
HAL Id: hal-02183609
https://hal.science/hal-02183609

Submitted on 15 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MCTS Playouts Parallelization with a MPPA
Architecture

Aline Hufschmitt, Jean Méhat, Jean-Noël Vittaut

To cite this version:
Aline Hufschmitt, Jean Méhat, Jean-Noël Vittaut. MCTS Playouts Parallelization with a MPPA
Architecture. 4th Workshop on General Intelligence in Game-Playing Agents, GIGA 2015, Held in
Conjunction with the 24th International Conference on Artificial Intelligence, IJCAI 2015, Jul 2015,
Buenos Aires, Argentina. �hal-02183609�

https://hal.science/hal-02183609
https://hal.archives-ouvertes.fr


MCTS Playouts Parallelization with a MPPA Architecture

Aline Hufschmitt and Jean Méhat and Jean-Noël Vittaut
LIASD - University of Paris 8, France
{alinehuf,jm,jnv}@ai.univ-paris8.fr

Abstract
We present a study of the use of a Multi-Purpose
Processor Array (MPPA) architecture for the paral-
lelization of MCTS algorithms applied to the field
of General Game Playing. We evaluate the con-
straints imposed by this architecture and show that
the only feasible MCTS parallelization on MPPA
is a leaf parallelization. We show that the MPPA
provides good scalability when increasing the size
of the communications which is useful when us-
ing synchronous communications to send large sets
of game initial positions to be processed. We con-
sider two approaches for the calculation of play-
outs: the distributed computing of a playout on
each cluster and the calculation of several playouts
per cluster; the second approach gives better re-
sults. Finally, we describe experiments concerning
the thread management and present a surprising re-
sult: it is more efficient to create new threads than
to synchronize permanent threads.

1 Introduction
General Game Playing (GGP) is a branch of Artificial Intel-
ligence with the aim of achieving versatile programs capable
of playing any game without human intervention. These pro-
grams must be able to analyze the rules of an unknown game,
to understand the goals, to discover the sequences of moves
leading to victory and to play with expertise.

To find out what moves to play, different techniques of tree
search have been developed to explore positions of the game
and different branches of possibilities that depend on the se-
lected moves. The root of the tree represents the initial state
of the game. The goal is to reach one of the leaves, corre-
sponding to the end of the game, the score of which is the
highest possible for the player.

Currently, the best GGP players use variants of Monte
Carlo Tree Search (MCTS) combining the construction of a
game tree with game simulations (playouts) [Browne et al.,
2012]. UCT, the most used MCTS algorithm consists in four
phases: selection of a path in the game tree according to some
policy; expansion of the tree with the creation of a new node;
game simulation playing random moves until a terminal po-
sition is reached; back-propagation of the playout results to

update node’s evaluation. The number of playouts done by
MCTS is a key factor for the quality of the evaluation of a
game tree node [Kocsis and Szepesvári, 2006].

Former GGP players have used Prolog unification to in-
terpret the language describing the rules. These calculations
were slow [Schiffel and Björnsson, 2014]. Recently, the use
of Propositional Networks (propnets) has allowed an impor-
tant improvement in playout computation speed. A Proposi-
tional Network [Schkufza et al., 2008] is a graph representing
game rules as a logic circuit with AND, OR and NOT gates
and transitions that represent the passage from one game state
to another. At each game step, the current position is set at
the input of the circuit. The signal is propagated and, at the
output, a flag indicates whether this position is terminal. If it
is, the player’s scores are accessed through flags; otherwise,
the list of legal moves is available at the circuit output; the
moves chosen by the players are set at the input of the circuit
and the signal is propagated to get the next state. A transition
consist of setting the next state as the current position.

To increase the number of playouts made in a given time,
various approaches of parallelization of MCTS have been im-
plemented on machines with multi-core and/or multi-threads
CPU used alone or networked to provide more computing
power. Some of these techniques are applied to General
Game Playing [Méhat and Cazenave, 2011a; Finnsson, 2012]
but none, to our knowledge, realizes this parallelism on a
player using a propnet. The important acceleration of play-
out computation provided by the use of propnets brings new
conditions for parallelization of UCT because communica-
tion and synchronization times become significant.

