
HAL Id: hal-02183760
https://hal.science/hal-02183760v1

Submitted on 15 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Comparison of Visual Servoing from Features Velocity
and Acceleration Interaction Models

Franco Fusco, Olivier Kermorgant, Philippe Martinet

To cite this version:
Franco Fusco, Olivier Kermorgant, Philippe Martinet. A Comparison of Visual Servoing from Features
Velocity and Acceleration Interaction Models. IROS 2019 - IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct 2019, Macau, China. �10.1109/iros40897.2019.8967710�. �hal-
02183760�

https://hal.science/hal-02183760v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Comparison of Visual Servoing from Features Velocity and
Acceleration Interaction Models

Franco Fusco1, Olivier Kermorgant1 and Philippe Martinet1,2

Abstract— Visual Servoing has been widely investigated in
the last decades as it provides a powerful strategy for robot
control. Thanks to the direct feed-back from a set of sensors,
it allows to reduce the impact of some modeling errors and to
perform tasks even in uncertain environments. The commonly
exploited approach in this field is to use a model that expresses
the rate of change of a set of features as a function of sensor
twist. These schemes are commonly used to obtain a velocity
command, which needs to be tracked by a low-level controller.

Another approach that can be exploited consists in going
one step further and to consider an acceleration model for
the features. This strategy allows also to obtain a natural
and direct link with the dynamic model of the controlled
system. This study aims at comparing the use of velocity and
acceleration-based models in feed-back linearization for Visual
Servoing. We consider the case of a redundant manipulator and
discuss what this implies for both control techniques. By means
of simulations, we show that controllers based on features
acceleration give better results than those based on velocity
in presence of noisy feedback signals.

I. INTRODUCTION

Visual Servoing is a control technique that allows pre-
cise relative positioning between a sensor and an observed
object. It is robust to modeling errors and features a large
convergence domain. The main research interests have been
on modeling the interaction between descriptive features and
sensor motion at the velocity level. Controllers are usually
designed in two decoupled stages: a first high-level layer
operates in the features space and produces a reference
velocity [1], [2] which is then forwarded to a low-level robot
controller actuating the motors to track the desired velocity
profile [3], [4], [5].

In recent years, the idea of directly linking the dynamics
of robotics systems to sensory feedback has been considered.
This had already been proposed over than two decades ago
[3], [6], with the appealing option of using a second-order
model expressing the link between features acceleration and
robot kinematics, altogether with the Dynamic model of
the robot. This allows to define, e.g., Computed Torque
Controllers directly in the feature space. These models have
now been “rediscovered” and used in different contexts, such
as vision-based aerial grasping [7], stero-vision systems [8]
and hybrid vision-force control for serial manipulators [9].

In this work, we contribute to the analysis of second-order
Visual Servoing control schemes by performing a systematic
comparison with classical first-order controllers. In the recent
literature, second order models have been mainly derived ad

1Centrale Nantes, Laboratoire des Sciences du Numérique de Nantes
LS2N, France. Mail: name.surname@ls2n.fr

2Inria Sophia Antipolis, France. Mail: philippe.martinet@inria.fr

hoc from the definition of considered features. We instead
consider a more general approach, which does not rely on
the selected set of descriptors. While this concept had been
already described briefly in [3], we contribute with more
explicit results in the development.

In addition, we consider the case of a redundant manip-
ulator featuring 7 degrees of freedom. Our objective in this
sense is to focus the attention on the fact that second-order
schemes must explicitly handle the redundancy even when no
additional tasks are specified, whereas first-order controllers
naturally cope with this added complexity.

The remainder of this paper is organized as follows: in
Section II we recall basic modeling exploited in classical
Visual Servoing and illustrate how acceleration models can
be obtained. We then review how to link robot kinematics and
dynamics to the feature space, and how to use these models
to design controllers. We also discuss the implications of
redundancy in the proposed control laws. In Section III we
compare in a simulated environment control laws based on
the first and second-order models. Reported results show
that models based on features acceleration outperform those
exploiting the cascade of Visual and low-level controllers.
In particular, they exhibit good convergence properties and
smoother control inputs, with less sensitivity to noise.

