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OPTIMIZATION OF QUASI-CONVEX FUNCTION OVER PRODUCT
MEASURE SETS

JÉRÔME STENGER∗† , FABRICE GAMBOA∗, AND MERLIN KELLER†

Abstract. We consider a generalization of the Bauer maximum principle. We work with
tensorial products of convex measures sets, that are non necessarily compact but generated by their
extreme points. We show that the maximum of a quasi-convex lower semicontinuous function on this
product space is reached on the tensorial product of finite mixtures of extreme points. Our work is an
extension of the Bauer maximum principle in three different aspects. First, we only assume that the
objective functional is quasi-convex. Secondly, the optimization is performed over a space built as a
product of measures sets. Finally, the usual compactness assumption is replaced with the existence
of an integral representation on the extreme points. We focus on product of two different types
of measures sets, called the moment class and the unimodal moment class. The elements of these
classes are probability measures (respectively unimodal probability measures) satisfying generalized
moment constraints. We show that an integral representation on the extreme points stands for such
spaces and that it extends to their tensorial product. We give several applications of the Theorem,
going from robust Bayesian analysis to the optimization of a quantile of a computer code output.
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space
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1. Introduction. Optimization of convex functions is one of the most studied
topic in optimization theory. Indeed, their properties are really interesting especially
for minimum search. But convex functions are also attractive for maximum search.
On this matter, the famous Bauer maximum principle [7] states that a convex upper
semicontinuous function, defined on a compact convex subset of a locally convex
topological vector space, reaches its maximum on some extreme points. However,
in practice the functions to optimize are rarely convex, and quasi-convex functions
are a well tailored generalization for optimization. In this paper, we are interested
in such quasi-convex functions [23]. They are defined on a convex subset A of a
topological vector space, as the functions satisfying the inequality f(λx+ (1−λ)y) ≤
max{f(x), f(y)} for all x, y ∈ A and λ ∈ [0, 1]. Most of the properties of convex
functions have extensions for quasi-convex functions. We refer to [13] for an excellent
review on quasi-convex functions. For instance, the Bauer maximum principle remains
true for quasi-convex functions. What is more surprising is that the proof of this claim
available in [7, p.102] is similar in all respects to the one for convex functions.

In this paper, we study a quasi-convex lower semicontinuous function (meaning
that {x ∈ A : f(x) ≤ α} is a closed and convex set for all α ∈ R) and its optimization
on a product space. To our knowledge, this has not been addressed before. Our work
is an extension of [21], where the authors study the optimization of an affine function
on a product of measures space with moment constraints. Although our theoretical
approach deals with general topological space, we focus on d convex sets {Ai}1≤i≤d of
probability measures. We aim to optimize a quasi-convex lsc functional on the product
space

∏d
i=1Ai. The product of measure sets, also called tensorization, is one of the key

elements of this framework. As we will see, it suits numerous industrial optimization
problems. We will provide and discuss of many such optimization problems.

The strength of our approach is that contrarily to the Bauer maximum principle,
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we do not assume compactness. Instead of the compactness assumption of the opti-
mization sets Ai for 1 ≤ i ≤ d, we assume the existence of an integral representation
by a subset ∆i of Ai. This means that for every measure µ in Ai, there exists a prob-
ability measure ν supported on ∆i, such that 〈φ, µ〉 :=

∫
φ(x)µ(dx) =

∫
∆i
〈φ, s〉 dν(s)

for any continuous function φ. The bold type indicates that ν is a probability measure
supported by a set of probability measures. We will say that µ is the barycenter of ν
and that ∆i is the generator of Ai. The compact case is also included in this frame-
work as the Choquet representation holds. More precisely, every point of a compact
convex set is the barycenter of a probability measure carried by every bordering set
(see [7, Theorem 27.6] for details, note that the representation is supported on the set
of extreme points if the space is also metrizable [7, p.140]). The existence of such a
representation is a strong assumption. However, we will provide two different measure
spaces for which the integral representation holds; the moment class [31, 29] and the
unimodal moment class [4].

Our main theorem is therefore an extension of the Bauer maximum principle to-
wards three directions: the quasi-convexity of the optimization functional replaces the
convexity. The tensorization generalizes the structure of the optimization space, and
the existence of an integral representation on the marginal sets covers the compact
case. By doing so, we build a framework that includes many optimization procedure
developed earlier. We refer for example to robust Bayesian analysis [24, 3, 25] that
studies the sensitivity of the Bayesian analysis to the choice of an uncertain prior
distribution. Another example is the work in [21] called Optimal Uncertainty Quan-
tification. Further, we present new applications, all illustrated in a toy case. The
theoretical approach is made as general as possible, while the proofs of our claims
only rely on simple topological arguments.

The paper is organized as follows. Section 2 provides the framework basis before
introducing our main result in Section 3. Section 4 is dedicated to the presentation of
some applications that are illustrated in Section 5 on a use case. Section 6 provides
the theoretical formulation and proofs of our results. We give in the last section some
conclusions and perspectives for future works.

2. Measure spaces. We will work with a subset of P(X), the set of all Borel
probability measures on a topological space X (specified in the following). Let Cb(X)
denote the set of all continuous bounded real valued function on X. We deal with
a convex subset of P(X) satisfying the integral representation property. Note that
generally speaking, P(X) can be considered as a subset of the closed unit ball of
the topological dual of Cb(X) and it inherits its topology, which is the topology of
weak∗ convergence. Moreover, the weak∗ topology is always locally convex, since it
is induced by the seminorms µ 7→ |〈φ, µ〉|, where µ ∈ Cb(X)∗ and φ ∈ Cb(X).

2.1. Moment class. Assume now that X is a Suslin space [6], i.e. the image of
a Polish space under a continuous mapping. We study a convex subspace of P(X),
called the moment class. All measures in the moment class A∗ satisfy generalized
moment constraints. That is, a measure µ ∈ A∗ verifies Eµ[ϕi] ≤ 0, for measurable
functions ϕ1, . . . , ϕn ∈ Cb(X). Because X is Suslin, all measures µ ∈ P(X) are
regular. Hence, the following Theorem 2.1 due to Winkler [31, p.586] holds.

Theorem 2.1 (Extreme points of moment class). Consider the space P(X) of
Borel measure on a Suslin space X, and measurable functions ϕ1, . . . , ϕn on X. Then,
for any measure µ in the moment class A∗ = {µ ∈ P(X) | Eµ[ϕi] ≤ 0, 1 ≤ i ≤ n},
there exists a probability measure ν supported on ∆∗(n) such that µ is the barycenter
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of ν. Where

∆∗(n) =

{
µ ∈ A∗ : µ =

n+1∑
i=1

ωiδxi , ωi ≥ 0, xi ∈ X
}

.

is the set of discrete probability measures of A∗ supported on at most n+ 1 points.

The case of equality in the constraints defining A∗ is covered by this result [31, p.586].
Theorem 2.1 states that the extreme points of a class of measures with n generalized
moment constraints are discrete measures supported on at most n+ 1 points of X.

