the sites of y + r−n
2 a1u+R are at zero at time t− (k + n)K and (r + 1, n− 1)→ (r, n) is open,

the sites of a1u + (y + r−n
2 a1u + R) = y + (r+1)−(n−1)

2 a1u + R are at zero at time t − (k + n − 1)K.
This allows us to deduce (see figure 4 for an illustration of the mechanism):

Proposition 15. If there exists r0 ∈ Z such that ζy,k
ny,k

(r0) = 1 and the sites of y+ r0−ny,k
2 a1u+R are

at zero at time t− b tK cK, then the sites of y +R are at zero at time t− kK.

5.3. Properties of the auxiliary process. In this subsection we state the two oriented percolation
properties of ζy,k, propositions 17 and 18, that we will use in section 6 to prove proposition 11. In
order to do that, we need a bound on the probability that a bond is closed; this will be lemma 16. It
is there that we need q bigger than a q0 > 0; this is necessary so that the probability that there is no
1-clock ring at the sites we consider is large. For any K > 0, we set qK = 1 + 1

3K|R| ln(1− e−K). We
can then state
Lemma 16. There exists a constant Kp = Kp(U) > 0 such that for K ≥ Kp, q ∈ [qK , 1], t ≥ K,
y ∈ Zd and k ∈ {0, . . . , b tK c}, the probability that any given bond is closed for the process ζy,k is smaller
than e−

K
4 .

Proof. Let K > 0, q ∈ [qK , 1], t ≥ K, y ∈ Zd and k ∈ {0, . . . , b tK c}. Let n ∈ {1, . . . , n
y,k}, r ∈ Z with

r+n even. We notice that if the bond (r−1, n−1)→ (r, n) is closed, the bond (r+1, n−1)→ (r, n) is
also closed, hence it is enough to bound the probability that (r+ 1, n− 1)→ (r, n) is closed. Denoting
E1 = {∀x ∈ y + r−n

2 a1u + R ∪ {x1, . . . , xm}, ]t − (k + n)K, t − (k + n − 1)K] ∩ P1
x = ∅} and E2 =

{∃t−(k+n)K < t1 < · · · < tm ≤ t−(k+n−1)K,∀i ∈ {1, . . . ,m}, ti ∈ P0
y+ r−n

2
a1u+xi

}, we need to bound

the probabilities of Ec1 and Ec2. We begin with Ec1. The events ]t−(k+n)K, t−(k+n−1)K]∩P1
x = ∅ are

independent and have probability e−(1−q)K each; moreover, x1, . . . , xm belong to (a1u+R)∪(2a1u+R),
so |R ∪ {x1, . . . , xm}| ≤ 3|R|; we deduce the probability of E1 is

e−|R∪{x1,...,xm}|(1−q)K ≥ e−3|R|(1−q)K ≥ e−3|R|(1−qK)K

≥ e−3|R|
(

1−
(

1+ 1
3K|R| ln(1−e−K)

))
K

= eln(1−e−K) = 1− e−K ,
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−-3

-2

−-1

0

−1

2

−3

r

p
0

p
1

p
23
n

r0

b1 b2

b3

y − 3a1u+R

y − 2a1u+R

y − a1u+R

y +R

y + a1u+R

y + 2a1u+R

y + 3a1u+R

t− (k + 3)K t− (k + 2)K t− (k + 1)K t− kK

Figure 4. An illustration of proposition 15 with ny,k = 3 and r0 = 1. The figure at
the left represents the bonds of the oriented percolation process ζy,k; the open bonds
are the thick ones, and the path of open bonds allowing ζy,k

ny,k
(r) = 1 is outlined by

arrows. The figure at the right represents the consequences on the KCM process; each
vertical strip represents the state of

⋃
i∈Z(y + ia1u + R) at a certain time. If at time

t− (k+3)K the rectangle y+ 1−ny,k
2 a1u+R = y−a1u+R is at zero (in gray), since the

bond (0, 2)→ (1, 3) (bond b1) is open, y− a1u+R is still at zero at time t− (k+ 2)K.
Moreover, since (1, 1) → (0, 2) (bond b2) is open and y − a1u + R is at zero at time
t − (k + 2)K, a1u + (y − a1u + R) = y + R is at zero at time t − (k + 1)K. Finally,
since (0, 0)→ (1, 1) (bond b3) is open and y +R is at zero at time t− (k + 1)K, y +R
is still at zero at time t− kK.