II. VISUAL SERVOING & DYNAMICS

A. First order Visual Servoing

We recall here the classical first-order modeling approach
generally exploited in the context of Visual Servoing. To
achieve the task of regulating the relative position between
a sensor and an observed object, a set of descriptive features
is firstly selected. Their numerical value is stored in the
m-dimensional vector s. This set might include coordinates
extracted from an image, the relative pose between the sensor
frame and the object frame, distance measurements, etc. We
will focus in the following on the case of Image Based Visual
Servoing (IBVS), although the models presented below are
generic and can be applied to a broader class of features and
sensors.

Once the features have been chosen, it is necessary to
relate them to the kinematics of the robotic system. This is
achieved via the following differential relation:

ṡ = Ls v +
∂s

∂t
(1)

Ls being the Interaction Matrix of the set of features and
vT =

[
vT ωT

]
representing the kinematic screw, or twist,

of the camera with respect to the object (expressed in the



coordinate system of the sensor itself). The last term in
(1) takes into account variations of the features that do
not depend on the relative motion between the sensor and
the object. It is generally possible to assume that additive
component to be null.

It is worth remarking that Ls generally depends on both
the observed features and a set of parameters. Among these,
some can be assumed constant, such as intrinsic camera
parameters. On the other side, there appear also quantities
in Ls whose value changes depending on the relative mo-
tion between the camera and the object. Examples of such
parameters are the depth of image points, or plane parameters
when dealing with planar image moments. In the following,
the vector containing such parameters is denoted as z.

Starting from first-order models, it is shown in the next
section how to obtain a relation that involves the second
derivative of the features and the acceleration of the sensor.

B. Second order Visual Servoing
This class of models considers the second-order time

derivative of the features and how it depends on the accel-
eration of sensors, in addition to their velocity. In related
works the derivation of the second order model was achieved
by considering the direct expression of the features and
by evaluating explicitly s̈ depending on its definition. We
propose in the following a more general approach that we
believe facilitates the derivation of these models. First of all,
the derivative of (1) gives (assuming ∂s

∂t = 0):

s̈ = Ls
d

dt
v + L̇s v (2)

The derivative of the kinematic screw writes as follows:
d

dt
v = a +

[
v × ω

0

]
(3)

which is obtained by considering the camera frame is not
inertial with respect to the object. Regarding the differentia-
tion of Ls, it is convenient to consider this matrix as written
in the form:

Ls =
[
`1 · · · `m

]T
(4)

`i being the rows of Ls, from which the derivative can be
expressed as:

L̇s =


(
∂`1
∂s ṡ + ∂`1

∂z ż
)T

· · ·(
∂`m
∂s ṡ + ∂`m

∂z ż
)T
 (5)

For simplicity we assume in the following that an ex-
pression for ż is available, and that furthermore it takes the
form ż = Lzv. Under this assumption and by introducing
Hi=̇

(
∂`i
∂s Ls + ∂`i

∂z Lz

)T
:

L̇s =

vTH1

· · ·
vTHm

 (6)

As a result, (2) becomes:

s̈ = Lsa + Ls

[
v × ω

0

]
+

vTH1

· · ·
vTHm

v (7)

The second term in the right-hand side can be rearranged
in a nicer form that matches the structure of the last term.
For this purpose, one can consider the first three elements
in each row of Ls and place them in a set of vectors `(v)i .
After some simple manipulation, it is possible to rewrite (2)
in the form:

s̈ = Lsa +

 vT (H1 + L1)v
· · ·

vT (Hm + Lm)v

 = Lsa + hs (8)

wherein matrices Li take the form:

Li =

[
O3 O3[
`
(v)
i

]
×

O3

]
(9)

having used the symbols O3 and [·]× to denote respectively
the null 3-by-3 matrix and the skew-symmetric matrix cor-
responding to the cross-product.