2.2. Unimodal moment class. In this section, X denotes an interval of the
real line R. Let µ be a probability distribution on X, and let F be its distribution
function. The measure µ is said to be unimodal with mode at a, if F is convex
on ] − ∞, a[ and concave on ]a,+∞[. We denote Ha(X) the set of all probability
measures on X which are unimodal at a. The set Ha(X) is closed but not necessarily
compact (Ha(R) is not compact, see [4, p.19]). Clearly, in regards of their cumulative
distribution function, any uniform probability measure on an interval of the form
co(a, z), z ∈ X (co is the convex hull) including the Dirac mass in a, is unimodal at
a. The set Ua(X) = {u is uniformly distributed on co(a, z), z ∈ X} of these uniform
probability measures is closed in P(X) [4, p.19]. In this section, we are interested in
the convex subset A† of unimodal measures satisfying generalized moment constraints
Eµ[ϕi] ≤ 0, for measurable functions ϕ1, . . . , ϕn. This subspace is called an unimodal
moment class and an equivalent of Theorem 2.1 holds:

Theorem 2.2 (Extreme points of unimodal class). Consider the space Ha(X) of
unimodal measures on an interval X with mode a, and measurable functions ϕ1, . . . , ϕn
on X. Then, for any measure µ in the unimodal moment class A† = {µ ∈ Ha(X) |
Eµ[ϕi] ≤ 0, 1 ≤ i ≤ n}, there exists a probability measure ν supported on ∆†(n) such
that µ is the barycenter of ν. Here

∆†(n) =

{
µ ∈ A† | µ =

n+1∑
i=1

ωiui, ωi ≥ 0, ui ∈ Ua(X)

}
.

Elements of ∆†(n) are mixtures of at most n + 1 uniform distributions supported on
co(a, z) for some z ∈ X.

The proof of this theorem is postponed to the Appendix. The unimodal class was first
explored by Khinchin [19] who revealed the fundamental relationship between the set
of unimodal probability distributions and uniform probability densities. It was later
demonstrated in [5] that the Khinchin Theorem may be considered as a non compact
form of the Krein-Milman Theorem [7, p.105]. In [25], one can find a first application
of optimization of a functional on a unimodal moment class, in the context of robust
Bayesian analysis. In the same paper, the class of symmetric unimodal distributions
with mode a is also considered. As Ha(X), its extreme points are uniform symmetric
distributions, that is uniform measures with support co(a− z, a+ z), z ∈ X.

The sets A† and A∗ are very interesting. Indeed, measure spaces are non obvious
sets and it is generally not straightforward to exhibit their extreme points.

3. Main results.

3.1. Construction of the product measure spaces. We now give our main
Theorem. The measure sets introduced in Section 2 have very similar properties, so
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that they are gathered under the same notation. Indeed, we enforce generalized mo-
ment constraints in both cases. The difference lies in the unimodality of the measures
of A†, while A∗ can contain any Radon measure. The difference between Theorem
2.1 and 2.2 is that the nature of the extreme points are somehow different. Indeed,
the generator of the unimodal moment class A† is the set of finite convex combination
of uniform distributions. On the other hand, the generator of the moment class A∗
is the set of finite convex combination of Dirac masses.

To begin with, we first detail the construction of the product space. Let X :=
X1 × · · · × Xd be a product of p Suslin spaces X1, . . . , Xp, and d − p real intervals
Xp+1, . . . , Xd. Given some real numbers ai ∈ Xi for p < i ≤ d and some measurable

functions ϕ
(j)
i : Xi → R for 1 ≤ j ≤ Ni and 1 ≤ i ≤ d, we construct d measure spaces

with the integral representation property

Ai = A∗i =
{
µi ∈ P(Xi) | Eµi [ϕ(j)

i ] ≤ 0 for j = 1, . . . , Ni

}
for 1 ≤ i ≤ p ,

Ai = A†i =
{
µi ∈ Hai(Xi) | Eµi [ϕ(j)

i ] ≤ 0 for j = 1, . . . , Ni

}
for p < i ≤ d .

Therefore, the space Ai is either a moment space on a Suslin space, or an unimodal
moment space on an interval as presented in Section 2. We denote by ∆Ni ⊂ Ai, the
generator of the space Ai, as defined in Section 2. Summarizing, we have

∆i(Ni) = ∆∗i (Ni) =

{
µi ∈ Ai | µi =

Ni+1∑
k=1

ωkδxk , xk ∈ Xi

}
for 1 ≤ i ≤ p , (3.1)

∆i(Ni) = ∆†i (Ni) =

{
µi ∈ Ai | µi =

Ni+1∑
k=1

ωkuk, uk ∈ Uai(Xi),

}
for p < i ≤ d .

With these definitions and as discussed in the previous section, any measure µi ∈ Ai
is the barycenter of a probability measure supported on ∆i(Ni), that is the set of
convex combination of at most Ni + 1 Dirac masses or uniform distributions.

For the rest of the paper, the product spaces A =
∏d
i=1Ai and ∆ =

∏d
i=1 ∆i(Ni)

are equipped with the product σ-algebra (not to be confused with the Borel σ-algebra
of the product).

The following definition highlights the meaning of quasi-convexity and lower semi-
continuity of a function on a product space.

Definition 3.1. A function f : A → R is said to be marginally quasi-convex
(marginally lsc) if for all {µk ∈ Ak, k 6= i}, the function µi 7→ f(µ1, . . . , µd) is quasi
convex (respectively lsc for the topology of Ai) .

Notice that if f is globally quasi-convex (lsc for the product topology) then it is
marginally quasi-convex (respectively marginally lsc). Indeed, if f is globally lsc, then
{µ ∈ A | f(µ1, . . . , µd) > α} is open for all α and as the canonical projections are
open maps, {µi ∈ Ai | f(µ1, . . . , µd) > α} is also open. It is clear for quasi-convexity.
Having defined properly the product spaces, we present our main result.

3.2. Reduction Theorem. Any measure µi ∈ Ai belongs to either a moment
space or an unimodal moment space. Hence, µi always satisfies Ni moment con-
straints. In the following theorem (Theorem 3.2), we also enforce constraints on the
product measure µ = µ1 ⊗ · · · ⊗ µd ∈ A, such that, for N measurable functions
ϕ(j) : X → R, 1 ≤ j ≤ N , we have Eµ[ϕ(j)] ≤ 0.
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Theorem 3.2. Suppose that X ,A and ∆ are defined as in Subsection 3.1. Let
ϕ(j) : X → R, 1 ≤ j ≤ N be measurable functions. Let f : A → R be a marginally
quasi-convex lower semicontinuous function. Then,

sup
µ1,...,µd∈⊗Ai

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ) = sup
µ1,...,µd∈⊗∆i(Ni+N)

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ)

In other words, the supremum of a quasi-convex function on a product space
can be computed considering only the d-fold product of finite convex combinations of
extreme points of the marginal spaces. That is, finite convex combinations of either
Dirac masses or uniform distributions.

The underlying assumption is that there exists an integral representation on Ai
for 1 ≤ i ≤ d. We take two examples of measure spaces whose generators are known,
but the proofs in Section 6 are given in a much more general framework. Notice that
this assumption is somehow different from the Bauer maximum principle. Indeed, in
this frame the compactness of the convex space is assumed. But, from Krein-Millman
Theorem [7, p.105], the compactness assumption implies the integral representation
holds. Further, as we extend the result to product spaces, our framework is more gen-
eral. The next proposition highlights that the existence of an integral representation
on each marginal space, also implies the existence of an integral representation on the
product space.