thus the probability of Ec1 is at most e−K . Moreover, the probability of Ec2 is the probability that
a Poisson point process of parameter q has strictly less than m elements in an interval of length K,
hence it is

∑m−1
i=0 e−qK (qK)i

i! . When K is large enough, q ∈ [1/2, 1], hence this probability is smaller
than e−

1
2
K∑m−1

i=0
Ki

i! , which is smaller than e−
K
3 when K is large enough depending on m, hence on

U . Consequently, when K is large enough depending on U , the probability that (r+ 1, n− 1)→ (r, n)

is closed is smaller than e−K + e−
K
3 , which is smaller than e−

K
4 when K is large enough. �

Thanks to lemma 16, it is possible to prove two oriented percolation properties of ζy,k. Firstly, for any
K > 0, q ∈ [qK , 1], t ≥ K, y ∈ Zd and k ∈ {0, . . . , b tK c}, we define τy,k = inf{n ∈ {0, . . . , ny,k} | ∀r ∈
Z, ζy,kn (r) = 0} the time of death of the process ζy,k (if the set is empty, τy,k is infinite). Since
ζy,k0 (r) = 1{r=0}, which is not identically zero, τy,k ≥ 1. Then we have
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Proposition 17. For any q′ ∈ [0, 1], there exists a constant Kc = Kc(U) > 0 such that for any K ≥ Kc,
q ∈ [qK , 1], t ≥ K, y ∈ Zd, k ∈ {0, . . . , b tK c}, n ∈ {0, . . . , n

y,k}, Pq′,q(n ≤ τy,k < +∞) ≤ 232ne−
Kn
24 .

Sketch of proof. The proposition can be proven by a classical contour method like the one presented
in section 10 of [9]. The idea is that if n ≤ τy,k < +∞ we can draw a “contour of closed bonds”
around the connected component of ones in ζy,k, and this contour will have length Ω(n). Furthermore,
it can be seen that bonds separated by at least 5 bonds from each other are independent, because
they depend on clock rings in disjoint space-time intervals. Therefore if we keep one bond out of 6, we
extract Ω(n) independent closed bonds from the contour, each of them having probability e−

K
4 from

lemma 16 when K ≥ Kp, hence the bound. �

ζy,k also satisfies a second property. For anyK > 0, q ∈ [qK , 1], t ≥ K, y ∈ Zd and k ∈ {0, . . . , b tK c},
we denote X y,k = {r ∈ {−bny,k2 c, . . . , b

ny,k

2 c} | ζ
y,k
ny,k

(r) = 1}. Then we have

Proposition 18. For any q′ ∈ [0, 1], α ∈]0, 1[, there exists a constant Kg(α) = Kg(U , α) > 0 such
that for any K ≥ Kg(α), there exist constants cg > 0 and Cg = Cg(U ,K, α) > 0 such that for any
q ∈ [qK , 1], t ≥ K, y ∈ Zd and k ∈ {0, . . . , b tK c}, Pq′,q

(
τy,k = +∞, |X y,k| ≤ α

2n
y,k
)
≤ Cge−cgn

y,k .

Sketch of proof. This proposition comes from classical results in oriented percolation. Firstly, if the
process survives until time ny,k, it has a big “range”, which means that if we define ry,k = sup{r ∈
Z | ζy,k

ny,k
(r) = 1} and `y,k = inf{r ∈ Z | ζy,k

ny,k
(r) = 1}, ry,k and |`y,k| are so large {−bny,k2 c, . . . , b

ny,k

2 c} ⊂
{`y,k, . . . , ry,k}; this can be proven with the contour argument in section 11 of [9]. Moreover, the
argument that proves (1) in [9] also proves that in {`y,k, . . . , ry,k}, ζy,k

ny,k
coincides with the oriented

percolation process that has the same bonds, but which starts with all sites at 1 instead of just the
origin. Finally, the end of section 5 of [10] contains a contour argument for the latter process which
allows to prove that it has a lot of ones; we can use this argument with the same adaptations we used
for the contours of proposition 17. �

6. Proof of proposition 11

In this section we use the auxiliary process defined in section 5 to give a proof of proposition 11.
In order to do that, we need some definitions. For any q′ ∈]0, 1], K ≥ 2, q ∈ [qK , 1], x ∈ Zd, t ≥ K
and γ = (yk)k∈{0,...,b t

K2 c}
∈ CNK (x, t), we define k(γ) = inf{k ∈ {0, . . . , b t

K2 c} | τyk,k = +∞} if such a k
exists; in this case we also denote y(γ) = yk(γ) (in the following, when we write k(γ) or y(γ) without
more precision, we always assume that they exist). For any r ∈ X y(γ),k(γ) we define the events

W γ,η(r) =

{
(ηt−b t

K
cK)

y(γ)+ r−ny(γ),k(γ)
2

a1u+R
= 0

}
,W γ,η̃(r) =

{
(η̃t−b t

K
cK)

y(γ)+ r−ny(γ),k(γ)
2

a1u+R
= 0

}
.

By proposition 15, if {∃r ∈ X y(γ),k(γ),W γ,η(r)}∩ {∃r ∈ X y(γ),k(γ),W γ,η̃(r)}, then the sites of y(γ) +R
are at zero at time t − k(γ)K in both processes (ηt)t∈[0,+∞[ and (η̃t)t∈[0,+∞[, in particular y(γ) is at
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zero at time t− k(γ)K in both processes, therefore G(γ) is satisfied. Consequently,

Pq′,q(G(γ)c) ≤Pq′,q (k(γ) does not exist) + Pq′,q

(
k(γ) exists, |X y(γ),k(γ)| ≤ t

6K

)
+ Pq′,q

({
|X y(γ),k(γ)| > t

6K

}
∩
{
∀r ∈ X y(γ),k(γ),W γ,η(r)c

})
+ Pq′,q

({
|X y(γ),k(γ)| > t

6K

}
∩
{
∀r ∈ X y(γ),k(γ),W γ,η̃(r)c

})
.

Therefore we only have to prove the following lemmas 19, 20 and 21 to prove proposition 11, thus
ending the proof of theorem 3:

Lemma 19. For any q′ ∈]0, 1], there exists a constant K1 = K1(U) ≥ 2 such that for any K ≥ K1,
q ∈ [qK , 1], there exist constants c̆1 > 0 and C̆1 = C̆1(K) > 0 such that for any x ∈ Zd, t ≥ K,
γ ∈ CNK (x, t), we have Pq′,q(k(γ) does not exist) ≤ C̆1e

−c̆1 t
K .

Lemma 20. For any q′ ∈]0, 1], there exists a constant K2 = K2(U) ≥ 2 such that for any K ≥ K2,
q ∈ [qK , 1], there exist constants c̆2 > 0 and C̆2 = C̆2(U ,K) > 0 such that for any x ∈ Zd, t ≥ K,
γ ∈ CNK (x, t), Pq′,q(k(γ) exists, |X y(γ),k(γ)| ≤ t

6K ) ≤ C̆2e
−c̆2 t

K .

Lemma 21. For any q′ ∈]0, 1], K ≥ 2, q ∈ [qK , 1], there exists a constant c̆3 = c̆3(U , q′) > 0 such that
for any x ∈ Zd, t ≥ K, γ ∈ CNK (x, t), we get Pq′,q({|X y(γ),k(γ)| > t

6K } ∩ {∀r ∈ X
y(γ),k(γ),W γ,η(r)c}) ≤

e−c̆3
t
K and Pq′,q({|X y(γ),k(γ)| > t

6K } ∩ {∀r ∈ X
y(γ),k(γ),W γ,η̃(r)c}) ≤ e−c̆3

t
K .