The main interest in the given development is that to get
the second order model of any feature, the only required
work is to evaluate ∂`i

∂s and ∂`i
∂z .

We conclude this section by showing how a second order
model is obtained from another set of features for which an
acceleration model has already been obtained. Consider a set
of features sa defined by some differentiable function of an-
other set of features sb, i.e., sa = f(sb). After development,
one would get the following result:

s̈a =

(
∂f

∂sb
Lb

)
a +

(
∂f

∂sb
hb +

(
d

dt

∂f

∂sb

)
Lbv

)
(10)

in which it is easy to identify the Interaction Matrix, multi-
plying the acceleration screw a, and the vector ha.

C. Robot Kinematics and Dynamics in Sensor Space

If we assume that the relative motion between the sensor
and the object depends solely on the motion of the robot, the
models presented in the previous section can be easily linked
to the configuration space of the robotic system. Assuming
an eye-in-hand setup, the velocity and acceleration of the
sensor are given by:

v = TJq̇ (11a)

a = TJq̈ + TJ̇q̇ (11b)

wherein J is the 6-by-n Jacobian matrix of the robot, n
being the number of degrees of freedom of the robot. The
two vectors q, q̇ ∈ Rn collect respectively positions and
velocities of the joints, while T is a twist-rotation matrix
that projects the kinematic screw on the sensor frame.

By injecting (11a) and (11b) into the first and second order
models respectively, the following kinematic relations are
obtained1:

ṡ = LsTJq̇ = Jsq̇ (12a)

s̈ = Jsq̈ + LsTJ̇q̇ + hs = Jsq̈ + hq (12b)

where the matrix Js = LsTJ is known as feature Jacobian.
We also recall here that the Inverse Dynamic Model (IDM)

of a robotic system composed of a set of rigid bodies writes

1Obviously, (12b) can be obtained by differentiation of (12a) as well.



as:
τ = Mq̈ + b (13)

wherein τ represents joint efforts while M is the generalized
inertia matrix of the system, grouping inertial effects due to
masses and inertiae of rigid bodies and motors. Finally, b
groups Coriolis and centripetal forces, the efforts exerted on
the system by gravity and the forces and moments acting on
the actuators due to friction.

Assuming that M is invertible, which is always true for
a serial kinematic chain, the joint accelerations are given by
q̈ = M−1 (τ − b), thus leading to:

JsM
−1τ = s̈− hq + JsM

−1b (14)

This last equation provides a direct link between the com-
manded joint efforts and the acceleration of features.

D. Visual Servoing

Exploiting the illustrated kinematic and dynamic models,
it is possible to build a variety of controllers that steer the
observed features to a desired value s?.

The objective of the control is to regulate the feature error
es

.
= s−s? to zero. A proportional control with feed-forward

can be applied when considering the first order model as:

q̇?1 = Ĵ+
s (ṡ? − λes) (15)

whereas a proportional and derivative one can be exploited
if the second order model is used:

q̈?2 = Ĵ+
s

(
s̈? − kdės − kpes − ĥq

)
(16)

In both cases, Ĵ+
s represents an estimation of the Moore-

Penrose pseudo-inverse of Js. Using (16) also requires an
estimation of hq and ṡ. Finally, the desired set of features
is often constant, i.e., ṡ? = 0 and s̈? = 0, and therefore the
controllers are slightly simplified.