Proposition 3.3. Let X ,A and ∆ be defined as in Subsection 3.1, such that the
integral representation property holds on every marginal space Ai. Then any measure
in A is also the barycenter of a probability measure supported by ∆.

Proof. let µ be in A, so that µ = µ1 ⊗ · · · ⊗ µd, with µi ∈ Ai. Because of the
integral representation property of Ai, there exists a probability measure νi supported
by ∆i(Ni) such that µi is the barycenter of νi, i.e. µi =

∫
∆i(Ni)

si dν(si). Therefore,

for any function φ ∈ Cb(X ), using Fubini’s Theorem, we have∫
X
φ(x)µ(dx) =

∫
X
φ(x1, . . . , xd)µ1(dx1) . . . µd(dxd) ,

=

∫
X
φ(x1, . . . , xd)

∫
∆1(N1)

s1(dx1) dν1(s1)· · ·
∫

∆d(Nd)

sd(dxd) dνd(sd) ,

=

∫
∆1(N1)

· · ·
∫

∆d(Nd)

∫
X
φ(x1, . . . , xd) s1(dx1) · · · sd(dxd) dν1(s1) . . . dνd(sd) ,

=

∫
∆

∫
X
φ(x) s(dx) dν(s) ,

where ν = ν1 ⊗ · · · ⊗ νd is a probability measure supported on ∆. This means that
µ is the barycenter of ν in the product space A.

The proposition above guarantees existence of the integral representation on the
product space A whenever any marginal space Ai possesses itself an integral rep-
resentation property. However, the product space restricted by moment constraints
{µ ∈ A | Eµ[ϕ(j)] ≤ 0, 1 ≤ j ≤ N} has a more complex structure than the marginal
spaces Ai from Section 2. Indeed, its extreme points are not convex combinations of
N + 1 elements of the generator of A: ∆ =

⊗d
i=1 ∆i,Ni . In regard of the reduction

Theorem 3.2, its extreme points are elements of to the d-fold product of finite convex
combinations of extreme points of Ai, that is

⊗d
i=1 ∆i,Ni+N .
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Notice also that Theorem 3.2 extends the work of [21]. Indeed, in this paper the
authors were the first to propose the reduction Theorem on a product space. Never-
theless, the optimization considered therein is restricted only to product of moment
classes and did not include unimodal moment classes. Moreover, the optimized func-
tional in [21] is an affine function of the measure. This is a very particular case of our
framework. Notice that measure affine functions are useful, some of their properties
are discussed in the next section.

3.3. Relaxation of the lower semicontinuity assumption.

3.3.1. Measure affine functions. The function to be optimized is assumed
to be both lower semicontinuous and quasi-convex. It appears that quasi-convexity
covers a large class of functionals fitting most of our application cases. Nevertheless,
lower semicontinuity is not always satisfied. So that, it is very interesting to relax
this assumption.

In this section, we study some specific class of functionals that are called measure
affine [31]. These functions and their optimization on product measure spaces have
been already studied in [21]. We recall that X ,A and ∆ are the product spaces
constructed in Subsection 3.1.

Definition 3.4. A function F is called measure affine whenever F is integrable
with respect to any probability measure ν on ∆ with barycenter µ ∈ A and F fulfills
the following barycentrical formula

F (µ) =

∫
∆

F (s) dν(s) .

Notice that any measure affine function satisfies F (λµ + (1 − λ)π) = λF (µ) +
(1 − λ)F (π), for µ, π ∈ A and λ ∈ [0, 1]. Hence, it is both quasi-convex and quasi-
concave. In the following, we show that the optimum of a measure affine function
can be computed only on the extreme points of the optimization set, independently
of the regularity of F . For an extended version enforcing moment constraints on the
product measure as in Theorem 3.2, we refer to [21, p.71].

Theorem 3.5. Let A be a convex subset of a locally convex topological vector
space satisfying barycentric property. For any measure affine functional F we have

sup
µ∈A

F (µ) = sup
µ∈∆

F (µ) ,

and,
inf
µ∈A

F (µ) = inf
µ∈∆

F (µ) .

Proof. The proof is given for the supremum, but it is similar for the minimum.
Given µ ∈ A, the integral representation property states that there exists a probability
measure ν supported on ∆ such that µ is the barycenter of ν. Therefore,

F (µ) =

∫
∆

F (s)dν(s) ≤ sup
s∈∆

F (s)

for any µ ∈ A. Hence, supµ∈A F (µ) ≤ supµ∈∆ F (µ), the converse is clear as ∆ ⊂ A.

3.3.2. Ratio of measure affine functions. From the previous theorem, the
supremum of a measure affine functional can be searched only on the generator of
the measure space A. We examine some transformations of measure affine functions
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for which the reduction Theorem 3.2 stays true and for which lower semicontinuity
remains a non necessary condition. Ratio of functionals are particularly interesting as
they appear in many practical quantities of interest (see for instance Subsection 4.4
and Subsection 4.5).

Proposition 3.6. Let A be a convex set of measures with generator ∆. Let φ
and ψ be two measure affine functionals, ψ > 0. Then

sup
µ∈A

φ

ψ
= sup
µ∈∆

φ

ψ
,

and,

inf
µ∈A

φ

ψ
= inf
µ∈∆

φ

ψ
.

Proof. The proof is given for the supremum, but it is similar for the minimum.
Given µ ∈ A, the integral representation property states that there exists a probability
measure ν supported on ∆ with barycenter µ. Therefore,

φ(µ) =

∫
∆

φ(s) dν(s) ,

=

∫
∆

φ(s)

ψ(s)
ψ(s) dν(s) ,

≤ sup
∆

φ

ψ

∫
∆

ψ(s) dν(s) ,

= sup
∆

φ

ψ
ψ(µ) .

So that, φ(µ)/ψ(µ) ≤ sup∆ φ/ψ for all µ ∈ A, hence supA φ/ψ ≤ sup∆ φ/ψ. The
other inequality is clear as ∆ ⊂ A.

Notice that the ratio of a convex function by a positive concave function is quasi-
convex [8, p.51]. Thus, in the previous Proposition the ratio φ/ψ is quasi-convex.

4. Applications. In this section, we study some practical applications of The-
orem 3.2, based on real life engineering problems. In the following, we consider a
computer code G, that can be seen as a black box function. The code G takes d
scalar input parameters, that may represent for instance physical quantities. In Un-
certainty Quantification (UQ) methods [12], we aim to assess the uncertainty tainting
the result of the computer simulation, whose input values are uncertain and modelled
as random variables Xi ∼ µi. They are all considered independent for simplicity’s
sake. The output of the code Y = G(X1, . . . , Xd) is therefore also a random variable.
Generally, one is interested in the computation of some quantity of interest on the
output of the code. However, the choice of the input distributions (µi){1≤i≤d} is many
times itself uncertain. So that, the distributions are often restricted for simplicity in
some parametric family, such as Gaussian or uniform. The distribution parameters
are then generally estimated with the available information coming from data and/or
expert opinion. In practice, this information is often reduced to an input mean value
or a variance. We aim to account for the uncertainty on the input distribution choice.
So that, we wish to evaluate the maximal quantity of interest over a class of probability
distributions.