Proof of lemma 19. We set K1 = max(Kc, 48(ln 36 + 1)), which depends only on U . Let q′ ∈]0, 1],
K ≥ K1, q ∈ [qK , 1], x ∈ Zd, t ≥ K and γ = (yk)k∈{0,...,b t

K2 c}
∈ CNK (x, t). If k(γ) does not exist, τyk,k

is finite for k ∈ {0, . . . , b t
K2 c}, therefore if we call k1 = 0 and ki =

∑i−1
j=1 τ

ykj ,kj for i ≥ 2, τyki ,ki is
finite as long as ki ≤ b t

K2 c. We will use proposition 17 to bound the probability that this happens.
We call L = max{i ≥ 1 | ki ≤ b t

K2 c}; we then have
∑L

i=1 τ
yki ,ki > b t

K2 c, hence if nL is the integer
satisfying nL = b t

K2 c −
∑L−1

i=1 τ
yki ,ki , we have nL ≤ τykL ,kL < +∞. Furthermore, if n1, . . . , nL−1 are

integers satisfiying ni = τyki ,ki for i ∈ {1, . . . , L − 1}, we get n1 + · · · + nL = b t
K2 c, ki =

∑i−1
j=1 nj for

all i ∈ {1, . . . , L} (we denote
∑i−1

j=1 nj = Ni). In addition, since τyk,k ≥ 1 for any k ∈ {0, . . . , b t
K2 c},

L ≤ b t
K2 c+ 1. We deduce

Pq′,q(k(γ) does not exist)

≤
∑

M≤
⌊
t
K2

⌋
+1,n1+···+nM=

⌊
t
K2

⌋Pq′,q(L = M,∀1 ≤ i ≤M − 1, τyNi ,Ni = ni, nM ≤ τyNM ,NM < +∞).

Moreover, the events {τykNi ,Ni = ni}, i ∈ {1, . . . ,M − 1} and {nM ≤ τ
ykNM

,NM < +∞} depend only
on clock rings in the time intervals ]t− (Ni+ni)K, t−NiK] =]t−Ni+1K, t−NiK], i ∈ {1, . . . ,M −1}
and ]t− (NM + nM )K, t−NMK], which are disjoint, thus the events are independent, hence

Pq′,q(L = M,∀1 ≤ i ≤M − 1, τyNi ,Ni = ni, nM ≤ τyNM ,NM < +∞)

≤

(
M−1∏
i=1

Pq′,q
(
τyNi ,Ni = ni

))
Pq′,q

(
nM ≤ τyNM ,NM < +∞

)
≤

M∏
i=1

Pq′,q
(
ni ≤ τyNi ,Ni < +∞

)
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≤
M∏
i=1

232nie−
Kni
24 = 2M32

∑M
i=1 nie−

K
24

∑M
i=1 ni = 2M3

2
⌊
t
K2

⌋
e
−K

24

⌊
t
K2

⌋

by proposition 17 and since n1 + · · ·+ nM =
⌊
t
K2

⌋
. Consequently,

Pq′,q(k(γ) does not exist) ≤
∑

M≤
⌊
t
K2

⌋
+1,n1+···+nM=

⌊
t
K2

⌋ 2M3
2
⌊
t
K2

⌋
e
−K

24

⌊
t
K2

⌋
.

In addition, lemma 12 yields that for any M ∈ {1, . . . , b t
K2 c+ 1}, we have |{(n1, . . . , nM ) ∈ NM |n1 +

· · ·+ nM = b t
K2 c}| =

(M+b t
K2 c−1

M−1

)
=
(M+b t

K2 c−1

b t
K2 c

)
, and by the Stirling formula there exists a constant

λ > 0 such that(
M +

⌊
t
K2

⌋
− 1⌊

t
K2

⌋ )
≤
(
M +

⌊
t
K2

⌋
− 1
)⌊ t
K2

⌋
⌊
t
K2

⌋
!

≤ λ

(
e
(
M +

⌊
t
K2

⌋
− 1
)⌊

t
K2

⌋ )⌊ t
K2

⌋
≤ λ

(
e
(
b t
K2 c+

⌊
t
K2

⌋)⌊
t
K2

⌋ )⌊ t
K2

⌋

sinceM ≤ b t
K2 c+1. We deduce |{(n1, . . . , nM ) ∈ NM |n1 + · · ·+nM = b t

K2 c}| ≤ λ(2e)b
t
K2 c. Therefore

Pq′,q(k(γ) does not exist) ≤

⌊
t
K2

⌋
+1∑

M=1

λ(2e)

⌊
t
K2

⌋
2M3

2
⌊
t
K2

⌋
e
−K

24

⌊
t
K2

⌋

≤ λ(2e)

⌊
t
K2

⌋
2

⌊
t
K2

⌋
+2

3
2
⌊
t
K2

⌋
e
−K

24

⌊
t
K2

⌋
= 4λ

(
36ee−

K
24

)⌊ t
K2

⌋
.