The two reference commands correspond to the minimum
norm-solutions of the respective minimization problems:

arg min
q̇

∥∥∥Ĵsq̇− ṡ? + λes

∥∥∥ (17a)

arg min
q̈

∥∥∥Ĵsq̈− s̈? + kdės + kpes + ĥq

∥∥∥ (17b)

They aim at enforcing an exponential decrease of the error
according to the evolution of the autonomous linear systems
ės +λes = 0 and ës +kdės +kpes = 0, both asymptotically
stable if positive gains are selected. Perfect linearization
will not be achievable in general, but asymptotic stability
is ensured for (15) provided that JsĴ

+
s > 0 [1]. Additional

conditions need to be satisfied for the stability of (16) [10].
The output obtained from these kinematic control laws

can be finally used in conjunction with the IDM to evaluate
a set of effort commands to be sent to the actuators. For
the first kind of regulation, the provided reference is a
joint velocity command. In order to exploit the dynamics,
a possible choice is to add another control layer providing
the auxiliary acceleration signal

w1 = q̈ff + γ (q̇?1 − q̇) (18)

given a positive proportional gain γ and the feed-forward
term q̈ff corresponding to the numerical derivative of (15).
This auxiliary command is finally inserted in the IDM, thus
giving:

τ = Mw1 + b (19)

Regarding (16), the produced output can be used directly
to compute the efforts from the IDM.

E. Dealing with Redundancy

We address separately here the case in which the robot
has more degrees of freedom than those required to per-
form the servoing task. Assuming that no singularities are
encountered, we can state that the robot is redundant if
n > rank (Js). In this case, as the kernel of the matrix is
not null, infinite solutions can be found that are compatible
with (17a) and (17b). As outlined before, (15) and (16)
give minimum norm solutions for the joint velocity and
acceleration respectively.

Other controls which are compatible with the second-order
Visual Servoing task can be found by using directly (14)
to compute the efforts from the desired task [9], [7]. Two
possible choices in this sense are to minimize ‖τ‖ or a
weighted norm of the efforts τTDτ (with D > 0):

τ =
(
JsM

−1)+ (s̈? − kdės − kpes − hq + JsM
−1b

)
(20a)

τ = (Js)
+
D

(
s̈? − kdės − kpes − hq + JsM

−1b
)

(20b)

wherein (Js)
+
D represents a weighted pseudo-inverse. Re-

garding these two possibilities, it must be noted that the latter
should generally be preferred, as the former might lead to
high uncontrolled velocities [11].

Even though in this work we are interested only in a single
task, it must be noted that, when dealing with a redundant
manipulator, schemes based on the second-order model will
not be enough to stabilize the robot to a given configuration.
A classical first-order control, without supplementary tasks,
will return the minimum norm joint velocity required to
reach an equilibrium configuration. Regardless this being a
global or local minimum, after the convergence the computed
command will be zero, and therefore the robot will not
move anymore (we do not consider perturbations here). The
same is not true for the other class of controllers. Indeed, at
equilibrium the command corresponds to a null acceleration,
which is compatible with a non-null instantaneous velocity
lying in the kernel of Js. It is thus necessary to ensure the
given control law damps the velocity of the robot.

A possible solution is to add the following secondary task:

q̈ = −kvq̇ (21)

for a positive gain kv . The final control law would thus
become:

q̈?′2 = q̈?2 − ZZT (kvq̇ + q̈?2) (22)

with q̈?2 given as before by (16). Z is an orthogonal basis of
the kernel of Js, obtainable via, e.g., Complete Orthogonal
Decomposition, so that the orthogonal projector is given in



the efficient form ZZT [12]. The efforts can then be obtained
by injecting into (13) q̈?′2 instead of q̈?2.

As a concluding remark, it might be considered to inject
the velocity damping task into (20a) or (20b), i.e., solving the
problem directly at the effort level. However, the Servoing
task altogether with the velocity damping objective are fully
constraining the degrees of freedom of the robot, and, as
direct consequence, the final result would not change. On
the contrary, as these models require more operations, e.g.,
the inversion of M, in all our experiments they are not
considered.

III. SIMULATION RESULTS

A comparison between classical first-order control
schemes and second order ones has been performed in a
simulated environment. We report in the following the details
of our implementation and the results of this study.

