Laure Marêché 
email: mareche@lpsm.paris
  
EXPONENTIAL CONVERGENCE TO EQUILIBRIUM IN SUPERCRITICAL KINETICALLY CONSTRAINED MODELS AT HIGH TEMPERATURE

Keywords: 2010 Mathematics Subject Classification: 60K35 Interacting particle systems, Glauber dynamics, kinetically constrained models, bootstrap percolation, convergence to equilibrium

   

Exponential convergence to equilibrium in supercritical

kinetically constrained models at high temperature Laure Marêché

Introduction

Kinetically constrained models (KCMs) are interacting particle systems on Z d , in which each element (or site) of Z d can be in state 0 or 1. Each site tries to update its state to 0 at rate q and to 1 at rate 1 -q, with q ∈ [0, 1] fixed, but an update is accepted if and only if a constraint is satisfied. This constraint is defined via an update family U = {X 1 , . . . , X m }, where m ∈ N * and the X i , called update rules, are finite nonempty subsets of Z d \ {0}: the constraint is satisfied at a site x if and only if there exists X ∈ U such that all the sites in x + X have state zero. Since the constraint at a site does not depend on the state of the site, it can be easily checked that the product Bernoulli(1 -q) measure, ν q , satisfies the detailed balance with respect to the dynamics, hence is reversible and invariant. ν q is the equilibrium measure of the dynamics.

KCMs were introduced in the physics literature by Fredrickson and Andersen [START_REF] Fredrickson | Kinetic Ising model of the glass transition[END_REF] to model the liquid-glass transition, an important open problem in condensed matter physics (see [START_REF] Ritort | Glassy dynamics of kinetically constrained models[END_REF][START_REF] Garrahan | Kinetically constrained models[END_REF]). In addition to this physical interest, KCMs are also mathematically challenging, because the presence of the constraints make them very different from classical Glauber dynamics and prevents the use of most of the usual tools.

One of the most important features of KCMs is the existence of blocked configurations. These blocked configurations imply that the equilibrium measure ν q is not the only invariant measure, which complicate a lot the study of the out-of equilibrium behavior of KCMs; even the basic question of their convergence to ν q remains open in most cases.

Because of the blocked configurations, one cannot expect such a convergence to equilibrium for all initial laws. Initial measures particularly relevant for physicists are the ν q with q = q (see [START_REF] Léonard | Non-equilibrium dynamics of spin facilitated glass models[END_REF]). Indeed, q is a measure of the temperature of the system: the closer q is to 0, the lower the temperature is. Therefore, starting the dynamics with a configuration of law ν q means starting with a temperature different from the equilibrium temperature. In this case, KCMs are expected to converge to equilibrium with exponential speed as soon as no site is blocked for the dynamics in a configuration of law ν q or ν q . However, there have been few results in this direction so far (see [START_REF] Cancrini | Facilitated oriented spin models: some non equilibrium results[END_REF][START_REF] Blondel | Fredrickson-Andersen one spin facilitated model out of equilibrium[END_REF][START_REF] Chleboun | Mixing time and local exponential ergodicity of the East-like process in Z d[END_REF][START_REF] Mountford | Exponential convergence for the Fredrickson-Andersen one spin facilitated model[END_REF][START_REF] Marêché | Exponential convergence to equilibrium for the d-dimensional East model[END_REF]), and they have been restricted to particular update families or initial laws.

Furthermore, general update families have attracted a lot of attention in recent years. Indeed, there recently was a breakthrough in the study of a monotone deterministic counterpart of KCMs called bootstrap percolation. Bootstrap percolation is a discrete-time dynamics in which each site of Z d can be infected or not; infected sites are the bootstrap percolation equivalent of sites at zero. To define it, we fix an update family U and choose a set A 0 of initially infected sites; then for any t ∈ N * , the set of sites that are infected at time t is

A t = A t-1 ∪ {x ∈ Z d | ∃X ∈ U, x + X ⊂ A t-1 },
which means that the sites that were infected at time t -1 remain infected at time t and a site x that was not infected at time t -1 becomes infected at time t if and only if there exists X ∈ U such that all sites of x + X are infected at time t -1. Until recently, bootstrap percolation had only been considered with particular update families, but the study of general update families was opened by Bollobás, Smith and Uzzell in [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF]. Along with Balister, Bollobás, Przykucki and Smith [START_REF] Balister | Subcritical U-bootstrap percolation models have non-trivial phase transitions[END_REF], they proved that general update families satisfy the following universality result: in dimension 2, they can be sorted into three classes, supercritical, critical and subcritical (see definition 2), which display different behaviors (their result for the critical class was later refined by Bollobás, Duminil-Copin, Morris and Smith in [START_REF] Bollobás | Universality of two-dimensional critical cellular automata[END_REF]).

These works opened the study of KCMs with general update families. In [START_REF] Martinelli | Universality results for kinetically constrained spin models in two dimensions[END_REF][START_REF] Marêché | Exact asymptotics for Duarte and supercritical rooted kinetically constrained models[END_REF][START_REF] Hartarsky | Universality for critical kinetically constrained models: infinite number of stable directions[END_REF][START_REF] Hartarsky | Universality for critical kinetically constrained models: finite number of stable directions[END_REF], Hartarsky, Martinelli, Morris, Toninelli and the author showed that the grouping of two-dimensional update families into supercritical, critical and subcritical is still relevant for KCMs, and established an even more precise classification. However, these results deal only with equilibrium dynamics. Until now, nothing had been shown on out-of-equilibrium KCMs with general update families, apart from a perturbative result in dimension 1 [START_REF] Cancrini | Facilitated oriented spin models: some non equilibrium results[END_REF].

In this article, we prove that for all supercritical update families, for any initial law ν q , q ∈]0, 1], when q is close enough to 1, the dynamics of the KCM converges to equilibrium with exponential speed. This result holds in dimension 2 and also in dimension 1 for a good definition of one-dimensional supercritical update families. It is the first non-perturbative result of convergence to equilibrium holding for a whole class of update families.

This result may help to gain a better understanding of the out-of-equilibrium behavior of supercritical KCMs. In particular, such results of convergence to equilibrium were key in proving "shape theorems" for specific one-dimensional constraints in [START_REF] Blondel | Front progression in the East model[END_REF][START_REF] Ganguly | Cutoff for the East process[END_REF][START_REF] Blondel | Front evolution of the Fredrickson-Andersen one spin facilitated model[END_REF].

Notations and result

Let d ∈ N * . We denote by . ∞ the ∞ -norm on Z d . For any set S, |S| will denote the cardinal of S.

For any configuration η ∈ {0, 1} Z d , for any x ∈ Z d , we denote η(x) the value of η at x. Moreover, for any S ⊂ Z d , we denote η S the restriction of η to S, and 0 S (or just 0 when S is clear from the context) the configuration on {0, 1} S that contains only zeroes.

We set an update family U = {X 1 , . . . , X m } with m ∈ N * and the X i finite nonempty subsets of Z d \ {0}. To describe the classification of update families, we need the concept of stable directions. Definition 1. For u ∈ S d-1 , we denote H u = {x ∈ R d | x, u < 0} the half-space with boundary orthogonal to u. We say that u is a stable direction for the update family U if there does not exist X ∈ U such that X ⊂ H u ; otherwise u is unstable. We denote by S the set of stable directions.