In addition, since K ≥ 48(ln 36 + 1), 36ee−
K
48 ≤ 36ee− ln 36−1 = 1, so 36ee−

K
24 ≤ e−

K
48 , hence

Pq′,q(k(γ) does not exist) ≤ 4λe
−K

48

⌊
t
K2

⌋
≤ 4λe

−K
48

(
t
K2−1

)
= 4λe

K
48 e−

t
48K ,

which is the lemma. �

Proof of lemma 20. This proof is an application of proposition 18. We set K2 = max(4,Kg(1/2)),
which depends only on U . Let q′ ∈]0, 1], K ≥ K2, q ∈ [qK , 1] and x ∈ Zd. It is enough to prove the
lemma for t ≥ max(K, 3K2

K−3); indeed, if the lemma holds for t ≥ max(K, 3K2

K−3), one has only to enlarge
C̆2 to prove it for t ≥ K. Therefore we set t ≥ max(K, 3K2

K−3) and γ = (yk)k∈{0,...,b t
K2 c}

∈ CNK (x, t). If

k(γ) exists but |X y(γ),k(γ)| ≤ t
6K , we have τy(γ),k(γ) = +∞ and |X y(γ),k(γ)| ≤ t

6K , hence

Pq′,q

(
k(γ) exists, |X y(γ),k(γ)| ≤ t

6K

)
≤

⌊
t
K2

⌋∑
k=0

Pq′,q

(
τyk,k = +∞, |X yk,k| ≤ t

6K

)
.

We are going to bound the term on the right. For any k ∈ {0, . . . , b t
K2 c}, we have nyk,k = b tK c − k ≥

b tK c − b
t
K2 c ≥ t

K − 1 − t
K2 , and since t ≥ 3K2

K−3 , (K − 3)t ≥ 3K2 thus 1
3
t
K −

t
K2 ≥ 1, so nyk,k ≥ 2

3
t
K ,

hence if we choose α = 1
2 we have α

2n
yk,k ≥ t

6K . Therefore by proposition 18,

Pq′,q

(
τyk,k = +∞, |X yk,k| ≤ t

6K

)
≤ Cge−cgn

yk,k ≤ Cge−cg
2
3
t
K
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since nyk,k ≥ 2
3
t
K . Consequently

Pq′,q

(
k(γ) exists, |X y(γ),k(γ)| ≤ t

6K

)
≤
(⌊

t

K2

⌋
+ 1

)
Cge

− 2cg
3

t
K ≤

(
t

K
+ 1

)
Cge

− 2cg
3

t
K ,

which yields lemma 20. �

Proof of lemma 21. Let q′ ∈]0, 1], K ≥ 2, q ∈ [qK , 1], x ∈ Zd, t ≥ K and γ ∈ CNK (x, t). The argument
is elementary: we notice that there is a positive probability that a rectangle is full of zeroes in the initial
configurations of the two processes since they have laws νq′ and νq, as well as a positive probability
that there is no 1-clock ring in the rectangle in the time interval [0, t −Kb tK c]. Therefore there is a
positive probability that a rectangle is full of zeroes in both processes at time t−Kb tK c, so if there are
t

6K elements in X y(γ),k(γ), the probability that none of the corresponding rectangles is full of zeroes in
both processes at time t−Kb tK c is of order e

−c̆3 t
K .

We notice that X y(γ),k(γ) depends only on clock rings in the time interval ]t−Kb tK c, t], hence if F
is the σ-algebra generated by the clock rings in ]t−Kb tK c, t], for η̂ = η or η̃, we have

Pq′,q

({
|X y(γ),k(γ)| > t

6K

}
∩ {∀r ∈ X y(γ),k(γ),W γ,η̂(r)c}

)
= Eq′,q

(
1{|X y(γ),k(γ)|> t

6K
}Pq′,q(∀r ∈ X

y(γ),k(γ),W γ,η̂(r)c|F)
)
.