Tests have been realized using Gazebo for physics sim-
ulation and ROS for the implementation of controllers and
communication. ViSP [13] has been used for Visual Servoing
related computations.

Our setup involves a positioning task from four coplanar
points located at the vertices of a square. We consider a
perspective camera mounted on the tip of a Kuka LWR4+
robot, a serial manipulator featuring 7 degrees of freedom.
We assume a perfectly calibrated sensor with no distortion,
and use directly the normalized coordinates of the observed
points. We also do not consider uncertainties in the Geomet-
ric and Dynamic parameters of the robot.

The control period in simulation is set to 1 ms. We
consider that the visual feed-back comes from a mixture of
image processing and state estimation algorithm, and that the
unknown parameters z can be estimated as well [14], [15].
To take into account uncertainties due to these operations,
we inject normally distributed noise in both s and z. In
addition, the presence of encoders on each motor is simulated
by quantization of the readings. More details on noise are
presented in the next section.

Three control strategies are analyzed. The first one, namely
First-Order (FO), corresponds to a velocity-based scheme
without the feed-forward signal q̈ff . The second strategy
takes this term into account and will be referred to as First-
Order with Feed-Forward (FOFF). Finally, a Second-Order
(SO) scheme that evaluates joints acceleration via (16) is
considered. Implementation and tuning of these controllers
are discussed in Section III-B

A. Noise

Noise is introduced in the simulation to obtain a more
realistic study-case. The first source of noise we consider is
added to the current value of the features s. In a real setup
this might come from, e.g., the image processing routine
that detects the points of interest or estimators that produce
a continuous feedback when an image is not available. We
therefore add to each feature coordinate a random value,
drawn from a truncated Gaussian distribution with zero
mean. The truncation is performed symmetrically at ±3σ, σ

being the standard deviation of the unbounded distribution.
In the experiments, we used σ = 2 · 10−3 (corresponding to
about 1 pixel). A similar strategy has been used to simulate
uncertainties in the unknown depths of the observed points,
by adding to z a noise with σ = 3 · 10−3.

Regarding the measurement of joint positions and velocity,
we assume that only encoders are available. These devices
are simulated by discretizing the values of joints angles with
a given resolution ∆q. For this purpose we used ∆q =
10 µrad.

Noisy signals are then filtered using low-pass Butterworth
4th-order filters and finally used in all the calculations per-
formed by controllers.

B. Controllers Implementation and Parameters Tuning

1) First-Order (FO) Controller: One problem with the
first order law (15) is that it presents a discontinuity in
velocity at the very first iteration. In order to guarantee a
“smooth start”, we exploit the concepts presented in [16].
They showed that when a new task is activated, it is possible
to achieve a smooth transition in the control input by adding
a homogeneous term to the command. Applied to our case,
the velocity reference q̇?1 is now evaluated as:

q̇?1 = J+
s

(
ṡ? − λes + e−µtes(0)

)
(23)

where es(0) is the features error for t = 0, and we assume
null desired features velocity at the beginning (ṡ?(0) = 0).
Due to this modification, the command at the first iteration
is zero, thus enforcing a smooth transition of the desired
velocity of the manipulator. The effect on the error dynamics
is that it now behaves as an equivalent second order system
– if perfect linearization was possible – according to the
autonomous equation

ës + (µ+ λ) ės + µλes = 0 (24)

One interesting consequence of this choice is that it is
possible to enforce the same desired behavior of the features
evolution with both a first and a second order control. Indeed,
in a perfect world not affected by noise, the two control
strategies are perfectly equivalent in terms of error evolution.

After computing the desired velocity (23), the effort com-
mand is computed as τ = γM (q̇?1 − q̇) + b.