In this section, X ,A and ∆ are constructed as in Subsection 3.1. Therefore, the
input distribution µ = µ1⊗· · ·⊗µd is an element of A, i.e. a product of d independent
input measures µi ∈ Ai. Thus, any input distribution belongs implicitly to a moment
class or an unimodal moment class.
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4.1. Example of measure affine functions. It was shown in Subsection 3.3.1,
that measure affine functions were particularly interesting because of the relaxation
of the lower semicontinuity assumption. Moreover, we also have seen that an affine
functional is both quasi-convex and quasi-concave. Hence, it is possible to minimize
or maximize the quantity of interest (Theorem 3.5). We study here some specific
measure affine functions.

Proposition 4.1. Let A be a convex set of probability measure with generator ∆,
and let qG be integrable on X with respect to any measure in ∆. Then the functional
µ 7→ Eµ[qG] =

∫
X qG dµ is measure affine.

Proof.

Eµ[qG] =

∫
X
qG(x)µ(dx) ,

=

∫
X
qG(x)

∫
A∆

s(dx) dν(s) ,

=

∫
A∆

(∫
X
qG(x) s(dx)

)
dν(s) ,

=

∫
A∆

Es[qG] dν(s) .

The measure affine functional µ 7→ Eµ[qG] covers a large range of interest quanti-
ties. For instance, the choice qG(x) = G(x) leads to the expectation of the computer
code G. Further, any moment can be studied using qG(x) = G(x)n. The choice
qG(x) = 1CG , the indicator function on a set CG, yields a probability. An important
example would be qG(x) = 1{G(x)≤h}, which yields the failure probability at threshold
h ∈ R. The choice of a loss function qG(x) = L(G(x), a) where a is some decision,
would yields to the expected loss of the decision a.

The interested reader will remark that the question of lower semicontinuity of the
previous affine functional relies on the property of qG. More precisely, the lower semi-
continuity of qG (respectively upper semicontinuous) implies the lower semicontinuity
(respectively upper semicontinuity) of the mapping µ 7→

∫
qG dµ [1, Theorem 15.5].

4.2. Non-Linear Quantities. We briefly extend the function presented in Sub-
section 4.1 to deal with more general quantities of the form [3]

µ 7→ F (µ) =

∫
qG(x, ϕ(µ))µ(dx) ,

where ϕ(µ) is measurable. The most common example would be

qG(x, ϕ(µ)) = (G(x)− Eµ[G(x)])2 ,

that yields to the variance of the distribution µ. In order to compute this quantity,
we need to linearize the problem. The idea is to replace the optimization set A with

sup
µ∈A

∫
qG(x, ϕ(µ))µ(dx) = sup

ϕ0

sup
µ∈A

ϕ(µ)=ϕ0

∫
qG(x, ϕ0)µ(dx) .

The reduction Theorem 3.2 applies to the measure affine function µ 7→
∫
qG(x, ϕ0)

µ(dx) on the set {µ ∈ A | ϕ(µ) = ϕ0}, which is the set A with additional constraints.
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4.3. Quantile Function.

4.3.1. Lower Quantile Function. A classical measure of risk, widely used in
industrial application [28, 26], is the quantile of the output. It is a critical crite-
ria for evaluating safety margins [17]. In the following, Fµ denotes the cumulative
distribution function of the output of the code, i.e. Fµ(α) = P(G(X) ≤ α).

Theorem 4.2. We suppose that the code G is continuous. Then the quantile
function µ 7→ QLp (µ) = inf{x : Fµ(x) ≥ p} is quasi-convex and lower semicontinuous
on A.

Proof. A function is quasi-convex if any lower level set is a convex set. Further, it
is lower semicontinuous if any lower level set is closed. Hence, we consider for α ∈ R
the lower level set for α ∈ R:

Lα =
{
µ ∈ A | QLp (µ) ≤ α

}
,

= {µ ∈ A | Fµ(α) ≥ p} .
Indeed, the quantile is the unique function satisfying the Galois inequalities. There-
fore,

Lα =
{
µ ∈ A | µ

(
G−1(]−∞, α])

)
≥ p
}
.

Lα is obviously convex and applying Corollary 15.6 in [1], Lα is also closed (for the
weak topology), as G−1(]−∞, α]) is closed .

Notice that, in this work the quantile is a function of the measure µ. However, the
quantile seen as a function of random variables is not quasi-convex, this subtle point
is explained in [11].

4.3.2. Upper Quantile Function. In order to obtain bounds on the quantile
of the code G over the class of measures A, it is also possible to minimize the quantile.
However, in order to ensure the upper semicontinuity needed for the minimization, we
study the following not classical upper quantile function [14] defined in the following
theorem.

Theorem 4.3. We suppose that the code G is continuous. Then, the quantile
function µ 7→ QRp (µ) = inf{x : Fµ(x) > p} is quasi-concave upper semicontinuous on
A.

Proof. A function is quasi-concave if all upper level set is convex. It is upper
semicontinuous if all upper level set is closed. For α ∈ R, the upper level set is

Uα =
{
µ ∈ A | QRp (µ) ≥ α

}
,

= {µ ∈ A | ∀ε > 0 : Fµ(α− ε) ≤ p} ,

=
⋂
ε>0

{µ ∈ A | Fµ(α− ε) ≤ p} ,

=
⋂
ε>0

{
µ ∈ A | µ(G−1(]−∞, α− ε])) ≤ p

}
,

=
⋂
ε>0

{
µ ∈ A | µ(G−1(]−∞, α− ε[)) ≤ p

}
,

The last equality deserves some explanation. We prove that the equality holds in two
times. For ε > 0, we denote

Fc(ε) =
{
µ ∈ A | µ(G−1(]−∞, α− ε])) ≤ p

}
,
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Fo(ε) =
{
µ ∈ A | µ(G−1(]−∞, α− ε[)) ≤ p

}
.

Clearly, Fc(ε) ⊂ Fo(ε) for all ε > 0, so that

∩ε>0Fc(ε) ⊂ ∩ε>0Fo(ε) .

For the reverse inclusion, let µ be an element of ∩ε>0Fo(ε). Suppose that µ is not in
∩ε>0Fc(ε). Then, there exists an ε0 > 0 such that µ(G−1(] −∞, α − ε0])) > p. But
µ(G−1(] −∞, α − ε0])) ≤ µ(G−1(] −∞, α − ε0

2 [)) ≤ p, because µ is in ∩ε>0Fo(ε) by
construction, leading to a contradiction.

To conclude, [1, Corollary 15.6] proves that Fo(ε) is closed because G−1(]−∞, α−
ε[) is open as G is continuous. Hence, Uα is closed as an intersection of closed sets.
Uα is also obviously convex.

4.4. Sensitivity index. Global sensitivity analysis aims at dertermining which
uncertain parameters of a computer code mainly drive the output. In that matter,
Sobol’ indices are widely used as they quantify the contribution of each input onto the
variance of the ouput of the model [16]. However, because the probability distributions
modeling the uncertain parameters are themselves uncertain, we propose to evaluate
bounds on the Sobol’ indices over a class of probability measures. We will focus for
simplicity on the well known first order sensitivity index:

Si(µi) =
Varµi(E∼i[Y |Xi])

Var(Y )
.