(1)

Moreover,
Pq′,q(∀r ∈ X y(γ),k(γ),W γ,η̂(r)c|F)

= Pq′,q

(
∀r ∈ X y(γ),k(γ), ∃x′ ∈ y(γ) +

r − ny(γ),k(γ)

2
a1u+R, η̂t−b t

K
cK(x′) 6= 0

∣∣∣∣∣F
)
≤

Pq′,q

(
∀r ∈ X y(γ),k(γ), ∃x′ ∈ y(γ) +

r − ny(γ),k(γ)

2
a1u+R, η̂0(x′) 6= 0 or P1

x′ ∩
[
0, t−

⌊
t

K

⌋
K

]
6= ∅
∣∣∣∣F
)

=
∏

r∈X y(γ),k(γ)
Pq′,q

(
∃x′ ∈ y(γ) +

r − ny(γ),k(γ)

2
a1u+R, η̂0(x′) 6= 0 or P1

x′ ∩
[
0, t−

⌊
t

K

⌋
K

]
6= ∅

)

since the events {∃x′ ∈ y(γ) + r−ny(γ),k(γ)
2 a1u + R, η̂0(x′) 6= 0 or P1

x′ ∩ [0, t − b tK cK] 6= ∅} depend
only on the state of η̂0 and on the clock rings of the time interval [0, t − Kb tK c] at the sites of
y(γ) + r−ny(γ),k(γ)

2 a1u + R, so they are mutually independent and independent of F . Therefore the
invariance by translation yields

Pq′,q(∀r ∈ X y(γ),k(γ),W γ,η̂(r)c|F) ≤ Pq′,q
(
∃x′ ∈ R, η̂0(x′) 6= 0 or P1

x′ ∩
[
0, t−

⌊
t

K

⌋
K

]
6= ∅
)|X y(γ),k(γ)|

=

(
1− Pq′,q

(
∀x′ ∈ R, η̂0(x′) = 0,P1

x′ ∩
[
0, t−

⌊
t

K

⌋
K

]
= ∅
))|X y(γ),k(γ)|

=

(
1−

(
Pq′,q (η̂0(0) = 0)Pq′,q

(
P1

0 ∩
[
0, t−

⌊
t

K

⌋
K

]
= ∅
))|R|)|X y(γ),k(γ)|

.
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Furthermore, since t−
⌊
t
K

⌋
K ≤ K and q ≥ qK = 1 + 1

3K|R| ln(1− e−K),

Pq′,q

(
P1

0 ∩
[
0, t−

⌊
t

K

⌋
K

]
= ∅
)

= e−(1−q)(t−b tK cK) ≥ e
1

3K|R| ln(1−e−K)K
= (1− e−K)

1
3|R| ≥

(
1

2

) 1
3|R|

since K ≥ 2. This implies

Pq′,q(∀r ∈ X y(γ),k(γ),W γ,η̂(r)c|F) ≤

(
1− Pq′,q (η̂0(0) = 0)|R|

(
1

2

) 1
3

)|X y(γ),k(γ)|
.

In addition, if η̂ = η, Pq′,q(η̂0(0) = 0) = q′, so 1−Pq′,q(η0(0) = 0)|R|(1
2)

1
3 = 1−(q′)|R|2−

1
3 , and if η̂ = η̃,

1− Pq′,q(η̂0(0) = 0)|R|(1
2)

1
3 = 1− q|R|2−

1
3 . Moreover, since K ≥ 2, q ≥ qK = 1 + 1

3K|R| ln(1− e−K) ≥
1 + 1

6|R| ln(1− e−2) ≥ 1
2 , hence 1−Pq′,q(η̃0(0) = 0)|R|(1

2)
1
3 ≤ 1− 2−|R|−

1
3 . This implies that if c̆′3 is the

minimum of − ln(1 − (q′)|R|2−
1
3 ) and − ln(1 − 2−|R|−

1
3 ) (which depends only on U and q′), for η̂ = η

or η̃ we have Pq′,q(∀r ∈ X y(γ),k(γ),W γ,η̂(r)c|F) ≤ e−c̆′3|X y(γ),k(γ)|. Consequently, (1) yields

Pq′,q

({
|X y(γ),k(γ)| > t

6K

}
∩ {∀r ∈ X y(γ),k(γ),W γ,η̂(r)c}

)
≤ Eq′,q

(
1{|X y(γ),k(γ)|> t

6K
}e
−c̆′3|X y(γ),k(γ)|

)
≤ e−c̆′3

t
6K ,

which is the lemma. �
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