Regarding gains tuning, we decide to impose a critically
damped behavior for the transient response, as this gives the
fastest convergence without oscillations:

λ = µ = ωn (25)

wherein ωn > 0 defines the roots of the character-
istic polynomial of the second order system. The au-
tonomous response of the error would be given by es(t) =
e−ωnt (1 + ωnt) es(0), which is strictly decreasing and con-
verges to zero. We finally select the value of ωn so that
after a time T the error is a fraction of its original value,
i.e., e−ωnT (1 + ωnT ) = α, α ∈ (0, 1). Solving the equation
numerically for α = 0.05 and T = 2 s gives ωn ' 2.37 s−1.

Concerning the proportional velocity gain γ in (18), the
higher its value the better will be the tracking of the desired



velocity profile. On the other hand, it will increase the control
efforts τ , and therefore a trade-off has to be found. In our
implementation, a value of γ = 8 s−1 has been chosen, which
allows a velocity error to decrease of 80 % in 0.2 s.

2) First-Order with Feed-Forward (FOFF): The imple-
mentation of this controller is very similar to the one of FO.
We use here as well the smooth velocity transition and the
same set of gains. The feed-forward term q̈ff is computed
as the numerical derivative of the reference command q̇?1. It
is well-known that this highly amplifies noise, resulting in a
generally unfeasible, if not just undesirable, control signal.
To get a nicer behavior and reduce the impact of noise,
(23) is thus filtered prior to differentiation. This considerably
reduces the shakiness of the controller. The final efforts sent
to the motors are evaluated using (18) and the IDM.

3) Second-Order (SO) Controller: This controller exploits
the acceleration in the feature space. It computes joints
accelerations using (22) to complete the visual task while
damping the velocity of the manipulator, and subsequently
exploits (13) to compute the actuation signal. To obtain an
estimation of ės, (11a) was used. The control gains kp and
kd are selected to obtain a critically damped evolution as in
the FO case, with kp = ω2

n, kd = 2ωn, and ωn = 2.37 s−1.
The last parameter to be tuned is kv , the gain appearing in
the velocity damping task (21). As we assume the Servoing
Task to be completed in about 2 s, this parameter is tuned
so that the convergence of velocity to zero is achieved after
a longer time. In practice, we used the value kv = 1 s−1,
which theoretically ensures that any non-null velocity will
be reduced to about the 5 % of its initial value in 3 s.

C. Regulation to a Fixed Configuration

The first set of tests involves positioning the end-effector
in front of a set of four points at a distance of 0.5 m, see
Fig. 1. As the desired value of the features does not change
during the tests, in the controllers the quantities ṡ? and s̈?

are set to zero.

Fig. 1. Initial (left) and desired (right) configuration of the observed object.
The points used for the task are the centers of the four circles.

The initial relative transformation from the camera to the
object presents a rotation of about 90◦ around the optical axis
of the sensor, leading to the well-known retraction problem.
Since this affects all control laws, we did not try to solve
the problem to optimize the 3D behavior of the camera. We

believe that a better choice of the descriptive features, such
as almost decoupled image moments [17], would result in a
trajectory of higher quality in all the cases.

We report results related to two cases, an ideal test run
in absence of noise (Fig. 2) and a more realistic case with
disturbances as discussed in Section III-A (Fig. 3). When
signals are not influenced by any perturbation, all control
strategies show nice convergence behavior and smooth con-
trol inputs. Compared to FOFF and SO, FO presents a
deviation in convergence from the ideal evolution, justified
by the intermediate velocity regulation not being able to
perfectly track the desired command q̇?1. FOFF and SO
are instead able to better follow the desired behavior and
the error evolves according to the expected second order
exponential decay. The difference in these two controllers
can be seen only in the control input, yet not significantly
different.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

20

25

30

35

40

Fig. 2. Comparison of the visual error (left) and control input (right) using
the different control strategies, in absence of noise. FOFF and SO are almost
indistinguishable in terms of error evolution.