[6] gave a classification of two-dimensional update families into supercritical, critical or subcritical depending on their stable directions. Here is the generalization proposed for d-dimensional update families by [START_REF] Bollobás | Universality of two-dimensional critical cellular automata[END_REF] (definition 9.1 therein), where for any E ⊂ S d-1 , int(E) is the interior of E in the usual topology on S 

C ⊂ S d-1 such that int(C ∩ S) = ∅; • subcritical if int(C ∩ S) = ∅ for every hemisphere C ⊂ S d-1 .
Our result will be valid for supercritical update families. The KCM process with update family U can be constructed as follows. We set q ∈ [0, 1]. Independently for all x ∈ Z d , we define two independent Poisson point processes P 0

x and P 1

x on [0, +∞[, with respective rates q and 1 -q. We call the elements of P 0

x ∪ P 1

x clock rings and denote them by t 1,x < t 2,x < • • • . The elements of P 0

x will be 0-clock rings and the elements of P 1

x will be 1-clock rings. For any intial configuration η ∈ {0, 1} Z d , we construct the KCM as the continuous-time process

(η t ) t∈[0,+∞[ on {0, 1} Z d defined thus: for any x ∈ Z d , η t (x) = η 0 (x) for t ∈ [0, t 1,x [, and for any k ∈ N * , • if there exists X ∈ U such that (η t - k,x ) x+X = 0 x+X , then η t (x) = ε for t ∈ [t k,x , t k+1,x [, where t x,k is a ε-clock ring, ε ∈ {0, 1}; • if such an X does not exist, η t (x) = η t k-1,x (x) for t ∈ [t k,x , t k+1,x [.
In other words, sites try to update themselves to 0 when there is a 0-clock ring, which happens at rate q, and to 1 when there is a 1-clock ring, which happens at rate 1 -q, but an update at x is successful if and only if there exists an update rule X such that all sites of x + X are at zero. This construction is known as Harris graphical construction. One can use the arguments in part 4.3 of [START_REF] Swart | A course in interacting particle systems[END_REF] to see that it is well-defined. We denote by P ν the law of (η t ) t∈[0,+∞[ when the initial configuration has law ν.

For any q ∈ [0, 1], we denote ν q the product Bernoulli(1 -q ) measure. Since the constraint at a site does not depend on the state of the site, it can be easily checked that ν q satisfies the detailed balance with respect to the dynamics, hence is reversible and invariant. ν q is called equilibrium measure of the dynamics.

We will say that a function f : {0, 1} Z d → R is local if its output depends only on the states of a finite set of sites, and we then denote f ∞ = sup η∈{0,1} Z d |f (η)| its norm. Theorem 3. If d = 1 or 2, for any supercritical update family U, for any q ∈]0, 1], there exists q 0 = q 0 (U, q ) ∈ [0, 1[ such that for any q ∈ [q 0 , 1], for any local function f : {0, 1} Z d → R, there exist two constants c = c(U, q ) > 0 and C = C(U, q , f ) > 0 such that for any t ∈ [0, +∞[,

E ν q (f (η t )) -ν q (f ) ≤ Ce -ct .
Remark 4. We expect theorem 3 to hold also for d ≥ 3. However, our proof relies on proposition 13, which is easy for d = 1 and was proven in [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF] for d = 2, but for which there is no equivalent for d ≥ 3. Such an equivalent would extend our result to d ≥ 3.

The remainder of this article is devoted to the proof of theorem 3. The argument is based on the proof given in [START_REF] Mountford | Exponential convergence for the Fredrickson-Andersen one spin facilitated model[END_REF] for the particular case of the Fredrickson-Andersen one-spin facilitated model, but brings in novel ideas in order to accommodate the much greater complexity of general supercritical models. From now on, we fix d = 1 or 2 and U a supercritical update family in dimension d. We begin in section 3 by using the notion of dual paths to reduce the proof of theorem 3 to the simpler proof of proposition 7. Then in section 4 we use the concept of codings to simplify it further, reducing it to the proof of proposition 11. In section 5 we introduce an auxiliary oriented percolation process, that we use in section 6 to prove proposition 11 hence theorem 3.

Dual paths

In this section, we use the concept of dual paths to reduce the proof of theorem 3 to the easier proof of proposition 7. Let q, q ∈ [0, 1]. We notice that the Harris graphical construction allows us to couple a process (η t ) t∈[0,+∞[ with initial law ν q and a process (η t ) t∈[0,+∞[ with initial law ν q by using the same clock rings but different initial configurations (independent of the clock rings). We denote the joint law by P q ,q . We notice that since ν q is an invariant measure for the dynamics, ηt has law ν q for all t ∈ [0, +∞[. To prove theorem 3, it is actually enough to show Proposition 5. For any q ∈]0, 1], there exists q 0 = q 0 (U, q ) ∈ [0, 1[ such that for any q ∈ [q 0 , 1], there exist two constants c 1 = c 1 (U, q ) > 0 and

C 1 = C 1 (U, q ) > 0 such that for any x ∈ Z d and t ∈ [0, +∞[, P q ,q (η t (x) = ηt (x)) ≤ C 1 e -c 1 t . Indeed, if f : {0, 1} Z d → R is a local function depending of a finite set of sites S, E ν q (f (η t )) -ν q (f ) = E q ,q (f (η t )) -E q ,q (f (η t )) ≤ E q ,q (|f (η t ) -f (η t )|) ≤ 2 f ∞ P q ,q ((η t ) S = (η t ) S ) ≤ 2 f ∞ x∈S P q ,q (η t (x) = ηt (x)).
Therefore we will work on proving proposition 5. In order to do that, we need to introduce dual paths. We define the range ρ of U by

ρ = max{ x ∞ | x ∈ X, X ∈ U}.
For any x ∈ Z d , t > 0 and 0 ≤ t ≤ t, a dual path of length t starting at (x, t) (see figure 1) is a right-continuous path (Γ(s)) 0≤s≤t that starts at site x at time t, goes backwards, is allowed to jump only when there is a clock ring, and only to a site within ∞ -distance ρ. To write it rigorously, the path satisfies Γ(0) = x and there exists a sequence of times 0 = s

0 < s 1 < • • • < s n = t satisfying the following properties: for all 0 ≤ k ≤ n -1 and all s ∈ [s k , s k+1 [, Γ(s) = Γ(s k ), Γ(s n ) = Γ(s n-1 ) and for all 0 ≤ k < n -1, t -s k+1 ∈ P 0 Γ(s k ) ∪ P 1 Γ(s k ) and Γ(s k+1 ) -Γ(s k ) ∞ ≤ ρ.
We denote D(x, t, t ) the (random) set of all dual paths of length t starting from (x, t). A dual path Γ ∈ D(x, t, t ) is called an activated path if it "encounters a point at which both processes are at 0", i.e. if there exists s ∈

[0, t ] such that η t-s (Γ(s)) = ηt-s (Γ(s)) = 0. The set of all activated paths in D(x, t, t ) is called A(x, t, t ). We have the Lemma 6. For any x ∈ Z d and t > 0, if η t (x) = ηt (x), then for all 0 ≤ t ≤ t, A(x, t, t ) = D(x, t, t ).