In this article, we study the parallelization of MCTS using
propnets to interpret game rules on a Multi-Purpose Proces-
sor Array (MPPA), an architecture dedicated to many-core
processing, marketed since 2013 by the Kalray Company
(Essonne, France). This recent architecture has barely been
tested on practical applications, thus we explore its possibili-
ties and evaluate its limitations.

Section 2 describes the different parallelization techniques
proposed in the literature. Section 3 presents the MPPA ar-
chitecture. Section 4 presents the feasible parallelization on
MPPA. Section 5 evaluates the scalability using communica-
tions of different size. Section 6 establishes the best approach
to compute the playouts. Section 7 compares different ways
of synchronizing threads inside clusters.

GIGA'15 Procededings 63



2 Parallelization approaches of MCTS
In this section, we present the different approaches for paral-
lelizing the MCTS.

Tree parallelization [Gelly et al., 2006] involves several
processes in the construction of a single game tree in a shared
memory. Threads perform the selection, expansion, simula-
tion and back-propagation phases independently. A global
mutex used to protect the tree from concurrent updates creates
a bottleneck, so improvements consist in using local mutexes
or a lock free algorithm [Enzenberger and Müller, 2010]. Vir-
tual losses avoid the selection of the same node by all the
threads [Chaslot et al., 2008].

On a distributed memory system, root paralleliza-
tion [Cazenave and Jouandeau, 2007] develops different
trees from the same game position, usually on different ma-
chines. The different evaluations are collected and com-
bined to choose the best move [Méhat and Cazenave, 2011b;
Soejima et al., 2010]. An improvement consists in synchro-
nizing the evaluations of the top nodes at regular intervals to
direct the search using the shared information [Gelly et al.,
2008]. A drawback is that the same nodes have to be gener-
ated on different machines.

With leaf parallelization [Cazenave and Jouandeau, 2007],
a single tree is constructed by a master process. It ex-
ecutes the selection and the expansion phases and sends
the positions to be explored to slave processes calculat-
ing the playouts. The back-propagation phase is performed
by the master process using the score returned by each
slave. Asynchronous communications provide good scalabil-
ity [Cazenave and Jouandeau, 2008]. This technique is less
effective than root or tree parallelizations because it suffers
from limitations caused by the master process, which is alone
to perform the selection phase, and communications needed
for each playout [Soejima et al., 2010]. To minimize com-
munication costs, [Finnsson, 2012] has proposed to realize
multiple playouts per position but some unworthy positions
are then over-exploited. [Chaslot et al., 2008] have proposed
to stop a group of playouts that does not look promising to
search again from another position but this approach does not
provide good scalability.

In the UCT-Treesplit algorithm [Graf et al., 2011; Schae-
fers et al., 2011] the nodes of a single tree are spread over
distributed memories. The machine on which a node is stored
is selected using a hash key of this node. During the selec-
tion phase, the traversal of edges between nodes stored into
different machines is implemented by a request. If a machine
receives a request for an existing node, it takes over the selec-
tion; if not, it creates this new node and launches a playout.
After the playout, an update message has to be sent to all the
machines storing parent nodes for the back-propagation. A
drawback is the importance of communications during selec-
tion and back-propagation.

3 MPPA architecture
The MPPA-256 chip is a multi-core processor composed of
256 processing cores (PC) organized in a grid of 16 clusters
connected through a high-speed Network-on-Chip (NoC). It

is the first member of the MPPA MANYCORE family, the
others reaching up to 1024 processors in a single silicon chip.

Each cluster contains 2MB of memory shared by the 16
PCs and a system core. The system core, running NodeOS,
supervises the scheduling and execution of tasks on PCs and
data transfers while the 16 PCs are dedicated to application
code. Each PC can execute its own code, stored in the shared
memory.

The limitation of a cluster memory to 2MB is a major con-
straint in the development of applications for the MPPA as it
has to contain the system core OS, the 16 PC code and data.
In our case, we see in section 4 that it reduces the choices of
possible parallelization approaches.