When noise is considered, more evident differences ap-
pear. FO’s convergence becomes worse, with a little over-
shoot near to the equilibrium configuration, whereas FOFF
and SO still feature a nice evolution of the error towards
zero. In terms of control inputs, all strategies suffer from
the added noise. In particular, the oscillations corresponding
to FOFF are quite large, with peak-to-peak amplitude of
about 30 N m even at equilibrium. Oscillations of FO and
SO controllers are bounded instead to a reasonable amount,
between 0.5 N m and 1 N m of amplitude in both cases.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6
10

20

30

40

50

60

Fig. 3. Comparison of visual error (left) and control inputs (right)
when noise is injected in simulations. FOFF and SO are still almost
indistinguishable in terms of error evolution.

It is possible to enhance the convergence of FO by
increasing the gain γ or selecting a faster behavior (higher
ωn), at the cost of higher oscillations in the commanded
efforts. Similarly, to reduce the shakiness of the control
signal in FOFF, the response has to be penalized with lower
values of γ and/or ωn.



It is also worth mentioning that when noises are of higher
magnitude the relative performances of these controllers are
not significantly altered. FOFF and SO still give satisfactory
results in terms of error convergence, and the oscillations
in the control commands produced by FO and SO are quite
smaller compared to those introduced by FOFF.

D. Tracking of a Visual Trajectory

In this section, we consider the case of varying desired
features, in which case ṡ? and s̈? are non-zero. For each
normalized point si = [xi, yi]

T , the motion is defined as a
circular trajectory starting at the instant t0 and ending after
a time period T :{

x?i (t) = x?i (t0) +R (cos ρ(t− t0)− 1)

y?i (t) = y?i (t0) +R sin ρ(t− t0)
(26)

In this definition, ρ(t) is a quintic polynomial whose value
changes from 0 to 2π in T = 2 s, such that ρ̇(0) = ρ̇(T ) = 0
and ρ̈(0) = ρ̈(T ) = 0. We assume the desired initial position
of each point s?i (t0) to be the one attained after the regulation
task described in the previous section. The amplitude R is
set to 0.2, and thus the radius of the physical trajectory is
expected to be of 0.1 m (the sensor should be at 0.5 m from
the four points, as explained before). In addition, we assume
t0 � 0, so that the homogeneous term in (23) does not affect
the control, as the desired velocity is already null at t0.

Results are depicted in Fig. 4, which shows that FO is
the worst controller in terms of tracking error. FOFF again
presents high oscillations in the input command during the
motion, but still with good tracking performances. Finally,
SO gives the best results, with tracking errors of the same
magnitude of FOFF and reduced effort oscillations.

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 2 3 4 5
20

30

40

50

60

70

Fig. 4. Comparison of the visual error (left) and control input (right) during
the execution of a trajectory. Time axes are relative to t0.

IV. CONCLUSIONS

In this work, we reviewed and compared simple Visual
Servoing control schemes based on both first and second
order models. It has been shown that for a redundant
manipulator it is desirable, if not necessary, to consider a
secondary task in the case the Visual Task is formulated at
the acceleration level in order to fully constrain the degrees
of freedom and prevent uncontrolled motions spanning the
kernel of the Feature Jacobian.

We showed via simulations that controllers can be de-
signed both from velocity and acceleration commands to
obtain a very similar evolution of visual features error. In
particular, FOFF and SO were equally able to ensure good

performances in terms of error regulation. However, results
suggest that schemes based on second-order models are
preferable in order to obtain smoother control efforts.

In this analysis, redundancy was not exploited to truly
achieve any secondary objective. We believe that with fur-
ther improvements it will be possible to enhance existing
strategies by, e.g., minimizing the efforts along the trajectory
while ensuring Visual Tasks to be properly executed. For this
purpose, a possible future direction of work could consider
the use of Model Predictive Controls.

We are working on a real implementation of the proposed
strategies, in order to validate with experiments our simulated
results. We are especially interested in performing Servoing
tasks at higher speed, and to study more in depth the limits
of FOFF and SO in such context.