Sketch of proof.

The proof is the same as for lemma 1 of [START_REF] Mountford | Exponential convergence for the Fredrickson-Andersen one spin facilitated model[END_REF], apart from the fact that if the path is at y, it does not necessarily jump to a neighbor of y, but to an element of y + X, X ∈ U. The idea of the proof is to start a dual path at (x, t), where the two processes disagree, and, staying at x, to go backwards in time until the processes agree at x. At this time, there was an update at x in one

x -3 x -2 x -1 x x + 1 0 t -t t t × × × × × × × × × × Γ Figure 1.
Illustration of a dual path Γ of length t starting at (x, t) for d = 1 and ρ = 2. Each horizontal line represents the timeline of a site of Z, the × representing the clock rings. Γ is the thick polygonal line; it starts at t and ends at t -t . It can jump only when there is a clock ring, and never at a distance greater than ρ = 2.

process but not in the other, hence an update rule x + X that was full of zeroes in one process but not in the other, thus a site at distance at most ρ of x at which the two processes disagree. We jump to this site and continue to go backwards. This construction yields a dual path along which the two processes disagree, hence they can not be both at zero, so the path is not activated. Lemma 6 implies that to prove proposition 5 hence theorem 3, it is enough to prove Proposition 7. For any q ∈]0, 1], there exists q 0 = q 0 (U, q ) ∈ [0, 1[ such that for any q ∈ [q 0 , 1], there exist two constants

c 2 = c 2 (U, q ) > 0 and C 2 = C 2 (U, q ) > 0 such that for any x ∈ Z d , t ∈ [0, +∞[, there exists 0 ≤ t ≤ t such that P q ,q (A(x, t, t ) = D(x, t, t )) ≤ C 2 e -c 2 t .
The remainder of the article will be devoted to the proof of proposition 7.

Codings

This section is devoted to the reduction of the proof of proposition 7 (hence of theorem 3) to the simpler proof of proposition 11, via the use of codings. The idea is the following: in order to prove proposition 7, it is enough to show that along each dual path, the two processes are at zero at one of the discrete times 0, K, 2K, etc. hence we only need to consider the positions of the path at these times, which will make up the coding of the path. Let K ≥ 2 and t ≥ K. A coding is a sequence

(y k ) k∈{0,..., t K 2 } of sites in Z d . Moreover, for x ∈ Z d and Γ ∈ D(x, t, t K ), the coding Γ of Γ is the sequence {Γ(kK)} k∈{0,..., t K 2 } . If γ = (y k ) k∈{0,..., t K 2 } is a coding, we define the event G(γ) = ∃k ∈ 0, . . . , t K 2 , η t-kK (y k ) = ηt-kK (y k ) = 0 . If G( Γ) is satisfied, Γ is an activated path.
Therefore, to prove proposition 7 hence theorem 3, it is enough to prove Proposition 8. For any q ∈]0, 1], there exists q 0 = q 0 (U, q ) ∈ [0, 1[ such that for any q ∈ [q 0 , 1], there exist two constants c 3 = c 3 (U, q ) > 0 and C 3 = C 3 (U, q ) > 0 and a constant K = K(U, q ) ≥ 2 such that for any x ∈ Z d and t ≥ 2K 2 , P q ,q (∃Γ ∈ D(x, t, t K ), G( Γ) c ) ≤ C 3 e -c 3 t . Proposition 8 holds only for t greater than a constant, but this is enough, since we only have to enlarge C 3 to obtain a bound valid for all t.

In order to prove proposition 8, we will define a set C N K (x, t) of "reasonable codings" and prove that the probability that there exists a dual path whose coding is not in C N K (x, t) decays exponentially in t (lemma 9). Then we will count the number of codings in C N K (x, t) (lemma 10). Therefore it will be enough to give a bound on P q ,q (G(γ) c ) for any γ ∈ C N K (x, t) to prove proposition 8 hence theorem 3. Such a bound is stated in proposition 11 and will be proven in section 6.

For any constant N > 0, for any K ≥ 2, x ∈ Z d and t ≥ K, the set C N K (x, t) of "reasonable codings" is defined as the set of (y

j 1 +•••+j k ) k∈{0,..., t K 2 }
where (y i ) i∈{0,...,I} is a sequence of sites satisfiying y 0 = x, I ≤ N t K and y i+1 -y i ∞ ≤ ρ for all i ∈ {0, . . . , I -1} and where j 1 , . . . , j t K 2

∈ N satisfy

j 1 + • • • + j t K 2
≤ I. We can now state lemmas 9 and 10, as well as proposition 11. These statements together prove proposition 8. Lemma 9. For any q ∈ [0, 1], there exists N = N (U) > 0 such that for any K ≥ 2, q ∈ [0, 1], there exists a constant č = č(U, K) > 0 such that for all x ∈ Z d and t ≥ K, P q ,q (∃Γ ∈ D(x,

t, t K ), Γ ∈ C N K (x, t)) ≤ e -čt .
In the following, N will always be the N given by lemma 9.

Lemma 10. There exist constants λ > 0 and β = β(U) > 0 such that for any

K ≥ 2, x ∈ Z d and t ≥ 2K 2 , |C N K (x, t)| ≤ λ(βK) (d+1) t K 2 .
Proposition 11. For any q ∈ [0, 1], there exists a constant K 0 = K 0 (U) ≥ 2 such that for any K ≥ K 0 , there exists q K ∈ [0, 1[ such that for any q ∈ [q K , 1], there exist two constants c 4 = c 4 (U, q ) > 0 and

C 4 = C 4 (U, K) > 0 such that for any x ∈ Z d , t ≥ K and γ ∈ C N K (x, t), P q ,q (G(γ) c ) ≤ C 4 e -c 4 t K .
We are now going to prove lemmas 9 and 10. After that, it will suffice to prove proposition 11 to prove theorem 3.

Sketch of proof of lemma 9. This can be proven with the argument of the lemma 5 of [START_REF] Mountford | Exponential convergence for the Fredrickson-Andersen one spin facilitated model[END_REF]; the idea is that if there exists Γ ∈ D(x, t, t K ) with Γ ∈ C N K (x, t), there are so many clock rings that the probability becomes very small. Indeed, let us say Γ visits the sites y 0 = x, y 1 , . . . , y j 1 in the time interval [0, K], then the sites y j 1 , . . . , y j 1 +j 2 in the time interval [K, 2K], etc. until the sites

y j 1 +•••+j t K 2 , . . . , y j 1 +•••+j t K 2 +1 in the time interval [ t K 2 K, ( t K 2 + 1)K]. Then the coding of Γ is Γ = (y j 1 +•••+j k ) k∈{0,..., t K 2 } , hence Γ ∈ C N K (x, t) implies j 1 + • • • + j t K 2 +1 > N t K .
It yields that Γ visits more than N t K sites in a time t K , and there must be successive clock rings at these sites. The proof of lemma 5 of [START_REF] Mountford | Exponential convergence for the Fredrickson-Andersen one spin facilitated model[END_REF] yields that we can choose N large enough depending on ρ, hence on U, such that the probability of this event is at most e -čt with č = č(U, N, K) = č(U, K) > 0.