The total-effect index STi [16] could be processed in the same way.

Theorem 4.4. Let X ,A and ∆ be defined as in Subsection 3.1. Then

sup
µi∈Ai

Si(µi) = sup
µi∈∆i,Ni+1

Si(µi) ,

inf
µi∈Ai

Si(µi) = inf
µi∈∆i,Ni+1

Si(µi) .

Proof. The proof is made for the supremum but is similar for the minimum

sup
µi∈Ai

Si(µi) = sup
µi∈Ai

Eµi
[
(E∼i[Y |Xi])

2
]
− (Eµi [E∼i[Y |Xi]])

2

Eµi [E∼i[Y 2]]− (E[Y ])
2 ,

= sup
µi∈Ai

Eµi
[
(E∼i[Y |Xi])

2
]
− (E[Y ])

2

Eµi [E∼i[Y 2]]− (E[Y ])
2 ,

= sup
y0

sup
µi∈Ai
E[Y ]=y0

Eµi
[
(E∼i[Y |Xi])

2
]
− y2

0

Eµi [E∼i[Y 2]]− y2
0

,

where y0 is a real. Now, the function

µi 7−→
Eµi

[
(E∼i[Y |Xi])

2
]
− y2

0

Eµi [E∼i[Y 2]]− y2
0

,
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is a ratio of two measure affine functionals. Proposition 3.6 states that the reduction
Theorem 3.2 applies so that

sup
µi∈Ai
E[Y ]=y0

Eµi
[
(E∼i[Y |Xi])

2
]
− y2

0

Eµi [E∼i[Y 2]]− y2
0

= sup
µi∈∆i,Ni+1

E[Y ]=y0

Eµi
[
(E∼i[Y |Xi])

2
]
− y2

0

Eµi [E∼i[Y 2]]− y2
0

,

and the result follows.

4.5. Robust Bayesian framework. Robust Bayesian analysis [24] studies the
sensitivity of the Bayesian choice of an uncertain prior distribution. The answer
is robust if the inference does not depend significantly on the choice of the inputs
prior distributions. Therefore, a Bayesian analysis is applied to all possible prior
distributions from a given class of measures.

The posterior probability distribution can be calculated with Bayes’ Theorem by
multiplying the prior probability distribution π by the likelihood function θ 7→ l(x | θ),
and then dividing by the normalizing constant, as follows:

l(θ |x) =
l(x | θ)π(θ)∫
l(x | θ)π(dθ)

Thus, it is natural to define Ψ that maps the prior probability measure to the posterior
probability measure. In what follows, X denotes a Polish space

Ψ : P(X) −→ P(X)

π 7−→ Ψ(π) : Cb(X) −→ R

q 7−→ Ψ(π)(q) =

∫
X
q(θ)l(x|θ)π(dθ)∫
X
l(x|θ)π(dθ)

The functional Ψ has very useful properties:

Lemma 4.5. If the likelihood function l(x|·) : θ 7→ l(x|θ) is continuous, then Ψ is
continuous for the weak∗ topology in P(X ).

Proof. let (πn) be a sequence of probability measure in P(X) converging in weak?

topology towards some probability measure π. The convergence in weak? topology
means that for every q ∈ Cb(X), 〈πn|q〉 → 〈π|q〉. But because l(x|·) is continuous the
function q × l(x|·) is also an element of Cb(X), therefore∫

X

q(θ)l(x|θ)πn(dθ) = 〈q × l(x|·)|πn〉 −→ 〈q × l(x|·)|π〉 =

∫
X

q(θ)l(x|θ)π(dθ) ,

This exactly means that Ψ(πn) converges to Ψ(π) in the weak∗ topology. This gives
the sequential continuity of Ψ, thus its continuity. Indeed, as X is polish it is separable
and metrizable. So that, P(X) is also metrizable [1, Theorem 15.12]. Hence, it is
first-countable [10, Theorem 4.7] which implies it is also sequential. This means that
the sequential continuity is equivalent to the continuity.

The function Ψ can be decomposed as a ratio Ψ = Ψ1/Ψ2, with

Ψ1 : P(X) −→ P(X)

π 7−→ Ψ1(π) : Cb(X) −→ R

q 7−→ Ψ1(π)(q) =

∫
X

q(θ)l(x|θ)π(dθ)
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and,

Ψ2 : P(X) −→ R∗+

π 7−→
∫
X

l(x|θ)π(dθ)q 7−→ Ψ1(π)(q) =

∫
X

q(θ)l(x|θ)π(dθ)

The main property of Ψ1 and Ψ2 is that they are linear maps. The posterior distribu-
tion is therefore the ratio of two linear functions of the prior density. This is particu-
larly interesting due to the following Proposition, which states that the composition
of a quasi-convex function with the ratio of two linear mapping is also quasi-convex.

Proposition 4.6. Let A be a convex subsets of a topological vector space, and f
be a quasi-convex lower semicontinuous functional on A. If Ψ1 : A 7→ A is a linear
mapping and Ψ2 : A 7→ R∗+ is a linear functional. Then, f ◦ (Ψ1/Ψ2) : A 7→ R is also
a quasi-convex lower semicontinuous functional.

Proof. Let π, µ be in A. Given λ ∈ [0, 1], notice that

f

(
Ψ1(λπ + (1− λ)µ)

Ψ2(λπ + (1− λ)µ)

)
= f

(
λΨ1(π) + (1− λ)Ψ1(µ))

λΨ2(π) + (1− λ)Ψ2(µ)

)
,

= f

(
β

Ψ1(π)

Ψ2(π)
+ (1− β)

Ψ1(µ)

Ψ2(µ)

)
,

with β =
λΨ2(π)

λΨ1(π) + (1− λ)Ψ2(µ)
in [0, 1]. Hence,

f

(
Ψ1(λπ + (1− λ)µ)

Ψ2(λπ + (1− λ)µ)

)
≤ max

{
f

(
Ψ1(π)

Ψ2(π)

)
; f

(
Ψ1(µ)

Ψ2(µ)

)}
.

This proves the quasi-convexity of f ◦ (Ψ1/Ψ2). The lower semicontinuity stands
because for α ∈ R, the lower level set

Γα =

{
µ ∈ A | f

(
Ψ1(µ)

Ψ2(µ)

)
≤ α

}
=

{
µ | Ψ1(µ)

Ψ2(µ)
∈ f−1 (]−∞, α])

}
,

is the inverse image of the lower level set α under the continuous map µ 7→ Ψ1(µ)/Ψ2(µ)
according to Lemma 4.5. Therefore, Γα is closed.

Proposition 4.6 proves that any lower semicontinuous quasi-convex function presented
above are well suited for robust Bayesian analysis. For instance, the optimization of
the quantile of the posterior distribution over a class of prior distribution can be
reduced to the extreme points of the set.

Moreover, one can easily see that if the functional f is measure affine then f ◦
(Ψ1/Ψ2) is also the ratio of two measure affine functionals. From Proposition 3.6, it
then holds that lower semicontinuity is not necessary to apply the reduction Theorem.
This means that we can optimize moments or probabilities of the posterior distribution
over a class of prior distributions [25].