ACKNOWLEDGMENT

This work was carried out in the framework of the
PROMPT project, a project funded by RFI Atlanstic 2020.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic
approaches,” IEEE Robotics and Automation Magazine, dec 2006.

[2] ——, “Visual servo control. II. Advanced approaches [Tutorial],” IEEE
Robotics and Automation Magazine, mar 2007.

[3] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Transactions on Robotics and Automation,
jun 1992.

[4] Y. Fang, A. Behal, W. Dixon, and D. Dawson, “Adaptive 2.5D
visual servoing of kinematically redundant robot manipulators,” in
Proceedings of the 41st IEEE Conf. on Decision and Control, 2002.
IEEE, 2003.

[5] C. Wang, C. Y. Lin, and M. Tomizuka, “Visual servoing considering
sensing dynamics and robot dynamics,” in IFAC Proceedings Volumes
(IFAC-PapersOnline). Elsevier, jan 2013.

[6] Hong Zhang and J. Ostrowski, “Visual servoing with dynamics: control
of an unmanned blimp,” Proceedings 1999 IEEE International Con-
ference on Robotics and Automation (Cat. No.99CH36288C), 1999.

[7] J. Thomas, G. Loianno, K. Sreenath, and V. Kumar, “Toward image
based visual servoing for aerial grasping and perching,” in Proceedings
- IEEE Int. Conf. on Robotics and Automation. IEEE, may 2014.

[8] A. Mohebbi, M. Keshmiri, and W. F. Xie, “An acceleration command
approach to robotic stereo image-based visual servoing,” in IFAC
Proceedings Volumes (IFAC-PapersOnline). Elsevier, jan 2014.

[9] S. Vandernotte, A. Chriette, P. Martinet, and A. S. Roos, “Dynamic
sensor-based control,” in 2016 14th Int. Conf. on Control, Automation,
Robotics and Vision, ICARCV 2016. IEEE, nov 2016.

[10] M. Keshmiri, W. F. Xie, and A. Mohebbi, “Augmented image-based
visual servoing of a manipulator using acceleration command,” IEEE
Transactions on Industrial Electronics, oct 2014.

[11] A. De Luca and G. Oriolo, “Efficient Dynamic Resolution of Robot
Redundancy,” in 1990 American Control Conf. IEEE, may 2018.

[12] A. Escande, N. Mansard, and P. B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” Inter-
national Journal of Robotics Research, jun 2014.

[13] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for Visual Servo-
ing,” IEEE Robotics & Automation Magazine, dec 2005.

[14] A. De Luca, G. Oriolo, and P. R. Giordano, “On-line estimation of fea-
ture depth for image-based visual servoing schemes,” in Proceedings
- IEEE Int. Conf. on Robotics and Automation. IEEE, apr 2007.

[15] R. Spica, P. R. Giordano, and F. Chaumette, “Plane estimation by
active vision from point features and image moments,” in Proceedings
- IEEE Int. Conf. on Robotics and Automation. IEEE, may 2015.

[16] N. Mansard and F. Chaumette, “Task sequencing for high-level sensor-
based control,” IEEE Transactions on Robotics, feb 2007.

[17] F. Chaumette, “Image Moments: A General and Useful Set of Features
for Visual Servoing,” IEEE Transactions on Robotics, aug 2004.


	Introduction
	Visual Servoing & Dynamics
	First order Visual Servoing
	Second order Visual Servoing
	Robot Kinematics and Dynamics in Sensor Space
	Visual Servoing
	Dealing with Redundancy

	Simulation Results
	Noise
	Controllers Implementation and Parameters Tuning
	First-Order (FO) Controller
	First-Order with Feed-Forward (FOFF)
	Second-Order (SO) Controller

	Regulation to a Fixed Configuration
	Tracking of a Visual Trajectory

	Conclusions
	References