To prove lemma 10, we need the following classical combinatorial result, which will also be used in the proof of lemma 19.

Lemma 12. For any I, J ∈ N,

I I + I+1 I + • • • + I+J I = I+J+1 I+1 . Moreover, for any I, J ∈ N, |{(j 1 , . . . , j I ) ∈ N I | j 1 + • • • + j I = J}| = I+J-1 I-1 .
The proof of the first part of lemma 12 can be found just before the section 2 of [START_REF] Charles | Generalized hockey stick identities and N -dimensional blockwalking[END_REF] and the proof of the second part in section 1.2 of [START_REF] Stanley | Enumerative combinatorics[END_REF] (weak compositions).

Proof of lemma 10. Let K ≥ 2, x ∈ Z d and t ≥ 2K 2 . By definition, elements of C N K (x, t) have the form (y

j 1 +•••+j k ) k∈{0,..., t K 2 }
with (y i ) i∈{0,...,I} satisfiying y 0 = x, I ≤ N t K and y i+1 -y i ∞ ≤ ρ for all i ∈ {0, . . . , I -1}, and with j 1 , . . . , j t K 2

∈ N satisfying j 1 + • • • + j t K 2
≤ I. Therefore, to count the number of elements of C N K (x, t), it is enough to count the number of possible (j k ) k∈{1,..., t K 2 } and the number of possible (y

j 1 +•••+j k ) k∈{0,..., t K 2 } given (j k ) k∈{1,..., t K 2 }
. We begin by counting the number of possible (j k ) k∈{1,..., t K 2 } . We have

j 1 + • • • + j t K 2
≤ N t K . Moreover, by the second part of lemma 12, for any integer 0 ≤ J ≤ N t K , the number of possible sequences of integers (j k ) k∈{1,..., t K 2 } such that

j 1 + • • • + j t K 2 = J is at most t K 2 +J-1 t K 2 -1
, hence the number of possible (j k ) k∈{1,..., t K 2 } is at most

N t K J=0 t K 2 +J-1 t K 2 -1 = t K 2 + N t K t K 2
by the first part of lemma 12. Furthermore

t K 2 + N t K t K 2 ≤ ( t K 2 + N t K ) t K 2 ( t K 2 )! ≤ λ e( t K 2 + N t K ) t K 2 t K 2 ≤ λ e + e N t K t K 2 t K 2
by the Stirling formula, where λ > 0 is a constant. In addition, since

t ≥ 2K 2 , t K 2 ≥ t 2K 2 , hence the number of possible (j k ) k∈{1,..., t K 2 } is at most λ e + e N t K 2K 2 t t K 2 = λ (e + 2eKN ) t K 2 ≤ λ(3eKN ) t K 2
as K ≥ 2 and N is large. We now fix a sequence (j k ) k∈{1,..., t K 2 } and count the possible (y

j 1 +•••+j k ) k∈{0,..., t K 2 }
. We know that y 0 = x. Moreover, for all i ∈ {0, . . . , j

1 + • • • + j t K 2 -1}, y i+1 -y i ∞ ≤ ρ, hence for each k ∈ {0, . . . , t K 2 -1}, we have y j 1 +•••+j k+1 -y j 1 +•••+j k ∞ ≤ ρj k+1
, so there are at most (2ρj k+1 + 1) d choices for

y j 1 +•••+j k+1 given y j 1 +•••+j k . Therefore the number of choices for (y j 1 +•••+j k ) k∈{0,..., t K 2 } is at most t K 2
k=1 (2ρj k + 1) d . Moreover, for any n ∈ N * and any positive x 1 , . . . , x n , we have

x 1 . . . x n ≤ ( x 1 +•••+xn n ) n
, therefore the number of choices is bounded by

  t K 2 k=1 (2ρj k + 1) t K 2   d t K 2 =   2ρ t K 2 k=1 j k + t K 2 t K 2   d t K 2 ≤ 2ρ N t K + t K 2 t K 2 d t K 2 since t K 2 k=1 j k ≤ N t K . As t ≥ 2K 2 , t K 2 ≥ t 2K 2
, thus the number of choices for (y

j 1 +•••+j k ) k∈{0,..., t K 2 } given (j k ) k∈{1,..., t K 2 } is bounded by 2ρ N t K 2K 2 t + 1 d t K 2 = (4ρN K + 1) d t K 2 ≤ (5ρN K) d t K 2 .

An auxiliary process

In order to prove proposition 11, we need to find a mechanism for the zeroes to spread in the KCM process; this mechanism uses novel ideas to deal with the complexity of general supercritical models. We begin in section 5.1 by using the bootstrap percolation results of [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF] to find a mechanism allowing the zeroes to spread locally (proposition 13). Then we use it in section 5.2 to define an auxiliary oriented percolation process which guarantees that if certain conditions are met, the KCM process is at zero at a given time (proposition 15). Finally, in section 5.3 we prove some properties of this auxiliary process that we will use in section 6.

5.1.

Local spread of zeroes. This is the place where we need the supercriticality of U. Indeed, since U is supercritical, the results of [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF] yield the following proposition (see figure 2): Proposition 13 ([6]). For d = 1 or 2, there exists u ∈ S d-1 , a rectangle R of the following form: while there is no 1-clock ring in R ∪ {x 1 , . . . , x m }, these clock rings will put x 1 , . . . , x m at zero, hence the sites of a 1 u + R will be put at zero.

Z 0 a 1 u 2a 1 u 3a 1 u R a 1 u + R 2a 1 u + R * * * * * * d = 1 × 0 Z 2 R a 1 u + R 2a 1 u + R a 2 a 1 u u ⊥ *
• if d = 1, R = [0, a 1 u[∩Z with a 1 u ∈ Z; • if d = 2, R = ([0, a 1 [u + [0, a 2 ]u ⊥ ) ∩ Z 2 with a 1 u ∈ Z 2
, where u ⊥ is a vector orthogonal to u, and a sequence of sites (x i ) 1≤i≤m in (a 1 u + R) ∪ (2a 1 u + R) such that if the sites of R are at zero and there are successive 0-clock rings at x 1 , x 2 , . . . , x m while there is no 1-clock ring in R ∪ {x 1 , . . . , x m }, the sites of a 1 u + R are at zero afterwards. Remark 14. For d ≥ 3, we expect a similar proposition to hold, maybe with R = [0, a 1 [u + R, R contained in the hyperplane orthogonal to u, but we can not prove it because an equivalent of the construction of [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF] is not available yet. Proving such a construction would be enough to extend our result to any dimension.

Proof of proposition 13. We begin with the case d = 1. Since U is supercritical there exists u an unstable direction. Without loss of generality we can say that u = 1, therefore there exists an update rule X contained in -N * . This yields the mechanism illustrated by figure 3(a): if R = {0, . . . , } is sufficiently large and full of zeroes, ( + 1) + X is full of zeroes, hence if the site + 1 receives a 0-clock ring, this clock ring puts it at zero. Then ( +2)+X is full of zeroes, thus if +2 receives a 0-clock ring, this clock ring puts it at zero. In the same way, if the sites + 3, . . . , 2 + 1 receive successive 0-clock rings, these clock rings will put them successively at zero, therefore { + 1, . . . , 2 + 1} = ( + 1) + R will be at zero. This yields the result with a 1 = + 1 and (x i ) 1≤i≤m = + 1, + 2, . . . , 2 + 1.