Four I/O interfaces allow communications between the
host machine and the clusters for two of them and between
clusters and the Ethernet network for the other two, but with
the current version of the middleware we only have access
to one of the I/O interfaces: the software tools designed for
the MPPA and grouped under the name of MPPA ACCESS-
CORE are currently under development. This I/O interface
has a quad core SMP processor with a 4GB DDR3 mem-
ory and a PCI Gen3 interface for communications with the
host. Different sofware connectors are available to imple-
ment synchronous or asynchronous communications using a
simple buffer or queues.

[Jouandeau, 2013] states that ”the computing capabilities
of Intel i7 3820 processor with 8 cores and a MPPA processor
with 256 cores are close”. The estimate is based on the per-
formance observed for a single core on solving the spin glass
problem and multiplied by the number of cores, which im-
plies parallel algorithms with zero communication time. Even
if the MPPA-256 card seems to be limited in its performance,
it is only the first member of the MPPA MANYCORE family.
A Coolidge processor with 1024 cores is expected in 2015.
In addition, several MPPA-256 cards can be used together in
the same host machine to increase the computing capacity.
Therefore, the MPPA architecture presents possibilities that
deserve investigations.

4 Setup of the parallelization on the MPPA
Our experiments were carried out on a server equipped
with an Intel Core I7 at 3.6GHz running Linux OS and a
PCIe Application Board AB01 equipped with a chip MPPA-
256 [Kalray, 2013].

Our program is based on Jean-Noël Vittaut’s LeJoueur,
written in C++. This player uses Prolog to realize a fast in-
stantiation of the game rules [Vittaut and Méhat, 2014] and
creates a propnet. The propnet logic circuit is factorised to
reduce its size and each layer of logic gates of the circuit is
then translated into a set of rules that can be evaluated very
quickly with binary operators. This is the set of rules that is
sent to the MPPA to explore the game.

The limited memory inside the clusters implies a coding as
concise as possible so that the propnet can fit into it. Unfortu-
nately, for the most complex games, like Hex, the size of the
propnet exceeds the available space.

The size of the remaining memory inside the clusters does
not allow the construction of a game tree of significant size.

64 GIGA'15 Proceedings



Therefore tree parallelization inside each individual cluster,
root parallelization and UCT-Treesplit cannot be performed
on a MPPA. The only remaining choice is leaf parallelization.

For all the experiments presented in this article we used
synchronous communications. Thus the benchmark results
can later be compared with the ones using asynchronous com-
munications. The host machine send sets of game positions to
the MPPA I/O interface which distributes them to the differ-
ent clusters. The first PC (PC0) of each cluster is responsible
for communicating with the I/O and for starting threads on
other PCs via the system core. A thread can be executed by
each one of the 15 remaining PCs. The PC0 sends received
positions to the threads and waits for all the results before
sending them back at once to the I/O.

The I/O interface waits for the results from all the clusters
before sending them back at once to the host. Each transmis-
sion of a position set, calculation of the playouts and recovery
of the results (the scores) is referred to as a run.

5 Scaling for variable size of communications
At first, we investigate the capacity of the communication net-
works to transmit game positions, which can present a signif-
icantly different size depending on the game at hand, between
the host computer and the PCs without an hindering variation
of the communication time.

In GGP the size of position descriptions varies significantly
from one game description to another in a ratio from one to
ten: we need about 200 to 2000 bytes to represent a position
for commonly used games. To make one playout from a dif-
ferent position on each PC, the size of a communication has
to be multiplied by the number of PCs.

To evaluate the scalability of the MPPA we varied the size
of positions sent between the host and the I/O node and be-
tween the I/O node and the clusters from 200 to 2000 bytes.
To prevent the variable time required to calculate the playouts
from disturbing measurements, no playout was actually cal-
culated and an empty result was returned immediately. Each
execution of the program performs 1000 runs. We measured
performance as the time necessary to execute these 1000 runs
for 1 to 16 clusters with 1 to 16 threads per cluster.