5. Application on an use case. To illustrate our theoretical optimization re-
sults, we address a simplified hydraulic model [22]. This code calculates the water
height H of a river subject to a flood event. The height of the river H is calculated
through the analytical model given in Equation (5.1).
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Zv

H
Zm

J

Ks

Fig. 1: Simplified river cross section.

(5.1) H =

 J

300Ks

√
Zm−Zv

5000

3/5

.

The code takes four inputs whose initial joint distributions are detailed in Table 1.
The choice of uniform distributions for Zv and Zm comes from expert opinions. The
normal distribution for Ks modelizes the variability of the value of the empirical
Manning-Strickler coefficient. At last, the choice of a Gumbel distribution is due
to the extreme nature of the flooding event. We compute the maximum likelihood
parameters of the Gumbel distribution based on a sample of 47 annual maximal flow
rates.

Table 1: Initial distribution of the 4 inputs of the hydraulic model.

Variable Description Distribution

J annual maximum flow rate Gumbel(ρ = 626, β = 190)
Ks Manning-Strickler coefficient N (x = 30, σ = 7.5)
Zv Depth measure of the river downstream U(49, 51)
Zm Depth measure of the river upstream U(54, 55)

Notice that the modelization of the parameters through the distribution given in
Table 1 is questionable. Therefore, as we desire to relax the choice of a specific
distributions, we evaluate the robust quantity over a class of measures. We display in
Table 2 the corresponding moment constraints that the variables must satisfy. These
constraints are calculated based on the sample of 47 annual flow rates and expert
opinions. The bounds are taken in order to match the most acceptable values of the
parameters. Notice that the distribution of Ks belongs to an unimodal moment class
because we consider that there is a most significant value for this empirical constant.
Using the previous notations, the input distribution µ ∼ (J,Ks, Zv, Zm) belongs to

A = A∗1 ⊗A†2 ⊗A∗3 ⊗A∗3 with

(5.2)

A∗1 =
{
µ1 ∈ P([160, 3580]) | Eµ1

[X] = 736, Eµ1
[X2] = 602043

}
,

A†2 =
{
µ2 ∈ H30([12.55, 47.45]) | Eµ2

[X] = 30, Eµ2
[X2] = 949

}
,

A∗3 = {µ3 ∈ P([49, 51]) | Eµ3
[X] = 50} ,

A∗4 = {µ4 ∈ P([54, 55]) | Eµ4
[X] = 54.5} .

5.1. Computation of failure probabilities and quantiles. The study ad-
dresses the necessary height of the protection dike in terms of cost and security. In
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Table 2: Corresponding moment constraints of the 4 inputs of the hydraulic model.

Variable Bounds Mean
Second order

moment
Mode

J [160, 3580] 736 602043 −
Ks [12.55, 47.45] 30 949 a = 30
Zv [49, 51] 50 − −
Zm [54, 55] 54.5 − −

order to provide safety margins that are optimal in regards to the uncertainty tainting
the inputs distributions, we compute the maximal p-quantile over the class of mea-
sures defined through the constraints of Table 2. The computation of the maximum
quantile is equivalent to the computation of the lowest failure probability infµ∈A Fµ
over the same class of measures. Indeed, we have the following duality transformation
[26]:

sup
µ∈A

QLp (µ) = inf

{
h ∈ R | inf

µ∈A
Fµ(h) ≥ p

}
.

The results are depicted in Figure 2. The quantile of order 0.95 is equal to
2.75m for the initial distribution, which gives the appropriate safety margins needed
to build a protection dike. However, by considering the uncertainty tainting the input
distribution contained in the class A (the dashed line), the maximum 0.95-quantile
over this class is equal to 3.05m.

5.2. Computation of a Bayesian quantity of interest. We now consider
that J is modelized as initially with a Gumbel distribution (see Table 1). Indeed,
extreme value theory [9] justifies the choice of a Gumbel distribution for the maximal
annual flow rate. However, in a Bayesian setting, the location parameter ρ, and the
scale parameter β of the Gumbel distribution are associated with a prior distribution
π(ρ, β). In [22], the prior distribution was taken to be low informative using ρ ∼
G(1, 500) and 1/β ∼ G(1, 200), where G(α, τ) is the Gamma distribution with shape
parameter α and scale parameter τ .

This choice of prior is questionable. Instead, we used the previously computed
maximum likelihood estimation as a mean constraint. The bounds are taken to rea-
sonable values.

Table 3: Corresponding moment constraints of the parameters ρ, β of the Gumbel
distribution of J .

Variable Bounds Mean

ρ [550, 700] 626.14
β [150, 250] 190

This corresponds to two moment classes, ρ belongs to Ã∗1 = {µ ∈ P([550, 700]) | Eµ[X]

= 626.14} and β to Â∗1 = {µ ∈ P([150, 250]) | Eµ[X] = 190}. The other parameter’s
distributions Ks, Zv, Zm are set to their previous classes in Equation (5.2), that is
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respectively A†2,A∗3 and A∗4. Finally, the distribution Θ ∼ (ρ, β,Ks, Zv, Zm) belongs

to the product space A′ = Ã∗1 ⊗ Â∗1 ⊗A†2 ⊗A∗3 ⊗A∗4.
The Gumbel model and the analytic formulation of the code in Equation 5.1 yields

to the exact calculation of the probability of failure conditionally to (ρ, β,Ks, Zv, Zm)

P(H ≤ h | Θ) = exp

(
− exp

{
β

(
ρ− 300Ks

√
Zm − Zv

5000
(h− Zv)5/3

)})
.

Therefore, the Bayesian probability of failure correspond to the integrated cost

(5.3) FΘ(h) = P(H ≤ h) =

∫
P(H ≤ h | Θ)π(Θ|D) dΘ ,

where π(Θ|D) ∝ l(D|Θ)π(Θ) is the posterior distribution of Θ. The quantity in
Equation (5.3) is minimized over the product space A′, the results are depicted in
Figure 2. The quantile of order 0.95 is equal to 3.19m which is slightly higher than
for the maximal quantile over the moment class A.

1 2 3 4 5

Water height h (in m)

0.0

0.2

0.4

0.6

0.8

1.0

Finit(h)

infµ∈AFµ(h)

infΘ∈A′ FΘ(h)

Fig. 2: The solid line represents the CDF of the computer code h 7→
P(H(J,Ks, Zv, Zm) ≤ h) with the initial input distribution depicted in Table 1. The
dashed line represents the CDF lowest enveloppe over the measure set A from Equa-
tion (5.2). The dotted line represents the optimization of the same quantity in a
Bayesian framework when J is a Gumbel distribution with prior density on its pa-
rameters.

5.3. Computation of Sobol index. In this subsection we illustrate the impact
of the uncertainty tainting the input distribution on the Sobol indices. We propose dif-
ferent robust computation of the Sobol indices which leads to different interpretation.
Each parameter µi belongs to a measure class Ai presented in Table 2.

The first order indices (S0
i )1≤i≤4 are classically computed with the nominal input

distributions in Table 1. We compute their robust version corresponding to the bounds
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Fig. 3: Different definitions of robustness for the Sobol indices yield different bounds.

of Si when µi belongs to Ai, that is

S+
i = sup

µi∈Ai
Si and S−i = inf

µi∈Ai
Si .