We now consider the case d = 2. Since U is supercritical, there exists a semicircle in S 1 that contains no stable direction; we call u its middle. The results of section 5 of [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF] (see in particular figure 5 and lemma 5.5 therein) prove that there exists a set of sites, called a droplet, such that in the bootstrap percolation dynamics, if we start with all the sites of the droplet infected, other sites in the direction u can be infected, creating a bigger infected droplet with the same shape (see figure 3(b)). We can enlarge this droplet into a rectangle R = [0, a 1 [u + [0, a 2 ]u ⊥ as in figure 3(c); furthermore u can be The shape delimited by the solid line is the droplet of [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF]; if it is infected in the bootstrap percolation dynamics, the infection can grow to the shape delimited by the dashed line. (c) R contains the original droplet (dashed line), hence if R is infected, the infection can propagate to a bigger droplet (in gray) that contains

• • • • • • • • • • • • • • • • • • • • • • 0 R ( + 1) + X + 1 ↓ • • • • • • • • • • • • • • • • • • • • • • • 0 ( + 2) + X + 2 ↓ • • • • • • • • • • • • • • • • • • • • • • • • 0 ↓ . . . ↓ • • • • • • • • • • • • • • • • • • • • • • • • • • • • 0 2 + 1 R ( + 1) + R (a) u (b) R a 1 u + R 2a 1 u + R u u ⊥ (c)
a 1 u + R and is contained in R ∪ (a 1 u + R) ∪ (2a 1 u + R).
chosen rational 1 , hence we may enlarge R enough so that a 1 u ∈ Z 2 . Now, since R contains the original droplet, if R is infected the infection can grow from the droplet into a droplet big enough to contain a 1 u + R while staying in R ∪ (a 1 u + R) ∪ (2a 1 u + R) (see figure 3(c)). We call x 1 , . . . , x m the sites that are successively infected during this growth (sites infected at the same time are ordered arbitrarily). Since x 1 is the first site infected by the bootstrap percolation dynamics starting with the sites of R infected, there exists an update rule X such that x 1 + X ⊂ R, therefore if the KCM dynamics starts with all the sites of R at zero and there is a 0-clock ring at x 1 , this clock ring sets x 1 to zero. Then, if there is a 0-clock ring at x 2 , it will set x 2 to zero for the same reason, and successive 0-clock rings at x 3 , . . . , x m will set them successively to 0, which puts a 1 u + R at zero. 5.2. Definition of the auxiliary process. Let K > 0, q ∈ [0, 1] and t ≥ K. For any y ∈ Z d and k ∈ {0, . . . , t K }, we will define an oriented percolation process ζ y,k on Z, from time zero to time n y,k = t K -k (see [START_REF] Durrett | Oriented percolation in two dimensions[END_REF] for an introduction to oriented percolation). For n ∈ {1, . . . , n y,k } and r ∈ Z with r + n even, the bonds (r -1, n -1) → (r, n) and (r + 1, n -1) → (r, n) can be open or closed ; we set ζ y,k 0 (r) = 1 {r=0} , and for any n ∈ {1, . . . , n y,k }, r ∈ Z with r + n even,

ζ y,k n (r) = 1 if and only if ζ y,k n-1 (r -1) = 1 and the bond (r -1, n -1) → (r, n) is open or ζ y,k n-1 (r + 1) = 1 and the bond (r + 1, n -1) → (r, n) is open.
The state of the bonds is defined as follows. For any n ∈ {1, . . . , n y,k }, r ∈ Z with r + n even:

1 Indeed, theorem 1.10 of [START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF] states that the set of stable directions is a finite union of closed intervals with rational endpoints, hence the semicircle containing no stable direction can be chosen with rational endpoints.

• (r -1, n -1) → (r, n) is open if and only if ∀x ∈ y + r -n 2 a 1 u + R, ]t -(k + n)K, t -(k + n -1)K] ∩ P 1 x = ∅ , i.e. there is no 1-clock ring in y + r-n 2 a 1 u + R during the time interval ]t -(k + n)K, t -(k + n -1)K]; • (r + 1, n -1) → (r, n) is open if and only if ∃t -(k + n)K < t 1 < • • • < t m ≤ t -(k + n -1)K, ∀i ∈ {1, . . . , m}, t i ∈ P 0 y+ r-n 2 a 1 u+x i ∩ ∀x ∈ y + r -n 2 a 1 u + R ∪ {x 1 , . . . , x m }, ]t -(k + n)K, t -(k + n -1)K] ∩ P 1 x = ∅ ,
i.e. there are successive 0-clock rings in the equivalent of x 1 , . . . , x m for y + r-n

2 a 1 u + R during the time interval ]t -(k + n)K, t -(k + n -1)K],
and no 1-clock ring at these sites or in y + r-n 2 a 1 u + R in this time interval. We notice that if all the sites of y+ r-n 2 a 1 u+R are at zero at time t-(k+n)K and (r-1, n-1) → (r, n) is open, the sites of y + r-n 2 a 1 u + R are still at zero at time t -(k + n -1)K. Moreover, by proposition 13, if the sites of y + r-n 2 a 1 u + R are at zero at time t -

(k + n)K and (r + 1, n -1) → (r, n) is open, the sites of a 1 u + (y + r-n 2 a 1 u + R) = y + (r+1)-(n-1)
2 a 1 u + R are at zero at time t -(k + n -1)K. This allows us to deduce (see figure 4 for an illustration of the mechanism): Proposition 15. If there exists r 0 ∈ Z such that ζ y,k n y,k (r 0 ) = 1 and the sites of y + r 0 -n y,k 2 a 1 u + R are at zero at time t -t K K, then the sites of y + R are at zero at time t -kK.

Properties of the auxiliary process.

In this subsection we state the two oriented percolation properties of ζ y,k , propositions 17 and 18, that we will use in section 6 to prove proposition 11. In order to do that, we need a bound on the probability that a bond is closed; this will be lemma 16. It is there that we need q bigger than a q 0 > 0; this is necessary so that the probability that there is no 1-clock ring at the sites we consider is large. For any K > 0, we set q K = 1 + 1 3K|R| ln(1 -e -K ). We can then state Lemma 16. There exists a constant K p = K p (U) > 0 such that for K ≥ K p , q ∈ [q K , 1], t ≥ K, y ∈ Z d and k ∈ {0, . . . , t K }, the probability that any given bond is closed for the process ζ y,k is smaller than e