Figure 1 presents the experimental results. With one thread
on one cluster, the running time is almost constant while the
size of communications is multiplied by ten. With 16 threads
on one cluster, there is additional time corresponding to the
thread initialization and the data distribution among threads.
The curve corresponding to one thread on each of the 16 clus-
ters shows the additional time required for the I/O node to set
the connector to the destination cluster. Scaling is then con-
strained by two aspects: first, when the I/O node receives a
set of positions it needs time to distribute them among the
clusters and, second, the thread start time inside a cluster is
not negligible.

Scaling is only slightly hindered when considering these
two aspects separately but it is not the case when we combine
them. The curve for 16 clusters and 16 threads per cluster
shows a significant degradation of the scaling. However, we
see that scaling remains acceptable since the execution time
is multiplied by about 5 when the message size is multiplied

��

��

���

���

���

���

���� ���� ���� ���� ����� ����� ����� ����� ����� �����

�
�
�
�
�
��
�
	

�
��
�

�


�

	
���
�����
����
���

���������

��������������������
����������������������
����������������������

������������������������

Figure 1: Evolution of the execution time depending on the
size of communications (1000 runs).

by 10.

6 Playout calculation approaches
In the restrictive conditions of a leaf parallelization, the
choice remains of the playout calculation approach. All the
PCs of one cluster can be used to speed up each playout by
distributing the evaluation of the propnet layers or each PC
can perform its own private playout evaluating all the layers
by itself.

We conducted these experiments on three games: Tictac-
toe which has short playouts (between 5 and 9 moves) and a
small propnet which is quick to evaluate, EightPuzzle which
has a small propnet but playouts up to 60 moves and Break-
through which has a propnet taking longer to evaluate. Each
execution of the program performs 10000 runs. We measured
the performance based on the total number of playouts carried
out per second.

6.1 Parallelization of propnet evaluations
We first consider the distribution of the propnet layers evalua-
tion between the PCs; the rules of each layer can be evaluated
in any order but each layer depends on its predecessor and a
synchronization is needed.

Figure 2 presents the performance obtained on the game of
Tictactoe for 1 to 16 clusters with 1 to 16 threads per cluster.
The different curves confirm that increasing the number of ac-
tive clusters does improve the number of playouts per second
and has no impact on the variation of performance. The latter
depends on the number of threads used in the clusters. Each
curve shows a large degradation as the evaluation of propnet
layers is distributed between the threads. It demonstrates the
significant synchronization cost generated by the division of
playout computation.

We conclude that the distributed computing of a playout
cannot provide any benefit considering the overhead intro-
duced by the synchronization barrier between layers.

GIGA'15 Procededings 65



��

�����

�����

�����

�����

�����

�����

�	���

�
���

�����

�� �� �� �
 ���

�
��
��
�
�
�
	

��
�


��
���������������
��

������
���

�
�
�


��

Figure 2: Evolution of the mean number of playouts per sec-
ond for 10000 runs of the game of Tictactoe when a playout
calculation is distributed over threads.

6.2 Parallelization of playouts
To avoid the cost generated by the inter-layer synchroniza-
tion, it is possible to have every PC perform its own private
playout, layer after layer. Synchronization is only needed
when the initial positions are set and when the results are
gathered.

Figure 3 presents the results for the three games with 1 to
16 clusters and 1 to 16 threads per cluster. It shows that the
performance scales well.

Results for the game of Tictactoe show a progression from
≈450 playouts/s for one cluster with one thread to ≈77700
playouts/s for 16 clusters with 16 threads, i.e. a multiplica-
tion by 170 of the number of playouts per second for a multi-
plication by 256 of the computing power.

For the game EightPuzzle, the number of playouts is mul-
tiplied, at best, by 133 (for 14 threads per cluster) using
224 PCs. The performance does not scale well after 14
threads. We explain this result by the constant length of play-
outs: playing randomly, the solution has little chance of being
found and playouts are stopped after 60 moves by the stepper.
Therefore, all the scores are sent to the I/O node at the same
time by all clusters causing a congestion of the communica-
tion network. A similar slowdown hindering scalability can
be observed in Tictactoe by forcing the players to completely
fill the grid for each game: playout length is then always set
to 9 moves.