Thus, S+
i represents the maximal contribution of the ith input alone onto the output

variance, considering the uncertainty of the ith parameter distribution. Note that∑
i S

+
i is not necessarily equals to 1. The same interpretation holds for S−i . We also

define the total indices [16]

S+
Ti = sup

µj∈Aj
j 6=i

STi and S−Ti = inf
µj∈Aj
j 6=i

STi .

Thus, S+
Ti represent the contribution of the ith input onto the output variance, in-

cluding the maximal interaction with all the remaining inputs, considering only the
uncertainty of those remaining input distributions. The same interpretation holds for
S−Ti. We finally define

S++
i = sup

µ∈A
Si and S−−i = inf

µ∈A
Si ,

and

S++
Ti = sup

µ∈A
STi and S−−Ti = inf

µ∈A
STi ,

which represent the optimal first and total order indices considering the uncertainty
of all the input distributions.

The results are displayed in Figure 3. It demonstrates that whatever the input
distribution, the parameters Zv and Zm can be consider as weakly influent. The refer-
ence Sobol indices Si and STi indicated that J is more influent than Ks. However, the
optimization results show that their contribution to the variance vary a lot depending
on their distributions choice. So that Ks could be in some cases more influent than
J . It could be valuable in this situation to refine the information on these parameters
in order to reduce the uncertainty tainting their distributions.
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6. Reduction theorem proof. In this section, we develop the proof of Theorem
3.2. We make few assumptions on the nature of the optimization space. This way
the framework is very general and can be extended to many different spaces, even
thought measure spaces constitute the main application of this paper. We first develop
the reduction theorem for a simple topological space before extending the result to
a product space. The proofs are quite short and rely only on simple topological
arguments. We enlighten the assumption made in this work, in particular we compare
our hypothesis of lower semicontinuity with regard to the Bauer maximum principle’s
upper semicontinuity assumption.

6.1. Preliminary results. Those first two Lemmas are of great importance and
gather the main arguments of our demonstration.

Lemma 6.1. Let A be a convex subset of a locally convex topological vector space
Ω. If any point x ∈ A is the barycenter of some probability measure ν supported on
∆ ⊂ A, then A ⊂ co(∆).

Proof. Let K = co(∆). We suppose that there exists x0 ∈ A\K. By applying the
Hahn-Banach separation theorem, there exists a continuous linear map l : Ω → R,
such that supx∈K l(x) < C < l(x0), for some real C. The lower level set

Z = {x ∈ A | l(x) ≤ C}

obviously contains ∆. Let ν0 be the representative measure of x0, supported on ∆ so
that ν0(Z) = 1. Then,

l(x0) =

∫
Z

ldν0 ≤ C < l(x0) ,

leading to a contradiction.

The next Lemma expresses the supremum of a quasi-convex function on a closed
convex hull of some subset [2].

Lemma 6.2. Let A be a convex set of a locally convex topological vector space.
And let f : A → R be a quasi-convex lower semicontinuous function. If Y is an
arbitrary subset of A and co(Y ) its closed convex hull, then

sup
co(Y )

f(x) = sup
Y
f(x) ,

Proof. If supY f(x) = ∞, there is nothing to prove. So we assume that a :=
supY f(x) is finite. Let Za = {x ∈ A | f(x) ≤ a}.
Obviously, we have Y ⊂ Za. But Za is convex as f is quasi-convex. Further, it is
closed as f is lower semicontinuous. Therefore, we have co(Y ) ⊂ Za because of the
minimal property of the closed convex hull. Hence,

sup
co(Y )

f(x) ≤ sup
Za

f(x) ≤ a = sup
Y
f(x) ,

The converse is obvious.

It is remarkable that we assume the lower semicontinuity of the function to maxi-
mize. In contrast, the upper semicontinuity required in the Bauer maximum principle
is a more standard assumption for function maximization. The proof of Lemma 6.2
clarifies this hypothesis. Indeed, the assumption of lower semicontinuity is used to
enforce the closure of the set Za = {x ∈ A | f(x) ≤ supY f(x)}. This argument differs
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from Choquet’s demonstration of the Bauer maximum principle [7, p.102], where the
study of the closure of the set {x ∈ A | f(x) = supY f(x)} for an upper semicon-
tinuous function f on a compact space is performed. Doing so, the assumptions of
compactness and upper semicontinuity in the Bauer maximum principle is used in
order to show that the optimum of the function f is reached, which is not needed our
frame.

From Lemma 6.1 and 6.2, we establish the next Theorem. It is an analogous
to the Bauer maximum principle, where the compactness assumption is replaced by
an hypothesis of integral representation. The integral representation is always satis-
fied on compact sets, thanks to the Choquet representation theorem [7, p.153]. So
that the next theorem is analogous to the Bauer maximum principle under compact-
ness assumption. Hence, our hypothesis of integral representation is, in a way, more
general.

Theorem 6.3. Let A be a convex subset of a locally convex topological vector
space X . We assume that every point x ∈ A is the barycenter of a probability measure
ν supported on ∆ ⊂ A. Let f : A → R be a quasi-convex lower semicontinuous
function. Then

sup
x∈A

f(x) = sup
x∈∆

f(x) .

Proof. From Lemma 6.1
A ⊂ co(∆) .

Then applying Lemma 6.2 on the lower semicontinuous quasi-convex function f , we
obtain

sup
A
f(x) ≤ sup

co(∆)

f(x) = sup
∆
f(x) .

The converse inequality is obvious.

We may rely our result to the one of Vesely [27], who proves that Jensen’s integral
inequality remains true for a lower semicontinuous convex function on a convex set in
a locally convex topological vector space. This reads

Theorem 6.4 (Jensen’s integral inequality). Let A be a convex set in a locally
convex topological vector space. Let f be a lower semicontinuous convex function.
Then for a probability measure ν supported on A with barycenter xν :

1. The Lebesgue integral
∫
A f(ν) dν exists,

2. Jensen’s integral inequality f(xν) ≤
∫
A f dν holds.

Theorem 6.3 can be seen as some extremal type Jensen’s integral inequality. Indeed,
given a probability measure ν supported on ∆ with barycenter xν and a convex lsc
function f , we get thanks to Jensen’s inequality

f(xν) = f

(∫
∆

xdν

)
≤
∫

∆

f(x)dν ≤ sup
∆
f(x) .

6.2. Extension to Product spaces. The following Theorem shows that the
optimum of a quasi-convex lower semicontinuous function on a product space may be
computed on the generator of the optimization set.

Theorem 6.5. Let Ai be a convex subset of a locally convex topological vector
space Ωi, 1 ≤ i ≤ n. We assume that every point xi ∈ Ai is the barycenter of some
probability measure νi supported on ∆i ⊂ Ai. We equip A :=

∏n
i=1Ai with the
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product topology, we suppose further that f : A → R is marginally quasi-convex lower
semicontinuous. Then

sup
xi∈Ai
1≤i≤n

f((x1, . . . , xn)) = sup
xi∈∆i
1≤i≤n

f((x1, . . . , xn)) .

Proof. For simplicity, assume that i = 2. Then,

sup
x1∈A1
x2∈A2

f((x1, x2)) = sup
x1∈A1

sup
x2∈A2

f((x1, x2)) .