-K 4 . Proof. Let K > 0, q ∈ [q K , 1], t ≥ K, y ∈ Z d and k ∈ {0, . . . , t K }. Let n ∈ {1, . . . , n y,k }, r ∈ Z with r + n even. We notice that if the bond (r -1, n -1) → (r, n) is closed, the bond (r + 1, n -1) → (r, n) is also closed, hence it is enough to bound the probability that (r + 1, n -1) → (r, n) is closed. Denoting E 1 = {∀x ∈ y + r-n 2 a 1 u + R ∪ {x 1 , . . . , x m }, ]t -(k + n)K, t -(k + n -1)K] ∩ P 1 x = ∅} and E 2 = {∃t-(k+n)K < t 1 < • • • < t m ≤ t-(k+n-1)K, ∀i ∈ {1, . . . , m}, t i ∈ P 0 y+ r-n 2 a 1 u+x i }, we need to bound the probabilities of E c 1 and E c 2 .
We begin with E c 1 . The events ]t-(k+n)K, t-(k+n-1)K]∩P 1 x = ∅ are independent and have probability e -(1-q)K each; moreover, x 1 , . . . , x m belong to (a 1 u+R)∪(2a 1 u+R), so |R ∪ {x 1 , . . . , x m }| ≤ 3|R|; we deduce the probability of E 1 is 

e -|R∪{x 1 ,...,xm}|(1-q)K ≥ e -3|R|(1-q)K ≥ e -3|R|(1-q K )K ≥ e -3|R| 1-1+ 1 3K|R| ln(1-e -K ) K = e ln(1-e -K ) = 1 -e -K , --3 -2 --1 0 -1 2 -3 r 0 1 2 3 n r 0 b 1 b 2 b 3 y -3a 1 u + R y -2a 1 u + R y -a 1 u + R y + R y + a 1 u + R y + 2a 1 u + R y + 3a 1 u + R t -(k + 3)K t -(k + 2)K t -(k + 1)K t -kK
-(k + 3)K the rectangle y + 1-n y,k 2 a 1 u + R = y -a 1 u + R is at zero (in gray), since the bond (0, 2) → (1, 3) (bond b 1 ) is open, y -a 1 u + R is still at zero at time t -(k + 2)K. Moreover, since (1, 1) → (0, 2) (bond b 2 ) is open and y -a 1 u + R is at zero at time t -(k + 2)K, a 1 u + (y -a 1 u + R) = y + R is at zero at time t -(k + 1)K. Finally, since (0, 0) → (1, 1) (bond b 3 ) is open and y + R is at zero at time t -(k + 1)K, y + R is still at zero at time t -kK.
thus the probability of E c 1 is at most e -K . Moreover, the probability of E c 2 is the probability that a Poisson point process of parameter q has strictly less than m elements in an interval of length K, hence it is m-1 i=0 e -qK (qK

) i i! . When K is large enough, q ∈ [1/2, 1], hence this probability is smaller than e -1 2 K m-1 i=0 K i
i! , which is smaller than e -K 3 when K is large enough depending on m, hence on U. Consequently, when K is large enough depending on U, the probability that (r + 1, n -1) → (r, n) is closed is smaller than e -K + e -K 3 , which is smaller than e -K 4 when K is large enough.

Thanks to lemma 16, it is possible to prove two oriented percolation properties of ζ y,k . Firstly, for any K > 0, q ∈ [q K , 1], t ≥ K, y ∈ Z d and k ∈ {0, . . . , t K }, we define τ y,k = inf{n ∈ {0, . . . , n y,k } | ∀r ∈ Z, ζ y,k n (r) = 0} the time of death of the process ζ y,k (if the set is empty, τ y,k is infinite). Since ζ y,k 0 (r) = 1 {r=0} , which is not identically zero, τ y,k ≥ 1. Then we have Proposition 17. For any q ∈ [0, 1], there exists a constant K c = K c (U) > 0 such that for any K ≥ K c , q ∈ [q K , 1], t ≥ K, y ∈ Z d , k ∈ {0, . . . , t K }, n ∈ {0, . . . , n y,k }, P q ,q (n ≤ τ y,k < +∞) ≤ 23 2n e -Kn 24 .

Sketch of proof. The proposition can be proven by a classical contour method like the one presented in section 10 of [START_REF] Durrett | Oriented percolation in two dimensions[END_REF]. The idea is that if n ≤ τ y,k < +∞ we can draw a "contour of closed bonds" around the connected component of ones in ζ y,k , and this contour will have length Ω(n). Furthermore, it can be seen that bonds separated by at least 5 bonds from each other are independent, because they depend on clock rings in disjoint space-time intervals. Therefore if we keep one bond out of 6, we extract Ω(n) independent closed bonds from the contour, each of them having probability e -K 4 from lemma 16 when K ≥ K p , hence the bound.

ζ y,k also satisfies a second property. For any K > 0, q ∈ [q K , 1], t ≥ K, y ∈ Z d and k ∈ {0, . . . , t K }, we denote X y,k = {r ∈ {-n y,k 2 , . . . , n y,k 2 } | ζ y,k n y,k (r) = 1}. Then we have Proposition 18. For any q ∈ [0, 1], α ∈]0, 1[, there exists a constant K g (α) = K g (U, α) > 0 such that for any K ≥ K g (α), there exist constants c g > 0 and C g = C g (U, K, α) > 0 such that for any q ∈ [q K , 1], t ≥ K, y ∈ Z d and k ∈ {0, . . . , t K }, P q ,q τ y,k = +∞, |X y,k | ≤ α 2 n y,k ≤ C g e -cgn y,k . Sketch of proof. This proposition comes from classical results in oriented percolation. Firstly, if the process survives until time n y,k , it has a big "range", which means that if we define r y,k = sup{r ∈ Z | ζ y,k n y,k (r) = 1} and y,k = inf{r ∈ Z | ζ y,k n y,k (r) = 1}, r y,k and | y,k | are so large {-n y,k 2 , . . . , n y,k 2 } ⊂ { y,k , . . . , r y,k }; this can be proven with the contour argument in section 11 of [START_REF] Durrett | Oriented percolation in two dimensions[END_REF]. Moreover, the argument that proves (1) in [START_REF] Durrett | Oriented percolation in two dimensions[END_REF] also proves that in { y,k , . . . , r y,k }, ζ y,k n y,k coincides with the oriented percolation process that has the same bonds, but which starts with all sites at 1 instead of just the origin. Finally, the end of section 5 of [START_REF] Durrett | Large deviations for the contact process and two dimensional percolation[END_REF] contains a contour argument for the latter process which allows to prove that it has a lot of ones; we can use this argument with the same adaptations we used for the contours of proposition 17.