Scaling is better for Breakthrough. Computation time is
longer, therefore communication and synchronization times
are lower in comparison. The number of playouts is multi-
plied by 155 for a multiplication by 256 of the computing
power.

7 Thread management
In the previous experiment threads were restarted for each
set of playouts. Another strategy is to keep the threads alive
waiting for playout requests. To test different synchronization

Tictactoe :

��

������

������

������

������

������

������

�	����

�
����

�� �� �� �� �
 ��� ��� ��� ���

�
��
��
�
�
�
	

��
�


���
�����������������

����������

�
�
�
�
�
�
	


�
��
��
��
��
��
��
��

EightPuzzle :

��

�����

������

������

������

������

������

�� �� �� �� �	 ��� ��� ��� ���

�
��
��
�
�
�
	

��
�



���
�������
�������



�������
�

�
�
�
�
�
�
�
	
�
��
��
��
��
��
��
��

Breakthrough :

��

����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� �� �	 ��� ��� ��� ���

�
��
��
�
�
�
	

��
�



���
�������
�������



�������
�

�
�
�
�
�
�
�
	
�
��
��
��
��
��
��
��

Figure 3: Evolution of the number of playouts per second
(average over 10000 runs) with the calculation of one playout
per thread.

66 GIGA'15 Proceedings



approaches, we changed the thread management in the setting
of the experiment of section 6.2: on each PC of each cluster,
a thread is started waiting for a position.

All the positions sent were initial positions of the game and
the id of each PC was used as a random seed for the random
playouts it executed. The tests were performed on different
games, varying the number of clusters and number of threads
per cluster; 10000 runs was executed every time.

In the first part of the experiment we used
the Posix functions pthread cond wait and
pthread cond signal to communicate computa-
tion requests to the threads. In the second part, we replaced
the Posix functions by a busy wait. In the third part we used
portal connectors which are part of the MPPA ACCESCORE
tools and use the NoC to create communication paths
between the PC0 thread and the other PC threads of the
cluster. This third approach avoids the use of mutexes.

Results are displayed in figure 4 for 16 clusters and 1 to
16 threads per cluster and compared to the results obtained
with restarted threads. For the games EightPuzzle and Break-
through, we compare only the restart of the threads with
the use of the Posix functions pthread cond wait and
pthread cond signal because they were sufficient for
conclusive results.

With the game of Tictactoe, the use of the portal is less
effective regardless of the number of threads used, and the
different approaches keeping threads alive do not scale well
above 14 threads per cluster. We note with surprise that
restarting threads for each request of calculation provides bet-
ter scalability and gives the best results. The results obtained
on the games EightPuzzle and Breakthrough do not show such
a marked difference since the curves are nearly identical. It
confirms that keeping threads alive provides no benefit.

This can be explained by the use of a memory shared by all
the PCs of a cluster and the fact that all the synchronization
primitives end on a spinlock or equivalent. When a thread has
finished its work, it waits for a signal by polling in the shared
memory. Therefore, if the other threads have not finished the
calculation of their playout, they are slowed down since they
also need to access the shared memory. The main process
running on PC0 and responsible for the communications with
the I/O node is also slowed down. The more threads finish
their task, the slower execution of other threads is. On the
contrary, when a thread uses pthread exit the PC run-
ning this thread is placed in an idle state and does not disturb
the work of other PCs. Halting and relaunching the threads is
then more efficient.

8 Conclusion
In this paper we have studied the capabilities offered by a
Multi Purpose Processor Array (MPPA) architecture for the
parallelization of MCTS algorithms in the field of General
Game Playing. The limitation of the memory inside the clus-
ter to a size of 2MB is a major constraint. Among the various
parallelization techniques described in the literature the only
applicable one, with this limited memory space, is leaf paral-
lelization.