Now, the map x2 7→ f((x1, x2)) is a quasi-convex lower semicontinuous function, by
applying Theorem 6.5, it follows that

sup
x2∈A2

f((x1, x2)) = sup
x2∈∆2

f((x1, x2)), for every x1 ∈ A1 .

Therefore,

sup
x1∈A1

sup
x2∈A2

f((x1, x2)) = sup
x1∈A1

sup
x2∈∆2

f((x1, x2)),

= sup
x2∈∆2

sup
x1∈A1

f((x1, x2)),

= sup
x2∈∆2

sup
x1∈∆1

f((x1, x2)),

by applying the same reasoning to x1 7→ f((x1, x2)).

Remark 6.6. If a function is upper semicontinuous and quasi-concave, the same
reduction applies on the minimum.

6.3. Proof of the main result. Theorem 3.2 is slightly more complex than
Theorem 6.5, so that we should further detail the proof. Let X ,A and ∆ be as
defined in Subsection 3.1.

Proof of Theorem 3.2. We recall that A :=
∏d
i=1Ai is a product of measure

spaces, where Ai is a either a moment space or an unimodal moment space. Therefore,
each measure µi ∈ Ai satisfies Ni moment constraints. More precisely, for measurable

functions ϕ
(j)
i : Xi → R, we have Eµi [ϕ

(j)
i ] ≤ 0 for 1 ≤ j ≤ Ni and 1 ≤ i ≤ d.

Moreover, in Theorem 3.2, we also enforce constraints on the product measure
µ = µ1 ⊗ · · · ⊗ µd ∈ A, such that, for measurable function ϕ(j) : X → R, 1 ≤ j ≤ N ,
we have Eµ[ϕ(j)] ≤ 0.

Let f be a marginally quasi-convex lower semicontinuous function. Then,

sup
µ1,...,µd∈⊗Ai

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ) = sup
µ1∈A1

. . . sup
µd−1∈Ad−1

sup
µd∈Ad

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ1, . . . , µd) .

Now, for fixed µ1, . . . µd−1, we have that

Eµ1,...,µd [ϕ(j)] = Eµd
[
Eµ1,...,µd−1

[ϕ
(j)
i ]
]
≤ 0 ,

for 1 ≤ j ≤ N , which are moment constraints on the measure µd. This means that
there are in total Nd + N moment constraints enforced on µd. Therefore, µd has an



20 J. STENGER, F.GAMBOA, M. KELLER

integral representation supported on the set of convex combination of Nd + N + 1
extreme points (which are either Dirac masses, or uniform distributions). Hence, for
fixed µ1, . . . , µd−1, and because the function µd 7−→ f(µ1, . . . , µd) is quasi-convex and
lower semicontinuous. We have from Theorem 6.3

sup
µd∈Ad

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ1, . . . , µd) = sup
µd∈∆Nd+N

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ1, . . . , µd).

So that,

sup
µ1,...,µd∈⊗Ai

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ) = sup
µ1,...,µd∈A1⊗···⊗Ad−1⊗∆d

Eµ1,...,µd
[ϕ(j)]≤0

1≤j≤N

f(µ) .

Consequently, the last component of µ can be replaced by some element of ∆Ni+N .
By repeating this argument to the other components, the result follows.

7. Conclusion. We study the optimization of a quasi-convex lower semicontin-
uous function over a set of product of measure spaces A =

∏d
i=1Ai. Specific product

measures sets are studied: the product of moment classes or unimodal moment classes.
In those classes, we dispose of an integral representation on the extreme points ∆i,
that are either finite mixture of Dirac masses or respectively finite mixture of uni-
form distributions. This integral representation can be seen as a non compact form of
the Krein-Milmann theorem. We have shown that the optimization of a quasi-convex
lower semicontinuous function on the product space A is reduced to the d-fold product
of finite convex combination of extreme points of Ai.

This powerful Theorem provides numerous industrial applications. We develop
for example the optimization of the quantile of the output of a computer code whose
input distributions belong to measure spaces [26]. We also highlight through several
illustrated applications how our framework generalizes both the Optimal Uncertainty
Quantification [21] and the robust Bayesian analysis [15, 3].

Thought, we have an explicit representation of the extreme points, the optimiza-
tion is non trivial because of the high number of generalized moment constraints
enforced. In [26], the authors present an original parameterization of the problem
in the presence of classical moment constraints, allowing fast computation of the
quantities of interest presented in Section 4.

The product of measures sets reflects the mutual independence of the model pa-
rameters. In case of a dependence structure, the Lasserre hierarchy of relaxations in
semidefinite programming [20] provides an alternative solution for practical optimiza-
tion.

Appendix A. Proof of Theorem 2.2.

Proof. The proof is quite technical and as it is not the main topic of our paper
the details are kept to the bare minimum. We mainly gather different results to prove
our point, so that the interested reader might refer to it. Let X be an interval of
R, Ha(X) is the set of all probability measures on x which are unimodal at a ∈ X.
From [4, p.19] we now that Ha(X) is a simplex, this means that every probability
measure in Ha is the barycenter of a unique probability measure supported on Ua(X).
Choquet [7, p.160] used another definition of simplex. A convex subset K of a locally
convex topological vector space is called a Choquet simplex if and only if the cone
K̃ = {(λx, λ) : x ∈ K,λ > 0} is a lattice cone in its own order (that is, the vector
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space span(K̃) is a lattice when its positive cone is taken to be K̃). The important
point is that these two definitions are connected, and from [30, p.47] we know that
each simplex is a Choquet simplex. Hence, Ha(X) is also a Choquet simplex. We
now define

K = {µ ∈ Ha(X) : ϕ1, . . . , ϕn are µ-integrable} ,

F (µ) =

(∫
ϕ1 dµ, . . . ,

∫
ϕn dµ

)
,

W = F [K] ∩
n∏
i=1

]−∞, 0] or W = F [K] ∩ {(0, . . . , 0)} .

In order to apply [31, Proposition 2.1], it remains to check that K is linearly compact
(meaning each of its line meets K in a compact interval). By the main theorem in [18],
it is sufficient to show that R+ ·K is a lattice cone in its own oder (condition (20) in
the main theorem is an equivalent formulation of linear compactness as shown in the
same reference on p.369). Of course the cone R+ · Ha(X) is a lattice cone in its own
order because it is a Choquet simplex. Now, choose µ ∈ R+ ·K and ν ∈ R+ · Ha(X)
such that (µ− ν) ∈ R+ ·K, then ν ∈ R+ ·K since∫

|ϕi| dν ≤
∫
|ϕi| dµ for every i = 1, . . . , n.

Hence, R+ ·K is a hereditary subcone of R+ · Ha(X) and consequently a lattice cone
in its own order. This proves that K is linearly compact and that [31, Proposition 2.1]
applies. It follows that the set A† = F−1[W ] = {µ ∈ Ha(X) | Eµ[ϕi] ≤ 0} satisfies

ex{A†} ⊂ ∆†(n) =

{
µ ∈ A† | µ =

n+1∑
i=1

ωiui, ωi ≥ 0, ui ∈ Ua(X)

}
.

Because, the extreme set of Ha(X) is precisely Ua(X) as shown in [4, p.19]. Now
that the extreme points of A† are classified, Corollary 1 in [29] concludes that every
measure in A† has an integral representation supported on ∆†(n).
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