Proof of proposition 11

In this section we use the auxiliary process defined in section 5 to give a proof of proposition 11. In order to do that, we need some definitions. For any q ∈]0

, 1], K ≥ 2, q ∈ [q K , 1], x ∈ Z d , t ≥ K and γ = (y k ) k∈{0,..., t K 2 } ∈ C N K (x, t), we define k(γ) = inf{k ∈ {0, . . . , t K 2 } | τ y k ,k
= +∞} if such a k exists; in this case we also denote y(γ) = y k(γ) (in the following, when we write k(γ) or y(γ) without more precision, we always assume that they exist). For any r ∈ X y(γ),k(γ) we define the events

W γ,η (r) = (η t-t K K ) y(γ)+ r-n y(γ),k(γ) 2 a 1 u+R = 0 , W γ,η (r) = (η t-t K K ) y(γ)+ r-n y(γ),k(γ) 2 a 1 u+R = 0 .
By proposition 15, if {∃r ∈ X y(γ),k(γ) , W γ,η (r)} ∩ {∃r ∈ X y(γ),k(γ) , W γ,η (r)}, then the sites of y(γ) + R are at zero at time t -k(γ)K in both processes (η t ) t∈[0,+∞[ and (η t ) t∈[0,+∞[ , in particular y(γ) is at zero at time t -k(γ)K in both processes, therefore G(γ) is satisfied. Consequently, P q ,q (G(γ) c ) ≤P q ,q (k(γ) does not exist) + P q ,q k(γ) exists, |X y(γ),k(γ) | ≤ t 6K

+ P q ,q |X y(γ),k(γ) | > t 6K ∩ ∀r ∈ X y(γ),k(γ) , W γ,η (r) c + P q ,q |X y(γ),k(γ) | > t 6K ∩ ∀r ∈ X y(γ),k(γ) , W γ,η (r) c .
Therefore we only have to prove the following lemmas 19, 20 and 21 to prove proposition 11, thus ending the proof of theorem 3:

Lemma 19. For any q ∈]0, 1], there exists a constant

K 1 = K 1 (U) ≥ 2 such that for any K ≥ K 1 , q ∈ [q K , 1]
, there exist constants c1 > 0 and C1 = C1 (K) > 0 such that for any x ∈ Z d , t ≥ K, γ ∈ C N K (x, t), we have P q ,q (k(γ) does not exist) ≤ C1 e -c 1 t K .

Lemma 20. For any q ∈]0, 1], there exists a constant

K 2 = K 2 (U) ≥ 2 such that for any K ≥ K 2 , q ∈ [q K , 1], there exist constants c2 > 0 and C2 = C2 (U, K) > 0 such that for any x ∈ Z d , t ≥ K, γ ∈ C N K (x, t), P q ,q (k(γ) exists, |X y(γ),k(γ) | ≤ t 6K ) ≤ C2 e -c 2 t K .
Lemma 21. For any q ∈]0, 1], K ≥ 2, q ∈ [q K , 1], there exists a constant c3 = c3 (U, q ) > 0 such that for any

x ∈ Z d , t ≥ K, γ ∈ C N K (x, t), we get P q ,q ({|X y(γ),k(γ) | > t 6K } ∩ {∀r ∈ X y(γ),k(γ) , W γ,η (r) c }) ≤ e -c 3 t K and P q ,q ({|X y(γ),k(γ) | > t 6K } ∩ {∀r ∈ X y(γ),k(γ) , W γ,η (r) c }) ≤ e -c 3 t K .
Proof of lemma 19. We set K 1 = max(K c , 48(ln 36 + 1)), which depends only on U. Let q ∈]0, 1],

K ≥ K 1 , q ∈ [q K , 1], x ∈ Z d , t ≥ K and γ = (y k ) k∈{0,..., t K 2 } ∈ C N K (x, t). If k(γ) does not exist, τ y k ,k is finite for k ∈ {0, . . . , t K 2 }
, therefore if we call k 1 = 0 and k i = i-1 j=1 τ y k j ,k j for i ≥ 2, τ y k i ,k i is finite as long as k i ≤ t K 2 . We will use proposition 17 to bound the probability that this happens. We call

L = max{i ≥ 1 | k i ≤ t K 2 }; we then have L i=1 τ y k i ,k i > t K 2 , hence if n L is the integer satisfying n L = t K 2 -L-1 i=1 τ y k i ,k i , we have n L ≤ τ y k L ,k L < +∞. Furthermore, if n 1 , . . . , n L-1 are integers satisfiying n i = τ y k i ,k i for i ∈ {1, . . . , L -1}, we get n 1 + • • • + n L = t K 2 , k i = i-1
j=1 n j for all i ∈ {1, . . . , L} (we denote i-1 j=1 n j = N i ). In addition, since τ y k ,k ≥ 1 for any k ∈ {0, . . . , t K 2 }, L ≤ t K 2 + 1. We deduce P q ,q (k(γ) does not exist)

≤ M ≤ t K 2 +1,n 1 +•••+n M = t K 2 P q ,q (L = M, ∀1 ≤ i ≤ M -1, τ y N i ,N i = n i , n M ≤ τ y N M ,N M < +∞).
Moreover, the events {τ

y k N i ,N i = n i }, i ∈ {1, . . . , M -1} and {n M ≤ τ y k N M ,N M < +∞} depend only on clock rings in the time intervals ]t -(N i + n i )K, t -N i K] =]t -N i+1 K, t -N i K], i ∈ {1, . . . , M -1} and ]t -(N M + n M )K, t -N M K],
which are disjoint, thus the events are independent, hence

P q ,q (L = M, ∀1 ≤ i ≤ M -1, τ y N i ,N i = n i , n M ≤ τ y N M ,N M < +∞) ≤ M -1 i=1 P q ,q τ y N i ,N i = n i P q ,q n M ≤ τ y N M ,N M < +∞ ≤ M i=1 P q ,q n i ≤ τ y N i ,N i < +∞ ≤ M i=1 23 2n i e -Kn i 24 = 2 M 3 2 M i=1 n i e -K 24 M i=1 n i = 2 M 3 2 t K 2 e -K 24 t K 2
by proposition 17 and since

n 1 + • • • + n M = t K 2 . Consequently, P q ,q (k(γ) does not exist) ≤ M ≤ t K 2 +1,n 1 +•••+n M = t K 2 2 M 3 2 t K 2 e -K 24 t K 2 .
In addition, lemma 12 yields that for any M ∈ {1, . . . , t K 2 + 1}, we have

|{(n 1 , . . . , n M ) ∈ N M | n 1 + • • • + n M = t K 2 }| = M + t K 2 -1 M -1 = M + t K 2 -1 t K 2
, and by the Stirling formula there exists a constant λ > 0 such that

M + t K 2 -1 t K 2 ≤ M + t K 2 -1 t K 2 t K 2 ! ≤ λ e M + t K 2 -1 t K 2 t K 2 ≤ λ e t K 2 + t K 2 t K 2 t K 2 since M ≤ t K 2 +1. We deduce |{(n 1 , . . . , n M ) ∈ N M | n 1 +• • •+n M = t K 2 }| ≤ λ(2e) t K 2 . Therefore P q ,q (k(γ) does not exist) ≤ t K 2 +1 M =1 λ(2e) t K 2 2 M 3 2 t K 2 e -K 24 
t K 2 ≤ λ(2e) t K 2 2 t K 2 +2 3 2 t K 2 e -K 24 
t K 2 = 4λ 36ee -K 24 t K 2 .
In addition, since K ≥ 48(ln 36 + 1), 36ee -K 48 ≤ 36ee -ln 36-1 = 1, so 36ee -K 24 ≤ e -K 48 , hence P q ,q (k(γ) does not exist) ≤ 4λe

-K 48 t K 2 ≤ 4λe -K 48 t K 2 -1 = 4λe K 48 e -t 48K ,
which is the lemma.