We have demonstrated that the MPPA provides good scal-

Tictactoe :

��

������

������

������

������

������

������

�	����

�
����

�� �� �� �� �
 ��� ��� ��� ���

�
��
��
�
�
�
	

��
�


���
�����������������

�
���������������
�
������������������������������ �!���"#�
�
������������������$��%��������� �!���"#

�
�������������������&����#

EightPuzzle :

��

�����

������

������

������

������

������

�� �� �� �� �	 ��� ��� ��� ���

�
��
��
�
�
�
	

��
�



���
�������
�������


Threads restarted
Threads kept alive (signal/wait + mutex) 

Breakthrough :

��

�����

�����

�����

�����

�����

�� �� �� �� �	 ��� ��� ��� ���

�
��
��
�
�
�
	

��
�



���
�������
�������


Threads restarted
Threads kept alive (signal/wait + mutex)

Figure 4: Evolution of the performance i.e. number of play-
outs per second (10000 runs, 16 clusters) with different thread
management modes.

GIGA'15 Procededings 67



ability when increasing the size of communications, giving
good results when using synchronous communications and
sending large sets of game initial positions to be processed in
a single run.

We have considered two approaches for the calculation of
playouts. The distributed computing of a playout on the dif-
ferent PCs of a cluster causes an important synchronization
overhead. The calculation of a complete playout per PC gives
better results.

We were able to establish that on MPPA it is more efficient
to restart threads for each calculation request. All synchro-
nization primitives on the MPPA end on a spinlock. There-
fore, idle threads kept alive slow down the working ones be-
cause of memory access competition.

It would be possible to reduce the weight of communica-
tions by making several playouts from each sent position, but
carrying out several playouts from the same position may be
less beneficial for the UCT exploration than starting from dif-
ferent positions [Chaslot et al., 2008].

One may think that the use of asynchronous communica-
tions would improve these results but unfortunately the first
experiments we have conducted have yielded disastrous re-
sults. This comes from middleware problems that our ex-
periments have brought to light. These problems should be
fixed by Kalray in the next release. The use of asynchronous
communications will therefore be the subject of future exper-
iments.

We will also compare our results with what could be
achieved with a GPU using a framework like Cuda on the
same problem. The SIMT architecture requires the use of
synchronous operations but this can be an advantage to dis-
tribute the calculation of each layer of the propnet without
the need for a specific synchronization barrier. Moreover, the
large quantity of memory shared by computing units allows
the implementation of different parallelization techniques.

Future works also include the test of new approaches for
MCTS parallelization. For example, the creation of mini-
trees in cluster memory can save communication costs.

The SHOT alternative to UCT [Cazenave, 2015] offers in-
teresting perspectives as it scales well in addition to using less
memory and it can be efficiently parallelized.

The work presented here is an updated version of [Huf-
schmitt et al., 2015].

References
[Browne et al., 2012] Cameron B. Browne, Edward Pow-

ley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A survey of
Monte Carlo Tree Search methods. Computational Intelli-
gence and AI in Games, IEEE Transactions on, 4(1):1–43,
2012.

[Cazenave and Jouandeau, 2007] Tristan Cazenave and
Nicolas Jouandeau. On the parallelization of UCT. In
Proceedings of the Computer Games Workshop, pages
93–101, 06 2007.

[Cazenave and Jouandeau, 2008] Tristan Cazenave and
Nicolas Jouandeau. A Parallel Monte-Carlo Tree Search

Algorithm. In H. Jaap van den Herik, Xinhe Xu, Zongmin
Ma, and Mark H. M. Winands, editors, Computers and
Games, volume 5131 of Lecture Notes in Computer
Science, pages 72–80. Springer, 2008.

[Cazenave, 2015] Tristan Cazenave. Sequential Halving Ap-
plied to Trees. In IEEE Trans. Comput. Intellig. and AI in
Games, volume 7, pages 102–105, 2015.

[Chaslot et al., 2008] Guillaume Chaslot, Mark H. M.
Winands, and H. Jaap van den Herik. Parallel Monte-
Carlo Tree Search. In Computers and Games, pages 60–
71, 2008.

[Enzenberger and Müller, 2010] Markus Enzenberger and
Martin Müller. A Lock-free Multithreaded Monte-
Carlo Tree Search Algorithm. In Proceedings of the
12th International Conference on Advances in Computer
Games, ACG’09, pages 14–20, Berlin, Heidelberg, 2010.
Springer-Verlag.

[Finnsson, 2012] Hilmar Finnsson. Simulation-Based Gen-
eral Game Playing. Doctor of philosophy, School of Com-
puter Science, Reykjavı́k University, 2012.

[Gelly et al., 2006] Sylvain Gelly, Yizao Wang, Rmi Munos,
and Olivier Teytaud. Modification of UCT with patterns
in Monte-Carlo go. Technical Report 6062, Inria, 2006.

[Gelly et al., 2008] Sylvain Gelly, Jean-Baptiste Hoock,
Arpad Rimmel, Olivier Teytaud, and Y. Kalemkarian.
The Parallelization of Monte-Carlo Planning - Paralleliza-
tion of MC-Planning. In Joaquim Filipe, Juan Andrade-
Cetto, and Jean-Louis Ferrier, editors, ICINCO-ICSO,
pages 244–249. INSTICC Press, 2008.

[Graf et al., 2011] Tobias Graf, Ulf Lorenz, Marco Platzner,
and Lars Schaefers. Parallel Monte-Carlo Tree Search
for HPC Systems. In Proceedings of the 17th Interna-
tional Conference on Parallel Processing - Volume Part
II, Euro-Par’11, pages 365–376, Berlin, Heidelberg, 2011.
Springer-Verlag.

[Hufschmitt et al., 2015] Aline Hufschmitt, Jean Méhat, and
Jean-Noël Vittaut. Using MPPA architecture for UCT par-
allelization. In Proceedings of the 8th International Con-
ference on Game and Entertainment Technologies, 2015.

[Jouandeau, 2013] Nicolas Jouandeau. Intel versus MPPA.
Technical report, LIASD Universit Paris8, 11 2013.

[Kalray, 2013] Kalray. MPPA ACCESSCORE 1.0.1 -
POSIX Programming Reference Manual - KETD-325
W08. Kalray SA, 07 2013. 142 pages.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit Based Monte-Carlo Planning. In Pro-
ceedings of the 17th European Conference on Machine
Learning, ECML’06, pages 282–293, Berlin, Heidelberg,
2006. Springer-Verlag.

[Méhat and Cazenave, 2011a] Jean Méhat and Tristan
Cazenave. A Parallel General Game Player. KI,
25(1):43–47, 2011.

[Méhat and Cazenave, 2011b] Jean Méhat and Tristan
Cazenave. Tree parallelization of Ary on a cluster. In
GIGA 2011, IJCAI 2011, Barcelona, 07 2011.

68 GIGA'15 Proceedings



[Schaefers et al., 2011] Lars Schaefers, Marco Platzner, and
Ulf Lorenz. UCT-Treesplit - Parallel MCTS on Dis-
tributed Memory. In MCTS Workshop, Freiburg, Germany,
06 2011.

[Schiffel and Björnsson, 2014] Stephan Schiffel and Yngvi
Björnsson. Efficiency of GDL Reasoners. In IEEE Trans.
Comput. Intellig. and AI in Games, volume 6, pages 343–
354, 2014.

[Schkufza et al., 2008] Eric Schkufza, Nathaniel Love, and
Michael R. Genesereth. Propositional Automata and Cell
Automata: Representational Frameworks for Discrete Dy-
namic Systems. In AI 2008: Advances in Artificial Intelli-
gence, 21st Australasian Joint Conference on Artificial In-
telligence, Auckland, New Zealand, December 1-5, 2008.
Proceedings, pages 56–66, 2008.

[Soejima et al., 2010] Yusuke Soejima, Akihiro Kishimoto,
and Osamu Watanabe. Evaluating Root Parallelization
in Go. IEEE Trans. Comput. Intellig. and AI in Games,
2(4):278–287, 2010.

[Vittaut and Méhat, 2014] Jean-Noël Vittaut and Jean
Méhat. Fast Instantiation of GGP Game Descriptions
Using Prolog with Tabling. In ECAI 2014 - 21st Euro-
pean Conference on Artificial Intelligence, 18-22 August
2014, Prague, Czech Republic - Including Prestigious
Applications of Intelligent Systems (PAIS 2014), pages
1121–1122, 2014.

GIGA'15 Procededings 69