Proof of lemma 20. This proof is an application of proposition 18. We set K 2 = max(4, K g (1/2)), which depends only on U. Let q ∈]0, 1], K ≥ K 2 , q ∈ [q K , 1] and x ∈ Z d . It is enough to prove the lemma for t ≥ max(K, 3K 2 K-3 ); indeed, if the lemma holds for t ≥ max(K, 3K 2 K-3 ), one has only to enlarge C2 to prove it for t ≥ K. Therefore we set t ≥ max(K, 3K 2 K-3 ) and γ = (y k ) k∈{0,..., t K 2 } ∈ C N K (x, t). If k(γ) exists but |X y(γ),k(γ) | ≤ t 6K , we have τ y(γ),k(γ) = +∞ and |X y(γ),k(γ) | ≤ t 6K , hence P q ,q k(γ) exists, |X y(γ),k(γ) | ≤ t 6K ≤ t K 2 k=0 P q ,q τ y k ,k = +∞, |X y k ,k | ≤ t 6K .

We are going to bound the term on the right. For any k ∈ {0, . . . , t K 2 }, we have n Proof of lemma 21. Let q ∈]0, 1], K ≥ 2, q ∈ [q K , 1], x ∈ Z d , t ≥ K and γ ∈ C N K (x, t). The argument is elementary: we notice that there is a positive probability that a rectangle is full of zeroes in the initial configurations of the two processes since they have laws ν q and ν q , as well as a positive probability that there is no 1-clock ring in the rectangle in the time interval [0, t -K t K ]. Therefore there is a positive probability that a rectangle is full of zeroes in both processes at time t -K t K , so if there are t 6K elements in X y(γ),k(γ) , the probability that none of the corresponding rectangles is full of zeroes in both processes at time t -K t K is of order e -c 3 t K . We notice that X y(γ),k(γ) depends only on clock rings in the time interval ]t -K t K , t], hence if F is the σ-algebra generated by the clock rings in ]t -K t K , t], for η = η or η, we have P q ,q |X y(γ),k(γ) | > t 6K ∩ {∀r ∈ X y(γ),k(γ) , W γ,η (r) c } = E q ,q 1 {|X y(γ),k(γ) |> t 6K } P q ,q (∀r ∈ X y(γ),k(γ) , W γ,η (r) c |F) .

y k ,k = t K -k ≥ t K -t K 2 ≥ t K -1 -t K 2 ,
(1)

Moreover, P q ,q (∀r ∈ X y(γ),k(γ) , W γ,η (r) c |F)

= P q ,q ∀r ∈ X y(γ),k(γ) , ∃x ∈ y(γ) + r -n y(γ),k(γ) 2 a 1 u + R, ηtt K K (x ) = 0 F ≤ P q ,q ∀r ∈ X y(γ),k(γ) , ∃x ∈ y(γ) + r -n y(γ),k(γ) 2 a 1 u + R, η0 (x ) = 0 or P 1 x ∩ 0, t -t K K = ∅ F = r∈X y(γ),k(γ) P q ,q ∃x ∈ y(γ) + r -n y(γ),k(γ) 2 a 1 u + R, η0 (x ) = 0 or P 1 x ∩ 0, t -

t K K = ∅
since the events {∃x ∈ y(γ) + r-n y(γ),k(γ) 2 a 1 u + R, η0 (x ) = 0 or P 1

x ∩ [0, t -t K K] = ∅} depend only on the state of η0 and on the clock rings of the time interval [0, t -K t K ] at the sites of y(γ) + r-n y(γ),k(γ) 2 a 1 u + R, so they are mutually independent and independent of F. Therefore the invariance by translation yields P q ,q (∀r ∈ X y(γ),k(γ) , W γ,η (r) c |F) ≤ P q ,q ∃x ∈ R, η0 (x ) = 0 or P 1

x ∩ 0, t -

t K K = ∅
|X y(γ),k(γ) | = 1 -P q ,q ∀x ∈ R, η0 (x ) = 0, P 1 x ∩ 0, t -

t K K = ∅
|X y(γ),k(γ) | = 1 -P q ,q (η 0 (0) = 0) P q ,q P 1 0 ∩ 0, t -

t K K = ∅ |R| |X y(γ),k(γ) |
.
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 3 Figure 3. The proof of proposition 13. (a) The mechanism for d = 1; the • represent zeroes and the • represent ones. (b)The shape delimited by the solid line is the droplet of[START_REF] Bollobás | Monotone cellular automata in a random environment[END_REF]; if it is infected in the bootstrap percolation dynamics, the infection can grow to the shape delimited by the dashed line. (c) R contains the original droplet (dashed line), hence if R is infected, the infection can propagate to a bigger droplet (in gray) that contains a 1 u + R and is contained in R ∪ (a 1 u + R) ∪ (2a 1 u + R).

Figure 4 .

 4 Figure 4. An illustration of proposition 15 with n y,k = 3 and r 0 = 1. The figure at the left represents the bonds of the oriented percolation process ζ y,k ; the open bonds are the thick ones, and the path of open bonds allowing ζ y,k n y,k (r) = 1 is outlined by arrows. The figure at the right represents the consequences on the KCM process; each vertical strip represents the state of i∈Z (y + ia 1 u + R) at a certain time. If at time t -(k + 3)K the rectangle y + 1-n y,k

  d-1 . Definition 2. A d-dimensional update family U is • supercritical if there exists an open hemisphere C ⊂ S d-1 that contains no stable direction; • critical if every open hemisphere C ⊂ S d-1 contains a stable direction, but there exists a hemisphere

  Figure 2. Illustration of proposition 13. The * represent the sites x 1 , . . . , x m . If we start with the sites of R at zero and there are successive 0-clock rings at x 1 , . . . , x m
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		*		
	d = 2		

  and since t ≥ 3K 2 K-3 , (K -3)t ≥ 3K 2 thus 1 P q ,q τ y k ,k = +∞, |X y k ,k | ≤ t 6K ≤ C g e -cgn y k ,k ≤ C g e -cg 2

	since n y k ,k ≥ 2 3	t K . Consequently						
	P q ,q k(γ) exists, |X y(γ),k(γ) | ≤	t 6K	≤	t K 2 + 1 C g e -2cg 3	t K ≤	t K	+ 1 C g e -2cg 3	t K ,
	which yields lemma 20.						
	3 6K . Therefore by proposition 18, t K -t K 2 ≥ 1, so n y k ,k ≥ 2 3 2 n y k ,k ≥ t 2 we have α hence if we choose α = 1	t K ,
									t
								3	K
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Furthermore, since t -t K K ≤ K and q ≥ q K = 1 + 1 3K|R| ln(1 -e -K ), P q ,q P 1 0 ∩ 0, t -

since K ≥ 2. This implies P q ,q (∀r ∈ X y(γ),k(γ) , W γ,η (r) c |F) ≤ 1 -P q ,q (η 0 (0) = 0) |R| 1 2

In addition, if η = η, P q ,q (η 0 (0) = 0) = q , so 1 -P q ,q (η 0 (0) = 0) |R| ( 1 2 )

, and if η = η, 1 -P q ,q (η 0 (0) = 0) |R| ( 12 )

) (which depends only on U and q ), for η = η or η we have P q ,q (∀r ∈ X y(γ),k(γ) , W γ,η (r) c |F) ≤ e -c 3 |X y(γ),k(γ) | . Consequently, (1) yields

which is the lemma.